ctree.c 152.6 KB
Newer Older
C
Chris Mason 已提交
1
/*
C
Chris Mason 已提交
2
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/sched.h>
20
#include <linux/slab.h>
21
#include <linux/rbtree.h>
22
#include <linux/mm.h>
23 24
#include "ctree.h"
#include "disk-io.h"
25
#include "transaction.h"
26
#include "print-tree.h"
27
#include "locking.h"
28

29 30
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
31 32 33
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
34
static int push_node_left(struct btrfs_trans_handle *trans,
35 36
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
37
			  struct extent_buffer *src, int empty);
38
static int balance_node_right(struct btrfs_trans_handle *trans,
39
			      struct btrfs_fs_info *fs_info,
40 41
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
42 43
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
44

C
Chris Mason 已提交
45
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
46
{
47
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
48 49
}

50 51 52 53 54 55 56 57
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58 59 60 61 62 63 64
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
65 66 67 68 69
	}
}

/*
 * reset all the locked nodes in the patch to spinning locks.
70 71 72 73 74
 *
 * held is used to keep lockdep happy, when lockdep is enabled
 * we set held to a blocking lock before we go around and
 * retake all the spinlocks in the path.  You can safely use NULL
 * for held
75
 */
76
noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
77
					struct extent_buffer *held, int held_rw)
78 79
{
	int i;
80

81 82 83 84 85 86 87
	if (held) {
		btrfs_set_lock_blocking_rw(held, held_rw);
		if (held_rw == BTRFS_WRITE_LOCK)
			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
		else if (held_rw == BTRFS_READ_LOCK)
			held_rw = BTRFS_READ_LOCK_BLOCKING;
	}
88 89 90
	btrfs_set_path_blocking(p);

	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
91 92 93 94 95 96 97
		if (p->nodes[i] && p->locks[i]) {
			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
				p->locks[i] = BTRFS_WRITE_LOCK;
			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
				p->locks[i] = BTRFS_READ_LOCK;
		}
98
	}
99 100

	if (held)
101
		btrfs_clear_lock_blocking_rw(held, held_rw);
102 103
}

C
Chris Mason 已提交
104
/* this also releases the path */
C
Chris Mason 已提交
105
void btrfs_free_path(struct btrfs_path *p)
106
{
107 108
	if (!p)
		return;
109
	btrfs_release_path(p);
C
Chris Mason 已提交
110
	kmem_cache_free(btrfs_path_cachep, p);
111 112
}

C
Chris Mason 已提交
113 114 115 116 117 118
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
119
noinline void btrfs_release_path(struct btrfs_path *p)
120 121
{
	int i;
122

C
Chris Mason 已提交
123
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
124
		p->slots[i] = 0;
125
		if (!p->nodes[i])
126 127
			continue;
		if (p->locks[i]) {
128
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
129 130
			p->locks[i] = 0;
		}
131
		free_extent_buffer(p->nodes[i]);
132
		p->nodes[i] = NULL;
133 134 135
	}
}

C
Chris Mason 已提交
136 137 138 139 140 141 142 143 144 145
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
146 147 148
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
149

150 151 152 153 154 155
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
156
		 * it was COWed but we may not get the new root node yet so do
157 158 159 160 161 162 163 164 165 166
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
167 168 169
	return eb;
}

C
Chris Mason 已提交
170 171 172 173
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
174 175 176 177
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
178
	while (1) {
179 180
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
181
		if (eb == root->node)
182 183 184 185 186 187 188
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

189 190 191 192
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
193
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
194 195 196 197 198 199 200 201 202 203 204 205 206 207
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
208 209 210 211
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
212 213
static void add_root_to_dirty_list(struct btrfs_root *root)
{
214 215
	struct btrfs_fs_info *fs_info = root->fs_info;

216 217 218 219
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

220
	spin_lock(&fs_info->trans_lock);
221 222 223 224
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
			list_move_tail(&root->dirty_list,
225
				       &fs_info->dirty_cowonly_roots);
226 227
		else
			list_move(&root->dirty_list,
228
				  &fs_info->dirty_cowonly_roots);
229
	}
230
	spin_unlock(&fs_info->trans_lock);
231 232
}

C
Chris Mason 已提交
233 234 235 236 237
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
238 239 240 241 242
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
243
	struct btrfs_fs_info *fs_info = root->fs_info;
244 245 246
	struct extent_buffer *cow;
	int ret = 0;
	int level;
247
	struct btrfs_disk_key disk_key;
248

249
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250
		trans->transid != fs_info->running_transaction->transid);
251 252
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
253 254

	level = btrfs_header_level(buf);
255 256 257 258
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
259

260 261
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
262
	if (IS_ERR(cow))
263 264
		return PTR_ERR(cow);

265
	copy_extent_buffer_full(cow, buf);
266 267
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
268 269 270 271 272 273 274
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
275

276
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
277

278
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
279
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280
		ret = btrfs_inc_ref(trans, root, cow, 1);
281
	else
282
		ret = btrfs_inc_ref(trans, root, cow, 0);
283

284 285 286 287 288 289 290 291
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
309
	u64 logical;
310
	u64 seq;
311 312 313 314 315 316 317 318 319 320 321 322 323
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
324 325 326 327
	struct {
		int dst_slot;
		int nr_items;
	} move;
328 329 330 331 332

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

333
/*
J
Josef Bacik 已提交
334
 * Pull a new tree mod seq number for our operation.
335
 */
J
Josef Bacik 已提交
336
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
337 338 339 340
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

341 342 343 344 345 346 347 348 349 350
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
351
{
352
	write_lock(&fs_info->tree_mod_log_lock);
353
	spin_lock(&fs_info->tree_mod_seq_lock);
354
	if (!elem->seq) {
J
Josef Bacik 已提交
355
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
356 357
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
358
	spin_unlock(&fs_info->tree_mod_seq_lock);
359
	write_unlock(&fs_info->tree_mod_log_lock);
360

J
Josef Bacik 已提交
361
	return elem->seq;
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
380
	elem->seq = 0;
381 382

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
383
		if (cur_elem->seq < min_seq) {
384 385 386 387 388
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
389 390
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
391 392 393 394
			}
			min_seq = cur_elem->seq;
		}
	}
395 396
	spin_unlock(&fs_info->tree_mod_seq_lock);

397 398 399 400
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
401
	write_lock(&fs_info->tree_mod_log_lock);
402 403 404
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
405
		tm = rb_entry(node, struct tree_mod_elem, node);
406
		if (tm->seq > min_seq)
407 408 409 410
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
411
	write_unlock(&fs_info->tree_mod_log_lock);
412 413 414 415
}

/*
 * key order of the log:
416
 *       node/leaf start address -> sequence
417
 *
418 419 420
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
421
 *
422
 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
423 424 425 426 427 428 429 430
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
431

J
Josef Bacik 已提交
432
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
433 434 435 436

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
437
		cur = rb_entry(*new, struct tree_mod_elem, node);
438
		parent = *new;
439
		if (cur->logical < tm->logical)
440
			new = &((*new)->rb_left);
441
		else if (cur->logical > tm->logical)
442
			new = &((*new)->rb_right);
443
		else if (cur->seq < tm->seq)
444
			new = &((*new)->rb_left);
445
		else if (cur->seq > tm->seq)
446
			new = &((*new)->rb_right);
447 448
		else
			return -EEXIST;
449 450 451 452
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
453
	return 0;
454 455
}

456 457 458 459
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
460
 * write unlock fs_info::tree_mod_log_lock.
461
 */
462 463 464 465 466
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
467 468
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
469

470
	write_lock(&fs_info->tree_mod_log_lock);
471
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
472
		write_unlock(&fs_info->tree_mod_log_lock);
473 474 475
		return 1;
	}

476 477 478
	return 0;
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
495
{
496
	struct tree_mod_elem *tm;
497

498 499
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
500
		return NULL;
501

502
	tm->logical = eb->start;
503 504 505 506 507 508 509
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
510
	RB_CLEAR_NODE(&tm->node);
511

512
	return tm;
513 514
}

515 516
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
517
{
518 519 520
	struct tree_mod_elem *tm;
	int ret;

521
	if (!tree_mod_need_log(eb->fs_info, eb))
522 523 524 525 526 527
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

528
	if (tree_mod_dont_log(eb->fs_info, eb)) {
529
		kfree(tm);
530
		return 0;
531 532
	}

533
	ret = __tree_mod_log_insert(eb->fs_info, tm);
534
	write_unlock(&eb->fs_info->tree_mod_log_lock);
535 536
	if (ret)
		kfree(tm);
537

538
	return ret;
539 540
}

541 542
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
543
{
544 545 546
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
547
	int i;
548
	int locked = 0;
549

550
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
551
		return 0;
552

553
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
554 555 556
	if (!tm_list)
		return -ENOMEM;

557
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
558 559 560 561 562
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

563
	tm->logical = eb->start;
564 565 566 567 568 569 570
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
571
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
572 573 574 575 576 577
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

578
	if (tree_mod_dont_log(eb->fs_info, eb))
579 580 581
		goto free_tms;
	locked = 1;

582 583 584 585 586
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
587
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
588
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
589 590
		if (ret)
			goto free_tms;
591 592
	}

593
	ret = __tree_mod_log_insert(eb->fs_info, tm);
594 595
	if (ret)
		goto free_tms;
596
	write_unlock(&eb->fs_info->tree_mod_log_lock);
597
	kfree(tm_list);
J
Jan Schmidt 已提交
598

599 600 601 602
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
603
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
604 605 606
		kfree(tm_list[i]);
	}
	if (locked)
607
		write_unlock(&eb->fs_info->tree_mod_log_lock);
608 609
	kfree(tm_list);
	kfree(tm);
610

611
	return ret;
612 613
}

614 615 616 617
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
618
{
619
	int i, j;
620 621 622
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
623 624 625 626 627 628 629
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
630
	}
631 632

	return 0;
633 634
}

635 636
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
637
{
638
	struct btrfs_fs_info *fs_info = old_root->fs_info;
639 640 641 642 643
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
644

645
	if (!tree_mod_need_log(fs_info, NULL))
646 647
		return 0;

648 649
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
650
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
651
				  GFP_NOFS);
652 653 654 655 656 657
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
658
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
659 660 661 662 663 664
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
665

666
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
667 668 669 670
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
671

672
	tm->logical = new_root->start;
673 674 675 676 677
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

678 679 680 681 682 683 684 685
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

686
	write_unlock(&fs_info->tree_mod_log_lock);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
702 703 704 705 706 707 708 709 710 711 712
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

713
	read_lock(&fs_info->tree_mod_log_lock);
714 715 716
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
717
		cur = rb_entry(node, struct tree_mod_elem, node);
718
		if (cur->logical < start) {
719
			node = node->rb_left;
720
		} else if (cur->logical > start) {
721
			node = node->rb_right;
722
		} else if (cur->seq < min_seq) {
723 724 725 726
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
727
				BUG_ON(found->seq > cur->seq);
728 729
			found = cur;
			node = node->rb_left;
730
		} else if (cur->seq > min_seq) {
731 732
			/* we want the node with the smallest seq */
			if (found)
733
				BUG_ON(found->seq < cur->seq);
734 735 736 737 738 739 740
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
741
	read_unlock(&fs_info->tree_mod_log_lock);
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

769
static noinline int
770 771
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
772
		     unsigned long src_offset, int nr_items)
773
{
774 775 776
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
777
	int i;
778
	int locked = 0;
779

780 781
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
782

783
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
784 785
		return 0;

786
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
787 788 789
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
790

791 792
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
793
	for (i = 0; i < nr_items; i++) {
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
820
	}
821

822
	write_unlock(&fs_info->tree_mod_log_lock);
823 824 825 826 827 828 829 830 831 832 833
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
834
		write_unlock(&fs_info->tree_mod_log_lock);
835 836 837
	kfree(tm_list);

	return ret;
838 839
}

840
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
841
{
842 843 844 845 846 847 848 849
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

850
	if (!tree_mod_need_log(eb->fs_info, NULL))
851 852 853
		return 0;

	nritems = btrfs_header_nritems(eb);
854
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
855 856 857 858 859 860 861 862 863 864 865 866
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

867
	if (tree_mod_dont_log(eb->fs_info, eb))
868 869
		goto free_tms;

870
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
871
	write_unlock(&eb->fs_info->tree_mod_log_lock);
872 873 874 875 876 877 878 879 880 881 882 883
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
884 885
}

886 887 888 889 890 891 892
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
893
	 * Tree blocks not in reference counted trees and tree roots
894 895 896 897
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
898
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
899 900 901 902 903 904
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
905
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
906 907 908 909 910 911 912 913 914
	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
		return 1;
#endif
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
915 916
				       struct extent_buffer *cow,
				       int *last_ref)
917
{
918
	struct btrfs_fs_info *fs_info = root->fs_info;
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
943
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
944 945
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
946 947
		if (ret)
			return ret;
948 949
		if (refs == 0) {
			ret = -EROFS;
950
			btrfs_handle_fs_error(fs_info, ret, NULL);
951 952
			return ret;
		}
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
970
			ret = btrfs_inc_ref(trans, root, buf, 1);
971 972
			if (ret)
				return ret;
973 974 975

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
976
				ret = btrfs_dec_ref(trans, root, buf, 0);
977 978
				if (ret)
					return ret;
979
				ret = btrfs_inc_ref(trans, root, cow, 1);
980 981
				if (ret)
					return ret;
982 983 984 985 986 987
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
988
				ret = btrfs_inc_ref(trans, root, cow, 1);
989
			else
990
				ret = btrfs_inc_ref(trans, root, cow, 0);
991 992
			if (ret)
				return ret;
993 994
		}
		if (new_flags != 0) {
995 996
			int level = btrfs_header_level(buf);

997
			ret = btrfs_set_disk_extent_flags(trans, fs_info,
998 999
							  buf->start,
							  buf->len,
1000
							  new_flags, level, 0);
1001 1002
			if (ret)
				return ret;
1003 1004 1005 1006 1007
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
1008
				ret = btrfs_inc_ref(trans, root, cow, 1);
1009
			else
1010
				ret = btrfs_inc_ref(trans, root, cow, 0);
1011 1012
			if (ret)
				return ret;
1013
			ret = btrfs_dec_ref(trans, root, buf, 1);
1014 1015
			if (ret)
				return ret;
1016
		}
1017
		clean_tree_block(fs_info, buf);
1018
		*last_ref = 1;
1019 1020 1021 1022
	}
	return 0;
}

C
Chris Mason 已提交
1023
/*
C
Chris Mason 已提交
1024 1025 1026 1027
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1028 1029 1030
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1031 1032 1033
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1034
 */
C
Chris Mason 已提交
1035
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1036 1037 1038 1039
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1040
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1041
{
1042
	struct btrfs_fs_info *fs_info = root->fs_info;
1043
	struct btrfs_disk_key disk_key;
1044
	struct extent_buffer *cow;
1045
	int level, ret;
1046
	int last_ref = 0;
1047
	int unlock_orig = 0;
1048
	u64 parent_start = 0;
1049

1050 1051 1052
	if (*cow_ret == buf)
		unlock_orig = 1;

1053
	btrfs_assert_tree_locked(buf);
1054

1055
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1056
		trans->transid != fs_info->running_transaction->transid);
1057 1058
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1059

1060
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1061

1062 1063 1064 1065 1066
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1067 1068
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1069

1070 1071 1072
	cow = btrfs_alloc_tree_block(trans, root, parent_start,
			root->root_key.objectid, &disk_key, level,
			search_start, empty_size);
1073 1074
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1075

1076 1077
	/* cow is set to blocking by btrfs_init_new_buffer */

1078
	copy_extent_buffer_full(cow, buf);
1079
	btrfs_set_header_bytenr(cow, cow->start);
1080
	btrfs_set_header_generation(cow, trans->transid);
1081 1082 1083 1084 1085 1086 1087
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1088

1089
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
1090

1091
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1092
	if (ret) {
1093
		btrfs_abort_transaction(trans, ret);
1094 1095
		return ret;
	}
Z
Zheng Yan 已提交
1096

1097
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1098
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1099
		if (ret) {
1100
			btrfs_abort_transaction(trans, ret);
1101
			return ret;
1102
		}
1103
	}
1104

C
Chris Mason 已提交
1105
	if (buf == root->node) {
1106
		WARN_ON(parent && parent != buf);
1107 1108 1109
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1110

1111
		extent_buffer_get(cow);
1112 1113
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1114
		rcu_assign_pointer(root->node, cow);
1115

1116
		btrfs_free_tree_block(trans, root, buf, parent_start,
1117
				      last_ref);
1118
		free_extent_buffer(buf);
1119
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1120
	} else {
1121
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1122
		tree_mod_log_insert_key(parent, parent_slot,
1123
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1124
		btrfs_set_node_blockptr(parent, parent_slot,
1125
					cow->start);
1126 1127
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1128
		btrfs_mark_buffer_dirty(parent);
1129
		if (last_ref) {
1130
			ret = tree_mod_log_free_eb(buf);
1131
			if (ret) {
1132
				btrfs_abort_transaction(trans, ret);
1133 1134 1135
				return ret;
			}
		}
1136
		btrfs_free_tree_block(trans, root, buf, parent_start,
1137
				      last_ref);
C
Chris Mason 已提交
1138
	}
1139 1140
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1141
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1142
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1143
	*cow_ret = cow;
C
Chris Mason 已提交
1144 1145 1146
	return 0;
}

J
Jan Schmidt 已提交
1147 1148 1149 1150
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1151 1152
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1153 1154 1155
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1156
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1157 1158 1159
	int looped = 0;

	if (!time_seq)
1160
		return NULL;
J
Jan Schmidt 已提交
1161 1162

	/*
1163 1164 1165 1166
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1167 1168
	 */
	while (1) {
1169
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1170 1171
						time_seq);
		if (!looped && !tm)
1172
			return NULL;
J
Jan Schmidt 已提交
1173
		/*
1174 1175 1176
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1177
		 */
1178 1179
		if (!tm)
			break;
J
Jan Schmidt 已提交
1180

1181 1182 1183 1184 1185
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1186 1187 1188 1189 1190 1191 1192 1193
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1194 1195 1196 1197
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1198 1199 1200 1201 1202
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1203
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1204 1205 1206
 * time_seq).
 */
static void
1207 1208
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1218
	read_lock(&fs_info->tree_mod_log_lock);
1219
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1220 1221 1222 1223 1224 1225 1226 1227
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1228
			/* Fallthrough */
1229
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1230
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1231 1232 1233 1234
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1235
			n++;
J
Jan Schmidt 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1245
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1246 1247 1248
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1249 1250 1251
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1269
		tm = rb_entry(next, struct tree_mod_elem, node);
1270
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1271 1272
			break;
	}
1273
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1274 1275 1276
	btrfs_set_header_nritems(eb, n);
}

1277
/*
1278
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1279 1280 1281 1282 1283
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1284
static struct extent_buffer *
1285 1286
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1301 1302 1303
	btrfs_set_path_blocking(path);
	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);

J
Jan Schmidt 已提交
1304 1305
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1306
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1307
		if (!eb_rewin) {
1308
			btrfs_tree_read_unlock_blocking(eb);
1309 1310 1311
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1312 1313 1314 1315
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1316
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1317 1318
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1319
		if (!eb_rewin) {
1320
			btrfs_tree_read_unlock_blocking(eb);
1321 1322 1323
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1324 1325
	}

1326 1327
	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1328 1329
	free_extent_buffer(eb);

1330 1331
	extent_buffer_get(eb_rewin);
	btrfs_tree_read_lock(eb_rewin);
1332
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1333
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1334
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1335 1336 1337 1338

	return eb_rewin;
}

1339 1340 1341 1342 1343 1344 1345
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1346 1347 1348
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1349
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1350
	struct tree_mod_elem *tm;
1351 1352
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1353
	struct extent_buffer *old;
1354
	struct tree_mod_root *old_root = NULL;
1355
	u64 old_generation = 0;
1356
	u64 logical;
1357
	int level;
J
Jan Schmidt 已提交
1358

1359
	eb_root = btrfs_read_lock_root_node(root);
1360
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1361
	if (!tm)
1362
		return eb_root;
J
Jan Schmidt 已提交
1363

1364 1365 1366 1367
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1368
		level = old_root->level;
1369
	} else {
1370
		logical = eb_root->start;
1371
		level = btrfs_header_level(eb_root);
1372
	}
J
Jan Schmidt 已提交
1373

1374
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1375
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1376 1377
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1378
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1379 1380 1381
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1382 1383 1384
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1385
		} else {
1386 1387
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1388 1389
		}
	} else if (old_root) {
1390 1391
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1392
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1393
	} else {
1394
		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1395
		eb = btrfs_clone_extent_buffer(eb_root);
1396
		btrfs_tree_read_unlock_blocking(eb_root);
1397
		free_extent_buffer(eb_root);
1398 1399
	}

1400 1401
	if (!eb)
		return NULL;
1402
	extent_buffer_get(eb);
1403
	btrfs_tree_read_lock(eb);
1404
	if (old_root) {
J
Jan Schmidt 已提交
1405 1406
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1407
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1408 1409
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1410
	}
1411
	if (tm)
1412
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1413 1414
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1415
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1416 1417 1418 1419

	return eb;
}

J
Jan Schmidt 已提交
1420 1421 1422 1423
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1424
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1425

1426
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1427 1428 1429
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1430
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1431
	}
1432
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1433 1434 1435 1436

	return level;
}

1437 1438 1439 1440
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1441
	if (btrfs_is_testing(root->fs_info))
1442
		return 0;
1443

1444 1445
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1446 1447 1448 1449 1450 1451 1452 1453

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1454
	 *    when we create snapshot during committing the transaction,
1455 1456 1457
	 *    after we've finished coping src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
1458 1459 1460
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1461
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1462
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1463 1464 1465 1466
		return 0;
	return 1;
}

C
Chris Mason 已提交
1467 1468
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1469
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1470 1471
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1472
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1473 1474
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1475
		    struct extent_buffer **cow_ret)
1476
{
1477
	struct btrfs_fs_info *fs_info = root->fs_info;
1478
	u64 search_start;
1479
	int ret;
C
Chris Mason 已提交
1480

1481
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1482
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1483
		       trans->transid,
1484
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1485

1486
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1487
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1488
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1489

1490
	if (!should_cow_block(trans, root, buf)) {
1491
		trans->dirty = true;
1492 1493 1494
		*cow_ret = buf;
		return 0;
	}
1495

1496
	search_start = buf->start & ~((u64)SZ_1G - 1);
1497 1498 1499 1500 1501

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1502
	ret = __btrfs_cow_block(trans, root, buf, parent,
1503
				 parent_slot, cow_ret, search_start, 0);
1504 1505 1506

	trace_btrfs_cow_block(root, buf, *cow_ret);

1507
	return ret;
1508 1509
}

C
Chris Mason 已提交
1510 1511 1512 1513
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1514
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1515
{
1516
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1517
		return 1;
1518
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1519 1520 1521 1522
		return 1;
	return 0;
}

1523 1524 1525
/*
 * compare two keys in a memcmp fashion
 */
1526 1527
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1528 1529 1530 1531 1532
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1533
	return btrfs_comp_cpu_keys(&k1, k2);
1534 1535
}

1536 1537 1538
/*
 * same as comp_keys only with two btrfs_key's
 */
1539
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1555

C
Chris Mason 已提交
1556 1557 1558 1559 1560
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1561
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1562
		       struct btrfs_root *root, struct extent_buffer *parent,
1563
		       int start_slot, u64 *last_ret,
1564
		       struct btrfs_key *progress)
1565
{
1566
	struct btrfs_fs_info *fs_info = root->fs_info;
1567
	struct extent_buffer *cur;
1568
	u64 blocknr;
1569
	u64 gen;
1570 1571
	u64 search_start = *last_ret;
	u64 last_block = 0;
1572 1573 1574 1575 1576
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1577
	int parent_level;
1578 1579
	int uptodate;
	u32 blocksize;
1580 1581
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1582

1583 1584
	parent_level = btrfs_header_level(parent);

1585 1586
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1587

1588
	parent_nritems = btrfs_header_nritems(parent);
1589
	blocksize = fs_info->nodesize;
1590
	end_slot = parent_nritems - 1;
1591

1592
	if (parent_nritems <= 1)
1593 1594
		return 0;

1595 1596
	btrfs_set_lock_blocking(parent);

1597
	for (i = start_slot; i <= end_slot; i++) {
1598
		struct btrfs_key first_key;
1599
		int close = 1;
1600

1601 1602 1603 1604 1605
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1606
		blocknr = btrfs_node_blockptr(parent, i);
1607
		gen = btrfs_node_ptr_generation(parent, i);
1608
		btrfs_node_key_to_cpu(parent, &first_key, i);
1609 1610
		if (last_block == 0)
			last_block = blocknr;
1611

1612
		if (i > 0) {
1613 1614
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1615
		}
1616
		if (!close && i < end_slot) {
1617 1618
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1619
		}
1620 1621
		if (close) {
			last_block = blocknr;
1622
			continue;
1623
		}
1624

1625
		cur = find_extent_buffer(fs_info, blocknr);
1626
		if (cur)
1627
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1628 1629
		else
			uptodate = 0;
1630
		if (!cur || !uptodate) {
1631
			if (!cur) {
1632 1633 1634
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1635 1636 1637
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1638
					free_extent_buffer(cur);
1639
					return -EIO;
1640
				}
1641
			} else if (!uptodate) {
1642 1643
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1644 1645 1646 1647
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1648
			}
1649
		}
1650
		if (search_start == 0)
1651
			search_start = last_block;
1652

1653
		btrfs_tree_lock(cur);
1654
		btrfs_set_lock_blocking(cur);
1655
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1656
					&cur, search_start,
1657
					min(16 * blocksize,
1658
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1659
		if (err) {
1660
			btrfs_tree_unlock(cur);
1661
			free_extent_buffer(cur);
1662
			break;
Y
Yan 已提交
1663
		}
1664 1665
		search_start = cur->start;
		last_block = cur->start;
1666
		*last_ret = search_start;
1667 1668
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1669 1670 1671 1672
	}
	return err;
}

C
Chris Mason 已提交
1673
/*
1674 1675 1676
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1677 1678 1679 1680 1681 1682
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1683
static noinline int generic_bin_search(struct extent_buffer *eb,
1684 1685
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1686
				       int max, int *slot)
1687 1688 1689 1690 1691
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1692
	struct btrfs_disk_key *tmp = NULL;
1693 1694 1695 1696 1697
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1698
	int err;
1699

1700 1701 1702 1703 1704 1705 1706 1707
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1708
	while (low < high) {
1709
		mid = (low + high) / 2;
1710 1711
		offset = p + mid * item_size;

1712
		if (!kaddr || offset < map_start ||
1713 1714
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1715 1716

			err = map_private_extent_buffer(eb, offset,
1717
						sizeof(struct btrfs_disk_key),
1718
						&kaddr, &map_start, &map_len);
1719 1720 1721 1722

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1723
			} else if (err == 1) {
1724 1725 1726
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1727 1728
			} else {
				return err;
1729
			}
1730 1731 1732 1733 1734

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1750 1751 1752 1753
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1754 1755
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
		     int level, int *slot)
1756
{
1757
	if (level == 0)
1758 1759
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1760
					  sizeof(struct btrfs_item),
1761
					  key, btrfs_header_nritems(eb),
1762
					  slot);
1763
	else
1764 1765
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1766
					  sizeof(struct btrfs_key_ptr),
1767
					  key, btrfs_header_nritems(eb),
1768
					  slot);
1769 1770
}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1787 1788 1789
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1790 1791 1792
static noinline struct extent_buffer *
read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
	       int slot)
1793
{
1794
	int level = btrfs_header_level(parent);
1795
	struct extent_buffer *eb;
1796
	struct btrfs_key first_key;
1797

1798 1799
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1800 1801 1802

	BUG_ON(level == 0);

1803
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1804
	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1805 1806
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1807 1808 1809
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1810 1811 1812
	}

	return eb;
1813 1814
}

C
Chris Mason 已提交
1815 1816 1817 1818 1819
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1820
static noinline int balance_level(struct btrfs_trans_handle *trans,
1821 1822
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1823
{
1824
	struct btrfs_fs_info *fs_info = root->fs_info;
1825 1826 1827 1828
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1829 1830 1831 1832
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1833
	u64 orig_ptr;
1834 1835 1836 1837

	if (level == 0)
		return 0;

1838
	mid = path->nodes[level];
1839

1840 1841
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1842 1843
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1844
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1845

L
Li Zefan 已提交
1846
	if (level < BTRFS_MAX_LEVEL - 1) {
1847
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1848 1849
		pslot = path->slots[level + 1];
	}
1850

C
Chris Mason 已提交
1851 1852 1853 1854
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1855 1856
	if (!parent) {
		struct extent_buffer *child;
1857

1858
		if (btrfs_header_nritems(mid) != 1)
1859 1860 1861
			return 0;

		/* promote the child to a root */
1862
		child = read_node_slot(fs_info, mid, 0);
1863 1864
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1865
			btrfs_handle_fs_error(fs_info, ret, NULL);
1866 1867 1868
			goto enospc;
		}

1869
		btrfs_tree_lock(child);
1870
		btrfs_set_lock_blocking(child);
1871
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1872 1873 1874 1875 1876
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1877

1878 1879
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1880
		rcu_assign_pointer(root->node, child);
1881

1882
		add_root_to_dirty_list(root);
1883
		btrfs_tree_unlock(child);
1884

1885
		path->locks[level] = 0;
1886
		path->nodes[level] = NULL;
1887
		clean_tree_block(fs_info, mid);
1888
		btrfs_tree_unlock(mid);
1889
		/* once for the path */
1890
		free_extent_buffer(mid);
1891 1892

		root_sub_used(root, mid->len);
1893
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1894
		/* once for the root ptr */
1895
		free_extent_buffer_stale(mid);
1896
		return 0;
1897
	}
1898
	if (btrfs_header_nritems(mid) >
1899
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1900 1901
		return 0;

1902
	left = read_node_slot(fs_info, parent, pslot - 1);
1903 1904 1905
	if (IS_ERR(left))
		left = NULL;

1906
	if (left) {
1907
		btrfs_tree_lock(left);
1908
		btrfs_set_lock_blocking(left);
1909
		wret = btrfs_cow_block(trans, root, left,
1910
				       parent, pslot - 1, &left);
1911 1912 1913 1914
		if (wret) {
			ret = wret;
			goto enospc;
		}
1915
	}
1916

1917
	right = read_node_slot(fs_info, parent, pslot + 1);
1918 1919 1920
	if (IS_ERR(right))
		right = NULL;

1921
	if (right) {
1922
		btrfs_tree_lock(right);
1923
		btrfs_set_lock_blocking(right);
1924
		wret = btrfs_cow_block(trans, root, right,
1925
				       parent, pslot + 1, &right);
1926 1927 1928 1929 1930 1931 1932
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1933 1934
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1935
		wret = push_node_left(trans, fs_info, left, mid, 1);
1936 1937
		if (wret < 0)
			ret = wret;
1938
	}
1939 1940 1941 1942

	/*
	 * then try to empty the right most buffer into the middle
	 */
1943
	if (right) {
1944
		wret = push_node_left(trans, fs_info, mid, right, 1);
1945
		if (wret < 0 && wret != -ENOSPC)
1946
			ret = wret;
1947
		if (btrfs_header_nritems(right) == 0) {
1948
			clean_tree_block(fs_info, right);
1949
			btrfs_tree_unlock(right);
1950
			del_ptr(root, path, level + 1, pslot + 1);
1951
			root_sub_used(root, right->len);
1952
			btrfs_free_tree_block(trans, root, right, 0, 1);
1953
			free_extent_buffer_stale(right);
1954
			right = NULL;
1955
		} else {
1956 1957
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1958 1959 1960
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1961 1962
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1963 1964
		}
	}
1965
	if (btrfs_header_nritems(mid) == 1) {
1966 1967 1968 1969 1970 1971 1972 1973 1974
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1975 1976
		if (!left) {
			ret = -EROFS;
1977
			btrfs_handle_fs_error(fs_info, ret, NULL);
1978 1979
			goto enospc;
		}
1980
		wret = balance_node_right(trans, fs_info, mid, left);
1981
		if (wret < 0) {
1982
			ret = wret;
1983 1984
			goto enospc;
		}
1985
		if (wret == 1) {
1986
			wret = push_node_left(trans, fs_info, left, mid, 1);
1987 1988 1989
			if (wret < 0)
				ret = wret;
		}
1990 1991
		BUG_ON(wret == 1);
	}
1992
	if (btrfs_header_nritems(mid) == 0) {
1993
		clean_tree_block(fs_info, mid);
1994
		btrfs_tree_unlock(mid);
1995
		del_ptr(root, path, level + 1, pslot);
1996
		root_sub_used(root, mid->len);
1997
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1998
		free_extent_buffer_stale(mid);
1999
		mid = NULL;
2000 2001
	} else {
		/* update the parent key to reflect our changes */
2002 2003
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
2004 2005 2006
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
2007 2008
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
2009
	}
2010

2011
	/* update the path */
2012 2013 2014
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
2015
			/* left was locked after cow */
2016
			path->nodes[level] = left;
2017 2018
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2019 2020
			if (mid) {
				btrfs_tree_unlock(mid);
2021
				free_extent_buffer(mid);
2022
			}
2023
		} else {
2024
			orig_slot -= btrfs_header_nritems(left);
2025 2026 2027
			path->slots[level] = orig_slot;
		}
	}
2028
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2029
	if (orig_ptr !=
2030
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2031
		BUG();
2032
enospc:
2033 2034
	if (right) {
		btrfs_tree_unlock(right);
2035
		free_extent_buffer(right);
2036 2037 2038 2039
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2040
		free_extent_buffer(left);
2041
	}
2042 2043 2044
	return ret;
}

C
Chris Mason 已提交
2045 2046 2047 2048
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2049
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2050 2051
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2052
{
2053
	struct btrfs_fs_info *fs_info = root->fs_info;
2054 2055 2056 2057
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2058 2059 2060 2061 2062 2063 2064 2065
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2066
	mid = path->nodes[level];
2067
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2068

L
Li Zefan 已提交
2069
	if (level < BTRFS_MAX_LEVEL - 1) {
2070
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2071 2072
		pslot = path->slots[level + 1];
	}
2073

2074
	if (!parent)
2075 2076
		return 1;

2077
	left = read_node_slot(fs_info, parent, pslot - 1);
2078 2079
	if (IS_ERR(left))
		left = NULL;
2080 2081

	/* first, try to make some room in the middle buffer */
2082
	if (left) {
2083
		u32 left_nr;
2084 2085

		btrfs_tree_lock(left);
2086 2087
		btrfs_set_lock_blocking(left);

2088
		left_nr = btrfs_header_nritems(left);
2089
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2090 2091
			wret = 1;
		} else {
2092
			ret = btrfs_cow_block(trans, root, left, parent,
2093
					      pslot - 1, &left);
2094 2095 2096
			if (ret)
				wret = 1;
			else {
2097
				wret = push_node_left(trans, fs_info,
2098
						      left, mid, 0);
2099
			}
C
Chris Mason 已提交
2100
		}
2101 2102 2103
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2104
			struct btrfs_disk_key disk_key;
2105
			orig_slot += left_nr;
2106
			btrfs_node_key(mid, &disk_key, 0);
2107 2108 2109
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2110 2111 2112 2113
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2114 2115
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2116
				btrfs_tree_unlock(mid);
2117
				free_extent_buffer(mid);
2118 2119
			} else {
				orig_slot -=
2120
					btrfs_header_nritems(left);
2121
				path->slots[level] = orig_slot;
2122
				btrfs_tree_unlock(left);
2123
				free_extent_buffer(left);
2124 2125 2126
			}
			return 0;
		}
2127
		btrfs_tree_unlock(left);
2128
		free_extent_buffer(left);
2129
	}
2130
	right = read_node_slot(fs_info, parent, pslot + 1);
2131 2132
	if (IS_ERR(right))
		right = NULL;
2133 2134 2135 2136

	/*
	 * then try to empty the right most buffer into the middle
	 */
2137
	if (right) {
C
Chris Mason 已提交
2138
		u32 right_nr;
2139

2140
		btrfs_tree_lock(right);
2141 2142
		btrfs_set_lock_blocking(right);

2143
		right_nr = btrfs_header_nritems(right);
2144
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2145 2146
			wret = 1;
		} else {
2147 2148
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2149
					      &right);
2150 2151 2152
			if (ret)
				wret = 1;
			else {
2153
				wret = balance_node_right(trans, fs_info,
2154
							  right, mid);
2155
			}
C
Chris Mason 已提交
2156
		}
2157 2158 2159
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2160 2161 2162
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2163 2164 2165
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2166 2167 2168 2169 2170
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2171 2172
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2173
					btrfs_header_nritems(mid);
2174
				btrfs_tree_unlock(mid);
2175
				free_extent_buffer(mid);
2176
			} else {
2177
				btrfs_tree_unlock(right);
2178
				free_extent_buffer(right);
2179 2180 2181
			}
			return 0;
		}
2182
		btrfs_tree_unlock(right);
2183
		free_extent_buffer(right);
2184 2185 2186 2187
	}
	return 1;
}

2188
/*
C
Chris Mason 已提交
2189 2190
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2191
 */
2192
static void reada_for_search(struct btrfs_fs_info *fs_info,
2193 2194
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2195
{
2196
	struct extent_buffer *node;
2197
	struct btrfs_disk_key disk_key;
2198 2199
	u32 nritems;
	u64 search;
2200
	u64 target;
2201
	u64 nread = 0;
2202
	struct extent_buffer *eb;
2203 2204 2205
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2206

2207
	if (level != 1)
2208 2209 2210
		return;

	if (!path->nodes[level])
2211 2212
		return;

2213
	node = path->nodes[level];
2214

2215
	search = btrfs_node_blockptr(node, slot);
2216 2217
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2218 2219
	if (eb) {
		free_extent_buffer(eb);
2220 2221 2222
		return;
	}

2223
	target = search;
2224

2225
	nritems = btrfs_header_nritems(node);
2226
	nr = slot;
2227

C
Chris Mason 已提交
2228
	while (1) {
2229
		if (path->reada == READA_BACK) {
2230 2231 2232
			if (nr == 0)
				break;
			nr--;
2233
		} else if (path->reada == READA_FORWARD) {
2234 2235 2236
			nr++;
			if (nr >= nritems)
				break;
2237
		}
2238
		if (path->reada == READA_BACK && objectid) {
2239 2240 2241 2242
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2243
		search = btrfs_node_blockptr(node, nr);
2244 2245
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2246
			readahead_tree_block(fs_info, search);
2247 2248 2249
			nread += blocksize;
		}
		nscan++;
2250
		if ((nread > 65536 || nscan > 32))
2251
			break;
2252 2253
	}
}
2254

2255
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2256
				       struct btrfs_path *path, int level)
2257 2258 2259 2260 2261 2262 2263 2264 2265
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2266
	parent = path->nodes[level + 1];
2267
	if (!parent)
J
Josef Bacik 已提交
2268
		return;
2269 2270

	nritems = btrfs_header_nritems(parent);
2271
	slot = path->slots[level + 1];
2272 2273 2274 2275

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2276
		eb = find_extent_buffer(fs_info, block1);
2277 2278 2279 2280 2281 2282
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2283 2284 2285
			block1 = 0;
		free_extent_buffer(eb);
	}
2286
	if (slot + 1 < nritems) {
2287 2288
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2289
		eb = find_extent_buffer(fs_info, block2);
2290
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2291 2292 2293
			block2 = 0;
		free_extent_buffer(eb);
	}
2294

J
Josef Bacik 已提交
2295
	if (block1)
2296
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2297
	if (block2)
2298
		readahead_tree_block(fs_info, block2);
2299 2300 2301
}


C
Chris Mason 已提交
2302
/*
C
Chris Mason 已提交
2303 2304 2305 2306
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2307
 *
C
Chris Mason 已提交
2308 2309 2310
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2311
 *
C
Chris Mason 已提交
2312 2313
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2314
 */
2315
static noinline void unlock_up(struct btrfs_path *path, int level,
2316 2317
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2318 2319 2320
{
	int i;
	int skip_level = level;
2321
	int no_skips = 0;
2322 2323 2324 2325 2326 2327 2328
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2329
		if (!no_skips && path->slots[i] == 0) {
2330 2331 2332
			skip_level = i + 1;
			continue;
		}
2333
		if (!no_skips && path->keep_locks) {
2334 2335 2336
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2337
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2338 2339 2340 2341
				skip_level = i + 1;
				continue;
			}
		}
2342 2343 2344
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2345 2346
		t = path->nodes[i];
		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2347
			btrfs_tree_unlock_rw(t, path->locks[i]);
2348
			path->locks[i] = 0;
2349 2350 2351 2352 2353
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2354 2355 2356 2357
		}
	}
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2371
	if (path->keep_locks)
2372 2373 2374 2375
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2376
			continue;
2377
		if (!path->locks[i])
2378
			continue;
2379
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2380 2381 2382 2383
		path->locks[i] = 0;
	}
}

2384 2385 2386 2387 2388 2389 2390 2391 2392
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2393 2394
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2395
		      const struct btrfs_key *key)
2396
{
2397
	struct btrfs_fs_info *fs_info = root->fs_info;
2398 2399 2400 2401
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2402
	struct btrfs_key first_key;
2403
	int ret;
2404
	int parent_level;
2405 2406 2407

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
2408 2409
	parent_level = btrfs_header_level(b);
	btrfs_node_key_to_cpu(b, &first_key, slot);
2410

2411
	tmp = find_extent_buffer(fs_info, blocknr);
2412
	if (tmp) {
2413
		/* first we do an atomic uptodate check */
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2428
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2429 2430 2431
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2432
		}
2433 2434 2435
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2436 2437 2438 2439 2440
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2441 2442 2443
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2444
	 */
2445 2446 2447
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2448
	free_extent_buffer(tmp);
2449
	if (p->reada != READA_NONE)
2450
		reada_for_search(fs_info, p, level, slot, key->objectid);
2451

2452
	btrfs_release_path(p);
2453 2454

	ret = -EAGAIN;
2455 2456
	tmp = read_tree_block(fs_info, blocknr, 0, parent_level - 1,
			      &first_key);
2457
	if (!IS_ERR(tmp)) {
2458 2459 2460 2461 2462 2463
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2464
		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2465
			ret = -EIO;
2466
		free_extent_buffer(tmp);
2467 2468
	} else {
		ret = PTR_ERR(tmp);
2469 2470
	}
	return ret;
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2485 2486
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2487
{
2488
	struct btrfs_fs_info *fs_info = root->fs_info;
2489
	int ret;
2490

2491
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2492
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2493 2494
		int sret;

2495 2496 2497 2498 2499 2500
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2501
		btrfs_set_path_blocking(p);
2502
		reada_for_balance(fs_info, p, level);
2503
		sret = split_node(trans, root, p, level);
2504
		btrfs_clear_path_blocking(p, NULL, 0);
2505 2506 2507 2508 2509 2510 2511 2512

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2513
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2514 2515
		int sret;

2516 2517 2518 2519 2520 2521
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2522
		btrfs_set_path_blocking(p);
2523
		reada_for_balance(fs_info, p, level);
2524
		sret = balance_level(trans, root, p, level);
2525
		btrfs_clear_path_blocking(p, NULL, 0);
2526 2527 2528 2529 2530 2531 2532

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2533
			btrfs_release_path(p);
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2546
static void key_search_validate(struct extent_buffer *b,
2547
				const struct btrfs_key *key,
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
				int level)
{
#ifdef CONFIG_BTRFS_ASSERT
	struct btrfs_disk_key disk_key;

	btrfs_cpu_key_to_disk(&disk_key, key);

	if (level == 0)
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_leaf, items[0].key),
		    sizeof(disk_key)));
	else
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_node, ptrs[0].key),
		    sizeof(disk_key)));
#endif
}

2566
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2567 2568 2569
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
2570
		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2571 2572 2573 2574 2575 2576 2577 2578 2579
		return *prev_cmp;
	}

	key_search_validate(b, key, level);
	*slot = 0;

	return 0;
}

2580
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2581 2582 2583 2584 2585 2586
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2587 2588

	ASSERT(path);
2589
	ASSERT(found_key);
2590 2591 2592 2593 2594 2595

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2596
	if (ret < 0)
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

C
Chris Mason 已提交
2615
/*
2616 2617
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2618
 *
2619 2620 2621 2622 2623 2624 2625 2626
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2627
 *
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2639
 */
2640 2641 2642
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2643
{
2644
	struct btrfs_fs_info *fs_info = root->fs_info;
2645
	struct extent_buffer *b;
2646 2647
	int slot;
	int ret;
2648
	int err;
2649
	int level;
2650
	int lowest_unlock = 1;
2651 2652 2653
	int root_lock;
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2654
	u8 lowest_level = 0;
2655
	int min_write_lock_level;
2656
	int prev_cmp;
2657

2658
	lowest_level = p->lowest_level;
2659
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2660
	WARN_ON(p->nodes[0] != NULL);
2661
	BUG_ON(!cow && ins_len);
2662

2663
	if (ins_len < 0) {
2664
		lowest_unlock = 2;
2665

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2682
	if (cow && (p->keep_locks || p->lowest_level))
2683 2684
		write_lock_level = BTRFS_MAX_LEVEL;

2685 2686
	min_write_lock_level = write_lock_level;

2687
again:
2688
	prev_cmp = -1;
2689 2690 2691 2692 2693
	/*
	 * we try very hard to do read locks on the root
	 */
	root_lock = BTRFS_READ_LOCK;
	level = 0;
2694
	if (p->search_commit_root) {
2695 2696 2697 2698
		/*
		 * the commit roots are read only
		 * so we always do read locks
		 */
2699
		if (p->need_commit_sem)
2700
			down_read(&fs_info->commit_root_sem);
2701 2702
		b = root->commit_root;
		extent_buffer_get(b);
2703
		level = btrfs_header_level(b);
2704
		if (p->need_commit_sem)
2705
			up_read(&fs_info->commit_root_sem);
2706
		if (!p->skip_locking)
2707
			btrfs_tree_read_lock(b);
2708
	} else {
2709
		if (p->skip_locking) {
2710
			b = btrfs_root_node(root);
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
			level = btrfs_header_level(b);
		} else {
			/* we don't know the level of the root node
			 * until we actually have it read locked
			 */
			b = btrfs_read_lock_root_node(root);
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
				/* whoops, must trade for write lock */
				btrfs_tree_read_unlock(b);
				free_extent_buffer(b);
				b = btrfs_lock_root_node(root);
				root_lock = BTRFS_WRITE_LOCK;

				/* the level might have changed, check again */
				level = btrfs_header_level(b);
			}
		}
2729
	}
2730 2731 2732
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
2733

2734
	while (b) {
2735
		level = btrfs_header_level(b);
2736 2737 2738 2739 2740

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2741
		if (cow) {
2742 2743
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2744 2745 2746 2747 2748
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2749 2750
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2751
				goto cow_done;
2752
			}
2753

2754 2755 2756 2757
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2758 2759 2760 2761
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2762 2763 2764 2765 2766
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2767
			btrfs_set_path_blocking(p);
2768 2769 2770 2771 2772 2773 2774
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b);
2775 2776
			if (err) {
				ret = err;
2777
				goto done;
2778
			}
C
Chris Mason 已提交
2779
		}
2780
cow_done:
2781
		p->nodes[level] = b;
2782
		btrfs_clear_path_blocking(p, NULL, 0);
2783 2784 2785 2786 2787 2788 2789

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2790 2791 2792 2793
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2794
		 */
2795 2796 2797 2798 2799 2800 2801 2802
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2803

2804
		ret = key_search(b, key, level, &prev_cmp, &slot);
2805 2806
		if (ret < 0)
			goto done;
2807

2808
		if (level != 0) {
2809 2810 2811
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2812
				slot -= 1;
2813
			}
2814
			p->slots[level] = slot;
2815
			err = setup_nodes_for_search(trans, root, p, b, level,
2816
					     ins_len, &write_lock_level);
2817
			if (err == -EAGAIN)
2818
				goto again;
2819 2820
			if (err) {
				ret = err;
2821
				goto done;
2822
			}
2823 2824
			b = p->nodes[level];
			slot = p->slots[level];
2825

2826 2827 2828 2829 2830 2831
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2832
			if (slot == 0 && ins_len &&
2833 2834 2835 2836 2837 2838
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2839 2840
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2841

2842
			if (level == lowest_level) {
2843 2844
				if (dec)
					p->slots[level]++;
2845
				goto done;
2846
			}
2847

2848
			err = read_block_for_search(root, p, &b, level,
2849
						    slot, key);
2850
			if (err == -EAGAIN)
2851
				goto again;
2852 2853
			if (err) {
				ret = err;
2854
				goto done;
2855
			}
2856

2857
			if (!p->skip_locking) {
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_WRITE_LOCK);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2869
					err = btrfs_tree_read_lock_atomic(b);
2870 2871 2872 2873 2874 2875 2876
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_READ_LOCK);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2877
				}
2878
				p->nodes[level] = b;
2879
			}
2880 2881
		} else {
			p->slots[level] = slot;
2882
			if (ins_len > 0 &&
2883
			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2884 2885 2886 2887 2888 2889
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2890
				btrfs_set_path_blocking(p);
2891 2892
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2893
				btrfs_clear_path_blocking(p, NULL, 0);
2894

2895 2896 2897
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2898 2899
					goto done;
				}
C
Chris Mason 已提交
2900
			}
2901
			if (!p->search_for_split)
2902 2903
				unlock_up(p, level, lowest_unlock,
					  min_write_lock_level, &write_lock_level);
2904
			goto done;
2905 2906
		}
	}
2907 2908
	ret = 1;
done:
2909 2910 2911 2912
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2913 2914
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2915
	if (ret < 0 && !p->skip_release_on_error)
2916
		btrfs_release_path(p);
2917
	return ret;
2918 2919
}

J
Jan Schmidt 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2931
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2932 2933
			  struct btrfs_path *p, u64 time_seq)
{
2934
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2935 2936 2937 2938 2939 2940 2941
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2942
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;
		btrfs_clear_path_blocking(p, NULL, 0);

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

2970
		/*
2971
		 * Since we can unwind ebs we want to do a real search every
2972 2973 2974
		 * time.
		 */
		prev_cmp = -1;
2975
		ret = key_search(b, key, level, &prev_cmp, &slot);
J
Jan Schmidt 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

2992
			err = read_block_for_search(root, p, &b, level,
2993
						    slot, key);
J
Jan Schmidt 已提交
2994 2995 2996 2997 2998 2999 3000 3001
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3002
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3003 3004 3005 3006 3007 3008
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
				btrfs_clear_path_blocking(p, b,
							  BTRFS_READ_LOCK);
			}
3009
			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3010 3011 3012 3013
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3045 3046 3047
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3082 3083 3084 3085 3086
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3087 3088 3089
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3090
				return 0;
3091
			}
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3103 3104 3105 3106 3107 3108
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3109 3110 3111 3112 3113 3114
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3115
 *
C
Chris Mason 已提交
3116
 */
3117 3118
static void fixup_low_keys(struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path,
3119
			   struct btrfs_disk_key *key, int level)
3120 3121
{
	int i;
3122
	struct extent_buffer *t;
3123
	int ret;
3124

C
Chris Mason 已提交
3125
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3126
		int tslot = path->slots[i];
3127

3128
		if (!path->nodes[i])
3129
			break;
3130
		t = path->nodes[i];
3131 3132 3133
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3134
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3135
		btrfs_mark_buffer_dirty(path->nodes[i]);
3136 3137 3138 3139 3140
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3141 3142 3143 3144 3145 3146
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3147 3148
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3149
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3159
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3160 3161 3162
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3163
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3164 3165 3166 3167 3168 3169
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3170
		fixup_low_keys(fs_info, path, &disk_key, 1);
Z
Zheng Yan 已提交
3171 3172
}

C
Chris Mason 已提交
3173 3174
/*
 * try to push data from one node into the next node left in the
3175
 * tree.
C
Chris Mason 已提交
3176 3177 3178
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3179
 */
3180
static int push_node_left(struct btrfs_trans_handle *trans,
3181 3182
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
3183
			  struct extent_buffer *src, int empty)
3184 3185
{
	int push_items = 0;
3186 3187
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3188
	int ret = 0;
3189

3190 3191
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3192
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3193 3194
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3195

3196
	if (!empty && src_nritems <= 8)
3197 3198
		return 1;

C
Chris Mason 已提交
3199
	if (push_items <= 0)
3200 3201
		return 1;

3202
	if (empty) {
3203
		push_items = min(src_nritems, push_items);
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3216

3217
	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3218 3219
				   push_items);
	if (ret) {
3220
		btrfs_abort_transaction(trans, ret);
3221 3222
		return ret;
	}
3223 3224 3225
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3226
			   push_items * sizeof(struct btrfs_key_ptr));
3227

3228
	if (push_items < src_nritems) {
3229
		/*
3230 3231
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3232
		 */
3233 3234 3235 3236 3237 3238 3239 3240 3241
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3242

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3255
static int balance_node_right(struct btrfs_trans_handle *trans,
3256
			      struct btrfs_fs_info *fs_info,
3257 3258
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3259 3260 3261 3262 3263 3264 3265
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3266 3267 3268
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3269 3270
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3271
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3272
	if (push_items <= 0)
3273
		return 1;
3274

C
Chris Mason 已提交
3275
	if (src_nritems < 4)
3276
		return 1;
3277 3278 3279

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3280
	if (max_push >= src_nritems)
3281
		return 1;
Y
Yan 已提交
3282

3283 3284 3285
	if (max_push < push_items)
		push_items = max_push;

3286 3287
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3288 3289 3290 3291
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3292

3293
	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3294 3295
				   src_nritems - push_items, push_items);
	if (ret) {
3296
		btrfs_abort_transaction(trans, ret);
3297 3298
		return ret;
	}
3299 3300 3301
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3302
			   push_items * sizeof(struct btrfs_key_ptr));
3303

3304 3305
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3306

3307 3308
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3309

C
Chris Mason 已提交
3310
	return ret;
3311 3312
}

C
Chris Mason 已提交
3313 3314 3315 3316
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3317 3318
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3319
 */
C
Chris Mason 已提交
3320
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3321
			   struct btrfs_root *root,
3322
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3323
{
3324
	struct btrfs_fs_info *fs_info = root->fs_info;
3325
	u64 lower_gen;
3326 3327
	struct extent_buffer *lower;
	struct extent_buffer *c;
3328
	struct extent_buffer *old;
3329
	struct btrfs_disk_key lower_key;
3330
	int ret;
C
Chris Mason 已提交
3331 3332 3333 3334

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3335 3336 3337 3338 3339 3340
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3341 3342
	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				   &lower_key, level, root->node->start, 0);
3343 3344
	if (IS_ERR(c))
		return PTR_ERR(c);
3345

3346
	root_add_used(root, fs_info->nodesize);
3347

3348
	memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3349 3350
	btrfs_set_header_nritems(c, 1);
	btrfs_set_header_level(c, level);
3351
	btrfs_set_header_bytenr(c, c->start);
3352
	btrfs_set_header_generation(c, trans->transid);
3353
	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3354 3355
	btrfs_set_header_owner(c, root->root_key.objectid);

3356 3357
	write_extent_buffer_fsid(c, fs_info->fsid);
	write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3358

3359
	btrfs_set_node_key(c, &lower_key, 0);
3360
	btrfs_set_node_blockptr(c, 0, lower->start);
3361
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3362
	WARN_ON(lower_gen != trans->transid);
3363 3364

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3365

3366
	btrfs_mark_buffer_dirty(c);
3367

3368
	old = root->node;
3369 3370
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3371
	rcu_assign_pointer(root->node, c);
3372 3373 3374 3375

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3376
	add_root_to_dirty_list(root);
3377 3378
	extent_buffer_get(c);
	path->nodes[level] = c;
3379
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3380 3381 3382 3383
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3384 3385 3386
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3387
 *
C
Chris Mason 已提交
3388 3389 3390
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3391
static void insert_ptr(struct btrfs_trans_handle *trans,
3392
		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3393
		       struct btrfs_disk_key *key, u64 bytenr,
3394
		       int slot, int level)
C
Chris Mason 已提交
3395
{
3396
	struct extent_buffer *lower;
C
Chris Mason 已提交
3397
	int nritems;
3398
	int ret;
C
Chris Mason 已提交
3399 3400

	BUG_ON(!path->nodes[level]);
3401
	btrfs_assert_tree_locked(path->nodes[level]);
3402 3403
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3404
	BUG_ON(slot > nritems);
3405
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
C
Chris Mason 已提交
3406
	if (slot != nritems) {
3407 3408
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3409
					nritems - slot);
3410 3411
			BUG_ON(ret < 0);
		}
3412 3413 3414
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3415
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3416
	}
3417
	if (level) {
3418 3419
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3420 3421
		BUG_ON(ret < 0);
	}
3422
	btrfs_set_node_key(lower, key, slot);
3423
	btrfs_set_node_blockptr(lower, slot, bytenr);
3424 3425
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3426 3427
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3428 3429
}

C
Chris Mason 已提交
3430 3431 3432 3433 3434 3435
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3436 3437
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3438
 */
3439 3440 3441
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3442
{
3443
	struct btrfs_fs_info *fs_info = root->fs_info;
3444 3445 3446
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3447
	int mid;
C
Chris Mason 已提交
3448
	int ret;
3449
	u32 c_nritems;
3450

3451
	c = path->nodes[level];
3452
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3453
	if (c == root->node) {
3454
		/*
3455 3456
		 * trying to split the root, lets make a new one
		 *
3457
		 * tree mod log: We don't log_removal old root in
3458 3459 3460 3461 3462
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3463
		 */
3464
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3465 3466
		if (ret)
			return ret;
3467
	} else {
3468
		ret = push_nodes_for_insert(trans, root, path, level);
3469 3470
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3471
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3472
			return 0;
3473 3474
		if (ret < 0)
			return ret;
3475
	}
3476

3477
	c_nritems = btrfs_header_nritems(c);
3478 3479
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3480

3481 3482
	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, level, c->start, 0);
3483 3484 3485
	if (IS_ERR(split))
		return PTR_ERR(split);

3486
	root_add_used(root, fs_info->nodesize);
3487

3488
	memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3489
	btrfs_set_header_level(split, btrfs_header_level(c));
3490
	btrfs_set_header_bytenr(split, split->start);
3491
	btrfs_set_header_generation(split, trans->transid);
3492
	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3493
	btrfs_set_header_owner(split, root->root_key.objectid);
3494 3495
	write_extent_buffer_fsid(split, fs_info->fsid);
	write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3496

3497
	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3498
	if (ret) {
3499
		btrfs_abort_transaction(trans, ret);
3500 3501
		return ret;
	}
3502 3503 3504 3505 3506 3507
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3508 3509
	ret = 0;

3510 3511 3512
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3513
	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3514
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3515

C
Chris Mason 已提交
3516
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3517
		path->slots[level] -= mid;
3518
		btrfs_tree_unlock(c);
3519 3520
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3521 3522
		path->slots[level + 1] += 1;
	} else {
3523
		btrfs_tree_unlock(split);
3524
		free_extent_buffer(split);
3525
	}
C
Chris Mason 已提交
3526
	return ret;
3527 3528
}

C
Chris Mason 已提交
3529 3530 3531 3532 3533
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3534
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3535
{
J
Josef Bacik 已提交
3536 3537 3538
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3539
	int data_len;
3540
	int nritems = btrfs_header_nritems(l);
3541
	int end = min(nritems, start + nr) - 1;
3542 3543 3544

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3545
	btrfs_init_map_token(&token);
3546 3547
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3548 3549 3550
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3551
	data_len += sizeof(struct btrfs_item) * nr;
3552
	WARN_ON(data_len < 0);
3553 3554 3555
	return data_len;
}

3556 3557 3558 3559 3560
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3561
noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3562
				   struct extent_buffer *leaf)
3563
{
3564 3565
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3566 3567

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3568
	if (ret < 0) {
3569 3570 3571 3572 3573
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3574 3575
	}
	return ret;
3576 3577
}

3578 3579 3580 3581
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3582
static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3583 3584 3585
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3586 3587
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3588
{
3589
	struct extent_buffer *left = path->nodes[0];
3590
	struct extent_buffer *upper = path->nodes[1];
3591
	struct btrfs_map_token token;
3592
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3593
	int slot;
3594
	u32 i;
C
Chris Mason 已提交
3595 3596
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3597
	struct btrfs_item *item;
3598
	u32 nr;
3599
	u32 right_nritems;
3600
	u32 data_end;
3601
	u32 this_item_size;
C
Chris Mason 已提交
3602

3603 3604
	btrfs_init_map_token(&token);

3605 3606 3607
	if (empty)
		nr = 0;
	else
3608
		nr = max_t(u32, 1, min_slot);
3609

Z
Zheng Yan 已提交
3610
	if (path->slots[0] >= left_nritems)
3611
		push_space += data_size;
Z
Zheng Yan 已提交
3612

3613
	slot = path->slots[1];
3614 3615
	i = left_nritems - 1;
	while (i >= nr) {
3616
		item = btrfs_item_nr(i);
3617

Z
Zheng Yan 已提交
3618 3619 3620 3621
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3622
				int space = btrfs_leaf_free_space(fs_info, left);
Z
Zheng Yan 已提交
3623 3624 3625 3626 3627
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3628
		if (path->slots[0] == i)
3629
			push_space += data_size;
3630 3631 3632

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3633
			break;
Z
Zheng Yan 已提交
3634

C
Chris Mason 已提交
3635
		push_items++;
3636
		push_space += this_item_size + sizeof(*item);
3637 3638 3639
		if (i == 0)
			break;
		i--;
3640
	}
3641

3642 3643
	if (push_items == 0)
		goto out_unlock;
3644

J
Julia Lawall 已提交
3645
	WARN_ON(!empty && push_items == left_nritems);
3646

C
Chris Mason 已提交
3647
	/* push left to right */
3648
	right_nritems = btrfs_header_nritems(right);
3649

3650
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3651
	push_space -= leaf_data_end(fs_info, left);
3652

C
Chris Mason 已提交
3653
	/* make room in the right data area */
3654
	data_end = leaf_data_end(fs_info, right);
3655
	memmove_extent_buffer(right,
3656 3657
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3658
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3659

C
Chris Mason 已提交
3660
	/* copy from the left data area */
3661
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3662
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3663
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
C
Chris Mason 已提交
3664
		     push_space);
3665 3666 3667 3668 3669

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3670
	/* copy the items from left to right */
3671 3672 3673
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3674 3675

	/* update the item pointers */
3676
	right_nritems += push_items;
3677
	btrfs_set_header_nritems(right, right_nritems);
3678
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3679
	for (i = 0; i < right_nritems; i++) {
3680
		item = btrfs_item_nr(i);
3681 3682
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3683 3684
	}

3685
	left_nritems -= push_items;
3686
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3687

3688 3689
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3690
	else
3691
		clean_tree_block(fs_info, left);
3692

3693
	btrfs_mark_buffer_dirty(right);
3694

3695 3696
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3697
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3698

C
Chris Mason 已提交
3699
	/* then fixup the leaf pointer in the path */
3700 3701
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3702
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3703
			clean_tree_block(fs_info, path->nodes[0]);
3704
		btrfs_tree_unlock(path->nodes[0]);
3705 3706
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3707 3708
		path->slots[1] += 1;
	} else {
3709
		btrfs_tree_unlock(right);
3710
		free_extent_buffer(right);
C
Chris Mason 已提交
3711 3712
	}
	return 0;
3713 3714 3715 3716 3717

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3718
}
3719

3720 3721 3722 3723 3724 3725
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3726 3727 3728
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3729 3730
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3731 3732 3733
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3734
{
3735
	struct btrfs_fs_info *fs_info = root->fs_info;
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3754
	right = read_node_slot(fs_info, upper, slot + 1);
3755 3756 3757 3758 3759
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3760 3761
		return 1;

3762 3763 3764
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

3765
	free_space = btrfs_leaf_free_space(fs_info, right);
3766 3767 3768 3769 3770 3771 3772 3773 3774
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3775
	free_space = btrfs_leaf_free_space(fs_info, right);
3776 3777 3778 3779 3780 3781 3782
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
		 * no need to touch/dirty our left leaft. */
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3796
	return __push_leaf_right(fs_info, path, min_data_size, empty,
3797
				right, free_space, left_nritems, min_slot);
3798 3799 3800 3801 3802 3803
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3804 3805 3806
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3807 3808 3809 3810
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3811
 */
3812
static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3813 3814
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3815 3816
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3817
{
3818 3819
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3820 3821 3822
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3823
	struct btrfs_item *item;
3824
	u32 old_left_nritems;
3825
	u32 nr;
C
Chris Mason 已提交
3826
	int ret = 0;
3827 3828
	u32 this_item_size;
	u32 old_left_item_size;
3829 3830 3831
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3832

3833
	if (empty)
3834
		nr = min(right_nritems, max_slot);
3835
	else
3836
		nr = min(right_nritems - 1, max_slot);
3837 3838

	for (i = 0; i < nr; i++) {
3839
		item = btrfs_item_nr(i);
3840

Z
Zheng Yan 已提交
3841 3842 3843 3844
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3845
				int space = btrfs_leaf_free_space(fs_info, right);
Z
Zheng Yan 已提交
3846 3847 3848 3849 3850
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3851
		if (path->slots[0] == i)
3852
			push_space += data_size;
3853 3854 3855

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3856
			break;
3857

3858
		push_items++;
3859 3860 3861
		push_space += this_item_size + sizeof(*item);
	}

3862
	if (push_items == 0) {
3863 3864
		ret = 1;
		goto out;
3865
	}
3866
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3867

3868
	/* push data from right to left */
3869 3870 3871 3872 3873
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3874
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3875
		     btrfs_item_offset_nr(right, push_items - 1);
3876

3877
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3878
		     leaf_data_end(fs_info, left) - push_space,
3879
		     BTRFS_LEAF_DATA_OFFSET +
3880
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3881
		     push_space);
3882
	old_left_nritems = btrfs_header_nritems(left);
3883
	BUG_ON(old_left_nritems <= 0);
3884

3885
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3886
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3887
		u32 ioff;
3888

3889
		item = btrfs_item_nr(i);
3890

3891 3892
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3893
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3894
		      &token);
3895
	}
3896
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3897 3898

	/* fixup right node */
J
Julia Lawall 已提交
3899 3900
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3901
		       right_nritems);
3902 3903 3904

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3905
						  leaf_data_end(fs_info, right);
3906
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3907
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3908
				      BTRFS_LEAF_DATA_OFFSET +
3909
				      leaf_data_end(fs_info, right), push_space);
3910 3911

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3912 3913 3914
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3915
	}
3916 3917
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3918
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3919
	for (i = 0; i < right_nritems; i++) {
3920
		item = btrfs_item_nr(i);
3921

3922 3923 3924
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3925
	}
3926

3927
	btrfs_mark_buffer_dirty(left);
3928 3929
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3930
	else
3931
		clean_tree_block(fs_info, right);
3932

3933
	btrfs_item_key(right, &disk_key, 0);
3934
	fixup_low_keys(fs_info, path, &disk_key, 1);
3935 3936 3937 3938

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3939
		btrfs_tree_unlock(path->nodes[0]);
3940 3941
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3942 3943
		path->slots[1] -= 1;
	} else {
3944
		btrfs_tree_unlock(left);
3945
		free_extent_buffer(left);
3946 3947
		path->slots[0] -= push_items;
	}
3948
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3949
	return ret;
3950 3951 3952 3953
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3954 3955
}

3956 3957 3958
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3959 3960 3961 3962
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3963 3964
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3965 3966
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3967
{
3968
	struct btrfs_fs_info *fs_info = root->fs_info;
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3988
	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3989 3990 3991 3992 3993
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
3994 3995
		return 1;

3996 3997 3998
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

3999
	free_space = btrfs_leaf_free_space(fs_info, left);
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4010 4011
		if (ret == -ENOSPC)
			ret = 1;
4012 4013 4014
		goto out;
	}

4015
	free_space = btrfs_leaf_free_space(fs_info, left);
4016 4017 4018 4019 4020
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4021
	return __push_leaf_left(fs_info, path, min_data_size,
4022 4023
			       empty, left, free_space, right_nritems,
			       max_slot);
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4034
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4035
				    struct btrfs_fs_info *fs_info,
4036 4037 4038 4039
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4040 4041 4042 4043 4044
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4045 4046 4047
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4048 4049 4050

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4051
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4052 4053 4054 4055 4056 4057

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4058 4059
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4060
		     leaf_data_end(fs_info, l), data_copy_size);
4061

4062
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4063 4064

	for (i = 0; i < nritems; i++) {
4065
		struct btrfs_item *item = btrfs_item_nr(i);
4066 4067
		u32 ioff;

4068 4069 4070
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4071 4072 4073 4074
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4075
	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4076
		   path->slots[1] + 1, 1);
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
4111
	struct btrfs_fs_info *fs_info = root->fs_info;
4112 4113 4114 4115
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4116
	int space_needed = data_size;
4117 4118

	slot = path->slots[0];
4119
	if (slot < btrfs_header_nritems(path->nodes[0]))
4120
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4121 4122 4123 4124 4125

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4126
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4141
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4142 4143 4144 4145
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4146 4147 4148
	space_needed = data_size;
	if (slot > 0)
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4149
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4161 4162 4163
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4164 4165
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4166
 */
4167 4168
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4169
			       const struct btrfs_key *ins_key,
4170 4171
			       struct btrfs_path *path, int data_size,
			       int extend)
4172
{
4173
	struct btrfs_disk_key disk_key;
4174
	struct extent_buffer *l;
4175
	u32 nritems;
4176 4177
	int mid;
	int slot;
4178
	struct extent_buffer *right;
4179
	struct btrfs_fs_info *fs_info = root->fs_info;
4180
	int ret = 0;
C
Chris Mason 已提交
4181
	int wret;
4182
	int split;
4183
	int num_doubles = 0;
4184
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4185

4186 4187 4188
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4189
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4190 4191
		return -EOVERFLOW;

C
Chris Mason 已提交
4192
	/* first try to make some room by pushing left and right */
4193
	if (data_size && path->nodes[1]) {
4194 4195 4196
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4197
			space_needed -= btrfs_leaf_free_space(fs_info, l);
4198 4199 4200

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4201
		if (wret < 0)
C
Chris Mason 已提交
4202
			return wret;
4203
		if (wret) {
4204 4205 4206 4207
			space_needed = data_size;
			if (slot > 0)
				space_needed -= btrfs_leaf_free_space(fs_info,
								      l);
4208 4209
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4210 4211 4212 4213
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4214

4215
		/* did the pushes work? */
4216
		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4217
			return 0;
4218
	}
C
Chris Mason 已提交
4219

C
Chris Mason 已提交
4220
	if (!path->nodes[1]) {
4221
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4222 4223 4224
		if (ret)
			return ret;
	}
4225
again:
4226
	split = 1;
4227
	l = path->nodes[0];
4228
	slot = path->slots[0];
4229
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4230
	mid = (nritems + 1) / 2;
4231

4232 4233 4234
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4235
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4236 4237 4238 4239 4240 4241
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4242
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4243 4244
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4245 4246 4247 4248 4249 4250
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4251
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4252 4253 4254 4255 4256 4257 4258 4259
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4260
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4261 4262
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4263
					split = 2;
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4274 4275
	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, 0, l->start, 0);
4276
	if (IS_ERR(right))
4277
		return PTR_ERR(right);
4278

4279
	root_add_used(root, fs_info->nodesize);
4280

4281
	memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4282
	btrfs_set_header_bytenr(right, right->start);
4283
	btrfs_set_header_generation(right, trans->transid);
4284
	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4285 4286
	btrfs_set_header_owner(right, root->root_key.objectid);
	btrfs_set_header_level(right, 0);
4287 4288
	write_extent_buffer_fsid(right, fs_info->fsid);
	write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4289

4290 4291 4292
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4293 4294
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1] + 1, 1);
4295 4296 4297 4298 4299 4300 4301
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4302 4303
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1], 1);
4304 4305 4306 4307
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4308
			if (path->slots[1] == 0)
4309
				fixup_low_keys(fs_info, path, &disk_key, 1);
4310
		}
4311 4312 4313 4314 4315
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4316
		return ret;
4317
	}
C
Chris Mason 已提交
4318

4319
	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4320

4321
	if (split == 2) {
4322 4323 4324
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4325
	}
4326

4327
	return 0;
4328 4329 4330 4331

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4332
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4333 4334
		return 0;
	goto again;
4335 4336
}

Y
Yan, Zheng 已提交
4337 4338 4339
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4340
{
4341
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan, Zheng 已提交
4342
	struct btrfs_key key;
4343
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4344 4345 4346 4347
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4348 4349

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4350 4351 4352 4353 4354
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4355
	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
Y
Yan, Zheng 已提交
4356
		return 0;
4357 4358

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4359 4360 4361 4362 4363
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4364
	btrfs_release_path(path);
4365 4366

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4367 4368
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4369
	path->search_for_split = 0;
4370 4371
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4372 4373
	if (ret < 0)
		goto err;
4374

Y
Yan, Zheng 已提交
4375 4376
	ret = -EAGAIN;
	leaf = path->nodes[0];
4377 4378
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4379 4380
		goto err;

4381
	/* the leaf has  changed, it now has room.  return now */
4382
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4383 4384
		goto err;

Y
Yan, Zheng 已提交
4385 4386 4387 4388 4389
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4390 4391
	}

4392
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4393
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4394 4395
	if (ret)
		goto err;
4396

Y
Yan, Zheng 已提交
4397
	path->keep_locks = 0;
4398
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4399 4400 4401 4402 4403 4404
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4405
static noinline int split_item(struct btrfs_fs_info *fs_info,
Y
Yan, Zheng 已提交
4406
			       struct btrfs_path *path,
4407
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4420
	leaf = path->nodes[0];
4421
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4422

4423 4424
	btrfs_set_path_blocking(path);

4425
	item = btrfs_item_nr(path->slots[0]);
4426 4427 4428 4429
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4430 4431 4432
	if (!buf)
		return -ENOMEM;

4433 4434 4435
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4436
	slot = path->slots[0] + 1;
4437 4438 4439 4440
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4441 4442
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4443 4444 4445 4446 4447
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4448
	new_item = btrfs_item_nr(slot);
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4470
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4471
	kfree(buf);
Y
Yan, Zheng 已提交
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4493
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4494 4495 4496 4497 4498 4499 4500 4501
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4502
	ret = split_item(root->fs_info, path, new_key, split_offset);
4503 4504 4505
	return ret;
}

Y
Yan, Zheng 已提交
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4517
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4531
	setup_items_for_insert(root, path, new_key, &item_size,
4532 4533
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4534 4535 4536 4537 4538 4539 4540 4541
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4542 4543 4544 4545 4546 4547
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4548 4549
void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
			 struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4550 4551
{
	int slot;
4552 4553
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4554 4555 4556 4557 4558 4559
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4560 4561 4562
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4563

4564
	leaf = path->nodes[0];
4565 4566 4567 4568
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4569
		return;
C
Chris Mason 已提交
4570

4571
	nritems = btrfs_header_nritems(leaf);
4572
	data_end = leaf_data_end(fs_info, leaf);
C
Chris Mason 已提交
4573

4574
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4575

C
Chris Mason 已提交
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4586
		u32 ioff;
4587
		item = btrfs_item_nr(i);
4588

4589 4590 4591
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4592
	}
4593

C
Chris Mason 已提交
4594
	/* shift the data */
4595
	if (from_end) {
4596 4597
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4618
				      (unsigned long)fi,
4619
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4620 4621 4622
			}
		}

4623 4624
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4625 4626 4627 4628 4629 4630
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4631
			fixup_low_keys(fs_info, path, &disk_key, 1);
4632
	}
4633

4634
	item = btrfs_item_nr(slot);
4635 4636
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4637

4638
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4639
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4640
		BUG();
4641
	}
C
Chris Mason 已提交
4642 4643
}

C
Chris Mason 已提交
4644
/*
S
Stefan Behrens 已提交
4645
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4646
 */
4647
void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4648
		       u32 data_size)
4649 4650
{
	int slot;
4651 4652
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4653 4654 4655 4656 4657
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4658 4659 4660
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4661

4662
	leaf = path->nodes[0];
4663

4664
	nritems = btrfs_header_nritems(leaf);
4665
	data_end = leaf_data_end(fs_info, leaf);
4666

4667
	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4668
		btrfs_print_leaf(leaf);
4669
		BUG();
4670
	}
4671
	slot = path->slots[0];
4672
	old_data = btrfs_item_end_nr(leaf, slot);
4673 4674

	BUG_ON(slot < 0);
4675
	if (slot >= nritems) {
4676
		btrfs_print_leaf(leaf);
4677 4678
		btrfs_crit(fs_info, "slot %d too large, nritems %d",
			   slot, nritems);
4679 4680
		BUG_ON(1);
	}
4681 4682 4683 4684 4685 4686

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4687
		u32 ioff;
4688
		item = btrfs_item_nr(i);
4689

4690 4691 4692
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4693
	}
4694

4695
	/* shift the data */
4696 4697
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4698
		      data_end, old_data - data_end);
4699

4700
	data_end = old_data;
4701
	old_size = btrfs_item_size_nr(leaf, slot);
4702
	item = btrfs_item_nr(slot);
4703 4704
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4705

4706
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4707
		btrfs_print_leaf(leaf);
4708
		BUG();
4709
	}
4710 4711
}

C
Chris Mason 已提交
4712
/*
4713 4714 4715
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4716
 */
4717
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4718
			    const struct btrfs_key *cpu_key, u32 *data_size,
4719
			    u32 total_data, u32 total_size, int nr)
4720
{
4721
	struct btrfs_fs_info *fs_info = root->fs_info;
4722
	struct btrfs_item *item;
4723
	int i;
4724
	u32 nritems;
4725
	unsigned int data_end;
C
Chris Mason 已提交
4726
	struct btrfs_disk_key disk_key;
4727 4728
	struct extent_buffer *leaf;
	int slot;
4729 4730
	struct btrfs_map_token token;

4731 4732
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4733
		fixup_low_keys(fs_info, path, &disk_key, 1);
4734 4735 4736
	}
	btrfs_unlock_up_safe(path, 1);

4737
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4738

4739
	leaf = path->nodes[0];
4740
	slot = path->slots[0];
C
Chris Mason 已提交
4741

4742
	nritems = btrfs_header_nritems(leaf);
4743
	data_end = leaf_data_end(fs_info, leaf);
4744

4745
	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4746
		btrfs_print_leaf(leaf);
4747
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4748
			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4749
		BUG();
4750
	}
4751

4752
	if (slot != nritems) {
4753
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4754

4755
		if (old_data < data_end) {
4756
			btrfs_print_leaf(leaf);
4757
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4758
				   slot, old_data, data_end);
4759 4760
			BUG_ON(1);
		}
4761 4762 4763 4764
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4765
		for (i = slot; i < nritems; i++) {
4766
			u32 ioff;
4767

4768
			item = btrfs_item_nr(i);
4769 4770 4771
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4772
		}
4773
		/* shift the items */
4774
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4775
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4776
			      (nritems - slot) * sizeof(struct btrfs_item));
4777 4778

		/* shift the data */
4779 4780
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4781
			      data_end, old_data - data_end);
4782 4783
		data_end = old_data;
	}
4784

4785
	/* setup the item for the new data */
4786 4787 4788
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4789
		item = btrfs_item_nr(slot + i);
4790 4791
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4792
		data_end -= data_size[i];
4793
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4794
	}
4795

4796
	btrfs_set_header_nritems(leaf, nritems + nr);
4797
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4798

4799
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4800
		btrfs_print_leaf(leaf);
4801
		BUG();
4802
	}
4803 4804 4805 4806 4807 4808 4809 4810 4811
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4812
			    const struct btrfs_key *cpu_key, u32 *data_size,
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4829
		return ret;
4830 4831 4832 4833

	slot = path->slots[0];
	BUG_ON(slot < 0);

4834
	setup_items_for_insert(root, path, cpu_key, data_size,
4835
			       total_data, total_size, nr);
4836
	return 0;
4837 4838 4839 4840 4841 4842
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4843 4844 4845
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4846 4847
{
	int ret = 0;
C
Chris Mason 已提交
4848
	struct btrfs_path *path;
4849 4850
	struct extent_buffer *leaf;
	unsigned long ptr;
4851

C
Chris Mason 已提交
4852
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4853 4854
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4855
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4856
	if (!ret) {
4857 4858 4859 4860
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4861
	}
C
Chris Mason 已提交
4862
	btrfs_free_path(path);
C
Chris Mason 已提交
4863
	return ret;
4864 4865
}

C
Chris Mason 已提交
4866
/*
C
Chris Mason 已提交
4867
 * delete the pointer from a given node.
C
Chris Mason 已提交
4868
 *
C
Chris Mason 已提交
4869 4870
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4871
 */
4872 4873
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4874
{
4875
	struct btrfs_fs_info *fs_info = root->fs_info;
4876
	struct extent_buffer *parent = path->nodes[level];
4877
	u32 nritems;
4878
	int ret;
4879

4880
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4881
	if (slot != nritems - 1) {
4882 4883
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4884
					nritems - slot - 1);
4885 4886
			BUG_ON(ret < 0);
		}
4887 4888 4889
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4890 4891
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4892
	} else if (level) {
4893 4894
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4895
		BUG_ON(ret < 0);
4896
	}
4897

4898
	nritems--;
4899
	btrfs_set_header_nritems(parent, nritems);
4900
	if (nritems == 0 && parent == root->node) {
4901
		BUG_ON(btrfs_header_level(root->node) != 1);
4902
		/* just turn the root into a leaf and break */
4903
		btrfs_set_header_level(root->node, 0);
4904
	} else if (slot == 0) {
4905 4906 4907
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4908
		fixup_low_keys(fs_info, path, &disk_key, level + 1);
4909
	}
C
Chris Mason 已提交
4910
	btrfs_mark_buffer_dirty(parent);
4911 4912
}

4913 4914
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4915
 * path->nodes[1].
4916 4917 4918 4919 4920 4921 4922
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4923 4924 4925 4926
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4927
{
4928
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4929
	del_ptr(root, path, 1, path->slots[1]);
4930

4931 4932 4933 4934 4935 4936
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4937 4938
	root_sub_used(root, leaf->len);

4939
	extent_buffer_get(leaf);
4940
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4941
	free_extent_buffer_stale(leaf);
4942
}
C
Chris Mason 已提交
4943 4944 4945 4946
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4947 4948
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4949
{
4950
	struct btrfs_fs_info *fs_info = root->fs_info;
4951 4952
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4953 4954
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4955 4956
	int ret = 0;
	int wret;
4957
	int i;
4958
	u32 nritems;
4959 4960 4961
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4962

4963
	leaf = path->nodes[0];
4964 4965 4966 4967 4968
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4969
	nritems = btrfs_header_nritems(leaf);
4970

4971
	if (slot + nr != nritems) {
4972
		int data_end = leaf_data_end(fs_info, leaf);
4973

4974
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4975
			      data_end + dsize,
4976
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4977
			      last_off - data_end);
4978

4979
		for (i = slot + nr; i < nritems; i++) {
4980
			u32 ioff;
4981

4982
			item = btrfs_item_nr(i);
4983 4984 4985
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4986
		}
4987

4988
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4989
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4990
			      sizeof(struct btrfs_item) *
4991
			      (nritems - slot - nr));
4992
	}
4993 4994
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4995

C
Chris Mason 已提交
4996
	/* delete the leaf if we've emptied it */
4997
	if (nritems == 0) {
4998 4999
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
5000
		} else {
5001
			btrfs_set_path_blocking(path);
5002
			clean_tree_block(fs_info, leaf);
5003
			btrfs_del_leaf(trans, root, path, leaf);
5004
		}
5005
	} else {
5006
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
5007
		if (slot == 0) {
5008 5009 5010
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
5011
			fixup_low_keys(fs_info, path, &disk_key, 1);
C
Chris Mason 已提交
5012 5013
		}

C
Chris Mason 已提交
5014
		/* delete the leaf if it is mostly empty */
5015
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5016 5017 5018 5019
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5020
			slot = path->slots[1];
5021 5022
			extent_buffer_get(leaf);

5023
			btrfs_set_path_blocking(path);
5024 5025
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5026
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5027
				ret = wret;
5028 5029 5030

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5031 5032
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5033
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5034 5035
					ret = wret;
			}
5036 5037

			if (btrfs_header_nritems(leaf) == 0) {
5038
				path->slots[1] = slot;
5039
				btrfs_del_leaf(trans, root, path, leaf);
5040
				free_extent_buffer(leaf);
5041
				ret = 0;
C
Chris Mason 已提交
5042
			} else {
5043 5044 5045 5046 5047 5048 5049
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5050
				free_extent_buffer(leaf);
5051
			}
5052
		} else {
5053
			btrfs_mark_buffer_dirty(leaf);
5054 5055
		}
	}
C
Chris Mason 已提交
5056
	return ret;
5057 5058
}

5059
/*
5060
 * search the tree again to find a leaf with lesser keys
5061 5062
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5063 5064 5065
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5066
 */
5067
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5068
{
5069 5070 5071
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5072

5073
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5074

5075
	if (key.offset > 0) {
5076
		key.offset--;
5077
	} else if (key.type > 0) {
5078
		key.type--;
5079 5080
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5081
		key.objectid--;
5082 5083 5084
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5085
		return 1;
5086
	}
5087

5088
	btrfs_release_path(path);
5089 5090 5091 5092 5093
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5105 5106
		return 0;
	return 1;
5107 5108
}

5109 5110
/*
 * A helper function to walk down the tree starting at min_key, and looking
5111 5112
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5113 5114 5115 5116 5117 5118 5119 5120
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5121 5122 5123 5124
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5125 5126 5127 5128
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5129
			 struct btrfs_path *path,
5130 5131
			 u64 min_trans)
{
5132
	struct btrfs_fs_info *fs_info = root->fs_info;
5133 5134 5135
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5136
	int sret;
5137 5138 5139
	u32 nritems;
	int level;
	int ret = 1;
5140
	int keep_locks = path->keep_locks;
5141

5142
	path->keep_locks = 1;
5143
again:
5144
	cur = btrfs_read_lock_root_node(root);
5145
	level = btrfs_header_level(cur);
5146
	WARN_ON(path->nodes[level]);
5147
	path->nodes[level] = cur;
5148
	path->locks[level] = BTRFS_READ_LOCK;
5149 5150 5151 5152 5153

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5154
	while (1) {
5155 5156
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5157
		sret = btrfs_bin_search(cur, min_key, level, &slot);
5158

5159 5160
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5161 5162
			if (slot >= nritems)
				goto find_next_key;
5163 5164 5165 5166 5167
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5168 5169
		if (sret && slot > 0)
			slot--;
5170
		/*
5171 5172
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5173
		 */
C
Chris Mason 已提交
5174
		while (slot < nritems) {
5175
			u64 gen;
5176

5177 5178 5179 5180 5181
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5182
			break;
5183
		}
5184
find_next_key:
5185 5186 5187 5188 5189
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5190
			path->slots[level] = slot;
5191
			btrfs_set_path_blocking(path);
5192
			sret = btrfs_find_next_key(root, path, min_key, level,
5193
						  min_trans);
5194
			if (sret == 0) {
5195
				btrfs_release_path(path);
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5208
		btrfs_set_path_blocking(path);
5209
		cur = read_node_slot(fs_info, cur, slot);
5210 5211 5212 5213
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5214

5215
		btrfs_tree_read_lock(cur);
5216

5217
		path->locks[level - 1] = BTRFS_READ_LOCK;
5218
		path->nodes[level - 1] = cur;
5219
		unlock_up(path, level, 1, 0, NULL);
5220
		btrfs_clear_path_blocking(path, NULL, 0);
5221 5222
	}
out:
5223 5224 5225 5226
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5227
		memcpy(min_key, &found_key, sizeof(found_key));
5228
	}
5229 5230 5231
	return ret;
}

5232
static int tree_move_down(struct btrfs_fs_info *fs_info,
5233
			   struct btrfs_path *path,
5234
			   int *level)
5235
{
5236 5237
	struct extent_buffer *eb;

5238
	BUG_ON(*level == 0);
5239
	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5240 5241 5242 5243
	if (IS_ERR(eb))
		return PTR_ERR(eb);

	path->nodes[*level - 1] = eb;
5244 5245
	path->slots[*level - 1] = 0;
	(*level)--;
5246
	return 0;
5247 5248
}

5249
static int tree_move_next_or_upnext(struct btrfs_path *path,
5250 5251 5252 5253 5254 5255 5256 5257
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5258
	while (path->slots[*level] >= nritems) {
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
5279
static int tree_advance(struct btrfs_fs_info *fs_info,
5280 5281 5282 5283 5284 5285 5286 5287
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
5288
		ret = tree_move_next_or_upnext(path, level, root_level);
5289
	} else {
5290
		ret = tree_move_down(fs_info, path, level);
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

5303
static int tree_compare_item(struct btrfs_path *left_path,
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
5348
	struct btrfs_fs_info *fs_info = left_root->fs_info;
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5366 5367
	u64 left_gen;
	u64 right_gen;
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5380
	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5381
	if (!tmp_buf) {
5382 5383
		ret = -ENOMEM;
		goto out;
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5427
	down_read(&fs_info->commit_root_sem);
5428 5429 5430 5431 5432 5433 5434 5435 5436
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
	left_path->nodes[left_level] = left_root->commit_root;
	extent_buffer_get(left_path->nodes[left_level]);

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
	right_path->nodes[right_level] = right_root->commit_root;
	extent_buffer_get(right_path->nodes[right_level]);
5437
	up_read(&fs_info->commit_root_sem);
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
5457
			ret = tree_advance(fs_info, left_path, &left_level,
5458 5459 5460
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
5461
			if (ret == -1)
5462
				left_end_reached = ADVANCE;
5463 5464
			else if (ret < 0)
				goto out;
5465 5466 5467
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
5468
			ret = tree_advance(fs_info, right_path, &right_level,
5469 5470 5471
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
5472
			if (ret == -1)
5473
				right_end_reached = ADVANCE;
5474 5475
			else if (ret < 0)
				goto out;
5476 5477 5478 5479 5480 5481 5482 5483
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
5484
				ret = changed_cb(left_path, right_path,
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
5495
				ret = changed_cb(left_path, right_path,
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
5509
				ret = changed_cb(left_path, right_path,
5510 5511 5512 5513 5514 5515 5516
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
5517
				ret = changed_cb(left_path, right_path,
5518 5519 5520 5521 5522 5523 5524
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5525
				enum btrfs_compare_tree_result result;
5526

5527
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5528 5529
				ret = tree_compare_item(left_path, right_path,
							tmp_buf);
5530
				if (ret)
5531
					result = BTRFS_COMPARE_TREE_CHANGED;
5532
				else
5533
					result = BTRFS_COMPARE_TREE_SAME;
5534
				ret = changed_cb(left_path, right_path,
5535
						 &left_key, result, ctx);
5536 5537
				if (ret < 0)
					goto out;
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5554 5555 5556 5557 5558 5559 5560 5561
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5583
	kvfree(tmp_buf);
5584 5585 5586
	return ret;
}

5587 5588 5589
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5590
 * tree based on the current path and the min_trans parameters.
5591 5592 5593 5594 5595 5596 5597
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5598
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5599
			struct btrfs_key *key, int level, u64 min_trans)
5600 5601 5602 5603
{
	int slot;
	struct extent_buffer *c;

5604
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5605
	while (level < BTRFS_MAX_LEVEL) {
5606 5607 5608 5609 5610
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5611
next:
5612
		if (slot >= btrfs_header_nritems(c)) {
5613 5614 5615 5616 5617
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5618
				return 1;
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5632
			btrfs_release_path(path);
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5645
		}
5646

5647 5648
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5649 5650 5651 5652 5653 5654 5655
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5656
			btrfs_node_key_to_cpu(c, key, slot);
5657
		}
5658 5659 5660 5661 5662
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5663
/*
5664
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5665 5666
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5667
 */
C
Chris Mason 已提交
5668
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5669 5670 5671 5672 5673 5674
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5675 5676
{
	int slot;
5677
	int level;
5678
	struct extent_buffer *c;
5679
	struct extent_buffer *next;
5680 5681 5682
	struct btrfs_key key;
	u32 nritems;
	int ret;
5683
	int old_spinning = path->leave_spinning;
5684
	int next_rw_lock = 0;
5685 5686

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5687
	if (nritems == 0)
5688 5689
		return 1;

5690 5691 5692 5693
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5694
	next_rw_lock = 0;
5695
	btrfs_release_path(path);
5696

5697
	path->keep_locks = 1;
5698
	path->leave_spinning = 1;
5699

J
Jan Schmidt 已提交
5700 5701 5702 5703
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5704 5705 5706 5707 5708
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5709
	nritems = btrfs_header_nritems(path->nodes[0]);
5710 5711 5712 5713 5714 5715
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5716
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5717 5718
		if (ret == 0)
			path->slots[0]++;
5719
		ret = 0;
5720 5721
		goto done;
	}
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5740

C
Chris Mason 已提交
5741
	while (level < BTRFS_MAX_LEVEL) {
5742 5743 5744 5745
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5746

5747 5748
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5749
		if (slot >= btrfs_header_nritems(c)) {
5750
			level++;
5751 5752 5753 5754
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5755 5756
			continue;
		}
5757

5758
		if (next) {
5759
			btrfs_tree_unlock_rw(next, next_rw_lock);
5760
			free_extent_buffer(next);
5761
		}
5762

5763
		next = c;
5764
		next_rw_lock = path->locks[level];
5765
		ret = read_block_for_search(root, path, &next, level,
5766
					    slot, &key);
5767 5768
		if (ret == -EAGAIN)
			goto again;
5769

5770
		if (ret < 0) {
5771
			btrfs_release_path(path);
5772 5773 5774
			goto done;
		}

5775
		if (!path->skip_locking) {
5776
			ret = btrfs_try_tree_read_lock(next);
5777 5778 5779 5780 5781 5782 5783 5784
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5785
				free_extent_buffer(next);
5786 5787 5788 5789
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5790 5791
			if (!ret) {
				btrfs_set_path_blocking(path);
5792
				btrfs_tree_read_lock(next);
5793
				btrfs_clear_path_blocking(path, next,
5794
							  BTRFS_READ_LOCK);
5795
			}
5796
			next_rw_lock = BTRFS_READ_LOCK;
5797
		}
5798 5799 5800
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5801
	while (1) {
5802 5803
		level--;
		c = path->nodes[level];
5804
		if (path->locks[level])
5805
			btrfs_tree_unlock_rw(c, path->locks[level]);
5806

5807
		free_extent_buffer(c);
5808 5809
		path->nodes[level] = next;
		path->slots[level] = 0;
5810
		if (!path->skip_locking)
5811
			path->locks[level] = next_rw_lock;
5812 5813
		if (!level)
			break;
5814

5815
		ret = read_block_for_search(root, path, &next, level,
5816
					    0, &key);
5817 5818 5819
		if (ret == -EAGAIN)
			goto again;

5820
		if (ret < 0) {
5821
			btrfs_release_path(path);
5822 5823 5824
			goto done;
		}

5825
		if (!path->skip_locking) {
5826
			ret = btrfs_try_tree_read_lock(next);
5827 5828
			if (!ret) {
				btrfs_set_path_blocking(path);
5829
				btrfs_tree_read_lock(next);
5830
				btrfs_clear_path_blocking(path, next,
5831 5832
							  BTRFS_READ_LOCK);
			}
5833
			next_rw_lock = BTRFS_READ_LOCK;
5834
		}
5835
	}
5836
	ret = 0;
5837
done:
5838
	unlock_up(path, 0, 1, 0, NULL);
5839 5840 5841 5842 5843
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5844
}
5845

5846 5847 5848 5849 5850 5851
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5852 5853 5854 5855 5856 5857
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5858
	u32 nritems;
5859 5860
	int ret;

C
Chris Mason 已提交
5861
	while (1) {
5862
		if (path->slots[0] == 0) {
5863
			btrfs_set_path_blocking(path);
5864 5865 5866 5867 5868 5869 5870
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5871 5872 5873 5874 5875 5876
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5877
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5878 5879
		if (found_key.objectid < min_objectid)
			break;
5880 5881
		if (found_key.type == type)
			return 0;
5882 5883 5884
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5885 5886 5887
	}
	return 1;
}
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}