ctree.c 152.1 KB
Newer Older
C
Chris Mason 已提交
1
/*
C
Chris Mason 已提交
2
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/sched.h>
20
#include <linux/slab.h>
21
#include <linux/rbtree.h>
22
#include <linux/vmalloc.h>
23 24
#include "ctree.h"
#include "disk-io.h"
25
#include "transaction.h"
26
#include "print-tree.h"
27
#include "locking.h"
28

29 30 31
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32
		      *root, struct btrfs_key *ins_key,
33
		      struct btrfs_path *path, int data_size, int extend);
34 35
static int push_node_left(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct extent_buffer *dst,
36
			  struct extent_buffer *src, int empty);
37 38 39 40
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
41 42
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
43
static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44
				 struct extent_buffer *eb);
45

C
Chris Mason 已提交
46
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
47
{
C
Chris Mason 已提交
48
	struct btrfs_path *path;
J
Jeff Mahoney 已提交
49
	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
50
	return path;
C
Chris Mason 已提交
51 52
}

53 54 55 56 57 58 59 60
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 62 63 64 65 66 67
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 69 70 71 72
	}
}

/*
 * reset all the locked nodes in the patch to spinning locks.
73 74 75 76 77
 *
 * held is used to keep lockdep happy, when lockdep is enabled
 * we set held to a blocking lock before we go around and
 * retake all the spinlocks in the path.  You can safely use NULL
 * for held
78
 */
79
noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80
					struct extent_buffer *held, int held_rw)
81 82
{
	int i;
83

84 85 86 87 88 89 90
	if (held) {
		btrfs_set_lock_blocking_rw(held, held_rw);
		if (held_rw == BTRFS_WRITE_LOCK)
			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
		else if (held_rw == BTRFS_READ_LOCK)
			held_rw = BTRFS_READ_LOCK_BLOCKING;
	}
91 92 93
	btrfs_set_path_blocking(p);

	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94 95 96 97 98 99 100
		if (p->nodes[i] && p->locks[i]) {
			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
				p->locks[i] = BTRFS_WRITE_LOCK;
			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
				p->locks[i] = BTRFS_READ_LOCK;
		}
101
	}
102 103

	if (held)
104
		btrfs_clear_lock_blocking_rw(held, held_rw);
105 106
}

C
Chris Mason 已提交
107
/* this also releases the path */
C
Chris Mason 已提交
108
void btrfs_free_path(struct btrfs_path *p)
109
{
110 111
	if (!p)
		return;
112
	btrfs_release_path(p);
C
Chris Mason 已提交
113
	kmem_cache_free(btrfs_path_cachep, p);
114 115
}

C
Chris Mason 已提交
116 117 118 119 120 121
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
122
noinline void btrfs_release_path(struct btrfs_path *p)
123 124
{
	int i;
125

C
Chris Mason 已提交
126
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
127
		p->slots[i] = 0;
128
		if (!p->nodes[i])
129 130
			continue;
		if (p->locks[i]) {
131
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
132 133
			p->locks[i] = 0;
		}
134
		free_extent_buffer(p->nodes[i]);
135
		p->nodes[i] = NULL;
136 137 138
	}
}

C
Chris Mason 已提交
139 140 141 142 143 144 145 146 147 148
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
149 150 151
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
152

153 154 155 156 157 158
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
159
		 * it was COWed but we may not get the new root node yet so do
160 161 162 163 164 165 166 167 168 169
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
170 171 172
	return eb;
}

C
Chris Mason 已提交
173 174 175 176
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
177 178 179 180
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
181
	while (1) {
182 183
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
184
		if (eb == root->node)
185 186 187 188 189 190 191
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

192 193 194 195
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
196
static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197 198 199 200 201 202 203 204 205 206 207 208 209 210
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
211 212 213 214
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
215 216
static void add_root_to_dirty_list(struct btrfs_root *root)
{
217 218 219 220
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

221
	spin_lock(&root->fs_info->trans_lock);
222 223 224 225 226 227 228 229
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
			list_move_tail(&root->dirty_list,
				       &root->fs_info->dirty_cowonly_roots);
		else
			list_move(&root->dirty_list,
				  &root->fs_info->dirty_cowonly_roots);
230
	}
231
	spin_unlock(&root->fs_info->trans_lock);
232 233
}

C
Chris Mason 已提交
234 235 236 237 238
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
239 240 241 242 243 244 245 246
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
	struct extent_buffer *cow;
	int ret = 0;
	int level;
247
	struct btrfs_disk_key disk_key;
248

249 250 251 252
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->fs_info->running_transaction->transid);
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
253 254

	level = btrfs_header_level(buf);
255 256 257 258
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
259

260 261
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
262
	if (IS_ERR(cow))
263 264 265 266 267
		return PTR_ERR(cow);

	copy_extent_buffer(cow, buf, 0, 0, cow->len);
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
268 269 270 271 272 273 274
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
275

276
	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
Y
Yan Zheng 已提交
277 278
			    BTRFS_FSID_SIZE);

279
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
280
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281
		ret = btrfs_inc_ref(trans, root, cow, 1);
282
	else
283
		ret = btrfs_inc_ref(trans, root, cow, 0);
284

285 286 287 288 289 290 291 292
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_move {
	int dst_slot;
	int nr_items;
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
315
	u64 logical;
316
	u64 seq;
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
	struct tree_mod_move move;

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

336
static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337
{
338
	read_lock(&fs_info->tree_mod_log_lock);
339 340
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
{
	read_unlock(&fs_info->tree_mod_log_lock);
}

static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
{
	write_lock(&fs_info->tree_mod_log_lock);
}

static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
{
	write_unlock(&fs_info->tree_mod_log_lock);
}

356
/*
J
Josef Bacik 已提交
357
 * Pull a new tree mod seq number for our operation.
358
 */
J
Josef Bacik 已提交
359
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
360 361 362 363
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

364 365 366 367 368 369 370 371 372 373
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
374
{
375
	tree_mod_log_write_lock(fs_info);
376
	spin_lock(&fs_info->tree_mod_seq_lock);
377
	if (!elem->seq) {
J
Josef Bacik 已提交
378
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
379 380
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
381
	spin_unlock(&fs_info->tree_mod_seq_lock);
382 383
	tree_mod_log_write_unlock(fs_info);

J
Josef Bacik 已提交
384
	return elem->seq;
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
403
	elem->seq = 0;
404 405

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
406
		if (cur_elem->seq < min_seq) {
407 408 409 410 411
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
412 413
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
414 415 416 417
			}
			min_seq = cur_elem->seq;
		}
	}
418 419
	spin_unlock(&fs_info->tree_mod_seq_lock);

420 421 422 423
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
424
	tree_mod_log_write_lock(fs_info);
425 426 427 428
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
		tm = container_of(node, struct tree_mod_elem, node);
429
		if (tm->seq > min_seq)
430 431 432 433
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
434
	tree_mod_log_write_unlock(fs_info);
435 436 437 438
}

/*
 * key order of the log:
439
 *       node/leaf start address -> sequence
440
 *
441 442 443
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
444 445
 *
 * Note: must be called with write lock (tree_mod_log_write_lock).
446 447 448 449 450 451 452 453
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
454 455 456

	BUG_ON(!tm);

J
Josef Bacik 已提交
457
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458 459 460 461 462 463

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
		cur = container_of(*new, struct tree_mod_elem, node);
		parent = *new;
464
		if (cur->logical < tm->logical)
465
			new = &((*new)->rb_left);
466
		else if (cur->logical > tm->logical)
467
			new = &((*new)->rb_right);
468
		else if (cur->seq < tm->seq)
469
			new = &((*new)->rb_left);
470
		else if (cur->seq > tm->seq)
471
			new = &((*new)->rb_right);
472 473
		else
			return -EEXIST;
474 475 476 477
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
478
	return 0;
479 480
}

481 482 483 484 485 486
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
 * call tree_mod_log_write_unlock() to release.
 */
487 488 489 490 491
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
492 493
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
494 495 496 497 498 499 500

	tree_mod_log_write_lock(fs_info);
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
		tree_mod_log_write_unlock(fs_info);
		return 1;
	}

501 502 503
	return 0;
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
520
{
521
	struct tree_mod_elem *tm;
522

523 524
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
525
		return NULL;
526

527
	tm->logical = eb->start;
528 529 530 531 532 533 534
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
535
	RB_CLEAR_NODE(&tm->node);
536

537
	return tm;
538 539 540
}

static noinline int
541 542 543
tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
			struct extent_buffer *eb, int slot,
			enum mod_log_op op, gfp_t flags)
544
{
545 546 547 548 549 550 551 552 553 554 555 556
	struct tree_mod_elem *tm;
	int ret;

	if (!tree_mod_need_log(fs_info, eb))
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

	if (tree_mod_dont_log(fs_info, eb)) {
		kfree(tm);
557
		return 0;
558 559 560 561 562 563
	}

	ret = __tree_mod_log_insert(fs_info, tm);
	tree_mod_log_write_unlock(fs_info);
	if (ret)
		kfree(tm);
564

565
	return ret;
566 567
}

568 569 570 571 572
static noinline int
tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
			 struct extent_buffer *eb, int dst_slot, int src_slot,
			 int nr_items, gfp_t flags)
{
573 574 575
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
576
	int i;
577
	int locked = 0;
578

579
	if (!tree_mod_need_log(fs_info, eb))
J
Jan Schmidt 已提交
580
		return 0;
581

582
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
583 584 585 586 587 588 589 590 591
	if (!tm_list)
		return -ENOMEM;

	tm = kzalloc(sizeof(*tm), flags);
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

592
	tm->logical = eb->start;
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, eb))
		goto free_tms;
	locked = 1;

611 612 613 614 615
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
616
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
617 618 619
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret)
			goto free_tms;
620 621
	}

622 623 624 625 626
	ret = __tree_mod_log_insert(fs_info, tm);
	if (ret)
		goto free_tms;
	tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);
J
Jan Schmidt 已提交
627

628 629 630 631 632 633 634 635 636 637 638
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
		tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);
	kfree(tm);
639

640
	return ret;
641 642
}

643 644 645 646
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
647
{
648
	int i, j;
649 650 651
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
652 653 654 655 656 657 658
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
659
	}
660 661

	return 0;
662 663
}

664 665 666
static noinline int
tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
			 struct extent_buffer *old_root,
667 668
			 struct extent_buffer *new_root, gfp_t flags,
			 int log_removal)
669
{
670 671 672 673 674
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
675

676
	if (!tree_mod_need_log(fs_info, NULL))
677 678
		return 0;

679 680
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
681
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
682 683 684 685 686 687 688 689 690 691 692 693 694 695
				  flags);
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
696

697
	tm = kzalloc(sizeof(*tm), flags);
698 699 700 701
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
702

703
	tm->logical = new_root->start;
704 705 706 707 708
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

	tree_mod_log_write_unlock(fs_info);
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
733 734 735 736 737 738 739 740 741 742 743
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

744
	tree_mod_log_read_lock(fs_info);
745 746 747 748
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
		cur = container_of(node, struct tree_mod_elem, node);
749
		if (cur->logical < start) {
750
			node = node->rb_left;
751
		} else if (cur->logical > start) {
752
			node = node->rb_right;
753
		} else if (cur->seq < min_seq) {
754 755 756 757
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
758
				BUG_ON(found->seq > cur->seq);
759 760
			found = cur;
			node = node->rb_left;
761
		} else if (cur->seq > min_seq) {
762 763
			/* we want the node with the smallest seq */
			if (found)
764
				BUG_ON(found->seq < cur->seq);
765 766 767 768 769 770 771
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
772
	tree_mod_log_read_unlock(fs_info);
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

800
static noinline int
801 802
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
803
		     unsigned long src_offset, int nr_items)
804
{
805 806 807
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
808
	int i;
809
	int locked = 0;
810

811 812
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
813

814
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 816
		return 0;

817
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818 819 820
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
821

822 823
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
824
	for (i = 0; i < nr_items; i++) {
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
851
	}
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

	tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
		tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);

	return ret;
869 870 871 872 873 874 875 876 877 878 879 880
}

static inline void
tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     int dst_offset, int src_offset, int nr_items)
{
	int ret;
	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
				       nr_items, GFP_NOFS);
	BUG_ON(ret < 0);
}

881
static noinline void
882
tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
L
Liu Bo 已提交
883
			  struct extent_buffer *eb, int slot, int atomic)
884 885 886
{
	int ret;

887
	ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 889
					MOD_LOG_KEY_REPLACE,
					atomic ? GFP_ATOMIC : GFP_NOFS);
890 891 892
	BUG_ON(ret < 0);
}

893
static noinline int
894
tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895
{
896 897 898 899 900 901 902 903 904 905 906 907
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

	if (!tree_mod_need_log(fs_info, NULL))
		return 0;

	nritems = btrfs_header_nritems(eb);
908
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 910 911 912 913 914 915 916 917 918 919 920
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

921
	if (tree_mod_dont_log(fs_info, eb))
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
		goto free_tms;

	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	tree_mod_log_write_unlock(fs_info);
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
938 939
}

940
static noinline void
941
tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 943
			      struct extent_buffer *new_root_node,
			      int log_removal)
944 945 946
{
	int ret;
	ret = tree_mod_log_insert_root(root->fs_info, root->node,
947
				       new_root_node, GFP_NOFS, log_removal);
948 949 950
	BUG_ON(ret < 0);
}

951 952 953 954 955 956 957
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
958
	 * Tree blocks not in reference counted trees and tree roots
959 960 961 962
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
963
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 965 966 967 968 969
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 972 973 974 975 976 977 978 979
	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
		return 1;
#endif
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
980 981
				       struct extent_buffer *cow,
				       int *last_ref)
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
{
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
		ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 1009
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
1010 1011
		if (ret)
			return ret;
1012 1013
		if (refs == 0) {
			ret = -EROFS;
1014
			btrfs_handle_fs_error(root->fs_info, ret, NULL);
1015 1016
			return ret;
		}
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034
			ret = btrfs_inc_ref(trans, root, buf, 1);
1035
			BUG_ON(ret); /* -ENOMEM */
1036 1037 1038

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
1039
				ret = btrfs_dec_ref(trans, root, buf, 0);
1040
				BUG_ON(ret); /* -ENOMEM */
1041
				ret = btrfs_inc_ref(trans, root, cow, 1);
1042
				BUG_ON(ret); /* -ENOMEM */
1043 1044 1045 1046 1047 1048
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
1049
				ret = btrfs_inc_ref(trans, root, cow, 1);
1050
			else
1051
				ret = btrfs_inc_ref(trans, root, cow, 0);
1052
			BUG_ON(ret); /* -ENOMEM */
1053 1054
		}
		if (new_flags != 0) {
1055 1056
			int level = btrfs_header_level(buf);

1057 1058 1059
			ret = btrfs_set_disk_extent_flags(trans, root,
							  buf->start,
							  buf->len,
1060
							  new_flags, level, 0);
1061 1062
			if (ret)
				return ret;
1063 1064 1065 1066 1067
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
1068
				ret = btrfs_inc_ref(trans, root, cow, 1);
1069
			else
1070
				ret = btrfs_inc_ref(trans, root, cow, 0);
1071
			BUG_ON(ret); /* -ENOMEM */
1072
			ret = btrfs_dec_ref(trans, root, buf, 1);
1073
			BUG_ON(ret); /* -ENOMEM */
1074
		}
1075
		clean_tree_block(trans, root->fs_info, buf);
1076
		*last_ref = 1;
1077 1078 1079 1080
	}
	return 0;
}

C
Chris Mason 已提交
1081
/*
C
Chris Mason 已提交
1082 1083 1084 1085
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1086 1087 1088
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1089 1090 1091
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1092
 */
C
Chris Mason 已提交
1093
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 1095 1096 1097
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1098
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1099
{
1100
	struct btrfs_disk_key disk_key;
1101
	struct extent_buffer *cow;
1102
	int level, ret;
1103
	int last_ref = 0;
1104
	int unlock_orig = 0;
1105
	u64 parent_start;
1106

1107 1108 1109
	if (*cow_ret == buf)
		unlock_orig = 1;

1110
	btrfs_assert_tree_locked(buf);
1111

1112 1113 1114 1115
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->fs_info->running_transaction->transid);
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1116

1117
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1118

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
		if (parent)
			parent_start = parent->start;
		else
			parent_start = 0;
	} else
		parent_start = 0;

1132 1133 1134
	cow = btrfs_alloc_tree_block(trans, root, parent_start,
			root->root_key.objectid, &disk_key, level,
			search_start, empty_size);
1135 1136
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1137

1138 1139
	/* cow is set to blocking by btrfs_init_new_buffer */

1140
	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141
	btrfs_set_header_bytenr(cow, cow->start);
1142
	btrfs_set_header_generation(cow, trans->transid);
1143 1144 1145 1146 1147 1148 1149
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1150

1151
	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
Y
Yan Zheng 已提交
1152 1153
			    BTRFS_FSID_SIZE);

1154
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155
	if (ret) {
1156
		btrfs_abort_transaction(trans, root, ret);
1157 1158
		return ret;
	}
Z
Zheng Yan 已提交
1159

1160
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162 1163
		if (ret) {
			btrfs_abort_transaction(trans, root, ret);
1164
			return ret;
1165
		}
1166
	}
1167

C
Chris Mason 已提交
1168
	if (buf == root->node) {
1169
		WARN_ON(parent && parent != buf);
1170 1171 1172 1173 1174
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
		else
			parent_start = 0;
1175

1176
		extent_buffer_get(cow);
1177
		tree_mod_log_set_root_pointer(root, cow, 1);
1178
		rcu_assign_pointer(root->node, cow);
1179

1180
		btrfs_free_tree_block(trans, root, buf, parent_start,
1181
				      last_ref);
1182
		free_extent_buffer(buf);
1183
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1184
	} else {
1185 1186 1187 1188 1189 1190
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
			parent_start = parent->start;
		else
			parent_start = 0;

		WARN_ON(trans->transid != btrfs_header_generation(parent));
1191
		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193
		btrfs_set_node_blockptr(parent, parent_slot,
1194
					cow->start);
1195 1196
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1197
		btrfs_mark_buffer_dirty(parent);
1198 1199 1200 1201 1202 1203 1204
		if (last_ref) {
			ret = tree_mod_log_free_eb(root->fs_info, buf);
			if (ret) {
				btrfs_abort_transaction(trans, root, ret);
				return ret;
			}
		}
1205
		btrfs_free_tree_block(trans, root, buf, parent_start,
1206
				      last_ref);
C
Chris Mason 已提交
1207
	}
1208 1209
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1210
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1211
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1212
	*cow_ret = cow;
C
Chris Mason 已提交
1213 1214 1215
	return 0;
}

J
Jan Schmidt 已提交
1216 1217 1218 1219 1220 1221
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
static struct tree_mod_elem *
__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222
			   struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1223 1224 1225
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1226
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1227 1228 1229
	int looped = 0;

	if (!time_seq)
1230
		return NULL;
J
Jan Schmidt 已提交
1231 1232

	/*
1233 1234 1235 1236
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1237 1238 1239 1240 1241
	 */
	while (1) {
		tm = tree_mod_log_search_oldest(fs_info, root_logical,
						time_seq);
		if (!looped && !tm)
1242
			return NULL;
J
Jan Schmidt 已提交
1243
		/*
1244 1245 1246
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1247
		 */
1248 1249
		if (!tm)
			break;
J
Jan Schmidt 已提交
1250

1251 1252 1253 1254 1255
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1256 1257 1258 1259 1260 1261 1262 1263
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1264 1265 1266 1267
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1268 1269 1270 1271 1272
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1273
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1274 1275 1276
 * time_seq).
 */
static void
1277 1278
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1288
	tree_mod_log_read_lock(fs_info);
1289
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1290 1291 1292 1293 1294 1295 1296 1297
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1298
			/* Fallthrough */
1299
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1301 1302 1303 1304
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1305
			n++;
J
Jan Schmidt 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1315
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1316 1317 1318
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1319 1320 1321
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
		tm = container_of(next, struct tree_mod_elem, node);
1340
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1341 1342
			break;
	}
1343
	tree_mod_log_read_unlock(fs_info);
J
Jan Schmidt 已提交
1344 1345 1346
	btrfs_set_header_nritems(eb, n);
}

1347
/*
1348
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349 1350 1351 1352 1353
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1354
static struct extent_buffer *
1355 1356
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1371 1372 1373
	btrfs_set_path_blocking(path);
	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);

J
Jan Schmidt 已提交
1374 1375
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1376 1377
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
						eb->len);
1378
		if (!eb_rewin) {
1379
			btrfs_tree_read_unlock_blocking(eb);
1380 1381 1382
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1383 1384 1385 1386
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1388 1389
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1390
		if (!eb_rewin) {
1391
			btrfs_tree_read_unlock_blocking(eb);
1392 1393 1394
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1395 1396
	}

1397 1398
	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1399 1400
	free_extent_buffer(eb);

1401 1402
	extent_buffer_get(eb_rewin);
	btrfs_tree_read_lock(eb_rewin);
1403
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1405
		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
J
Jan Schmidt 已提交
1406 1407 1408 1409

	return eb_rewin;
}

1410 1411 1412 1413 1414 1415 1416
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1417 1418 1419 1420
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
1421 1422
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1423
	struct extent_buffer *old;
1424
	struct tree_mod_root *old_root = NULL;
1425
	u64 old_generation = 0;
1426
	u64 logical;
J
Jan Schmidt 已提交
1427

1428 1429
	eb_root = btrfs_read_lock_root_node(root);
	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
J
Jan Schmidt 已提交
1430
	if (!tm)
1431
		return eb_root;
J
Jan Schmidt 已提交
1432

1433 1434 1435 1436 1437
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
	} else {
1438
		logical = eb_root->start;
1439
	}
J
Jan Schmidt 已提交
1440

1441
	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443 1444
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1445
		old = read_tree_block(root, logical, 0);
1446 1447 1448
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1449 1450
			btrfs_warn(root->fs_info,
				"failed to read tree block %llu from get_old_root", logical);
1451
		} else {
1452 1453
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1454 1455
		}
	} else if (old_root) {
1456 1457
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1458 1459
		eb = alloc_dummy_extent_buffer(root->fs_info, logical,
					root->nodesize);
1460
	} else {
1461
		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1462
		eb = btrfs_clone_extent_buffer(eb_root);
1463
		btrfs_tree_read_unlock_blocking(eb_root);
1464
		free_extent_buffer(eb_root);
1465 1466
	}

1467 1468
	if (!eb)
		return NULL;
1469
	extent_buffer_get(eb);
1470
	btrfs_tree_read_lock(eb);
1471
	if (old_root) {
J
Jan Schmidt 已提交
1472 1473
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1474
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1475 1476
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1477
	}
1478
	if (tm)
1479
		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1480 1481
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1482
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
J
Jan Schmidt 已提交
1483 1484 1485 1486

	return eb;
}

J
Jan Schmidt 已提交
1487 1488 1489 1490
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1491
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1492

1493
	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
J
Jan Schmidt 已提交
1494 1495 1496
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1497
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1498
	}
1499
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1500 1501 1502 1503

	return level;
}

1504 1505 1506 1507
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1508
	if (btrfs_test_is_dummy_root(root))
1509
		return 0;
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	/* ensure we can see the force_cow */
	smp_rmb();

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1521
	 *    when we create snapshot during committing the transaction,
1522 1523 1524
	 *    after we've finished coping src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
1525 1526 1527
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1528
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1529
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1530 1531 1532 1533
		return 0;
	return 1;
}

C
Chris Mason 已提交
1534 1535
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1536
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1537 1538
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1539
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1540 1541
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1542
		    struct extent_buffer **cow_ret)
1543 1544
{
	u64 search_start;
1545
	int ret;
C
Chris Mason 已提交
1546

J
Julia Lawall 已提交
1547 1548
	if (trans->transaction != root->fs_info->running_transaction)
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549
		       trans->transid,
1550
		       root->fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1551 1552 1553

	if (trans->transid != root->fs_info->generation)
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1554
		       trans->transid, root->fs_info->generation);
C
Chris Mason 已提交
1555

1556
	if (!should_cow_block(trans, root, buf)) {
1557 1558 1559
		*cow_ret = buf;
		return 0;
	}
1560

1561
	search_start = buf->start & ~((u64)SZ_1G - 1);
1562 1563 1564 1565 1566

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1567
	ret = __btrfs_cow_block(trans, root, buf, parent,
1568
				 parent_slot, cow_ret, search_start, 0);
1569 1570 1571

	trace_btrfs_cow_block(root, buf, *cow_ret);

1572
	return ret;
1573 1574
}

C
Chris Mason 已提交
1575 1576 1577 1578
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1579
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1580
{
1581
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1582
		return 1;
1583
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1584 1585 1586 1587
		return 1;
	return 0;
}

1588 1589 1590 1591 1592 1593 1594 1595 1596
/*
 * compare two keys in a memcmp fashion
 */
static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1597
	return btrfs_comp_cpu_keys(&k1, k2);
1598 1599
}

1600 1601 1602
/*
 * same as comp_keys only with two btrfs_key's
 */
1603
int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1619

C
Chris Mason 已提交
1620 1621 1622 1623 1624
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1625
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1626
		       struct btrfs_root *root, struct extent_buffer *parent,
1627
		       int start_slot, u64 *last_ret,
1628
		       struct btrfs_key *progress)
1629
{
1630
	struct extent_buffer *cur;
1631
	u64 blocknr;
1632
	u64 gen;
1633 1634
	u64 search_start = *last_ret;
	u64 last_block = 0;
1635 1636 1637 1638 1639
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1640
	int parent_level;
1641 1642
	int uptodate;
	u32 blocksize;
1643 1644
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1645

1646 1647
	parent_level = btrfs_header_level(parent);

J
Julia Lawall 已提交
1648 1649
	WARN_ON(trans->transaction != root->fs_info->running_transaction);
	WARN_ON(trans->transid != root->fs_info->generation);
1650

1651
	parent_nritems = btrfs_header_nritems(parent);
1652
	blocksize = root->nodesize;
1653
	end_slot = parent_nritems - 1;
1654

1655
	if (parent_nritems <= 1)
1656 1657
		return 0;

1658 1659
	btrfs_set_lock_blocking(parent);

1660
	for (i = start_slot; i <= end_slot; i++) {
1661
		int close = 1;
1662

1663 1664 1665 1666 1667
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1668
		blocknr = btrfs_node_blockptr(parent, i);
1669
		gen = btrfs_node_ptr_generation(parent, i);
1670 1671
		if (last_block == 0)
			last_block = blocknr;
1672

1673
		if (i > 0) {
1674 1675
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1676
		}
1677
		if (!close && i < end_slot) {
1678 1679
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1680
		}
1681 1682
		if (close) {
			last_block = blocknr;
1683
			continue;
1684
		}
1685

1686
		cur = btrfs_find_tree_block(root->fs_info, blocknr);
1687
		if (cur)
1688
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1689 1690
		else
			uptodate = 0;
1691
		if (!cur || !uptodate) {
1692
			if (!cur) {
1693
				cur = read_tree_block(root, blocknr, gen);
1694 1695 1696
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1697
					free_extent_buffer(cur);
1698
					return -EIO;
1699
				}
1700
			} else if (!uptodate) {
1701 1702 1703 1704 1705
				err = btrfs_read_buffer(cur, gen);
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1706
			}
1707
		}
1708
		if (search_start == 0)
1709
			search_start = last_block;
1710

1711
		btrfs_tree_lock(cur);
1712
		btrfs_set_lock_blocking(cur);
1713
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1714
					&cur, search_start,
1715
					min(16 * blocksize,
1716
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1717
		if (err) {
1718
			btrfs_tree_unlock(cur);
1719
			free_extent_buffer(cur);
1720
			break;
Y
Yan 已提交
1721
		}
1722 1723
		search_start = cur->start;
		last_block = cur->start;
1724
		*last_ret = search_start;
1725 1726
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1727 1728 1729 1730
	}
	return err;
}

C
Chris Mason 已提交
1731 1732 1733 1734 1735
/*
 * The leaf data grows from end-to-front in the node.
 * this returns the address of the start of the last item,
 * which is the stop of the leaf data stack
 */
C
Chris Mason 已提交
1736
static inline unsigned int leaf_data_end(struct btrfs_root *root,
1737
					 struct extent_buffer *leaf)
1738
{
1739
	u32 nr = btrfs_header_nritems(leaf);
1740
	if (nr == 0)
C
Chris Mason 已提交
1741
		return BTRFS_LEAF_DATA_SIZE(root);
1742
	return btrfs_item_offset_nr(leaf, nr - 1);
1743 1744
}

C
Chris Mason 已提交
1745

C
Chris Mason 已提交
1746
/*
1747 1748 1749
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1750 1751 1752 1753 1754 1755
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1756 1757 1758 1759
static noinline int generic_bin_search(struct extent_buffer *eb,
				       unsigned long p,
				       int item_size, struct btrfs_key *key,
				       int max, int *slot)
1760 1761 1762 1763 1764
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1765
	struct btrfs_disk_key *tmp = NULL;
1766 1767 1768 1769 1770
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1771
	int err;
1772

C
Chris Mason 已提交
1773
	while (low < high) {
1774
		mid = (low + high) / 2;
1775 1776
		offset = p + mid * item_size;

1777
		if (!kaddr || offset < map_start ||
1778 1779
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1780 1781

			err = map_private_extent_buffer(eb, offset,
1782
						sizeof(struct btrfs_disk_key),
1783
						&kaddr, &map_start, &map_len);
1784 1785 1786 1787 1788 1789 1790 1791 1792

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
			} else {
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
			}
1793 1794 1795 1796 1797

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1813 1814 1815 1816
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1817 1818
static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
		      int level, int *slot)
1819
{
1820
	if (level == 0)
1821 1822
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1823
					  sizeof(struct btrfs_item),
1824
					  key, btrfs_header_nritems(eb),
1825
					  slot);
1826
	else
1827 1828
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1829
					  sizeof(struct btrfs_key_ptr),
1830
					  key, btrfs_header_nritems(eb),
1831
					  slot);
1832 1833
}

1834 1835 1836 1837 1838 1839
int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
		     int level, int *slot)
{
	return bin_search(eb, key, level, slot);
}

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1856 1857 1858 1859
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 * NULL is returned on error.
 */
1860
static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1861
				   struct extent_buffer *parent, int slot)
1862
{
1863
	int level = btrfs_header_level(parent);
1864 1865
	struct extent_buffer *eb;

1866 1867
	if (slot < 0)
		return NULL;
1868
	if (slot >= btrfs_header_nritems(parent))
1869
		return NULL;
1870 1871 1872

	BUG_ON(level == 0);

1873 1874
	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
			     btrfs_node_ptr_generation(parent, slot));
1875 1876 1877
	if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
		if (!IS_ERR(eb))
			free_extent_buffer(eb);
1878 1879 1880 1881
		eb = NULL;
	}

	return eb;
1882 1883
}

C
Chris Mason 已提交
1884 1885 1886 1887 1888
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1889
static noinline int balance_level(struct btrfs_trans_handle *trans,
1890 1891
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1892
{
1893 1894 1895 1896
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1897 1898 1899 1900
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1901
	u64 orig_ptr;
1902 1903 1904 1905

	if (level == 0)
		return 0;

1906
	mid = path->nodes[level];
1907

1908 1909
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1910 1911
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1912
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1913

L
Li Zefan 已提交
1914
	if (level < BTRFS_MAX_LEVEL - 1) {
1915
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1916 1917
		pslot = path->slots[level + 1];
	}
1918

C
Chris Mason 已提交
1919 1920 1921 1922
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1923 1924
	if (!parent) {
		struct extent_buffer *child;
1925

1926
		if (btrfs_header_nritems(mid) != 1)
1927 1928 1929
			return 0;

		/* promote the child to a root */
1930
		child = read_node_slot(root, mid, 0);
1931 1932
		if (!child) {
			ret = -EROFS;
1933
			btrfs_handle_fs_error(root->fs_info, ret, NULL);
1934 1935 1936
			goto enospc;
		}

1937
		btrfs_tree_lock(child);
1938
		btrfs_set_lock_blocking(child);
1939
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1940 1941 1942 1943 1944
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1945

1946
		tree_mod_log_set_root_pointer(root, child, 1);
1947
		rcu_assign_pointer(root->node, child);
1948

1949
		add_root_to_dirty_list(root);
1950
		btrfs_tree_unlock(child);
1951

1952
		path->locks[level] = 0;
1953
		path->nodes[level] = NULL;
1954
		clean_tree_block(trans, root->fs_info, mid);
1955
		btrfs_tree_unlock(mid);
1956
		/* once for the path */
1957
		free_extent_buffer(mid);
1958 1959

		root_sub_used(root, mid->len);
1960
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1961
		/* once for the root ptr */
1962
		free_extent_buffer_stale(mid);
1963
		return 0;
1964
	}
1965
	if (btrfs_header_nritems(mid) >
C
Chris Mason 已提交
1966
	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1967 1968
		return 0;

1969 1970
	left = read_node_slot(root, parent, pslot - 1);
	if (left) {
1971
		btrfs_tree_lock(left);
1972
		btrfs_set_lock_blocking(left);
1973
		wret = btrfs_cow_block(trans, root, left,
1974
				       parent, pslot - 1, &left);
1975 1976 1977 1978
		if (wret) {
			ret = wret;
			goto enospc;
		}
1979
	}
1980 1981
	right = read_node_slot(root, parent, pslot + 1);
	if (right) {
1982
		btrfs_tree_lock(right);
1983
		btrfs_set_lock_blocking(right);
1984
		wret = btrfs_cow_block(trans, root, right,
1985
				       parent, pslot + 1, &right);
1986 1987 1988 1989 1990 1991 1992
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1993 1994
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1995
		wret = push_node_left(trans, root, left, mid, 1);
1996 1997
		if (wret < 0)
			ret = wret;
1998
	}
1999 2000 2001 2002

	/*
	 * then try to empty the right most buffer into the middle
	 */
2003
	if (right) {
2004
		wret = push_node_left(trans, root, mid, right, 1);
2005
		if (wret < 0 && wret != -ENOSPC)
2006
			ret = wret;
2007
		if (btrfs_header_nritems(right) == 0) {
2008
			clean_tree_block(trans, root->fs_info, right);
2009
			btrfs_tree_unlock(right);
2010
			del_ptr(root, path, level + 1, pslot + 1);
2011
			root_sub_used(root, right->len);
2012
			btrfs_free_tree_block(trans, root, right, 0, 1);
2013
			free_extent_buffer_stale(right);
2014
			right = NULL;
2015
		} else {
2016 2017
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
2018
			tree_mod_log_set_node_key(root->fs_info, parent,
L
Liu Bo 已提交
2019
						  pslot + 1, 0);
2020 2021
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
2022 2023
		}
	}
2024
	if (btrfs_header_nritems(mid) == 1) {
2025 2026 2027 2028 2029 2030 2031 2032 2033
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
2034 2035
		if (!left) {
			ret = -EROFS;
2036
			btrfs_handle_fs_error(root->fs_info, ret, NULL);
2037 2038
			goto enospc;
		}
2039
		wret = balance_node_right(trans, root, mid, left);
2040
		if (wret < 0) {
2041
			ret = wret;
2042 2043
			goto enospc;
		}
2044 2045 2046 2047 2048
		if (wret == 1) {
			wret = push_node_left(trans, root, left, mid, 1);
			if (wret < 0)
				ret = wret;
		}
2049 2050
		BUG_ON(wret == 1);
	}
2051
	if (btrfs_header_nritems(mid) == 0) {
2052
		clean_tree_block(trans, root->fs_info, mid);
2053
		btrfs_tree_unlock(mid);
2054
		del_ptr(root, path, level + 1, pslot);
2055
		root_sub_used(root, mid->len);
2056
		btrfs_free_tree_block(trans, root, mid, 0, 1);
2057
		free_extent_buffer_stale(mid);
2058
		mid = NULL;
2059 2060
	} else {
		/* update the parent key to reflect our changes */
2061 2062
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
L
Liu Bo 已提交
2063
		tree_mod_log_set_node_key(root->fs_info, parent,
2064
					  pslot, 0);
2065 2066
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
2067
	}
2068

2069
	/* update the path */
2070 2071 2072
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
2073
			/* left was locked after cow */
2074
			path->nodes[level] = left;
2075 2076
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2077 2078
			if (mid) {
				btrfs_tree_unlock(mid);
2079
				free_extent_buffer(mid);
2080
			}
2081
		} else {
2082
			orig_slot -= btrfs_header_nritems(left);
2083 2084 2085
			path->slots[level] = orig_slot;
		}
	}
2086
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2087
	if (orig_ptr !=
2088
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2089
		BUG();
2090
enospc:
2091 2092
	if (right) {
		btrfs_tree_unlock(right);
2093
		free_extent_buffer(right);
2094 2095 2096 2097
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2098
		free_extent_buffer(left);
2099
	}
2100 2101 2102
	return ret;
}

C
Chris Mason 已提交
2103 2104 2105 2106
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2107
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2108 2109
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2110
{
2111 2112 2113 2114
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2115 2116 2117 2118 2119 2120 2121 2122
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2123
	mid = path->nodes[level];
2124
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2125

L
Li Zefan 已提交
2126
	if (level < BTRFS_MAX_LEVEL - 1) {
2127
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2128 2129
		pslot = path->slots[level + 1];
	}
2130

2131
	if (!parent)
2132 2133
		return 1;

2134
	left = read_node_slot(root, parent, pslot - 1);
2135 2136

	/* first, try to make some room in the middle buffer */
2137
	if (left) {
2138
		u32 left_nr;
2139 2140

		btrfs_tree_lock(left);
2141 2142
		btrfs_set_lock_blocking(left);

2143
		left_nr = btrfs_header_nritems(left);
C
Chris Mason 已提交
2144 2145 2146
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
			wret = 1;
		} else {
2147
			ret = btrfs_cow_block(trans, root, left, parent,
2148
					      pslot - 1, &left);
2149 2150 2151 2152
			if (ret)
				wret = 1;
			else {
				wret = push_node_left(trans, root,
2153
						      left, mid, 0);
2154
			}
C
Chris Mason 已提交
2155
		}
2156 2157 2158
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2159
			struct btrfs_disk_key disk_key;
2160
			orig_slot += left_nr;
2161
			btrfs_node_key(mid, &disk_key, 0);
2162
			tree_mod_log_set_node_key(root->fs_info, parent,
L
Liu Bo 已提交
2163
						  pslot, 0);
2164 2165 2166 2167
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2168 2169
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2170
				btrfs_tree_unlock(mid);
2171
				free_extent_buffer(mid);
2172 2173
			} else {
				orig_slot -=
2174
					btrfs_header_nritems(left);
2175
				path->slots[level] = orig_slot;
2176
				btrfs_tree_unlock(left);
2177
				free_extent_buffer(left);
2178 2179 2180
			}
			return 0;
		}
2181
		btrfs_tree_unlock(left);
2182
		free_extent_buffer(left);
2183
	}
2184
	right = read_node_slot(root, parent, pslot + 1);
2185 2186 2187 2188

	/*
	 * then try to empty the right most buffer into the middle
	 */
2189
	if (right) {
C
Chris Mason 已提交
2190
		u32 right_nr;
2191

2192
		btrfs_tree_lock(right);
2193 2194
		btrfs_set_lock_blocking(right);

2195
		right_nr = btrfs_header_nritems(right);
C
Chris Mason 已提交
2196 2197 2198
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
			wret = 1;
		} else {
2199 2200
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2201
					      &right);
2202 2203 2204 2205
			if (ret)
				wret = 1;
			else {
				wret = balance_node_right(trans, root,
2206
							  right, mid);
2207
			}
C
Chris Mason 已提交
2208
		}
2209 2210 2211
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2212 2213 2214
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2215
			tree_mod_log_set_node_key(root->fs_info, parent,
L
Liu Bo 已提交
2216
						  pslot + 1, 0);
2217 2218 2219 2220 2221
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2222 2223
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2224
					btrfs_header_nritems(mid);
2225
				btrfs_tree_unlock(mid);
2226
				free_extent_buffer(mid);
2227
			} else {
2228
				btrfs_tree_unlock(right);
2229
				free_extent_buffer(right);
2230 2231 2232
			}
			return 0;
		}
2233
		btrfs_tree_unlock(right);
2234
		free_extent_buffer(right);
2235 2236 2237 2238
	}
	return 1;
}

2239
/*
C
Chris Mason 已提交
2240 2241
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2242
 */
2243 2244 2245
static void reada_for_search(struct btrfs_root *root,
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2246
{
2247
	struct extent_buffer *node;
2248
	struct btrfs_disk_key disk_key;
2249 2250
	u32 nritems;
	u64 search;
2251
	u64 target;
2252
	u64 nread = 0;
2253
	u64 gen;
2254
	struct extent_buffer *eb;
2255 2256 2257
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2258

2259
	if (level != 1)
2260 2261 2262
		return;

	if (!path->nodes[level])
2263 2264
		return;

2265
	node = path->nodes[level];
2266

2267
	search = btrfs_node_blockptr(node, slot);
2268
	blocksize = root->nodesize;
2269
	eb = btrfs_find_tree_block(root->fs_info, search);
2270 2271
	if (eb) {
		free_extent_buffer(eb);
2272 2273 2274
		return;
	}

2275
	target = search;
2276

2277
	nritems = btrfs_header_nritems(node);
2278
	nr = slot;
2279

C
Chris Mason 已提交
2280
	while (1) {
2281
		if (path->reada == READA_BACK) {
2282 2283 2284
			if (nr == 0)
				break;
			nr--;
2285
		} else if (path->reada == READA_FORWARD) {
2286 2287 2288
			nr++;
			if (nr >= nritems)
				break;
2289
		}
2290
		if (path->reada == READA_BACK && objectid) {
2291 2292 2293 2294
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2295
		search = btrfs_node_blockptr(node, nr);
2296 2297
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2298
			gen = btrfs_node_ptr_generation(node, nr);
2299
			readahead_tree_block(root, search);
2300 2301 2302
			nread += blocksize;
		}
		nscan++;
2303
		if ((nread > 65536 || nscan > 32))
2304
			break;
2305 2306
	}
}
2307

J
Josef Bacik 已提交
2308 2309
static noinline void reada_for_balance(struct btrfs_root *root,
				       struct btrfs_path *path, int level)
2310 2311 2312 2313 2314 2315 2316 2317 2318
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2319
	parent = path->nodes[level + 1];
2320
	if (!parent)
J
Josef Bacik 已提交
2321
		return;
2322 2323

	nritems = btrfs_header_nritems(parent);
2324
	slot = path->slots[level + 1];
2325 2326 2327 2328

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2329
		eb = btrfs_find_tree_block(root->fs_info, block1);
2330 2331 2332 2333 2334 2335
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2336 2337 2338
			block1 = 0;
		free_extent_buffer(eb);
	}
2339
	if (slot + 1 < nritems) {
2340 2341
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2342
		eb = btrfs_find_tree_block(root->fs_info, block2);
2343
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2344 2345 2346
			block2 = 0;
		free_extent_buffer(eb);
	}
2347

J
Josef Bacik 已提交
2348
	if (block1)
2349
		readahead_tree_block(root, block1);
J
Josef Bacik 已提交
2350
	if (block2)
2351
		readahead_tree_block(root, block2);
2352 2353 2354
}


C
Chris Mason 已提交
2355
/*
C
Chris Mason 已提交
2356 2357 2358 2359
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2360
 *
C
Chris Mason 已提交
2361 2362 2363
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2364
 *
C
Chris Mason 已提交
2365 2366
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2367
 */
2368
static noinline void unlock_up(struct btrfs_path *path, int level,
2369 2370
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2371 2372 2373
{
	int i;
	int skip_level = level;
2374
	int no_skips = 0;
2375 2376 2377 2378 2379 2380 2381
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2382
		if (!no_skips && path->slots[i] == 0) {
2383 2384 2385
			skip_level = i + 1;
			continue;
		}
2386
		if (!no_skips && path->keep_locks) {
2387 2388 2389
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2390
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2391 2392 2393 2394
				skip_level = i + 1;
				continue;
			}
		}
2395 2396 2397
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2398 2399
		t = path->nodes[i];
		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2400
			btrfs_tree_unlock_rw(t, path->locks[i]);
2401
			path->locks[i] = 0;
2402 2403 2404 2405 2406
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2407 2408 2409 2410
		}
	}
}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2424
	if (path->keep_locks)
2425 2426 2427 2428
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2429
			continue;
2430
		if (!path->locks[i])
2431
			continue;
2432
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2433 2434 2435 2436
		path->locks[i] = 0;
	}
}

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
read_block_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
		       struct extent_buffer **eb_ret, int level, int slot,
J
Jan Schmidt 已提交
2449
		       struct btrfs_key *key, u64 time_seq)
2450 2451 2452 2453 2454
{
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2455
	int ret;
2456 2457 2458 2459

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);

2460
	tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2461
	if (tmp) {
2462
		/* first we do an atomic uptodate check */
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
		ret = btrfs_read_buffer(tmp, gen);
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2481
		}
2482 2483 2484
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2485 2486 2487 2488 2489
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2490 2491 2492
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2493
	 */
2494 2495 2496
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2497
	free_extent_buffer(tmp);
2498
	if (p->reada != READA_NONE)
2499 2500
		reada_for_search(root, p, level, slot, key->objectid);

2501
	btrfs_release_path(p);
2502 2503

	ret = -EAGAIN;
2504
	tmp = read_tree_block(root, blocknr, 0);
2505
	if (!IS_ERR(tmp)) {
2506 2507 2508 2509 2510 2511
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2512
		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2513
			ret = -EIO;
2514
		free_extent_buffer(tmp);
2515 2516
	}
	return ret;
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2531 2532
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2533 2534 2535 2536 2537 2538
{
	int ret;
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
		int sret;

2539 2540 2541 2542 2543 2544
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2545
		btrfs_set_path_blocking(p);
J
Josef Bacik 已提交
2546
		reada_for_balance(root, p, level);
2547
		sret = split_node(trans, root, p, level);
2548
		btrfs_clear_path_blocking(p, NULL, 0);
2549 2550 2551 2552 2553 2554 2555 2556

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
C
Chris Mason 已提交
2557
		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2558 2559
		int sret;

2560 2561 2562 2563 2564 2565
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2566
		btrfs_set_path_blocking(p);
J
Josef Bacik 已提交
2567
		reada_for_balance(root, p, level);
2568
		sret = balance_level(trans, root, p, level);
2569
		btrfs_clear_path_blocking(p, NULL, 0);
2570 2571 2572 2573 2574 2575 2576

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2577
			btrfs_release_path(p);
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
static void key_search_validate(struct extent_buffer *b,
				struct btrfs_key *key,
				int level)
{
#ifdef CONFIG_BTRFS_ASSERT
	struct btrfs_disk_key disk_key;

	btrfs_cpu_key_to_disk(&disk_key, key);

	if (level == 0)
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_leaf, items[0].key),
		    sizeof(disk_key)));
	else
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_node, ptrs[0].key),
		    sizeof(disk_key)));
#endif
}

static int key_search(struct extent_buffer *b, struct btrfs_key *key,
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
		*prev_cmp = bin_search(b, key, level, slot);
		return *prev_cmp;
	}

	key_search_validate(b, key, level);
	*slot = 0;

	return 0;
}

2624
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2625 2626 2627 2628 2629 2630
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2631 2632

	ASSERT(path);
2633
	ASSERT(found_key);
2634 2635 2636 2637 2638 2639

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2640
	if (ret < 0)
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

C
Chris Mason 已提交
2659 2660 2661 2662 2663 2664
/*
 * look for key in the tree.  path is filled in with nodes along the way
 * if key is found, we return zero and you can find the item in the leaf
 * level of the path (level 0)
 *
 * If the key isn't found, the path points to the slot where it should
C
Chris Mason 已提交
2665 2666
 * be inserted, and 1 is returned.  If there are other errors during the
 * search a negative error number is returned.
C
Chris Mason 已提交
2667 2668 2669 2670
 *
 * if ins_len > 0, nodes and leaves will be split as we walk down the
 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
 * possible)
C
Chris Mason 已提交
2671
 */
2672 2673 2674
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_key *key, struct btrfs_path *p, int
		      ins_len, int cow)
2675
{
2676
	struct extent_buffer *b;
2677 2678
	int slot;
	int ret;
2679
	int err;
2680
	int level;
2681
	int lowest_unlock = 1;
2682 2683 2684
	int root_lock;
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2685
	u8 lowest_level = 0;
2686
	int min_write_lock_level;
2687
	int prev_cmp;
2688

2689
	lowest_level = p->lowest_level;
2690
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2691
	WARN_ON(p->nodes[0] != NULL);
2692
	BUG_ON(!cow && ins_len);
2693

2694
	if (ins_len < 0) {
2695
		lowest_unlock = 2;
2696

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2713
	if (cow && (p->keep_locks || p->lowest_level))
2714 2715
		write_lock_level = BTRFS_MAX_LEVEL;

2716 2717
	min_write_lock_level = write_lock_level;

2718
again:
2719
	prev_cmp = -1;
2720 2721 2722 2723 2724
	/*
	 * we try very hard to do read locks on the root
	 */
	root_lock = BTRFS_READ_LOCK;
	level = 0;
2725
	if (p->search_commit_root) {
2726 2727 2728 2729
		/*
		 * the commit roots are read only
		 * so we always do read locks
		 */
2730 2731
		if (p->need_commit_sem)
			down_read(&root->fs_info->commit_root_sem);
2732 2733
		b = root->commit_root;
		extent_buffer_get(b);
2734
		level = btrfs_header_level(b);
2735 2736
		if (p->need_commit_sem)
			up_read(&root->fs_info->commit_root_sem);
2737
		if (!p->skip_locking)
2738
			btrfs_tree_read_lock(b);
2739
	} else {
2740
		if (p->skip_locking) {
2741
			b = btrfs_root_node(root);
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
			level = btrfs_header_level(b);
		} else {
			/* we don't know the level of the root node
			 * until we actually have it read locked
			 */
			b = btrfs_read_lock_root_node(root);
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
				/* whoops, must trade for write lock */
				btrfs_tree_read_unlock(b);
				free_extent_buffer(b);
				b = btrfs_lock_root_node(root);
				root_lock = BTRFS_WRITE_LOCK;

				/* the level might have changed, check again */
				level = btrfs_header_level(b);
			}
		}
2760
	}
2761 2762 2763
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
2764

2765
	while (b) {
2766
		level = btrfs_header_level(b);
2767 2768 2769 2770 2771

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2772
		if (cow) {
2773 2774 2775 2776 2777
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2778
			if (!should_cow_block(trans, root, b))
2779
				goto cow_done;
2780

2781 2782 2783 2784
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2785 2786 2787 2788
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2789 2790 2791 2792 2793
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2794
			btrfs_set_path_blocking(p);
2795 2796 2797 2798 2799
			err = btrfs_cow_block(trans, root, b,
					      p->nodes[level + 1],
					      p->slots[level + 1], &b);
			if (err) {
				ret = err;
2800
				goto done;
2801
			}
C
Chris Mason 已提交
2802
		}
2803
cow_done:
2804
		p->nodes[level] = b;
2805
		btrfs_clear_path_blocking(p, NULL, 0);
2806 2807 2808 2809 2810 2811 2812

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2813 2814 2815 2816
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2817
		 */
2818 2819 2820 2821 2822 2823 2824 2825
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2826

2827
		ret = key_search(b, key, level, &prev_cmp, &slot);
2828

2829
		if (level != 0) {
2830 2831 2832
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2833
				slot -= 1;
2834
			}
2835
			p->slots[level] = slot;
2836
			err = setup_nodes_for_search(trans, root, p, b, level,
2837
					     ins_len, &write_lock_level);
2838
			if (err == -EAGAIN)
2839
				goto again;
2840 2841
			if (err) {
				ret = err;
2842
				goto done;
2843
			}
2844 2845
			b = p->nodes[level];
			slot = p->slots[level];
2846

2847 2848 2849 2850 2851 2852
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2853
			if (slot == 0 && ins_len &&
2854 2855 2856 2857 2858 2859
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2860 2861
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2862

2863
			if (level == lowest_level) {
2864 2865
				if (dec)
					p->slots[level]++;
2866
				goto done;
2867
			}
2868

2869
			err = read_block_for_search(trans, root, p,
J
Jan Schmidt 已提交
2870
						    &b, level, slot, key, 0);
2871
			if (err == -EAGAIN)
2872
				goto again;
2873 2874
			if (err) {
				ret = err;
2875
				goto done;
2876
			}
2877

2878
			if (!p->skip_locking) {
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_WRITE_LOCK);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2890
					err = btrfs_tree_read_lock_atomic(b);
2891 2892 2893 2894 2895 2896 2897
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_READ_LOCK);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2898
				}
2899
				p->nodes[level] = b;
2900
			}
2901 2902
		} else {
			p->slots[level] = slot;
2903 2904
			if (ins_len > 0 &&
			    btrfs_leaf_free_space(root, b) < ins_len) {
2905 2906 2907 2908 2909 2910
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2911
				btrfs_set_path_blocking(p);
2912 2913
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2914
				btrfs_clear_path_blocking(p, NULL, 0);
2915

2916 2917 2918
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2919 2920
					goto done;
				}
C
Chris Mason 已提交
2921
			}
2922
			if (!p->search_for_split)
2923 2924
				unlock_up(p, level, lowest_unlock,
					  min_write_lock_level, &write_lock_level);
2925
			goto done;
2926 2927
		}
	}
2928 2929
	ret = 1;
done:
2930 2931 2932 2933
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2934 2935
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2936
	if (ret < 0 && !p->skip_release_on_error)
2937
		btrfs_release_path(p);
2938
	return ret;
2939 2940
}

J
Jan Schmidt 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
			  struct btrfs_path *p, u64 time_seq)
{
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2962
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;
		btrfs_clear_path_blocking(p, NULL, 0);

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

2990
		/*
2991
		 * Since we can unwind ebs we want to do a real search every
2992 2993 2994
		 * time.
		 */
		prev_cmp = -1;
2995
		ret = key_search(b, key, level, &prev_cmp, &slot);
J
Jan Schmidt 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

			err = read_block_for_search(NULL, root, p, &b, level,
						    slot, key, time_seq);
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3022
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3023 3024 3025 3026 3027 3028
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
				btrfs_clear_path_blocking(p, b,
							  BTRFS_READ_LOCK);
			}
3029
			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3030 3031 3032 3033
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
			       struct btrfs_key *key, struct btrfs_path *p,
			       int find_higher, int return_any)
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3101 3102 3103 3104 3105
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3106 3107 3108
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3109
				return 0;
3110
			}
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3122 3123 3124 3125 3126 3127
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3128 3129 3130 3131 3132 3133
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3134
 *
C
Chris Mason 已提交
3135
 */
3136 3137
static void fixup_low_keys(struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path,
3138
			   struct btrfs_disk_key *key, int level)
3139 3140
{
	int i;
3141 3142
	struct extent_buffer *t;

C
Chris Mason 已提交
3143
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3144
		int tslot = path->slots[i];
3145
		if (!path->nodes[i])
3146
			break;
3147
		t = path->nodes[i];
3148
		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3149
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3150
		btrfs_mark_buffer_dirty(path->nodes[i]);
3151 3152 3153 3154 3155
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3156 3157 3158 3159 3160 3161
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3162 3163
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3164
			     struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3165 3166 3167 3168 3169 3170 3171 3172 3173
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3174
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3175 3176 3177
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3178
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3179 3180 3181 3182 3183 3184
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3185
		fixup_low_keys(fs_info, path, &disk_key, 1);
Z
Zheng Yan 已提交
3186 3187
}

C
Chris Mason 已提交
3188 3189
/*
 * try to push data from one node into the next node left in the
3190
 * tree.
C
Chris Mason 已提交
3191 3192 3193
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3194
 */
3195 3196
static int push_node_left(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct extent_buffer *dst,
3197
			  struct extent_buffer *src, int empty)
3198 3199
{
	int push_items = 0;
3200 3201
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3202
	int ret = 0;
3203

3204 3205
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
C
Chris Mason 已提交
3206
	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3207 3208
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3209

3210
	if (!empty && src_nritems <= 8)
3211 3212
		return 1;

C
Chris Mason 已提交
3213
	if (push_items <= 0)
3214 3215
		return 1;

3216
	if (empty) {
3217
		push_items = min(src_nritems, push_items);
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3230

3231 3232 3233 3234 3235 3236
	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
				   push_items);
	if (ret) {
		btrfs_abort_transaction(trans, root, ret);
		return ret;
	}
3237 3238 3239
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3240
			   push_items * sizeof(struct btrfs_key_ptr));
3241

3242
	if (push_items < src_nritems) {
3243 3244 3245 3246
		/*
		 * don't call tree_mod_log_eb_move here, key removal was already
		 * fully logged by tree_mod_log_eb_copy above.
		 */
3247 3248 3249 3250 3251 3252 3253 3254 3255
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3256

3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3269 3270 3271 3272
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3273 3274 3275 3276 3277 3278 3279
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3280 3281 3282
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3283 3284
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
C
Chris Mason 已提交
3285
	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
C
Chris Mason 已提交
3286
	if (push_items <= 0)
3287
		return 1;
3288

C
Chris Mason 已提交
3289
	if (src_nritems < 4)
3290
		return 1;
3291 3292 3293

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3294
	if (max_push >= src_nritems)
3295
		return 1;
Y
Yan 已提交
3296

3297 3298 3299
	if (max_push < push_items)
		push_items = max_push;

3300
	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3301 3302 3303 3304
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3305

3306 3307 3308 3309 3310 3311
	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
				   src_nritems - push_items, push_items);
	if (ret) {
		btrfs_abort_transaction(trans, root, ret);
		return ret;
	}
3312 3313 3314
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3315
			   push_items * sizeof(struct btrfs_key_ptr));
3316

3317 3318
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3319

3320 3321
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3322

C
Chris Mason 已提交
3323
	return ret;
3324 3325
}

C
Chris Mason 已提交
3326 3327 3328 3329
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3330 3331
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3332
 */
C
Chris Mason 已提交
3333
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3334
			   struct btrfs_root *root,
3335
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3336
{
3337
	u64 lower_gen;
3338 3339
	struct extent_buffer *lower;
	struct extent_buffer *c;
3340
	struct extent_buffer *old;
3341
	struct btrfs_disk_key lower_key;
C
Chris Mason 已提交
3342 3343 3344 3345

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3346 3347 3348 3349 3350 3351
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3352 3353
	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				   &lower_key, level, root->node->start, 0);
3354 3355
	if (IS_ERR(c))
		return PTR_ERR(c);
3356

3357 3358
	root_add_used(root, root->nodesize);

3359
	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3360 3361
	btrfs_set_header_nritems(c, 1);
	btrfs_set_header_level(c, level);
3362
	btrfs_set_header_bytenr(c, c->start);
3363
	btrfs_set_header_generation(c, trans->transid);
3364
	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3365 3366
	btrfs_set_header_owner(c, root->root_key.objectid);

3367
	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3368
			    BTRFS_FSID_SIZE);
3369 3370

	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3371
			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3372

3373
	btrfs_set_node_key(c, &lower_key, 0);
3374
	btrfs_set_node_blockptr(c, 0, lower->start);
3375
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3376
	WARN_ON(lower_gen != trans->transid);
3377 3378

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3379

3380
	btrfs_mark_buffer_dirty(c);
3381

3382
	old = root->node;
3383
	tree_mod_log_set_root_pointer(root, c, 0);
3384
	rcu_assign_pointer(root->node, c);
3385 3386 3387 3388

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3389
	add_root_to_dirty_list(root);
3390 3391
	extent_buffer_get(c);
	path->nodes[level] = c;
3392
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3393 3394 3395 3396
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3397 3398 3399
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3400
 *
C
Chris Mason 已提交
3401 3402 3403
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3404 3405 3406
static void insert_ptr(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *path,
		       struct btrfs_disk_key *key, u64 bytenr,
3407
		       int slot, int level)
C
Chris Mason 已提交
3408
{
3409
	struct extent_buffer *lower;
C
Chris Mason 已提交
3410
	int nritems;
3411
	int ret;
C
Chris Mason 已提交
3412 3413

	BUG_ON(!path->nodes[level]);
3414
	btrfs_assert_tree_locked(path->nodes[level]);
3415 3416
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3417
	BUG_ON(slot > nritems);
3418
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
C
Chris Mason 已提交
3419
	if (slot != nritems) {
3420
		if (level)
3421 3422
			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
					     slot, nritems - slot);
3423 3424 3425
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3426
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3427
	}
3428
	if (level) {
3429
		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3430
					      MOD_LOG_KEY_ADD, GFP_NOFS);
3431 3432
		BUG_ON(ret < 0);
	}
3433
	btrfs_set_node_key(lower, key, slot);
3434
	btrfs_set_node_blockptr(lower, slot, bytenr);
3435 3436
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3437 3438
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3439 3440
}

C
Chris Mason 已提交
3441 3442 3443 3444 3445 3446
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3447 3448
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3449
 */
3450 3451 3452
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3453
{
3454 3455 3456
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3457
	int mid;
C
Chris Mason 已提交
3458
	int ret;
3459
	u32 c_nritems;
3460

3461
	c = path->nodes[level];
3462
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3463
	if (c == root->node) {
3464
		/*
3465 3466
		 * trying to split the root, lets make a new one
		 *
3467
		 * tree mod log: We don't log_removal old root in
3468 3469 3470 3471 3472
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3473
		 */
3474
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3475 3476
		if (ret)
			return ret;
3477
	} else {
3478
		ret = push_nodes_for_insert(trans, root, path, level);
3479 3480
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3481
		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3482
			return 0;
3483 3484
		if (ret < 0)
			return ret;
3485
	}
3486

3487
	c_nritems = btrfs_header_nritems(c);
3488 3489
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3490

3491 3492
	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, level, c->start, 0);
3493 3494 3495
	if (IS_ERR(split))
		return PTR_ERR(split);

3496 3497
	root_add_used(root, root->nodesize);

3498
	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3499
	btrfs_set_header_level(split, btrfs_header_level(c));
3500
	btrfs_set_header_bytenr(split, split->start);
3501
	btrfs_set_header_generation(split, trans->transid);
3502
	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3503 3504
	btrfs_set_header_owner(split, root->root_key.objectid);
	write_extent_buffer(split, root->fs_info->fsid,
3505
			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3506
	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3507
			    btrfs_header_chunk_tree_uuid(split),
3508
			    BTRFS_UUID_SIZE);
3509

3510 3511 3512 3513 3514 3515
	ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
				   mid, c_nritems - mid);
	if (ret) {
		btrfs_abort_transaction(trans, root, ret);
		return ret;
	}
3516 3517 3518 3519 3520 3521
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3522 3523
	ret = 0;

3524 3525 3526
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3527
	insert_ptr(trans, root, path, &disk_key, split->start,
3528
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3529

C
Chris Mason 已提交
3530
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3531
		path->slots[level] -= mid;
3532
		btrfs_tree_unlock(c);
3533 3534
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3535 3536
		path->slots[level + 1] += 1;
	} else {
3537
		btrfs_tree_unlock(split);
3538
		free_extent_buffer(split);
3539
	}
C
Chris Mason 已提交
3540
	return ret;
3541 3542
}

C
Chris Mason 已提交
3543 3544 3545 3546 3547
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3548
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3549
{
J
Josef Bacik 已提交
3550 3551 3552
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3553
	int data_len;
3554
	int nritems = btrfs_header_nritems(l);
3555
	int end = min(nritems, start + nr) - 1;
3556 3557 3558

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3559
	btrfs_init_map_token(&token);
3560 3561
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3562 3563 3564
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3565
	data_len += sizeof(struct btrfs_item) * nr;
3566
	WARN_ON(data_len < 0);
3567 3568 3569
	return data_len;
}

3570 3571 3572 3573 3574
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
C
Chris Mason 已提交
3575
noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3576
				   struct extent_buffer *leaf)
3577
{
3578 3579 3580 3581
	int nritems = btrfs_header_nritems(leaf);
	int ret;
	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
	if (ret < 0) {
3582 3583
		btrfs_crit(root->fs_info,
			"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
J
Jens Axboe 已提交
3584
		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3585 3586 3587
		       leaf_space_used(leaf, 0, nritems), nritems);
	}
	return ret;
3588 3589
}

3590 3591 3592 3593
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3594 3595 3596 3597 3598
static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3599 3600
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3601
{
3602
	struct extent_buffer *left = path->nodes[0];
3603
	struct extent_buffer *upper = path->nodes[1];
3604
	struct btrfs_map_token token;
3605
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3606
	int slot;
3607
	u32 i;
C
Chris Mason 已提交
3608 3609
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3610
	struct btrfs_item *item;
3611
	u32 nr;
3612
	u32 right_nritems;
3613
	u32 data_end;
3614
	u32 this_item_size;
C
Chris Mason 已提交
3615

3616 3617
	btrfs_init_map_token(&token);

3618 3619 3620
	if (empty)
		nr = 0;
	else
3621
		nr = max_t(u32, 1, min_slot);
3622

Z
Zheng Yan 已提交
3623
	if (path->slots[0] >= left_nritems)
3624
		push_space += data_size;
Z
Zheng Yan 已提交
3625

3626
	slot = path->slots[1];
3627 3628
	i = left_nritems - 1;
	while (i >= nr) {
3629
		item = btrfs_item_nr(i);
3630

Z
Zheng Yan 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
				int space = btrfs_leaf_free_space(root, left);
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3641
		if (path->slots[0] == i)
3642
			push_space += data_size;
3643 3644 3645

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3646
			break;
Z
Zheng Yan 已提交
3647

C
Chris Mason 已提交
3648
		push_items++;
3649
		push_space += this_item_size + sizeof(*item);
3650 3651 3652
		if (i == 0)
			break;
		i--;
3653
	}
3654

3655 3656
	if (push_items == 0)
		goto out_unlock;
3657

J
Julia Lawall 已提交
3658
	WARN_ON(!empty && push_items == left_nritems);
3659

C
Chris Mason 已提交
3660
	/* push left to right */
3661
	right_nritems = btrfs_header_nritems(right);
3662

3663
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
C
Chris Mason 已提交
3664
	push_space -= leaf_data_end(root, left);
3665

C
Chris Mason 已提交
3666
	/* make room in the right data area */
3667 3668 3669 3670 3671 3672
	data_end = leaf_data_end(root, right);
	memmove_extent_buffer(right,
			      btrfs_leaf_data(right) + data_end - push_space,
			      btrfs_leaf_data(right) + data_end,
			      BTRFS_LEAF_DATA_SIZE(root) - data_end);

C
Chris Mason 已提交
3673
	/* copy from the left data area */
3674
	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
C
Chris Mason 已提交
3675 3676 3677
		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
		     btrfs_leaf_data(left) + leaf_data_end(root, left),
		     push_space);
3678 3679 3680 3681 3682

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3683
	/* copy the items from left to right */
3684 3685 3686
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3687 3688

	/* update the item pointers */
3689
	right_nritems += push_items;
3690
	btrfs_set_header_nritems(right, right_nritems);
C
Chris Mason 已提交
3691
	push_space = BTRFS_LEAF_DATA_SIZE(root);
3692
	for (i = 0; i < right_nritems; i++) {
3693
		item = btrfs_item_nr(i);
3694 3695
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3696 3697
	}

3698
	left_nritems -= push_items;
3699
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3700

3701 3702
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3703
	else
3704
		clean_tree_block(trans, root->fs_info, left);
3705

3706
	btrfs_mark_buffer_dirty(right);
3707

3708 3709
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3710
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3711

C
Chris Mason 已提交
3712
	/* then fixup the leaf pointer in the path */
3713 3714
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3715
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3716
			clean_tree_block(trans, root->fs_info, path->nodes[0]);
3717
		btrfs_tree_unlock(path->nodes[0]);
3718 3719
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3720 3721
		path->slots[1] += 1;
	} else {
3722
		btrfs_tree_unlock(right);
3723
		free_extent_buffer(right);
C
Chris Mason 已提交
3724 3725
	}
	return 0;
3726 3727 3728 3729 3730

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3731
}
3732

3733 3734 3735 3736 3737 3738
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3739 3740 3741
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3742 3743
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3744 3745 3746
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
{
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

	right = read_node_slot(root, upper, slot + 1);
T
Tsutomu Itoh 已提交
3767 3768 3769
	if (right == NULL)
		return 1;

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

	free_space = btrfs_leaf_free_space(root, right);
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

	free_space = btrfs_leaf_free_space(root, right);
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
		 * no need to touch/dirty our left leaft. */
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3804 3805
	return __push_leaf_right(trans, root, path, min_data_size, empty,
				right, free_space, left_nritems, min_slot);
3806 3807 3808 3809 3810 3811
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3812 3813 3814
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3815 3816 3817 3818
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3819
 */
3820 3821 3822 3823
static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3824 3825
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3826
{
3827 3828
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3829 3830 3831
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3832
	struct btrfs_item *item;
3833
	u32 old_left_nritems;
3834
	u32 nr;
C
Chris Mason 已提交
3835
	int ret = 0;
3836 3837
	u32 this_item_size;
	u32 old_left_item_size;
3838 3839 3840
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3841

3842
	if (empty)
3843
		nr = min(right_nritems, max_slot);
3844
	else
3845
		nr = min(right_nritems - 1, max_slot);
3846 3847

	for (i = 0; i < nr; i++) {
3848
		item = btrfs_item_nr(i);
3849

Z
Zheng Yan 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
				int space = btrfs_leaf_free_space(root, right);
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3860
		if (path->slots[0] == i)
3861
			push_space += data_size;
3862 3863 3864

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3865
			break;
3866

3867
		push_items++;
3868 3869 3870
		push_space += this_item_size + sizeof(*item);
	}

3871
	if (push_items == 0) {
3872 3873
		ret = 1;
		goto out;
3874
	}
3875
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3876

3877
	/* push data from right to left */
3878 3879 3880 3881 3882
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3883
	push_space = BTRFS_LEAF_DATA_SIZE(root) -
C
Chris Mason 已提交
3884
		     btrfs_item_offset_nr(right, push_items - 1);
3885 3886

	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
C
Chris Mason 已提交
3887 3888
		     leaf_data_end(root, left) - push_space,
		     btrfs_leaf_data(right) +
3889
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3890
		     push_space);
3891
	old_left_nritems = btrfs_header_nritems(left);
3892
	BUG_ON(old_left_nritems <= 0);
3893

3894
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3895
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3896
		u32 ioff;
3897

3898
		item = btrfs_item_nr(i);
3899

3900 3901 3902 3903
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
		      &token);
3904
	}
3905
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3906 3907

	/* fixup right node */
J
Julia Lawall 已提交
3908 3909
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3910
		       right_nritems);
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
						  leaf_data_end(root, right);
		memmove_extent_buffer(right, btrfs_leaf_data(right) +
				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
				      btrfs_leaf_data(right) +
				      leaf_data_end(root, right), push_space);

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3921 3922 3923
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3924
	}
3925 3926
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
C
Chris Mason 已提交
3927
	push_space = BTRFS_LEAF_DATA_SIZE(root);
3928
	for (i = 0; i < right_nritems; i++) {
3929
		item = btrfs_item_nr(i);
3930

3931 3932 3933
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3934
	}
3935

3936
	btrfs_mark_buffer_dirty(left);
3937 3938
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3939
	else
3940
		clean_tree_block(trans, root->fs_info, right);
3941

3942
	btrfs_item_key(right, &disk_key, 0);
3943
	fixup_low_keys(root->fs_info, path, &disk_key, 1);
3944 3945 3946 3947

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3948
		btrfs_tree_unlock(path->nodes[0]);
3949 3950
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3951 3952
		path->slots[1] -= 1;
	} else {
3953
		btrfs_tree_unlock(left);
3954
		free_extent_buffer(left);
3955 3956
		path->slots[0] -= push_items;
	}
3957
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3958
	return ret;
3959 3960 3961 3962
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3963 3964
}

3965 3966 3967
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3968 3969 3970 3971
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3972 3973
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3974 3975
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
{
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

	left = read_node_slot(root, path->nodes[1], slot - 1);
T
Tsutomu Itoh 已提交
3997 3998 3999
	if (left == NULL)
		return 1;

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

	free_space = btrfs_leaf_free_space(root, left);
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4014 4015
		if (ret == -ENOSPC)
			ret = 1;
4016 4017 4018 4019 4020 4021 4022 4023 4024
		goto out;
	}

	free_space = btrfs_leaf_free_space(root, left);
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4025 4026 4027
	return __push_leaf_left(trans, root, path, min_data_size,
			       empty, left, free_space, right_nritems,
			       max_slot);
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4038 4039 4040 4041 4042 4043
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4044 4045 4046 4047 4048
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4049 4050 4051
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
		     data_copy_size, btrfs_leaf_data(l) +
		     leaf_data_end(root, l), data_copy_size);

	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
		      btrfs_item_end_nr(l, mid);

	for (i = 0; i < nritems; i++) {
4070
		struct btrfs_item *item = btrfs_item_nr(i);
4071 4072
		u32 ioff;

4073 4074 4075
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4076 4077 4078 4079
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4080
	insert_ptr(trans, root, path, &disk_key, right->start,
4081
		   path->slots[1] + 1, 1);
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4120
	int space_needed = data_size;
4121 4122

	slot = path->slots[0];
4123 4124
	if (slot < btrfs_header_nritems(path->nodes[0]))
		space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4125 4126 4127 4128 4129

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4130
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4150
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4162 4163 4164
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4165 4166
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4167
 */
4168 4169 4170 4171 4172
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_key *ins_key,
			       struct btrfs_path *path, int data_size,
			       int extend)
4173
{
4174
	struct btrfs_disk_key disk_key;
4175
	struct extent_buffer *l;
4176
	u32 nritems;
4177 4178
	int mid;
	int slot;
4179
	struct extent_buffer *right;
4180
	struct btrfs_fs_info *fs_info = root->fs_info;
4181
	int ret = 0;
C
Chris Mason 已提交
4182
	int wret;
4183
	int split;
4184
	int num_doubles = 0;
4185
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4186

4187 4188 4189 4190 4191 4192
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
		return -EOVERFLOW;

C
Chris Mason 已提交
4193
	/* first try to make some room by pushing left and right */
4194
	if (data_size && path->nodes[1]) {
4195 4196 4197 4198 4199 4200 4201
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
			space_needed -= btrfs_leaf_free_space(root, l);

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4202
		if (wret < 0)
C
Chris Mason 已提交
4203
			return wret;
4204
		if (wret) {
4205 4206
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4207 4208 4209 4210
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4211

4212
		/* did the pushes work? */
4213
		if (btrfs_leaf_free_space(root, l) >= data_size)
4214
			return 0;
4215
	}
C
Chris Mason 已提交
4216

C
Chris Mason 已提交
4217
	if (!path->nodes[1]) {
4218
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4219 4220 4221
		if (ret)
			return ret;
	}
4222
again:
4223
	split = 1;
4224
	l = path->nodes[0];
4225
	slot = path->slots[0];
4226
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4227
	mid = (nritems + 1) / 2;
4228

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
			BTRFS_LEAF_DATA_SIZE(root)) {
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4240 4241
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
			BTRFS_LEAF_DATA_SIZE(root)) {
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4258 4259
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4260
					split = 2;
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4271 4272
	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, 0, l->start, 0);
4273
	if (IS_ERR(right))
4274
		return PTR_ERR(right);
4275

4276
	root_add_used(root, root->nodesize);
4277 4278

	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4279
	btrfs_set_header_bytenr(right, right->start);
4280
	btrfs_set_header_generation(right, trans->transid);
4281
	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4282 4283
	btrfs_set_header_owner(right, root->root_key.objectid);
	btrfs_set_header_level(right, 0);
4284
	write_extent_buffer(right, fs_info->fsid,
4285
			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4286

4287
	write_extent_buffer(right, fs_info->chunk_tree_uuid,
4288
			    btrfs_header_chunk_tree_uuid(right),
4289
			    BTRFS_UUID_SIZE);
4290

4291 4292 4293
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4294
			insert_ptr(trans, root, path, &disk_key, right->start,
4295
				   path->slots[1] + 1, 1);
4296 4297 4298 4299 4300 4301 4302
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4303
			insert_ptr(trans, root, path, &disk_key, right->start,
4304
					  path->slots[1], 1);
4305 4306 4307 4308
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4309
			if (path->slots[1] == 0)
4310
				fixup_low_keys(fs_info, path, &disk_key, 1);
4311
		}
4312 4313
		btrfs_mark_buffer_dirty(right);
		return ret;
4314
	}
C
Chris Mason 已提交
4315

4316
	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4317

4318
	if (split == 2) {
4319 4320 4321
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4322
	}
4323

4324
	return 0;
4325 4326 4327 4328 4329 4330 4331

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
		return 0;
	goto again;
4332 4333
}

Y
Yan, Zheng 已提交
4334 4335 4336
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4337
{
Y
Yan, Zheng 已提交
4338
	struct btrfs_key key;
4339
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4340 4341 4342 4343
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4344 4345

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4346 4347 4348 4349 4350 4351 4352
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
		return 0;
4353 4354

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4355 4356 4357 4358 4359
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4360
	btrfs_release_path(path);
4361 4362

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4363 4364
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4365
	path->search_for_split = 0;
4366 4367
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4368 4369
	if (ret < 0)
		goto err;
4370

Y
Yan, Zheng 已提交
4371 4372
	ret = -EAGAIN;
	leaf = path->nodes[0];
4373 4374
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4375 4376
		goto err;

4377 4378 4379 4380
	/* the leaf has  changed, it now has room.  return now */
	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
		goto err;

Y
Yan, Zheng 已提交
4381 4382 4383 4384 4385
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4386 4387
	}

4388
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4389
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4390 4391
	if (ret)
		goto err;
4392

Y
Yan, Zheng 已提交
4393
	path->keep_locks = 0;
4394
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

static noinline int split_item(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path,
			       struct btrfs_key *new_key,
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4417 4418 4419
	leaf = path->nodes[0];
	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));

4420 4421
	btrfs_set_path_blocking(path);

4422
	item = btrfs_item_nr(path->slots[0]);
4423 4424 4425 4426
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4427 4428 4429
	if (!buf)
		return -ENOMEM;

4430 4431 4432
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4433
	slot = path->slots[0] + 1;
4434 4435 4436 4437
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4438 4439
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4440 4441 4442 4443 4444
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4445
	new_item = btrfs_item_nr(slot);
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

Y
Yan, Zheng 已提交
4467
	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4468
	kfree(buf);
Y
Yan, Zheng 已提交
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
		     struct btrfs_key *new_key,
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

	ret = split_item(trans, root, path, new_key, split_offset);
4500 4501 4502
	return ret;
}

Y
Yan, Zheng 已提交
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
			 struct btrfs_key *new_key)
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4528
	setup_items_for_insert(root, path, new_key, &item_size,
4529 4530
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4531 4532 4533 4534 4535 4536 4537 4538
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4539 4540 4541 4542 4543 4544
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4545
void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4546
			 u32 new_size, int from_end)
C
Chris Mason 已提交
4547 4548
{
	int slot;
4549 4550
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4551 4552 4553 4554 4555 4556
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4557 4558 4559
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4560

4561
	leaf = path->nodes[0];
4562 4563 4564 4565
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4566
		return;
C
Chris Mason 已提交
4567

4568
	nritems = btrfs_header_nritems(leaf);
C
Chris Mason 已提交
4569 4570
	data_end = leaf_data_end(root, leaf);

4571
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4572

C
Chris Mason 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4583
		u32 ioff;
4584
		item = btrfs_item_nr(i);
4585

4586 4587 4588
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4589
	}
4590

C
Chris Mason 已提交
4591
	/* shift the data */
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
	if (from_end) {
		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
			      data_end + size_diff, btrfs_leaf_data(leaf) +
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4615
				      (unsigned long)fi,
4616
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
			}
		}

		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
			      data_end + size_diff, btrfs_leaf_data(leaf) +
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4628
			fixup_low_keys(root->fs_info, path, &disk_key, 1);
4629
	}
4630

4631
	item = btrfs_item_nr(slot);
4632 4633
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4634

4635 4636
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
C
Chris Mason 已提交
4637
		BUG();
4638
	}
C
Chris Mason 已提交
4639 4640
}

C
Chris Mason 已提交
4641
/*
S
Stefan Behrens 已提交
4642
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4643
 */
4644
void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4645
		       u32 data_size)
4646 4647
{
	int slot;
4648 4649
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4650 4651 4652 4653 4654
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4655 4656 4657
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4658

4659
	leaf = path->nodes[0];
4660

4661
	nritems = btrfs_header_nritems(leaf);
4662 4663
	data_end = leaf_data_end(root, leaf);

4664 4665
	if (btrfs_leaf_free_space(root, leaf) < data_size) {
		btrfs_print_leaf(root, leaf);
4666
		BUG();
4667
	}
4668
	slot = path->slots[0];
4669
	old_data = btrfs_item_end_nr(leaf, slot);
4670 4671

	BUG_ON(slot < 0);
4672 4673
	if (slot >= nritems) {
		btrfs_print_leaf(root, leaf);
4674
		btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
C
Chris Mason 已提交
4675
		       slot, nritems);
4676 4677
		BUG_ON(1);
	}
4678 4679 4680 4681 4682 4683

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4684
		u32 ioff;
4685
		item = btrfs_item_nr(i);
4686

4687 4688 4689
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4690
	}
4691

4692
	/* shift the data */
4693
	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4694 4695
		      data_end - data_size, btrfs_leaf_data(leaf) +
		      data_end, old_data - data_end);
4696

4697
	data_end = old_data;
4698
	old_size = btrfs_item_size_nr(leaf, slot);
4699
	item = btrfs_item_nr(slot);
4700 4701
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4702

4703 4704
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
4705
		BUG();
4706
	}
4707 4708
}

C
Chris Mason 已提交
4709
/*
4710 4711 4712
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4713
 */
4714
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4715 4716
			    struct btrfs_key *cpu_key, u32 *data_size,
			    u32 total_data, u32 total_size, int nr)
4717
{
4718
	struct btrfs_item *item;
4719
	int i;
4720
	u32 nritems;
4721
	unsigned int data_end;
C
Chris Mason 已提交
4722
	struct btrfs_disk_key disk_key;
4723 4724
	struct extent_buffer *leaf;
	int slot;
4725 4726
	struct btrfs_map_token token;

4727 4728
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4729
		fixup_low_keys(root->fs_info, path, &disk_key, 1);
4730 4731 4732
	}
	btrfs_unlock_up_safe(path, 1);

4733
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4734

4735
	leaf = path->nodes[0];
4736
	slot = path->slots[0];
C
Chris Mason 已提交
4737

4738
	nritems = btrfs_header_nritems(leaf);
C
Chris Mason 已提交
4739
	data_end = leaf_data_end(root, leaf);
4740

4741
	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4742
		btrfs_print_leaf(root, leaf);
4743
		btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4744
		       total_size, btrfs_leaf_free_space(root, leaf));
4745
		BUG();
4746
	}
4747

4748
	if (slot != nritems) {
4749
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4750

4751 4752
		if (old_data < data_end) {
			btrfs_print_leaf(root, leaf);
4753
			btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4754 4755 4756
			       slot, old_data, data_end);
			BUG_ON(1);
		}
4757 4758 4759 4760
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4761
		for (i = slot; i < nritems; i++) {
4762
			u32 ioff;
4763

4764
			item = btrfs_item_nr( i);
4765 4766 4767
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4768
		}
4769
		/* shift the items */
4770
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4771
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4772
			      (nritems - slot) * sizeof(struct btrfs_item));
4773 4774

		/* shift the data */
4775
		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4776
			      data_end - total_data, btrfs_leaf_data(leaf) +
C
Chris Mason 已提交
4777
			      data_end, old_data - data_end);
4778 4779
		data_end = old_data;
	}
4780

4781
	/* setup the item for the new data */
4782 4783 4784
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4785
		item = btrfs_item_nr(slot + i);
4786 4787
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4788
		data_end -= data_size[i];
4789
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4790
	}
4791

4792
	btrfs_set_header_nritems(leaf, nritems + nr);
4793
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4794

4795 4796
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
4797
		BUG();
4798
	}
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
			    struct btrfs_key *cpu_key, u32 *data_size,
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4825
		return ret;
4826 4827 4828 4829

	slot = path->slots[0];
	BUG_ON(slot < 0);

4830
	setup_items_for_insert(root, path, cpu_key, data_size,
4831
			       total_data, total_size, nr);
4832
	return 0;
4833 4834 4835 4836 4837 4838
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4839 4840 4841
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_key *cpu_key, void *data, u32
		      data_size)
4842 4843
{
	int ret = 0;
C
Chris Mason 已提交
4844
	struct btrfs_path *path;
4845 4846
	struct extent_buffer *leaf;
	unsigned long ptr;
4847

C
Chris Mason 已提交
4848
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4849 4850
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4851
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4852
	if (!ret) {
4853 4854 4855 4856
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4857
	}
C
Chris Mason 已提交
4858
	btrfs_free_path(path);
C
Chris Mason 已提交
4859
	return ret;
4860 4861
}

C
Chris Mason 已提交
4862
/*
C
Chris Mason 已提交
4863
 * delete the pointer from a given node.
C
Chris Mason 已提交
4864
 *
C
Chris Mason 已提交
4865 4866
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4867
 */
4868 4869
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4870
{
4871
	struct extent_buffer *parent = path->nodes[level];
4872
	u32 nritems;
4873
	int ret;
4874

4875
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4876
	if (slot != nritems - 1) {
4877
		if (level)
4878 4879
			tree_mod_log_eb_move(root->fs_info, parent, slot,
					     slot + 1, nritems - slot - 1);
4880 4881 4882
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4883 4884
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4885 4886
	} else if (level) {
		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4887
					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4888
		BUG_ON(ret < 0);
4889
	}
4890

4891
	nritems--;
4892
	btrfs_set_header_nritems(parent, nritems);
4893
	if (nritems == 0 && parent == root->node) {
4894
		BUG_ON(btrfs_header_level(root->node) != 1);
4895
		/* just turn the root into a leaf and break */
4896
		btrfs_set_header_level(root->node, 0);
4897
	} else if (slot == 0) {
4898 4899 4900
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4901
		fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4902
	}
C
Chris Mason 已提交
4903
	btrfs_mark_buffer_dirty(parent);
4904 4905
}

4906 4907
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4908
 * path->nodes[1].
4909 4910 4911 4912 4913 4914 4915
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4916 4917 4918 4919
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4920
{
4921
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4922
	del_ptr(root, path, 1, path->slots[1]);
4923

4924 4925 4926 4927 4928 4929
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4930 4931
	root_sub_used(root, leaf->len);

4932
	extent_buffer_get(leaf);
4933
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4934
	free_extent_buffer_stale(leaf);
4935
}
C
Chris Mason 已提交
4936 4937 4938 4939
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4940 4941
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4942
{
4943 4944
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4945 4946
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4947 4948
	int ret = 0;
	int wret;
4949
	int i;
4950
	u32 nritems;
4951 4952 4953
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4954

4955
	leaf = path->nodes[0];
4956 4957 4958 4959 4960
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4961
	nritems = btrfs_header_nritems(leaf);
4962

4963
	if (slot + nr != nritems) {
C
Chris Mason 已提交
4964
		int data_end = leaf_data_end(root, leaf);
4965 4966

		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
C
Chris Mason 已提交
4967 4968
			      data_end + dsize,
			      btrfs_leaf_data(leaf) + data_end,
4969
			      last_off - data_end);
4970

4971
		for (i = slot + nr; i < nritems; i++) {
4972
			u32 ioff;
4973

4974
			item = btrfs_item_nr(i);
4975 4976 4977
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4978
		}
4979

4980
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4981
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4982
			      sizeof(struct btrfs_item) *
4983
			      (nritems - slot - nr));
4984
	}
4985 4986
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4987

C
Chris Mason 已提交
4988
	/* delete the leaf if we've emptied it */
4989
	if (nritems == 0) {
4990 4991
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
4992
		} else {
4993
			btrfs_set_path_blocking(path);
4994
			clean_tree_block(trans, root->fs_info, leaf);
4995
			btrfs_del_leaf(trans, root, path, leaf);
4996
		}
4997
	} else {
4998
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
4999
		if (slot == 0) {
5000 5001 5002
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
5003
			fixup_low_keys(root->fs_info, path, &disk_key, 1);
C
Chris Mason 已提交
5004 5005
		}

C
Chris Mason 已提交
5006
		/* delete the leaf if it is mostly empty */
5007
		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5008 5009 5010 5011
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5012
			slot = path->slots[1];
5013 5014
			extent_buffer_get(leaf);

5015
			btrfs_set_path_blocking(path);
5016 5017
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5018
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5019
				ret = wret;
5020 5021 5022

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5023 5024
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5025
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5026 5027
					ret = wret;
			}
5028 5029

			if (btrfs_header_nritems(leaf) == 0) {
5030
				path->slots[1] = slot;
5031
				btrfs_del_leaf(trans, root, path, leaf);
5032
				free_extent_buffer(leaf);
5033
				ret = 0;
C
Chris Mason 已提交
5034
			} else {
5035 5036 5037 5038 5039 5040 5041
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5042
				free_extent_buffer(leaf);
5043
			}
5044
		} else {
5045
			btrfs_mark_buffer_dirty(leaf);
5046 5047
		}
	}
C
Chris Mason 已提交
5048
	return ret;
5049 5050
}

5051
/*
5052
 * search the tree again to find a leaf with lesser keys
5053 5054
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5055 5056 5057
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5058
 */
5059
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5060
{
5061 5062 5063
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5064

5065
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5066

5067
	if (key.offset > 0) {
5068
		key.offset--;
5069
	} else if (key.type > 0) {
5070
		key.type--;
5071 5072
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5073
		key.objectid--;
5074 5075 5076
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5077
		return 1;
5078
	}
5079

5080
	btrfs_release_path(path);
5081 5082 5083 5084 5085
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5097 5098
		return 0;
	return 1;
5099 5100
}

5101 5102
/*
 * A helper function to walk down the tree starting at min_key, and looking
5103 5104
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This does lock as it descends, and path->keep_locks should be set
 * to 1 by the caller.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5116 5117 5118 5119
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5120 5121 5122 5123
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5124
			 struct btrfs_path *path,
5125 5126 5127 5128 5129
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5130
	int sret;
5131 5132 5133
	u32 nritems;
	int level;
	int ret = 1;
5134
	int keep_locks = path->keep_locks;
5135

5136
	path->keep_locks = 1;
5137
again:
5138
	cur = btrfs_read_lock_root_node(root);
5139
	level = btrfs_header_level(cur);
5140
	WARN_ON(path->nodes[level]);
5141
	path->nodes[level] = cur;
5142
	path->locks[level] = BTRFS_READ_LOCK;
5143 5144 5145 5146 5147

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5148
	while (1) {
5149 5150
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5151
		sret = bin_search(cur, min_key, level, &slot);
5152

5153 5154
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5155 5156
			if (slot >= nritems)
				goto find_next_key;
5157 5158 5159 5160 5161
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5162 5163
		if (sret && slot > 0)
			slot--;
5164
		/*
5165 5166
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5167
		 */
C
Chris Mason 已提交
5168
		while (slot < nritems) {
5169
			u64 gen;
5170

5171 5172 5173 5174 5175
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5176
			break;
5177
		}
5178
find_next_key:
5179 5180 5181 5182 5183
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5184
			path->slots[level] = slot;
5185
			btrfs_set_path_blocking(path);
5186
			sret = btrfs_find_next_key(root, path, min_key, level,
5187
						  min_trans);
5188
			if (sret == 0) {
5189
				btrfs_release_path(path);
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5202
		btrfs_set_path_blocking(path);
5203
		cur = read_node_slot(root, cur, slot);
5204
		BUG_ON(!cur); /* -ENOMEM */
5205

5206
		btrfs_tree_read_lock(cur);
5207

5208
		path->locks[level - 1] = BTRFS_READ_LOCK;
5209
		path->nodes[level - 1] = cur;
5210
		unlock_up(path, level, 1, 0, NULL);
5211
		btrfs_clear_path_blocking(path, NULL, 0);
5212 5213
	}
out:
5214 5215 5216 5217
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5218
		memcpy(min_key, &found_key, sizeof(found_key));
5219
	}
5220 5221 5222
	return ret;
}

5223 5224 5225 5226
static void tree_move_down(struct btrfs_root *root,
			   struct btrfs_path *path,
			   int *level, int root_level)
{
5227
	BUG_ON(*level == 0);
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
					path->slots[*level]);
	path->slots[*level - 1] = 0;
	(*level)--;
}

static int tree_move_next_or_upnext(struct btrfs_root *root,
				    struct btrfs_path *path,
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5244
	while (path->slots[*level] >= nritems) {
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
static int tree_advance(struct btrfs_root *root,
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
		ret = tree_move_next_or_upnext(root, path, level, root_level);
	} else {
		tree_move_down(root, path, level, root_level);
		ret = 0;
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

static int tree_compare_item(struct btrfs_root *left_root,
			     struct btrfs_path *left_path,
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5353 5354
	u64 left_gen;
	u64 right_gen;
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5367
	tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5368
	if (!tmp_buf) {
5369 5370 5371 5372 5373
		tmp_buf = vmalloc(left_root->nodesize);
		if (!tmp_buf) {
			ret = -ENOMEM;
			goto out;
		}
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5417
	down_read(&left_root->fs_info->commit_root_sem);
5418 5419 5420 5421 5422 5423 5424 5425 5426
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
	left_path->nodes[left_level] = left_root->commit_root;
	extent_buffer_get(left_path->nodes[left_level]);

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
	right_path->nodes[right_level] = right_root->commit_root;
	extent_buffer_get(right_path->nodes[right_level]);
5427
	up_read(&left_root->fs_info->commit_root_sem);
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
			ret = tree_advance(left_root, left_path, &left_level,
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
			if (ret < 0)
				left_end_reached = ADVANCE;
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
			ret = tree_advance(right_root, right_path, &right_level,
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
			if (ret < 0)
				right_end_reached = ADVANCE;
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5515
				enum btrfs_compare_tree_result result;
5516

5517
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5518 5519
				ret = tree_compare_item(left_root, left_path,
						right_path, tmp_buf);
5520
				if (ret)
5521
					result = BTRFS_COMPARE_TREE_CHANGED;
5522
				else
5523
					result = BTRFS_COMPARE_TREE_SAME;
5524 5525
				ret = changed_cb(left_root, right_root,
						 left_path, right_path,
5526
						 &left_key, result, ctx);
5527 5528
				if (ret < 0)
					goto out;
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5545 5546 5547 5548 5549 5550 5551 5552
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5574
	kvfree(tmp_buf);
5575 5576 5577
	return ret;
}

5578 5579 5580
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5581
 * tree based on the current path and the min_trans parameters.
5582 5583 5584 5585 5586 5587 5588
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5589
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5590
			struct btrfs_key *key, int level, u64 min_trans)
5591 5592 5593 5594
{
	int slot;
	struct extent_buffer *c;

5595
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5596
	while (level < BTRFS_MAX_LEVEL) {
5597 5598 5599 5600 5601
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5602
next:
5603
		if (slot >= btrfs_header_nritems(c)) {
5604 5605 5606 5607 5608
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5609
				return 1;
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5623
			btrfs_release_path(path);
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5636
		}
5637

5638 5639
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5640 5641 5642 5643 5644 5645 5646
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5647
			btrfs_node_key_to_cpu(c, key, slot);
5648
		}
5649 5650 5651 5652 5653
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5654
/*
5655
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5656 5657
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5658
 */
C
Chris Mason 已提交
5659
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5660 5661 5662 5663 5664 5665
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5666 5667
{
	int slot;
5668
	int level;
5669
	struct extent_buffer *c;
5670
	struct extent_buffer *next;
5671 5672 5673
	struct btrfs_key key;
	u32 nritems;
	int ret;
5674
	int old_spinning = path->leave_spinning;
5675
	int next_rw_lock = 0;
5676 5677

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5678
	if (nritems == 0)
5679 5680
		return 1;

5681 5682 5683 5684
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5685
	next_rw_lock = 0;
5686
	btrfs_release_path(path);
5687

5688
	path->keep_locks = 1;
5689
	path->leave_spinning = 1;
5690

J
Jan Schmidt 已提交
5691 5692 5693 5694
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5695 5696 5697 5698 5699
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5700
	nritems = btrfs_header_nritems(path->nodes[0]);
5701 5702 5703 5704 5705 5706
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5707
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5708 5709
		if (ret == 0)
			path->slots[0]++;
5710
		ret = 0;
5711 5712
		goto done;
	}
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5731

C
Chris Mason 已提交
5732
	while (level < BTRFS_MAX_LEVEL) {
5733 5734 5735 5736
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5737

5738 5739
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5740
		if (slot >= btrfs_header_nritems(c)) {
5741
			level++;
5742 5743 5744 5745
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5746 5747
			continue;
		}
5748

5749
		if (next) {
5750
			btrfs_tree_unlock_rw(next, next_rw_lock);
5751
			free_extent_buffer(next);
5752
		}
5753

5754
		next = c;
5755
		next_rw_lock = path->locks[level];
5756
		ret = read_block_for_search(NULL, root, path, &next, level,
J
Jan Schmidt 已提交
5757
					    slot, &key, 0);
5758 5759
		if (ret == -EAGAIN)
			goto again;
5760

5761
		if (ret < 0) {
5762
			btrfs_release_path(path);
5763 5764 5765
			goto done;
		}

5766
		if (!path->skip_locking) {
5767
			ret = btrfs_try_tree_read_lock(next);
5768 5769 5770 5771 5772 5773 5774 5775
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5776
				free_extent_buffer(next);
5777 5778 5779 5780
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5781 5782
			if (!ret) {
				btrfs_set_path_blocking(path);
5783
				btrfs_tree_read_lock(next);
5784
				btrfs_clear_path_blocking(path, next,
5785
							  BTRFS_READ_LOCK);
5786
			}
5787
			next_rw_lock = BTRFS_READ_LOCK;
5788
		}
5789 5790 5791
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5792
	while (1) {
5793 5794
		level--;
		c = path->nodes[level];
5795
		if (path->locks[level])
5796
			btrfs_tree_unlock_rw(c, path->locks[level]);
5797

5798
		free_extent_buffer(c);
5799 5800
		path->nodes[level] = next;
		path->slots[level] = 0;
5801
		if (!path->skip_locking)
5802
			path->locks[level] = next_rw_lock;
5803 5804
		if (!level)
			break;
5805

5806
		ret = read_block_for_search(NULL, root, path, &next, level,
J
Jan Schmidt 已提交
5807
					    0, &key, 0);
5808 5809 5810
		if (ret == -EAGAIN)
			goto again;

5811
		if (ret < 0) {
5812
			btrfs_release_path(path);
5813 5814 5815
			goto done;
		}

5816
		if (!path->skip_locking) {
5817
			ret = btrfs_try_tree_read_lock(next);
5818 5819
			if (!ret) {
				btrfs_set_path_blocking(path);
5820
				btrfs_tree_read_lock(next);
5821
				btrfs_clear_path_blocking(path, next,
5822 5823
							  BTRFS_READ_LOCK);
			}
5824
			next_rw_lock = BTRFS_READ_LOCK;
5825
		}
5826
	}
5827
	ret = 0;
5828
done:
5829
	unlock_up(path, 0, 1, 0, NULL);
5830 5831 5832 5833 5834
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5835
}
5836

5837 5838 5839 5840 5841 5842
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5843 5844 5845 5846 5847 5848
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5849
	u32 nritems;
5850 5851
	int ret;

C
Chris Mason 已提交
5852
	while (1) {
5853
		if (path->slots[0] == 0) {
5854
			btrfs_set_path_blocking(path);
5855 5856 5857 5858 5859 5860 5861
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5862 5863 5864 5865 5866 5867
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5868
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5869 5870
		if (found_key.objectid < min_objectid)
			break;
5871 5872
		if (found_key.type == type)
			return 0;
5873 5874 5875
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5876 5877 5878
	}
	return 1;
}
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}