ctree.c 152.9 KB
Newer Older
C
Chris Mason 已提交
1
/*
C
Chris Mason 已提交
2
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/sched.h>
20
#include <linux/slab.h>
21
#include <linux/rbtree.h>
22
#include <linux/mm.h>
23 24
#include "ctree.h"
#include "disk-io.h"
25
#include "transaction.h"
26
#include "print-tree.h"
27
#include "locking.h"
28

29 30
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
31 32 33
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
34
static int push_node_left(struct btrfs_trans_handle *trans,
35 36
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
37
			  struct extent_buffer *src, int empty);
38
static int balance_node_right(struct btrfs_trans_handle *trans,
39
			      struct btrfs_fs_info *fs_info,
40 41
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
42 43
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
44
static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
45
				 struct extent_buffer *eb);
46

C
Chris Mason 已提交
47
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
48
{
49
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
50 51
}

52 53 54 55 56 57 58 59
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 61 62 63 64 65 66
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 68 69 70 71
	}
}

/*
 * reset all the locked nodes in the patch to spinning locks.
72 73 74 75 76
 *
 * held is used to keep lockdep happy, when lockdep is enabled
 * we set held to a blocking lock before we go around and
 * retake all the spinlocks in the path.  You can safely use NULL
 * for held
77
 */
78
noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79
					struct extent_buffer *held, int held_rw)
80 81
{
	int i;
82

83 84 85 86 87 88 89
	if (held) {
		btrfs_set_lock_blocking_rw(held, held_rw);
		if (held_rw == BTRFS_WRITE_LOCK)
			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
		else if (held_rw == BTRFS_READ_LOCK)
			held_rw = BTRFS_READ_LOCK_BLOCKING;
	}
90 91 92
	btrfs_set_path_blocking(p);

	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 94 95 96 97 98 99
		if (p->nodes[i] && p->locks[i]) {
			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
				p->locks[i] = BTRFS_WRITE_LOCK;
			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
				p->locks[i] = BTRFS_READ_LOCK;
		}
100
	}
101 102

	if (held)
103
		btrfs_clear_lock_blocking_rw(held, held_rw);
104 105
}

C
Chris Mason 已提交
106
/* this also releases the path */
C
Chris Mason 已提交
107
void btrfs_free_path(struct btrfs_path *p)
108
{
109 110
	if (!p)
		return;
111
	btrfs_release_path(p);
C
Chris Mason 已提交
112
	kmem_cache_free(btrfs_path_cachep, p);
113 114
}

C
Chris Mason 已提交
115 116 117 118 119 120
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
121
noinline void btrfs_release_path(struct btrfs_path *p)
122 123
{
	int i;
124

C
Chris Mason 已提交
125
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126
		p->slots[i] = 0;
127
		if (!p->nodes[i])
128 129
			continue;
		if (p->locks[i]) {
130
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 132
			p->locks[i] = 0;
		}
133
		free_extent_buffer(p->nodes[i]);
134
		p->nodes[i] = NULL;
135 136 137
	}
}

C
Chris Mason 已提交
138 139 140 141 142 143 144 145 146 147
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
148 149 150
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
151

152 153 154 155 156 157
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
158
		 * it was COWed but we may not get the new root node yet so do
159 160 161 162 163 164 165 166 167 168
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
169 170 171
	return eb;
}

C
Chris Mason 已提交
172 173 174 175
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
176 177 178 179
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
180
	while (1) {
181 182
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
183
		if (eb == root->node)
184 185 186 187 188 189 190
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

191 192 193 194
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
195
static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 197 198 199 200 201 202 203 204 205 206 207 208 209
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
210 211 212 213
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
214 215
static void add_root_to_dirty_list(struct btrfs_root *root)
{
216 217
	struct btrfs_fs_info *fs_info = root->fs_info;

218 219 220 221
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

222
	spin_lock(&fs_info->trans_lock);
223 224 225 226
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
			list_move_tail(&root->dirty_list,
227
				       &fs_info->dirty_cowonly_roots);
228 229
		else
			list_move(&root->dirty_list,
230
				  &fs_info->dirty_cowonly_roots);
231
	}
232
	spin_unlock(&fs_info->trans_lock);
233 234
}

C
Chris Mason 已提交
235 236 237 238 239
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
240 241 242 243 244
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
245
	struct btrfs_fs_info *fs_info = root->fs_info;
246 247 248
	struct extent_buffer *cow;
	int ret = 0;
	int level;
249
	struct btrfs_disk_key disk_key;
250

251
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252
		trans->transid != fs_info->running_transaction->transid);
253 254
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
255 256

	level = btrfs_header_level(buf);
257 258 259 260
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
261

262 263
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
264
	if (IS_ERR(cow))
265 266
		return PTR_ERR(cow);

267
	copy_extent_buffer_full(cow, buf);
268 269
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
270 271 272 273 274 275 276
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
277

278
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
279

280
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
281
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282
		ret = btrfs_inc_ref(trans, root, cow, 1);
283
	else
284
		ret = btrfs_inc_ref(trans, root, cow, 0);
285

286 287 288 289 290 291 292 293
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_move {
	int dst_slot;
	int nr_items;
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
316
	u64 logical;
317
	u64 seq;
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
	struct tree_mod_move move;

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

337
static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338
{
339
	read_lock(&fs_info->tree_mod_log_lock);
340 341
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
{
	read_unlock(&fs_info->tree_mod_log_lock);
}

static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
{
	write_lock(&fs_info->tree_mod_log_lock);
}

static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
{
	write_unlock(&fs_info->tree_mod_log_lock);
}

357
/*
J
Josef Bacik 已提交
358
 * Pull a new tree mod seq number for our operation.
359
 */
J
Josef Bacik 已提交
360
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
361 362 363 364
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

365 366 367 368 369 370 371 372 373 374
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
375
{
376
	tree_mod_log_write_lock(fs_info);
377
	spin_lock(&fs_info->tree_mod_seq_lock);
378
	if (!elem->seq) {
J
Josef Bacik 已提交
379
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 381
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
382
	spin_unlock(&fs_info->tree_mod_seq_lock);
383 384
	tree_mod_log_write_unlock(fs_info);

J
Josef Bacik 已提交
385
	return elem->seq;
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
404
	elem->seq = 0;
405 406

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
407
		if (cur_elem->seq < min_seq) {
408 409 410 411 412
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
413 414
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
415 416 417 418
			}
			min_seq = cur_elem->seq;
		}
	}
419 420
	spin_unlock(&fs_info->tree_mod_seq_lock);

421 422 423 424
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
425
	tree_mod_log_write_lock(fs_info);
426 427 428
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
429
		tm = rb_entry(node, struct tree_mod_elem, node);
430
		if (tm->seq > min_seq)
431 432 433 434
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
435
	tree_mod_log_write_unlock(fs_info);
436 437 438 439
}

/*
 * key order of the log:
440
 *       node/leaf start address -> sequence
441
 *
442 443 444
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
445 446
 *
 * Note: must be called with write lock (tree_mod_log_write_lock).
447 448 449 450 451 452 453 454
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
455

J
Josef Bacik 已提交
456
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
457 458 459 460

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
461
		cur = rb_entry(*new, struct tree_mod_elem, node);
462
		parent = *new;
463
		if (cur->logical < tm->logical)
464
			new = &((*new)->rb_left);
465
		else if (cur->logical > tm->logical)
466
			new = &((*new)->rb_right);
467
		else if (cur->seq < tm->seq)
468
			new = &((*new)->rb_left);
469
		else if (cur->seq > tm->seq)
470
			new = &((*new)->rb_right);
471 472
		else
			return -EEXIST;
473 474 475 476
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
477
	return 0;
478 479
}

480 481 482 483 484 485
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
 * call tree_mod_log_write_unlock() to release.
 */
486 487 488 489 490
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
491 492
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
493 494 495 496 497 498 499

	tree_mod_log_write_lock(fs_info);
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
		tree_mod_log_write_unlock(fs_info);
		return 1;
	}

500 501 502
	return 0;
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
519
{
520
	struct tree_mod_elem *tm;
521

522 523
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
524
		return NULL;
525

526
	tm->logical = eb->start;
527 528 529 530 531 532 533
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
534
	RB_CLEAR_NODE(&tm->node);
535

536
	return tm;
537 538 539
}

static noinline int
540 541 542
tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
			struct extent_buffer *eb, int slot,
			enum mod_log_op op, gfp_t flags)
543
{
544 545 546 547 548 549 550 551 552 553 554 555
	struct tree_mod_elem *tm;
	int ret;

	if (!tree_mod_need_log(fs_info, eb))
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

	if (tree_mod_dont_log(fs_info, eb)) {
		kfree(tm);
556
		return 0;
557 558 559 560 561 562
	}

	ret = __tree_mod_log_insert(fs_info, tm);
	tree_mod_log_write_unlock(fs_info);
	if (ret)
		kfree(tm);
563

564
	return ret;
565 566
}

567 568 569
static noinline int
tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
			 struct extent_buffer *eb, int dst_slot, int src_slot,
570
			 int nr_items)
571
{
572 573 574
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
575
	int i;
576
	int locked = 0;
577

578
	if (!tree_mod_need_log(fs_info, eb))
J
Jan Schmidt 已提交
579
		return 0;
580

581
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
582 583 584
	if (!tm_list)
		return -ENOMEM;

585
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
586 587 588 589 590
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

591
	tm->logical = eb->start;
592 593 594 595 596 597 598
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
599
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
600 601 602 603 604 605 606 607 608 609
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, eb))
		goto free_tms;
	locked = 1;

610 611 612 613 614
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
615
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
616 617 618
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret)
			goto free_tms;
619 620
	}

621 622 623 624 625
	ret = __tree_mod_log_insert(fs_info, tm);
	if (ret)
		goto free_tms;
	tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);
J
Jan Schmidt 已提交
626

627 628 629 630 631 632 633 634 635 636 637
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
		tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);
	kfree(tm);
638

639
	return ret;
640 641
}

642 643 644 645
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
646
{
647
	int i, j;
648 649 650
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
651 652 653 654 655 656 657
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
658
	}
659 660

	return 0;
661 662
}

663 664 665
static noinline int
tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
			 struct extent_buffer *old_root,
666
			 struct extent_buffer *new_root,
667
			 int log_removal)
668
{
669 670 671 672 673
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
674

675
	if (!tree_mod_need_log(fs_info, NULL))
676 677
		return 0;

678 679
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
680
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
681
				  GFP_NOFS);
682 683 684 685 686 687
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
688
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
689 690 691 692 693 694
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
695

696
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
697 698 699 700
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
701

702
	tm->logical = new_root->start;
703 704 705 706 707
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

	tree_mod_log_write_unlock(fs_info);
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
732 733 734 735 736 737 738 739 740 741 742
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

743
	tree_mod_log_read_lock(fs_info);
744 745 746
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
747
		cur = rb_entry(node, struct tree_mod_elem, node);
748
		if (cur->logical < start) {
749
			node = node->rb_left;
750
		} else if (cur->logical > start) {
751
			node = node->rb_right;
752
		} else if (cur->seq < min_seq) {
753 754 755 756
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
757
				BUG_ON(found->seq > cur->seq);
758 759
			found = cur;
			node = node->rb_left;
760
		} else if (cur->seq > min_seq) {
761 762
			/* we want the node with the smallest seq */
			if (found)
763
				BUG_ON(found->seq < cur->seq);
764 765 766 767 768 769 770
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
771
	tree_mod_log_read_unlock(fs_info);
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

799
static noinline int
800 801
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
802
		     unsigned long src_offset, int nr_items)
803
{
804 805 806
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
807
	int i;
808
	int locked = 0;
809

810 811
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
812

813
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
814 815
		return 0;

816
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
817 818 819
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
820

821 822
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
823
	for (i = 0; i < nr_items; i++) {
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
850
	}
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

	tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
		tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);

	return ret;
868 869 870 871 872 873 874 875
}

static inline void
tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     int dst_offset, int src_offset, int nr_items)
{
	int ret;
	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
876
				       nr_items);
877 878 879
	BUG_ON(ret < 0);
}

880
static noinline void
881
tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
L
Liu Bo 已提交
882
			  struct extent_buffer *eb, int slot, int atomic)
883 884 885
{
	int ret;

886
	ret = tree_mod_log_insert_key(fs_info, eb, slot,
887 888
					MOD_LOG_KEY_REPLACE,
					atomic ? GFP_ATOMIC : GFP_NOFS);
889 890 891
	BUG_ON(ret < 0);
}

892
static noinline int
893
tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
894
{
895 896 897 898 899 900 901 902 903 904 905 906
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

	if (!tree_mod_need_log(fs_info, NULL))
		return 0;

	nritems = btrfs_header_nritems(eb);
907
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
908 909 910 911 912 913 914 915 916 917 918 919
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

920
	if (tree_mod_dont_log(fs_info, eb))
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
		goto free_tms;

	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	tree_mod_log_write_unlock(fs_info);
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
937 938
}

939
static noinline void
940
tree_mod_log_set_root_pointer(struct btrfs_root *root,
941 942
			      struct extent_buffer *new_root_node,
			      int log_removal)
943 944 945
{
	int ret;
	ret = tree_mod_log_insert_root(root->fs_info, root->node,
946
				       new_root_node, log_removal);
947 948 949
	BUG_ON(ret < 0);
}

950 951 952 953 954 955 956
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
957
	 * Tree blocks not in reference counted trees and tree roots
958 959 960 961
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
962
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
963 964 965 966 967 968
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
969
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
970 971 972 973 974 975 976 977 978
	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
		return 1;
#endif
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
979 980
				       struct extent_buffer *cow,
				       int *last_ref)
981
{
982
	struct btrfs_fs_info *fs_info = root->fs_info;
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
1007
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
1008 1009
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
1010 1011
		if (ret)
			return ret;
1012 1013
		if (refs == 0) {
			ret = -EROFS;
1014
			btrfs_handle_fs_error(fs_info, ret, NULL);
1015 1016
			return ret;
		}
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034
			ret = btrfs_inc_ref(trans, root, buf, 1);
1035
			BUG_ON(ret); /* -ENOMEM */
1036 1037 1038

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
1039
				ret = btrfs_dec_ref(trans, root, buf, 0);
1040
				BUG_ON(ret); /* -ENOMEM */
1041
				ret = btrfs_inc_ref(trans, root, cow, 1);
1042
				BUG_ON(ret); /* -ENOMEM */
1043 1044 1045 1046 1047 1048
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
1049
				ret = btrfs_inc_ref(trans, root, cow, 1);
1050
			else
1051
				ret = btrfs_inc_ref(trans, root, cow, 0);
1052
			BUG_ON(ret); /* -ENOMEM */
1053 1054
		}
		if (new_flags != 0) {
1055 1056
			int level = btrfs_header_level(buf);

1057
			ret = btrfs_set_disk_extent_flags(trans, fs_info,
1058 1059
							  buf->start,
							  buf->len,
1060
							  new_flags, level, 0);
1061 1062
			if (ret)
				return ret;
1063 1064 1065 1066 1067
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
1068
				ret = btrfs_inc_ref(trans, root, cow, 1);
1069
			else
1070
				ret = btrfs_inc_ref(trans, root, cow, 0);
1071
			BUG_ON(ret); /* -ENOMEM */
1072
			ret = btrfs_dec_ref(trans, root, buf, 1);
1073
			BUG_ON(ret); /* -ENOMEM */
1074
		}
1075
		clean_tree_block(fs_info, buf);
1076
		*last_ref = 1;
1077 1078 1079 1080
	}
	return 0;
}

C
Chris Mason 已提交
1081
/*
C
Chris Mason 已提交
1082 1083 1084 1085
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1086 1087 1088
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1089 1090 1091
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1092
 */
C
Chris Mason 已提交
1093
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 1095 1096 1097
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1098
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1099
{
1100
	struct btrfs_fs_info *fs_info = root->fs_info;
1101
	struct btrfs_disk_key disk_key;
1102
	struct extent_buffer *cow;
1103
	int level, ret;
1104
	int last_ref = 0;
1105
	int unlock_orig = 0;
1106
	u64 parent_start = 0;
1107

1108 1109 1110
	if (*cow_ret == buf)
		unlock_orig = 1;

1111
	btrfs_assert_tree_locked(buf);
1112

1113
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1114
		trans->transid != fs_info->running_transaction->transid);
1115 1116
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1117

1118
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1119

1120 1121 1122 1123 1124
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1125 1126
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1127

1128 1129 1130
	cow = btrfs_alloc_tree_block(trans, root, parent_start,
			root->root_key.objectid, &disk_key, level,
			search_start, empty_size);
1131 1132
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1133

1134 1135
	/* cow is set to blocking by btrfs_init_new_buffer */

1136
	copy_extent_buffer_full(cow, buf);
1137
	btrfs_set_header_bytenr(cow, cow->start);
1138
	btrfs_set_header_generation(cow, trans->transid);
1139 1140 1141 1142 1143 1144 1145
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1146

1147
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
1148

1149
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1150
	if (ret) {
1151
		btrfs_abort_transaction(trans, ret);
1152 1153
		return ret;
	}
Z
Zheng Yan 已提交
1154

1155
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1156
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1157
		if (ret) {
1158
			btrfs_abort_transaction(trans, ret);
1159
			return ret;
1160
		}
1161
	}
1162

C
Chris Mason 已提交
1163
	if (buf == root->node) {
1164
		WARN_ON(parent && parent != buf);
1165 1166 1167
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1168

1169
		extent_buffer_get(cow);
1170
		tree_mod_log_set_root_pointer(root, cow, 1);
1171
		rcu_assign_pointer(root->node, cow);
1172

1173
		btrfs_free_tree_block(trans, root, buf, parent_start,
1174
				      last_ref);
1175
		free_extent_buffer(buf);
1176
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1177
	} else {
1178
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1179
		tree_mod_log_insert_key(fs_info, parent, parent_slot,
1180
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1181
		btrfs_set_node_blockptr(parent, parent_slot,
1182
					cow->start);
1183 1184
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1185
		btrfs_mark_buffer_dirty(parent);
1186
		if (last_ref) {
1187
			ret = tree_mod_log_free_eb(fs_info, buf);
1188
			if (ret) {
1189
				btrfs_abort_transaction(trans, ret);
1190 1191 1192
				return ret;
			}
		}
1193
		btrfs_free_tree_block(trans, root, buf, parent_start,
1194
				      last_ref);
C
Chris Mason 已提交
1195
	}
1196 1197
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1198
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1199
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1200
	*cow_ret = cow;
C
Chris Mason 已提交
1201 1202 1203
	return 0;
}

J
Jan Schmidt 已提交
1204 1205 1206 1207 1208 1209
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
static struct tree_mod_elem *
__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1210
			   struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1211 1212 1213
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1214
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1215 1216 1217
	int looped = 0;

	if (!time_seq)
1218
		return NULL;
J
Jan Schmidt 已提交
1219 1220

	/*
1221 1222 1223 1224
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1225 1226 1227 1228 1229
	 */
	while (1) {
		tm = tree_mod_log_search_oldest(fs_info, root_logical,
						time_seq);
		if (!looped && !tm)
1230
			return NULL;
J
Jan Schmidt 已提交
1231
		/*
1232 1233 1234
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1235
		 */
1236 1237
		if (!tm)
			break;
J
Jan Schmidt 已提交
1238

1239 1240 1241 1242 1243
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1244 1245 1246 1247 1248 1249 1250 1251
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1252 1253 1254 1255
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1256 1257 1258 1259 1260
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1261
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1262 1263 1264
 * time_seq).
 */
static void
1265 1266
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1276
	tree_mod_log_read_lock(fs_info);
1277
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1278 1279 1280 1281 1282 1283 1284 1285
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1286
			/* Fallthrough */
1287
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1288
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1289 1290 1291 1292
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1293
			n++;
J
Jan Schmidt 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1303
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1304 1305 1306
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1307 1308 1309
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1327
		tm = rb_entry(next, struct tree_mod_elem, node);
1328
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1329 1330
			break;
	}
1331
	tree_mod_log_read_unlock(fs_info);
J
Jan Schmidt 已提交
1332 1333 1334
	btrfs_set_header_nritems(eb, n);
}

1335
/*
1336
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1337 1338 1339 1340 1341
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1342
static struct extent_buffer *
1343 1344
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1359 1360 1361
	btrfs_set_path_blocking(path);
	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);

J
Jan Schmidt 已提交
1362 1363
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1364
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1365
		if (!eb_rewin) {
1366
			btrfs_tree_read_unlock_blocking(eb);
1367 1368 1369
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1370 1371 1372 1373
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1374
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1375 1376
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1377
		if (!eb_rewin) {
1378
			btrfs_tree_read_unlock_blocking(eb);
1379 1380 1381
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1382 1383
	}

1384 1385
	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1386 1387
	free_extent_buffer(eb);

1388 1389
	extent_buffer_get(eb_rewin);
	btrfs_tree_read_lock(eb_rewin);
1390
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1391
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1392
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1393 1394 1395 1396

	return eb_rewin;
}

1397 1398 1399 1400 1401 1402 1403
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1404 1405 1406
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1407
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1408
	struct tree_mod_elem *tm;
1409 1410
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1411
	struct extent_buffer *old;
1412
	struct tree_mod_root *old_root = NULL;
1413
	u64 old_generation = 0;
1414
	u64 logical;
J
Jan Schmidt 已提交
1415

1416
	eb_root = btrfs_read_lock_root_node(root);
1417
	tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
J
Jan Schmidt 已提交
1418
	if (!tm)
1419
		return eb_root;
J
Jan Schmidt 已提交
1420

1421 1422 1423 1424 1425
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
	} else {
1426
		logical = eb_root->start;
1427
	}
J
Jan Schmidt 已提交
1428

1429
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1430
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1431 1432
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1433
		old = read_tree_block(fs_info, logical, 0);
1434 1435 1436
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1437 1438 1439
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1440
		} else {
1441 1442
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1443 1444
		}
	} else if (old_root) {
1445 1446
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1447
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1448
	} else {
1449
		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1450
		eb = btrfs_clone_extent_buffer(eb_root);
1451
		btrfs_tree_read_unlock_blocking(eb_root);
1452
		free_extent_buffer(eb_root);
1453 1454
	}

1455 1456
	if (!eb)
		return NULL;
1457
	extent_buffer_get(eb);
1458
	btrfs_tree_read_lock(eb);
1459
	if (old_root) {
J
Jan Schmidt 已提交
1460 1461
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1462
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1463 1464
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1465
	}
1466
	if (tm)
1467
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1468 1469
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1470
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1471 1472 1473 1474

	return eb;
}

J
Jan Schmidt 已提交
1475 1476 1477 1478
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1479
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1480

1481
	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
J
Jan Schmidt 已提交
1482 1483 1484
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1485
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1486
	}
1487
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1488 1489 1490 1491

	return level;
}

1492 1493 1494 1495
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1496
	if (btrfs_is_testing(root->fs_info))
1497
		return 0;
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	/* ensure we can see the force_cow */
	smp_rmb();

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1509
	 *    when we create snapshot during committing the transaction,
1510 1511 1512
	 *    after we've finished coping src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
1513 1514 1515
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1516
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1517
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1518 1519 1520 1521
		return 0;
	return 1;
}

C
Chris Mason 已提交
1522 1523
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1524
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1525 1526
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1527
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1528 1529
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1530
		    struct extent_buffer **cow_ret)
1531
{
1532
	struct btrfs_fs_info *fs_info = root->fs_info;
1533
	u64 search_start;
1534
	int ret;
C
Chris Mason 已提交
1535

1536
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1537
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1538
		       trans->transid,
1539
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1540

1541
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1542
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1543
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1544

1545
	if (!should_cow_block(trans, root, buf)) {
1546
		trans->dirty = true;
1547 1548 1549
		*cow_ret = buf;
		return 0;
	}
1550

1551
	search_start = buf->start & ~((u64)SZ_1G - 1);
1552 1553 1554 1555 1556

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1557
	ret = __btrfs_cow_block(trans, root, buf, parent,
1558
				 parent_slot, cow_ret, search_start, 0);
1559 1560 1561

	trace_btrfs_cow_block(root, buf, *cow_ret);

1562
	return ret;
1563 1564
}

C
Chris Mason 已提交
1565 1566 1567 1568
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1569
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1570
{
1571
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1572
		return 1;
1573
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1574 1575 1576 1577
		return 1;
	return 0;
}

1578 1579 1580
/*
 * compare two keys in a memcmp fashion
 */
1581 1582
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1583 1584 1585 1586 1587
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1588
	return btrfs_comp_cpu_keys(&k1, k2);
1589 1590
}

1591 1592 1593
/*
 * same as comp_keys only with two btrfs_key's
 */
1594
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1610

C
Chris Mason 已提交
1611 1612 1613 1614 1615
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1616
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1617
		       struct btrfs_root *root, struct extent_buffer *parent,
1618
		       int start_slot, u64 *last_ret,
1619
		       struct btrfs_key *progress)
1620
{
1621
	struct btrfs_fs_info *fs_info = root->fs_info;
1622
	struct extent_buffer *cur;
1623
	u64 blocknr;
1624
	u64 gen;
1625 1626
	u64 search_start = *last_ret;
	u64 last_block = 0;
1627 1628 1629 1630 1631
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1632
	int parent_level;
1633 1634
	int uptodate;
	u32 blocksize;
1635 1636
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1637

1638 1639
	parent_level = btrfs_header_level(parent);

1640 1641
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1642

1643
	parent_nritems = btrfs_header_nritems(parent);
1644
	blocksize = fs_info->nodesize;
1645
	end_slot = parent_nritems - 1;
1646

1647
	if (parent_nritems <= 1)
1648 1649
		return 0;

1650 1651
	btrfs_set_lock_blocking(parent);

1652
	for (i = start_slot; i <= end_slot; i++) {
1653
		int close = 1;
1654

1655 1656 1657 1658 1659
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1660
		blocknr = btrfs_node_blockptr(parent, i);
1661
		gen = btrfs_node_ptr_generation(parent, i);
1662 1663
		if (last_block == 0)
			last_block = blocknr;
1664

1665
		if (i > 0) {
1666 1667
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1668
		}
1669
		if (!close && i < end_slot) {
1670 1671
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1672
		}
1673 1674
		if (close) {
			last_block = blocknr;
1675
			continue;
1676
		}
1677

1678
		cur = find_extent_buffer(fs_info, blocknr);
1679
		if (cur)
1680
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1681 1682
		else
			uptodate = 0;
1683
		if (!cur || !uptodate) {
1684
			if (!cur) {
1685
				cur = read_tree_block(fs_info, blocknr, gen);
1686 1687 1688
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1689
					free_extent_buffer(cur);
1690
					return -EIO;
1691
				}
1692
			} else if (!uptodate) {
1693 1694 1695 1696 1697
				err = btrfs_read_buffer(cur, gen);
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1698
			}
1699
		}
1700
		if (search_start == 0)
1701
			search_start = last_block;
1702

1703
		btrfs_tree_lock(cur);
1704
		btrfs_set_lock_blocking(cur);
1705
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1706
					&cur, search_start,
1707
					min(16 * blocksize,
1708
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1709
		if (err) {
1710
			btrfs_tree_unlock(cur);
1711
			free_extent_buffer(cur);
1712
			break;
Y
Yan 已提交
1713
		}
1714 1715
		search_start = cur->start;
		last_block = cur->start;
1716
		*last_ret = search_start;
1717 1718
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1719 1720 1721 1722
	}
	return err;
}

C
Chris Mason 已提交
1723
/*
1724 1725 1726
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1727 1728 1729 1730 1731 1732
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1733
static noinline int generic_bin_search(struct extent_buffer *eb,
1734 1735
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1736
				       int max, int *slot)
1737 1738 1739 1740 1741
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1742
	struct btrfs_disk_key *tmp = NULL;
1743 1744 1745 1746 1747
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1748
	int err;
1749

1750 1751 1752 1753 1754 1755 1756 1757
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1758
	while (low < high) {
1759
		mid = (low + high) / 2;
1760 1761
		offset = p + mid * item_size;

1762
		if (!kaddr || offset < map_start ||
1763 1764
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1765 1766

			err = map_private_extent_buffer(eb, offset,
1767
						sizeof(struct btrfs_disk_key),
1768
						&kaddr, &map_start, &map_len);
1769 1770 1771 1772

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1773
			} else if (err == 1) {
1774 1775 1776
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1777 1778
			} else {
				return err;
1779
			}
1780 1781 1782 1783 1784

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1800 1801 1802 1803
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1804
static int bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1805
		      int level, int *slot)
1806
{
1807
	if (level == 0)
1808 1809
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1810
					  sizeof(struct btrfs_item),
1811
					  key, btrfs_header_nritems(eb),
1812
					  slot);
1813
	else
1814 1815
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1816
					  sizeof(struct btrfs_key_ptr),
1817
					  key, btrfs_header_nritems(eb),
1818
					  slot);
1819 1820
}

1821
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1822 1823 1824 1825 1826
		     int level, int *slot)
{
	return bin_search(eb, key, level, slot);
}

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1843 1844 1845
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1846 1847 1848
static noinline struct extent_buffer *
read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
	       int slot)
1849
{
1850
	int level = btrfs_header_level(parent);
1851 1852
	struct extent_buffer *eb;

1853 1854
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1855 1856 1857

	BUG_ON(level == 0);

1858
	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1859
			     btrfs_node_ptr_generation(parent, slot));
1860 1861 1862
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1863 1864 1865
	}

	return eb;
1866 1867
}

C
Chris Mason 已提交
1868 1869 1870 1871 1872
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1873
static noinline int balance_level(struct btrfs_trans_handle *trans,
1874 1875
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1876
{
1877
	struct btrfs_fs_info *fs_info = root->fs_info;
1878 1879 1880 1881
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1882 1883 1884 1885
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1886
	u64 orig_ptr;
1887 1888 1889 1890

	if (level == 0)
		return 0;

1891
	mid = path->nodes[level];
1892

1893 1894
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1895 1896
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1897
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1898

L
Li Zefan 已提交
1899
	if (level < BTRFS_MAX_LEVEL - 1) {
1900
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1901 1902
		pslot = path->slots[level + 1];
	}
1903

C
Chris Mason 已提交
1904 1905 1906 1907
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1908 1909
	if (!parent) {
		struct extent_buffer *child;
1910

1911
		if (btrfs_header_nritems(mid) != 1)
1912 1913 1914
			return 0;

		/* promote the child to a root */
1915
		child = read_node_slot(fs_info, mid, 0);
1916 1917
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1918
			btrfs_handle_fs_error(fs_info, ret, NULL);
1919 1920 1921
			goto enospc;
		}

1922
		btrfs_tree_lock(child);
1923
		btrfs_set_lock_blocking(child);
1924
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1925 1926 1927 1928 1929
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1930

1931
		tree_mod_log_set_root_pointer(root, child, 1);
1932
		rcu_assign_pointer(root->node, child);
1933

1934
		add_root_to_dirty_list(root);
1935
		btrfs_tree_unlock(child);
1936

1937
		path->locks[level] = 0;
1938
		path->nodes[level] = NULL;
1939
		clean_tree_block(fs_info, mid);
1940
		btrfs_tree_unlock(mid);
1941
		/* once for the path */
1942
		free_extent_buffer(mid);
1943 1944

		root_sub_used(root, mid->len);
1945
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1946
		/* once for the root ptr */
1947
		free_extent_buffer_stale(mid);
1948
		return 0;
1949
	}
1950
	if (btrfs_header_nritems(mid) >
1951
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1952 1953
		return 0;

1954
	left = read_node_slot(fs_info, parent, pslot - 1);
1955 1956 1957
	if (IS_ERR(left))
		left = NULL;

1958
	if (left) {
1959
		btrfs_tree_lock(left);
1960
		btrfs_set_lock_blocking(left);
1961
		wret = btrfs_cow_block(trans, root, left,
1962
				       parent, pslot - 1, &left);
1963 1964 1965 1966
		if (wret) {
			ret = wret;
			goto enospc;
		}
1967
	}
1968

1969
	right = read_node_slot(fs_info, parent, pslot + 1);
1970 1971 1972
	if (IS_ERR(right))
		right = NULL;

1973
	if (right) {
1974
		btrfs_tree_lock(right);
1975
		btrfs_set_lock_blocking(right);
1976
		wret = btrfs_cow_block(trans, root, right,
1977
				       parent, pslot + 1, &right);
1978 1979 1980 1981 1982 1983 1984
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1985 1986
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1987
		wret = push_node_left(trans, fs_info, left, mid, 1);
1988 1989
		if (wret < 0)
			ret = wret;
1990
	}
1991 1992 1993 1994

	/*
	 * then try to empty the right most buffer into the middle
	 */
1995
	if (right) {
1996
		wret = push_node_left(trans, fs_info, mid, right, 1);
1997
		if (wret < 0 && wret != -ENOSPC)
1998
			ret = wret;
1999
		if (btrfs_header_nritems(right) == 0) {
2000
			clean_tree_block(fs_info, right);
2001
			btrfs_tree_unlock(right);
2002
			del_ptr(root, path, level + 1, pslot + 1);
2003
			root_sub_used(root, right->len);
2004
			btrfs_free_tree_block(trans, root, right, 0, 1);
2005
			free_extent_buffer_stale(right);
2006
			right = NULL;
2007
		} else {
2008 2009
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
2010
			tree_mod_log_set_node_key(fs_info, parent,
L
Liu Bo 已提交
2011
						  pslot + 1, 0);
2012 2013
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
2014 2015
		}
	}
2016
	if (btrfs_header_nritems(mid) == 1) {
2017 2018 2019 2020 2021 2022 2023 2024 2025
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
2026 2027
		if (!left) {
			ret = -EROFS;
2028
			btrfs_handle_fs_error(fs_info, ret, NULL);
2029 2030
			goto enospc;
		}
2031
		wret = balance_node_right(trans, fs_info, mid, left);
2032
		if (wret < 0) {
2033
			ret = wret;
2034 2035
			goto enospc;
		}
2036
		if (wret == 1) {
2037
			wret = push_node_left(trans, fs_info, left, mid, 1);
2038 2039 2040
			if (wret < 0)
				ret = wret;
		}
2041 2042
		BUG_ON(wret == 1);
	}
2043
	if (btrfs_header_nritems(mid) == 0) {
2044
		clean_tree_block(fs_info, mid);
2045
		btrfs_tree_unlock(mid);
2046
		del_ptr(root, path, level + 1, pslot);
2047
		root_sub_used(root, mid->len);
2048
		btrfs_free_tree_block(trans, root, mid, 0, 1);
2049
		free_extent_buffer_stale(mid);
2050
		mid = NULL;
2051 2052
	} else {
		/* update the parent key to reflect our changes */
2053 2054
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
2055
		tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2056 2057
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
2058
	}
2059

2060
	/* update the path */
2061 2062 2063
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
2064
			/* left was locked after cow */
2065
			path->nodes[level] = left;
2066 2067
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2068 2069
			if (mid) {
				btrfs_tree_unlock(mid);
2070
				free_extent_buffer(mid);
2071
			}
2072
		} else {
2073
			orig_slot -= btrfs_header_nritems(left);
2074 2075 2076
			path->slots[level] = orig_slot;
		}
	}
2077
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2078
	if (orig_ptr !=
2079
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2080
		BUG();
2081
enospc:
2082 2083
	if (right) {
		btrfs_tree_unlock(right);
2084
		free_extent_buffer(right);
2085 2086 2087 2088
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2089
		free_extent_buffer(left);
2090
	}
2091 2092 2093
	return ret;
}

C
Chris Mason 已提交
2094 2095 2096 2097
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2098
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2099 2100
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2101
{
2102
	struct btrfs_fs_info *fs_info = root->fs_info;
2103 2104 2105 2106
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2107 2108 2109 2110 2111 2112 2113 2114
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2115
	mid = path->nodes[level];
2116
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2117

L
Li Zefan 已提交
2118
	if (level < BTRFS_MAX_LEVEL - 1) {
2119
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2120 2121
		pslot = path->slots[level + 1];
	}
2122

2123
	if (!parent)
2124 2125
		return 1;

2126
	left = read_node_slot(fs_info, parent, pslot - 1);
2127 2128
	if (IS_ERR(left))
		left = NULL;
2129 2130

	/* first, try to make some room in the middle buffer */
2131
	if (left) {
2132
		u32 left_nr;
2133 2134

		btrfs_tree_lock(left);
2135 2136
		btrfs_set_lock_blocking(left);

2137
		left_nr = btrfs_header_nritems(left);
2138
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2139 2140
			wret = 1;
		} else {
2141
			ret = btrfs_cow_block(trans, root, left, parent,
2142
					      pslot - 1, &left);
2143 2144 2145
			if (ret)
				wret = 1;
			else {
2146
				wret = push_node_left(trans, fs_info,
2147
						      left, mid, 0);
2148
			}
C
Chris Mason 已提交
2149
		}
2150 2151 2152
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2153
			struct btrfs_disk_key disk_key;
2154
			orig_slot += left_nr;
2155
			btrfs_node_key(mid, &disk_key, 0);
2156
			tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2157 2158 2159 2160
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2161 2162
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2163
				btrfs_tree_unlock(mid);
2164
				free_extent_buffer(mid);
2165 2166
			} else {
				orig_slot -=
2167
					btrfs_header_nritems(left);
2168
				path->slots[level] = orig_slot;
2169
				btrfs_tree_unlock(left);
2170
				free_extent_buffer(left);
2171 2172 2173
			}
			return 0;
		}
2174
		btrfs_tree_unlock(left);
2175
		free_extent_buffer(left);
2176
	}
2177
	right = read_node_slot(fs_info, parent, pslot + 1);
2178 2179
	if (IS_ERR(right))
		right = NULL;
2180 2181 2182 2183

	/*
	 * then try to empty the right most buffer into the middle
	 */
2184
	if (right) {
C
Chris Mason 已提交
2185
		u32 right_nr;
2186

2187
		btrfs_tree_lock(right);
2188 2189
		btrfs_set_lock_blocking(right);

2190
		right_nr = btrfs_header_nritems(right);
2191
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2192 2193
			wret = 1;
		} else {
2194 2195
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2196
					      &right);
2197 2198 2199
			if (ret)
				wret = 1;
			else {
2200
				wret = balance_node_right(trans, fs_info,
2201
							  right, mid);
2202
			}
C
Chris Mason 已提交
2203
		}
2204 2205 2206
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2207 2208 2209
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2210
			tree_mod_log_set_node_key(fs_info, parent,
L
Liu Bo 已提交
2211
						  pslot + 1, 0);
2212 2213 2214 2215 2216
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2217 2218
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2219
					btrfs_header_nritems(mid);
2220
				btrfs_tree_unlock(mid);
2221
				free_extent_buffer(mid);
2222
			} else {
2223
				btrfs_tree_unlock(right);
2224
				free_extent_buffer(right);
2225 2226 2227
			}
			return 0;
		}
2228
		btrfs_tree_unlock(right);
2229
		free_extent_buffer(right);
2230 2231 2232 2233
	}
	return 1;
}

2234
/*
C
Chris Mason 已提交
2235 2236
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2237
 */
2238
static void reada_for_search(struct btrfs_fs_info *fs_info,
2239 2240
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2241
{
2242
	struct extent_buffer *node;
2243
	struct btrfs_disk_key disk_key;
2244 2245
	u32 nritems;
	u64 search;
2246
	u64 target;
2247
	u64 nread = 0;
2248
	struct extent_buffer *eb;
2249 2250 2251
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2252

2253
	if (level != 1)
2254 2255 2256
		return;

	if (!path->nodes[level])
2257 2258
		return;

2259
	node = path->nodes[level];
2260

2261
	search = btrfs_node_blockptr(node, slot);
2262 2263
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2264 2265
	if (eb) {
		free_extent_buffer(eb);
2266 2267 2268
		return;
	}

2269
	target = search;
2270

2271
	nritems = btrfs_header_nritems(node);
2272
	nr = slot;
2273

C
Chris Mason 已提交
2274
	while (1) {
2275
		if (path->reada == READA_BACK) {
2276 2277 2278
			if (nr == 0)
				break;
			nr--;
2279
		} else if (path->reada == READA_FORWARD) {
2280 2281 2282
			nr++;
			if (nr >= nritems)
				break;
2283
		}
2284
		if (path->reada == READA_BACK && objectid) {
2285 2286 2287 2288
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2289
		search = btrfs_node_blockptr(node, nr);
2290 2291
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2292
			readahead_tree_block(fs_info, search);
2293 2294 2295
			nread += blocksize;
		}
		nscan++;
2296
		if ((nread > 65536 || nscan > 32))
2297
			break;
2298 2299
	}
}
2300

2301
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2302
				       struct btrfs_path *path, int level)
2303 2304 2305 2306 2307 2308 2309 2310 2311
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2312
	parent = path->nodes[level + 1];
2313
	if (!parent)
J
Josef Bacik 已提交
2314
		return;
2315 2316

	nritems = btrfs_header_nritems(parent);
2317
	slot = path->slots[level + 1];
2318 2319 2320 2321

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2322
		eb = find_extent_buffer(fs_info, block1);
2323 2324 2325 2326 2327 2328
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2329 2330 2331
			block1 = 0;
		free_extent_buffer(eb);
	}
2332
	if (slot + 1 < nritems) {
2333 2334
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2335
		eb = find_extent_buffer(fs_info, block2);
2336
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2337 2338 2339
			block2 = 0;
		free_extent_buffer(eb);
	}
2340

J
Josef Bacik 已提交
2341
	if (block1)
2342
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2343
	if (block2)
2344
		readahead_tree_block(fs_info, block2);
2345 2346 2347
}


C
Chris Mason 已提交
2348
/*
C
Chris Mason 已提交
2349 2350 2351 2352
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2353
 *
C
Chris Mason 已提交
2354 2355 2356
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2357
 *
C
Chris Mason 已提交
2358 2359
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2360
 */
2361
static noinline void unlock_up(struct btrfs_path *path, int level,
2362 2363
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2364 2365 2366
{
	int i;
	int skip_level = level;
2367
	int no_skips = 0;
2368 2369 2370 2371 2372 2373 2374
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2375
		if (!no_skips && path->slots[i] == 0) {
2376 2377 2378
			skip_level = i + 1;
			continue;
		}
2379
		if (!no_skips && path->keep_locks) {
2380 2381 2382
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2383
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2384 2385 2386 2387
				skip_level = i + 1;
				continue;
			}
		}
2388 2389 2390
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2391 2392
		t = path->nodes[i];
		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2393
			btrfs_tree_unlock_rw(t, path->locks[i]);
2394
			path->locks[i] = 0;
2395 2396 2397 2398 2399
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2400 2401 2402 2403
		}
	}
}

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2417
	if (path->keep_locks)
2418 2419 2420 2421
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2422
			continue;
2423
		if (!path->locks[i])
2424
			continue;
2425
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2426 2427 2428 2429
		path->locks[i] = 0;
	}
}

2430 2431 2432 2433 2434 2435 2436 2437 2438
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2439 2440
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2441
		      const struct btrfs_key *key)
2442
{
2443
	struct btrfs_fs_info *fs_info = root->fs_info;
2444 2445 2446 2447
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2448
	int ret;
2449 2450 2451 2452

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);

2453
	tmp = find_extent_buffer(fs_info, blocknr);
2454
	if (tmp) {
2455
		/* first we do an atomic uptodate check */
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
		ret = btrfs_read_buffer(tmp, gen);
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2474
		}
2475 2476 2477
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2478 2479 2480 2481 2482
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2483 2484 2485
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2486
	 */
2487 2488 2489
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2490
	free_extent_buffer(tmp);
2491
	if (p->reada != READA_NONE)
2492
		reada_for_search(fs_info, p, level, slot, key->objectid);
2493

2494
	btrfs_release_path(p);
2495 2496

	ret = -EAGAIN;
2497
	tmp = read_tree_block(fs_info, blocknr, 0);
2498
	if (!IS_ERR(tmp)) {
2499 2500 2501 2502 2503 2504
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2505
		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2506
			ret = -EIO;
2507
		free_extent_buffer(tmp);
2508 2509
	} else {
		ret = PTR_ERR(tmp);
2510 2511
	}
	return ret;
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2526 2527
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2528
{
2529
	struct btrfs_fs_info *fs_info = root->fs_info;
2530
	int ret;
2531

2532
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2533
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2534 2535
		int sret;

2536 2537 2538 2539 2540 2541
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2542
		btrfs_set_path_blocking(p);
2543
		reada_for_balance(fs_info, p, level);
2544
		sret = split_node(trans, root, p, level);
2545
		btrfs_clear_path_blocking(p, NULL, 0);
2546 2547 2548 2549 2550 2551 2552 2553

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2554
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2555 2556
		int sret;

2557 2558 2559 2560 2561 2562
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2563
		btrfs_set_path_blocking(p);
2564
		reada_for_balance(fs_info, p, level);
2565
		sret = balance_level(trans, root, p, level);
2566
		btrfs_clear_path_blocking(p, NULL, 0);
2567 2568 2569 2570 2571 2572 2573

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2574
			btrfs_release_path(p);
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2587
static void key_search_validate(struct extent_buffer *b,
2588
				const struct btrfs_key *key,
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
				int level)
{
#ifdef CONFIG_BTRFS_ASSERT
	struct btrfs_disk_key disk_key;

	btrfs_cpu_key_to_disk(&disk_key, key);

	if (level == 0)
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_leaf, items[0].key),
		    sizeof(disk_key)));
	else
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_node, ptrs[0].key),
		    sizeof(disk_key)));
#endif
}

2607
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
		*prev_cmp = bin_search(b, key, level, slot);
		return *prev_cmp;
	}

	key_search_validate(b, key, level);
	*slot = 0;

	return 0;
}

2621
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2622 2623 2624 2625 2626 2627
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2628 2629

	ASSERT(path);
2630
	ASSERT(found_key);
2631 2632 2633 2634 2635 2636

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2637
	if (ret < 0)
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

C
Chris Mason 已提交
2656 2657 2658 2659 2660 2661
/*
 * look for key in the tree.  path is filled in with nodes along the way
 * if key is found, we return zero and you can find the item in the leaf
 * level of the path (level 0)
 *
 * If the key isn't found, the path points to the slot where it should
C
Chris Mason 已提交
2662 2663
 * be inserted, and 1 is returned.  If there are other errors during the
 * search a negative error number is returned.
C
Chris Mason 已提交
2664 2665 2666 2667
 *
 * if ins_len > 0, nodes and leaves will be split as we walk down the
 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
 * possible)
C
Chris Mason 已提交
2668
 */
2669 2670 2671
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2672
{
2673
	struct btrfs_fs_info *fs_info = root->fs_info;
2674
	struct extent_buffer *b;
2675 2676
	int slot;
	int ret;
2677
	int err;
2678
	int level;
2679
	int lowest_unlock = 1;
2680 2681 2682
	int root_lock;
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2683
	u8 lowest_level = 0;
2684
	int min_write_lock_level;
2685
	int prev_cmp;
2686

2687
	lowest_level = p->lowest_level;
2688
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2689
	WARN_ON(p->nodes[0] != NULL);
2690
	BUG_ON(!cow && ins_len);
2691

2692
	if (ins_len < 0) {
2693
		lowest_unlock = 2;
2694

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2711
	if (cow && (p->keep_locks || p->lowest_level))
2712 2713
		write_lock_level = BTRFS_MAX_LEVEL;

2714 2715
	min_write_lock_level = write_lock_level;

2716
again:
2717
	prev_cmp = -1;
2718 2719 2720 2721 2722
	/*
	 * we try very hard to do read locks on the root
	 */
	root_lock = BTRFS_READ_LOCK;
	level = 0;
2723
	if (p->search_commit_root) {
2724 2725 2726 2727
		/*
		 * the commit roots are read only
		 * so we always do read locks
		 */
2728
		if (p->need_commit_sem)
2729
			down_read(&fs_info->commit_root_sem);
2730 2731
		b = root->commit_root;
		extent_buffer_get(b);
2732
		level = btrfs_header_level(b);
2733
		if (p->need_commit_sem)
2734
			up_read(&fs_info->commit_root_sem);
2735
		if (!p->skip_locking)
2736
			btrfs_tree_read_lock(b);
2737
	} else {
2738
		if (p->skip_locking) {
2739
			b = btrfs_root_node(root);
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
			level = btrfs_header_level(b);
		} else {
			/* we don't know the level of the root node
			 * until we actually have it read locked
			 */
			b = btrfs_read_lock_root_node(root);
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
				/* whoops, must trade for write lock */
				btrfs_tree_read_unlock(b);
				free_extent_buffer(b);
				b = btrfs_lock_root_node(root);
				root_lock = BTRFS_WRITE_LOCK;

				/* the level might have changed, check again */
				level = btrfs_header_level(b);
			}
		}
2758
	}
2759 2760 2761
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
2762

2763
	while (b) {
2764
		level = btrfs_header_level(b);
2765 2766 2767 2768 2769

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2770
		if (cow) {
2771 2772 2773 2774 2775
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2776 2777
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2778
				goto cow_done;
2779
			}
2780

2781 2782 2783 2784
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2785 2786 2787 2788
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2789 2790 2791 2792 2793
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2794
			btrfs_set_path_blocking(p);
2795 2796 2797 2798 2799
			err = btrfs_cow_block(trans, root, b,
					      p->nodes[level + 1],
					      p->slots[level + 1], &b);
			if (err) {
				ret = err;
2800
				goto done;
2801
			}
C
Chris Mason 已提交
2802
		}
2803
cow_done:
2804
		p->nodes[level] = b;
2805
		btrfs_clear_path_blocking(p, NULL, 0);
2806 2807 2808 2809 2810 2811 2812

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2813 2814 2815 2816
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2817
		 */
2818 2819 2820 2821 2822 2823 2824 2825
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2826

2827
		ret = key_search(b, key, level, &prev_cmp, &slot);
2828 2829
		if (ret < 0)
			goto done;
2830

2831
		if (level != 0) {
2832 2833 2834
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2835
				slot -= 1;
2836
			}
2837
			p->slots[level] = slot;
2838
			err = setup_nodes_for_search(trans, root, p, b, level,
2839
					     ins_len, &write_lock_level);
2840
			if (err == -EAGAIN)
2841
				goto again;
2842 2843
			if (err) {
				ret = err;
2844
				goto done;
2845
			}
2846 2847
			b = p->nodes[level];
			slot = p->slots[level];
2848

2849 2850 2851 2852 2853 2854
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2855
			if (slot == 0 && ins_len &&
2856 2857 2858 2859 2860 2861
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2862 2863
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2864

2865
			if (level == lowest_level) {
2866 2867
				if (dec)
					p->slots[level]++;
2868
				goto done;
2869
			}
2870

2871
			err = read_block_for_search(root, p, &b, level,
2872
						    slot, key);
2873
			if (err == -EAGAIN)
2874
				goto again;
2875 2876
			if (err) {
				ret = err;
2877
				goto done;
2878
			}
2879

2880
			if (!p->skip_locking) {
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_WRITE_LOCK);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2892
					err = btrfs_tree_read_lock_atomic(b);
2893 2894 2895 2896 2897 2898 2899
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_READ_LOCK);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2900
				}
2901
				p->nodes[level] = b;
2902
			}
2903 2904
		} else {
			p->slots[level] = slot;
2905
			if (ins_len > 0 &&
2906
			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2907 2908 2909 2910 2911 2912
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2913
				btrfs_set_path_blocking(p);
2914 2915
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2916
				btrfs_clear_path_blocking(p, NULL, 0);
2917

2918 2919 2920
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2921 2922
					goto done;
				}
C
Chris Mason 已提交
2923
			}
2924
			if (!p->search_for_split)
2925 2926
				unlock_up(p, level, lowest_unlock,
					  min_write_lock_level, &write_lock_level);
2927
			goto done;
2928 2929
		}
	}
2930 2931
	ret = 1;
done:
2932 2933 2934 2935
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2936 2937
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2938
	if (ret < 0 && !p->skip_release_on_error)
2939
		btrfs_release_path(p);
2940
	return ret;
2941 2942
}

J
Jan Schmidt 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2954
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2955 2956
			  struct btrfs_path *p, u64 time_seq)
{
2957
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2958 2959 2960 2961 2962 2963 2964
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2965
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;
		btrfs_clear_path_blocking(p, NULL, 0);

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

2993
		/*
2994
		 * Since we can unwind ebs we want to do a real search every
2995 2996 2997
		 * time.
		 */
		prev_cmp = -1;
2998
		ret = key_search(b, key, level, &prev_cmp, &slot);
J
Jan Schmidt 已提交
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

3015
			err = read_block_for_search(root, p, &b, level,
3016
						    slot, key);
J
Jan Schmidt 已提交
3017 3018 3019 3020 3021 3022 3023 3024
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3025
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3026 3027 3028 3029 3030 3031
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
				btrfs_clear_path_blocking(p, b,
							  BTRFS_READ_LOCK);
			}
3032
			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3033 3034 3035 3036
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3068 3069 3070
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3105 3106 3107 3108 3109
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3110 3111 3112
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3113
				return 0;
3114
			}
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3126 3127 3128 3129 3130 3131
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3132 3133 3134 3135 3136 3137
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3138
 *
C
Chris Mason 已提交
3139
 */
3140 3141
static void fixup_low_keys(struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path,
3142
			   struct btrfs_disk_key *key, int level)
3143 3144
{
	int i;
3145 3146
	struct extent_buffer *t;

C
Chris Mason 已提交
3147
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3148
		int tslot = path->slots[i];
3149
		if (!path->nodes[i])
3150
			break;
3151
		t = path->nodes[i];
3152
		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3153
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3154
		btrfs_mark_buffer_dirty(path->nodes[i]);
3155 3156 3157 3158 3159
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3160 3161 3162 3163 3164 3165
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3166 3167
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3168
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3169 3170 3171 3172 3173 3174 3175 3176 3177
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3178
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3179 3180 3181
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3182
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3183 3184 3185 3186 3187 3188
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3189
		fixup_low_keys(fs_info, path, &disk_key, 1);
Z
Zheng Yan 已提交
3190 3191
}

C
Chris Mason 已提交
3192 3193
/*
 * try to push data from one node into the next node left in the
3194
 * tree.
C
Chris Mason 已提交
3195 3196 3197
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3198
 */
3199
static int push_node_left(struct btrfs_trans_handle *trans,
3200 3201
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
3202
			  struct extent_buffer *src, int empty)
3203 3204
{
	int push_items = 0;
3205 3206
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3207
	int ret = 0;
3208

3209 3210
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3211
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3212 3213
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3214

3215
	if (!empty && src_nritems <= 8)
3216 3217
		return 1;

C
Chris Mason 已提交
3218
	if (push_items <= 0)
3219 3220
		return 1;

3221
	if (empty) {
3222
		push_items = min(src_nritems, push_items);
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3235

3236
	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3237 3238
				   push_items);
	if (ret) {
3239
		btrfs_abort_transaction(trans, ret);
3240 3241
		return ret;
	}
3242 3243 3244
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3245
			   push_items * sizeof(struct btrfs_key_ptr));
3246

3247
	if (push_items < src_nritems) {
3248 3249 3250 3251
		/*
		 * don't call tree_mod_log_eb_move here, key removal was already
		 * fully logged by tree_mod_log_eb_copy above.
		 */
3252 3253 3254 3255 3256 3257 3258 3259 3260
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3261

3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3274
static int balance_node_right(struct btrfs_trans_handle *trans,
3275
			      struct btrfs_fs_info *fs_info,
3276 3277
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3278 3279 3280 3281 3282 3283 3284
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3285 3286 3287
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3288 3289
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3290
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3291
	if (push_items <= 0)
3292
		return 1;
3293

C
Chris Mason 已提交
3294
	if (src_nritems < 4)
3295
		return 1;
3296 3297 3298

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3299
	if (max_push >= src_nritems)
3300
		return 1;
Y
Yan 已提交
3301

3302 3303 3304
	if (max_push < push_items)
		push_items = max_push;

3305
	tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
3306 3307 3308 3309
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3310

3311
	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3312 3313
				   src_nritems - push_items, push_items);
	if (ret) {
3314
		btrfs_abort_transaction(trans, ret);
3315 3316
		return ret;
	}
3317 3318 3319
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3320
			   push_items * sizeof(struct btrfs_key_ptr));
3321

3322 3323
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3324

3325 3326
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3327

C
Chris Mason 已提交
3328
	return ret;
3329 3330
}

C
Chris Mason 已提交
3331 3332 3333 3334
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3335 3336
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3337
 */
C
Chris Mason 已提交
3338
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3339
			   struct btrfs_root *root,
3340
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3341
{
3342
	struct btrfs_fs_info *fs_info = root->fs_info;
3343
	u64 lower_gen;
3344 3345
	struct extent_buffer *lower;
	struct extent_buffer *c;
3346
	struct extent_buffer *old;
3347
	struct btrfs_disk_key lower_key;
C
Chris Mason 已提交
3348 3349 3350 3351

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3352 3353 3354 3355 3356 3357
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3358 3359
	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				   &lower_key, level, root->node->start, 0);
3360 3361
	if (IS_ERR(c))
		return PTR_ERR(c);
3362

3363
	root_add_used(root, fs_info->nodesize);
3364

3365
	memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3366 3367
	btrfs_set_header_nritems(c, 1);
	btrfs_set_header_level(c, level);
3368
	btrfs_set_header_bytenr(c, c->start);
3369
	btrfs_set_header_generation(c, trans->transid);
3370
	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3371 3372
	btrfs_set_header_owner(c, root->root_key.objectid);

3373 3374
	write_extent_buffer_fsid(c, fs_info->fsid);
	write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3375

3376
	btrfs_set_node_key(c, &lower_key, 0);
3377
	btrfs_set_node_blockptr(c, 0, lower->start);
3378
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3379
	WARN_ON(lower_gen != trans->transid);
3380 3381

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3382

3383
	btrfs_mark_buffer_dirty(c);
3384

3385
	old = root->node;
3386
	tree_mod_log_set_root_pointer(root, c, 0);
3387
	rcu_assign_pointer(root->node, c);
3388 3389 3390 3391

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3392
	add_root_to_dirty_list(root);
3393 3394
	extent_buffer_get(c);
	path->nodes[level] = c;
3395
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3396 3397 3398 3399
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3400 3401 3402
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3403
 *
C
Chris Mason 已提交
3404 3405 3406
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3407
static void insert_ptr(struct btrfs_trans_handle *trans,
3408
		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3409
		       struct btrfs_disk_key *key, u64 bytenr,
3410
		       int slot, int level)
C
Chris Mason 已提交
3411
{
3412
	struct extent_buffer *lower;
C
Chris Mason 已提交
3413
	int nritems;
3414
	int ret;
C
Chris Mason 已提交
3415 3416

	BUG_ON(!path->nodes[level]);
3417
	btrfs_assert_tree_locked(path->nodes[level]);
3418 3419
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3420
	BUG_ON(slot > nritems);
3421
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
C
Chris Mason 已提交
3422
	if (slot != nritems) {
3423
		if (level)
3424
			tree_mod_log_eb_move(fs_info, lower, slot + 1,
3425
					     slot, nritems - slot);
3426 3427 3428
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3429
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3430
	}
3431
	if (level) {
3432
		ret = tree_mod_log_insert_key(fs_info, lower, slot,
3433
					      MOD_LOG_KEY_ADD, GFP_NOFS);
3434 3435
		BUG_ON(ret < 0);
	}
3436
	btrfs_set_node_key(lower, key, slot);
3437
	btrfs_set_node_blockptr(lower, slot, bytenr);
3438 3439
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3440 3441
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3442 3443
}

C
Chris Mason 已提交
3444 3445 3446 3447 3448 3449
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3450 3451
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3452
 */
3453 3454 3455
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3456
{
3457
	struct btrfs_fs_info *fs_info = root->fs_info;
3458 3459 3460
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3461
	int mid;
C
Chris Mason 已提交
3462
	int ret;
3463
	u32 c_nritems;
3464

3465
	c = path->nodes[level];
3466
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3467
	if (c == root->node) {
3468
		/*
3469 3470
		 * trying to split the root, lets make a new one
		 *
3471
		 * tree mod log: We don't log_removal old root in
3472 3473 3474 3475 3476
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3477
		 */
3478
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3479 3480
		if (ret)
			return ret;
3481
	} else {
3482
		ret = push_nodes_for_insert(trans, root, path, level);
3483 3484
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3485
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3486
			return 0;
3487 3488
		if (ret < 0)
			return ret;
3489
	}
3490

3491
	c_nritems = btrfs_header_nritems(c);
3492 3493
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3494

3495 3496
	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, level, c->start, 0);
3497 3498 3499
	if (IS_ERR(split))
		return PTR_ERR(split);

3500
	root_add_used(root, fs_info->nodesize);
3501

3502
	memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3503
	btrfs_set_header_level(split, btrfs_header_level(c));
3504
	btrfs_set_header_bytenr(split, split->start);
3505
	btrfs_set_header_generation(split, trans->transid);
3506
	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3507
	btrfs_set_header_owner(split, root->root_key.objectid);
3508 3509
	write_extent_buffer_fsid(split, fs_info->fsid);
	write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3510

3511
	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3512
	if (ret) {
3513
		btrfs_abort_transaction(trans, ret);
3514 3515
		return ret;
	}
3516 3517 3518 3519 3520 3521
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3522 3523
	ret = 0;

3524 3525 3526
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3527
	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3528
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3529

C
Chris Mason 已提交
3530
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3531
		path->slots[level] -= mid;
3532
		btrfs_tree_unlock(c);
3533 3534
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3535 3536
		path->slots[level + 1] += 1;
	} else {
3537
		btrfs_tree_unlock(split);
3538
		free_extent_buffer(split);
3539
	}
C
Chris Mason 已提交
3540
	return ret;
3541 3542
}

C
Chris Mason 已提交
3543 3544 3545 3546 3547
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3548
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3549
{
J
Josef Bacik 已提交
3550 3551 3552
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3553
	int data_len;
3554
	int nritems = btrfs_header_nritems(l);
3555
	int end = min(nritems, start + nr) - 1;
3556 3557 3558

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3559
	btrfs_init_map_token(&token);
3560 3561
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3562 3563 3564
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3565
	data_len += sizeof(struct btrfs_item) * nr;
3566
	WARN_ON(data_len < 0);
3567 3568 3569
	return data_len;
}

3570 3571 3572 3573 3574
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3575
noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3576
				   struct extent_buffer *leaf)
3577
{
3578 3579
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3580 3581

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3582
	if (ret < 0) {
3583 3584 3585 3586 3587
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3588 3589
	}
	return ret;
3590 3591
}

3592 3593 3594 3595
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3596
static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3597 3598 3599
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3600 3601
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3602
{
3603
	struct extent_buffer *left = path->nodes[0];
3604
	struct extent_buffer *upper = path->nodes[1];
3605
	struct btrfs_map_token token;
3606
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3607
	int slot;
3608
	u32 i;
C
Chris Mason 已提交
3609 3610
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3611
	struct btrfs_item *item;
3612
	u32 nr;
3613
	u32 right_nritems;
3614
	u32 data_end;
3615
	u32 this_item_size;
C
Chris Mason 已提交
3616

3617 3618
	btrfs_init_map_token(&token);

3619 3620 3621
	if (empty)
		nr = 0;
	else
3622
		nr = max_t(u32, 1, min_slot);
3623

Z
Zheng Yan 已提交
3624
	if (path->slots[0] >= left_nritems)
3625
		push_space += data_size;
Z
Zheng Yan 已提交
3626

3627
	slot = path->slots[1];
3628 3629
	i = left_nritems - 1;
	while (i >= nr) {
3630
		item = btrfs_item_nr(i);
3631

Z
Zheng Yan 已提交
3632 3633 3634 3635
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3636
				int space = btrfs_leaf_free_space(fs_info, left);
Z
Zheng Yan 已提交
3637 3638 3639 3640 3641
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3642
		if (path->slots[0] == i)
3643
			push_space += data_size;
3644 3645 3646

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3647
			break;
Z
Zheng Yan 已提交
3648

C
Chris Mason 已提交
3649
		push_items++;
3650
		push_space += this_item_size + sizeof(*item);
3651 3652 3653
		if (i == 0)
			break;
		i--;
3654
	}
3655

3656 3657
	if (push_items == 0)
		goto out_unlock;
3658

J
Julia Lawall 已提交
3659
	WARN_ON(!empty && push_items == left_nritems);
3660

C
Chris Mason 已提交
3661
	/* push left to right */
3662
	right_nritems = btrfs_header_nritems(right);
3663

3664
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3665
	push_space -= leaf_data_end(fs_info, left);
3666

C
Chris Mason 已提交
3667
	/* make room in the right data area */
3668
	data_end = leaf_data_end(fs_info, right);
3669
	memmove_extent_buffer(right,
3670 3671
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3672
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3673

C
Chris Mason 已提交
3674
	/* copy from the left data area */
3675
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3676
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3677
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
C
Chris Mason 已提交
3678
		     push_space);
3679 3680 3681 3682 3683

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3684
	/* copy the items from left to right */
3685 3686 3687
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3688 3689

	/* update the item pointers */
3690
	right_nritems += push_items;
3691
	btrfs_set_header_nritems(right, right_nritems);
3692
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3693
	for (i = 0; i < right_nritems; i++) {
3694
		item = btrfs_item_nr(i);
3695 3696
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3697 3698
	}

3699
	left_nritems -= push_items;
3700
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3701

3702 3703
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3704
	else
3705
		clean_tree_block(fs_info, left);
3706

3707
	btrfs_mark_buffer_dirty(right);
3708

3709 3710
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3711
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3712

C
Chris Mason 已提交
3713
	/* then fixup the leaf pointer in the path */
3714 3715
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3716
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3717
			clean_tree_block(fs_info, path->nodes[0]);
3718
		btrfs_tree_unlock(path->nodes[0]);
3719 3720
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3721 3722
		path->slots[1] += 1;
	} else {
3723
		btrfs_tree_unlock(right);
3724
		free_extent_buffer(right);
C
Chris Mason 已提交
3725 3726
	}
	return 0;
3727 3728 3729 3730 3731

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3732
}
3733

3734 3735 3736 3737 3738 3739
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3740 3741 3742
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3743 3744
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3745 3746 3747
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3748
{
3749
	struct btrfs_fs_info *fs_info = root->fs_info;
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3768
	right = read_node_slot(fs_info, upper, slot + 1);
3769 3770 3771 3772 3773
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3774 3775
		return 1;

3776 3777 3778
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

3779
	free_space = btrfs_leaf_free_space(fs_info, right);
3780 3781 3782 3783 3784 3785 3786 3787 3788
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3789
	free_space = btrfs_leaf_free_space(fs_info, right);
3790 3791 3792 3793 3794 3795 3796
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
		 * no need to touch/dirty our left leaft. */
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3810
	return __push_leaf_right(fs_info, path, min_data_size, empty,
3811
				right, free_space, left_nritems, min_slot);
3812 3813 3814 3815 3816 3817
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3818 3819 3820
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3821 3822 3823 3824
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3825
 */
3826
static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3827 3828
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3829 3830
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3831
{
3832 3833
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3834 3835 3836
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3837
	struct btrfs_item *item;
3838
	u32 old_left_nritems;
3839
	u32 nr;
C
Chris Mason 已提交
3840
	int ret = 0;
3841 3842
	u32 this_item_size;
	u32 old_left_item_size;
3843 3844 3845
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3846

3847
	if (empty)
3848
		nr = min(right_nritems, max_slot);
3849
	else
3850
		nr = min(right_nritems - 1, max_slot);
3851 3852

	for (i = 0; i < nr; i++) {
3853
		item = btrfs_item_nr(i);
3854

Z
Zheng Yan 已提交
3855 3856 3857 3858
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3859
				int space = btrfs_leaf_free_space(fs_info, right);
Z
Zheng Yan 已提交
3860 3861 3862 3863 3864
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3865
		if (path->slots[0] == i)
3866
			push_space += data_size;
3867 3868 3869

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3870
			break;
3871

3872
		push_items++;
3873 3874 3875
		push_space += this_item_size + sizeof(*item);
	}

3876
	if (push_items == 0) {
3877 3878
		ret = 1;
		goto out;
3879
	}
3880
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3881

3882
	/* push data from right to left */
3883 3884 3885 3886 3887
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3888
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3889
		     btrfs_item_offset_nr(right, push_items - 1);
3890

3891
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3892
		     leaf_data_end(fs_info, left) - push_space,
3893
		     BTRFS_LEAF_DATA_OFFSET +
3894
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3895
		     push_space);
3896
	old_left_nritems = btrfs_header_nritems(left);
3897
	BUG_ON(old_left_nritems <= 0);
3898

3899
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3900
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3901
		u32 ioff;
3902

3903
		item = btrfs_item_nr(i);
3904

3905 3906
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3907
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3908
		      &token);
3909
	}
3910
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3911 3912

	/* fixup right node */
J
Julia Lawall 已提交
3913 3914
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3915
		       right_nritems);
3916 3917 3918

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3919
						  leaf_data_end(fs_info, right);
3920
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3921
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3922
				      BTRFS_LEAF_DATA_OFFSET +
3923
				      leaf_data_end(fs_info, right), push_space);
3924 3925

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3926 3927 3928
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3929
	}
3930 3931
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3932
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3933
	for (i = 0; i < right_nritems; i++) {
3934
		item = btrfs_item_nr(i);
3935

3936 3937 3938
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3939
	}
3940

3941
	btrfs_mark_buffer_dirty(left);
3942 3943
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3944
	else
3945
		clean_tree_block(fs_info, right);
3946

3947
	btrfs_item_key(right, &disk_key, 0);
3948
	fixup_low_keys(fs_info, path, &disk_key, 1);
3949 3950 3951 3952

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3953
		btrfs_tree_unlock(path->nodes[0]);
3954 3955
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3956 3957
		path->slots[1] -= 1;
	} else {
3958
		btrfs_tree_unlock(left);
3959
		free_extent_buffer(left);
3960 3961
		path->slots[0] -= push_items;
	}
3962
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3963
	return ret;
3964 3965 3966 3967
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3968 3969
}

3970 3971 3972
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3973 3974 3975 3976
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3977 3978
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3979 3980
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3981
{
3982
	struct btrfs_fs_info *fs_info = root->fs_info;
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

4002
	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4003 4004 4005 4006 4007
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
4008 4009
		return 1;

4010 4011 4012
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

4013
	free_space = btrfs_leaf_free_space(fs_info, left);
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4024 4025
		if (ret == -ENOSPC)
			ret = 1;
4026 4027 4028
		goto out;
	}

4029
	free_space = btrfs_leaf_free_space(fs_info, left);
4030 4031 4032 4033 4034
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4035
	return __push_leaf_left(fs_info, path, min_data_size,
4036 4037
			       empty, left, free_space, right_nritems,
			       max_slot);
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4048
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4049
				    struct btrfs_fs_info *fs_info,
4050 4051 4052 4053
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4054 4055 4056 4057 4058
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4059 4060 4061
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4062 4063 4064

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4065
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4066 4067 4068 4069 4070 4071

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4072 4073
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4074
		     leaf_data_end(fs_info, l), data_copy_size);
4075

4076
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4077 4078

	for (i = 0; i < nritems; i++) {
4079
		struct btrfs_item *item = btrfs_item_nr(i);
4080 4081
		u32 ioff;

4082 4083 4084
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4085 4086 4087 4088
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4089
	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4090
		   path->slots[1] + 1, 1);
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
4125
	struct btrfs_fs_info *fs_info = root->fs_info;
4126 4127 4128 4129
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4130
	int space_needed = data_size;
4131 4132

	slot = path->slots[0];
4133
	if (slot < btrfs_header_nritems(path->nodes[0]))
4134
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4135 4136 4137 4138 4139

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4140
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4155
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4156 4157 4158 4159
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4160 4161 4162
	space_needed = data_size;
	if (slot > 0)
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4163
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4175 4176 4177
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4178 4179
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4180
 */
4181 4182
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4183
			       const struct btrfs_key *ins_key,
4184 4185
			       struct btrfs_path *path, int data_size,
			       int extend)
4186
{
4187
	struct btrfs_disk_key disk_key;
4188
	struct extent_buffer *l;
4189
	u32 nritems;
4190 4191
	int mid;
	int slot;
4192
	struct extent_buffer *right;
4193
	struct btrfs_fs_info *fs_info = root->fs_info;
4194
	int ret = 0;
C
Chris Mason 已提交
4195
	int wret;
4196
	int split;
4197
	int num_doubles = 0;
4198
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4199

4200 4201 4202
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4203
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4204 4205
		return -EOVERFLOW;

C
Chris Mason 已提交
4206
	/* first try to make some room by pushing left and right */
4207
	if (data_size && path->nodes[1]) {
4208 4209 4210
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4211
			space_needed -= btrfs_leaf_free_space(fs_info, l);
4212 4213 4214

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4215
		if (wret < 0)
C
Chris Mason 已提交
4216
			return wret;
4217
		if (wret) {
4218 4219 4220 4221
			space_needed = data_size;
			if (slot > 0)
				space_needed -= btrfs_leaf_free_space(fs_info,
								      l);
4222 4223
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4224 4225 4226 4227
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4228

4229
		/* did the pushes work? */
4230
		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4231
			return 0;
4232
	}
C
Chris Mason 已提交
4233

C
Chris Mason 已提交
4234
	if (!path->nodes[1]) {
4235
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4236 4237 4238
		if (ret)
			return ret;
	}
4239
again:
4240
	split = 1;
4241
	l = path->nodes[0];
4242
	slot = path->slots[0];
4243
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4244
	mid = (nritems + 1) / 2;
4245

4246 4247 4248
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4249
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4250 4251 4252 4253 4254 4255
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4256
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4257 4258
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4259 4260 4261 4262 4263 4264
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4265
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4266 4267 4268 4269 4270 4271 4272 4273
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4274
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4275 4276
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4277
					split = 2;
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4288 4289
	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, 0, l->start, 0);
4290
	if (IS_ERR(right))
4291
		return PTR_ERR(right);
4292

4293
	root_add_used(root, fs_info->nodesize);
4294

4295
	memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4296
	btrfs_set_header_bytenr(right, right->start);
4297
	btrfs_set_header_generation(right, trans->transid);
4298
	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4299 4300
	btrfs_set_header_owner(right, root->root_key.objectid);
	btrfs_set_header_level(right, 0);
4301 4302
	write_extent_buffer_fsid(right, fs_info->fsid);
	write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4303

4304 4305 4306
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4307 4308
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1] + 1, 1);
4309 4310 4311 4312 4313 4314 4315
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4316 4317
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1], 1);
4318 4319 4320 4321
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4322
			if (path->slots[1] == 0)
4323
				fixup_low_keys(fs_info, path, &disk_key, 1);
4324
		}
4325 4326 4327 4328 4329
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4330
		return ret;
4331
	}
C
Chris Mason 已提交
4332

4333
	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4334

4335
	if (split == 2) {
4336 4337 4338
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4339
	}
4340

4341
	return 0;
4342 4343 4344 4345

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4346
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4347 4348
		return 0;
	goto again;
4349 4350
}

Y
Yan, Zheng 已提交
4351 4352 4353
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4354
{
4355
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan, Zheng 已提交
4356
	struct btrfs_key key;
4357
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4358 4359 4360 4361
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4362 4363

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4364 4365 4366 4367 4368
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4369
	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
Y
Yan, Zheng 已提交
4370
		return 0;
4371 4372

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4373 4374 4375 4376 4377
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4378
	btrfs_release_path(path);
4379 4380

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4381 4382
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4383
	path->search_for_split = 0;
4384 4385
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4386 4387
	if (ret < 0)
		goto err;
4388

Y
Yan, Zheng 已提交
4389 4390
	ret = -EAGAIN;
	leaf = path->nodes[0];
4391 4392
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4393 4394
		goto err;

4395
	/* the leaf has  changed, it now has room.  return now */
4396
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4397 4398
		goto err;

Y
Yan, Zheng 已提交
4399 4400 4401 4402 4403
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4404 4405
	}

4406
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4407
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4408 4409
	if (ret)
		goto err;
4410

Y
Yan, Zheng 已提交
4411
	path->keep_locks = 0;
4412
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4413 4414 4415 4416 4417 4418
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4419
static noinline int split_item(struct btrfs_fs_info *fs_info,
Y
Yan, Zheng 已提交
4420
			       struct btrfs_path *path,
4421
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4434
	leaf = path->nodes[0];
4435
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4436

4437 4438
	btrfs_set_path_blocking(path);

4439
	item = btrfs_item_nr(path->slots[0]);
4440 4441 4442 4443
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4444 4445 4446
	if (!buf)
		return -ENOMEM;

4447 4448 4449
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4450
	slot = path->slots[0] + 1;
4451 4452 4453 4454
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4455 4456
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4457 4458 4459 4460 4461
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4462
	new_item = btrfs_item_nr(slot);
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4484
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4485
	kfree(buf);
Y
Yan, Zheng 已提交
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4507
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4508 4509 4510 4511 4512 4513 4514 4515
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4516
	ret = split_item(root->fs_info, path, new_key, split_offset);
4517 4518 4519
	return ret;
}

Y
Yan, Zheng 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4531
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4545
	setup_items_for_insert(root, path, new_key, &item_size,
4546 4547
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4548 4549 4550 4551 4552 4553 4554 4555
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4556 4557 4558 4559 4560 4561
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4562 4563
void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
			 struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4564 4565
{
	int slot;
4566 4567
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4568 4569 4570 4571 4572 4573
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4574 4575 4576
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4577

4578
	leaf = path->nodes[0];
4579 4580 4581 4582
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4583
		return;
C
Chris Mason 已提交
4584

4585
	nritems = btrfs_header_nritems(leaf);
4586
	data_end = leaf_data_end(fs_info, leaf);
C
Chris Mason 已提交
4587

4588
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4589

C
Chris Mason 已提交
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4600
		u32 ioff;
4601
		item = btrfs_item_nr(i);
4602

4603 4604 4605
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4606
	}
4607

C
Chris Mason 已提交
4608
	/* shift the data */
4609
	if (from_end) {
4610 4611
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4632
				      (unsigned long)fi,
4633
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4634 4635 4636
			}
		}

4637 4638
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4639 4640 4641 4642 4643 4644
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4645
			fixup_low_keys(fs_info, path, &disk_key, 1);
4646
	}
4647

4648
	item = btrfs_item_nr(slot);
4649 4650
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4651

4652 4653
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
		btrfs_print_leaf(fs_info, leaf);
C
Chris Mason 已提交
4654
		BUG();
4655
	}
C
Chris Mason 已提交
4656 4657
}

C
Chris Mason 已提交
4658
/*
S
Stefan Behrens 已提交
4659
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4660
 */
4661
void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4662
		       u32 data_size)
4663 4664
{
	int slot;
4665 4666
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4667 4668 4669 4670 4671
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4672 4673 4674
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4675

4676
	leaf = path->nodes[0];
4677

4678
	nritems = btrfs_header_nritems(leaf);
4679
	data_end = leaf_data_end(fs_info, leaf);
4680

4681 4682
	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
		btrfs_print_leaf(fs_info, leaf);
4683
		BUG();
4684
	}
4685
	slot = path->slots[0];
4686
	old_data = btrfs_item_end_nr(leaf, slot);
4687 4688

	BUG_ON(slot < 0);
4689
	if (slot >= nritems) {
4690
		btrfs_print_leaf(fs_info, leaf);
4691 4692
		btrfs_crit(fs_info, "slot %d too large, nritems %d",
			   slot, nritems);
4693 4694
		BUG_ON(1);
	}
4695 4696 4697 4698 4699 4700

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4701
		u32 ioff;
4702
		item = btrfs_item_nr(i);
4703

4704 4705 4706
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4707
	}
4708

4709
	/* shift the data */
4710 4711
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4712
		      data_end, old_data - data_end);
4713

4714
	data_end = old_data;
4715
	old_size = btrfs_item_size_nr(leaf, slot);
4716
	item = btrfs_item_nr(slot);
4717 4718
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4719

4720 4721
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
		btrfs_print_leaf(fs_info, leaf);
4722
		BUG();
4723
	}
4724 4725
}

C
Chris Mason 已提交
4726
/*
4727 4728 4729
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4730
 */
4731
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4732
			    const struct btrfs_key *cpu_key, u32 *data_size,
4733
			    u32 total_data, u32 total_size, int nr)
4734
{
4735
	struct btrfs_fs_info *fs_info = root->fs_info;
4736
	struct btrfs_item *item;
4737
	int i;
4738
	u32 nritems;
4739
	unsigned int data_end;
C
Chris Mason 已提交
4740
	struct btrfs_disk_key disk_key;
4741 4742
	struct extent_buffer *leaf;
	int slot;
4743 4744
	struct btrfs_map_token token;

4745 4746
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4747
		fixup_low_keys(fs_info, path, &disk_key, 1);
4748 4749 4750
	}
	btrfs_unlock_up_safe(path, 1);

4751
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4752

4753
	leaf = path->nodes[0];
4754
	slot = path->slots[0];
C
Chris Mason 已提交
4755

4756
	nritems = btrfs_header_nritems(leaf);
4757
	data_end = leaf_data_end(fs_info, leaf);
4758

4759 4760
	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
		btrfs_print_leaf(fs_info, leaf);
4761
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4762
			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4763
		BUG();
4764
	}
4765

4766
	if (slot != nritems) {
4767
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4768

4769
		if (old_data < data_end) {
4770
			btrfs_print_leaf(fs_info, leaf);
4771
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4772
				   slot, old_data, data_end);
4773 4774
			BUG_ON(1);
		}
4775 4776 4777 4778
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4779
		for (i = slot; i < nritems; i++) {
4780
			u32 ioff;
4781

4782
			item = btrfs_item_nr(i);
4783 4784 4785
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4786
		}
4787
		/* shift the items */
4788
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4789
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4790
			      (nritems - slot) * sizeof(struct btrfs_item));
4791 4792

		/* shift the data */
4793 4794
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4795
			      data_end, old_data - data_end);
4796 4797
		data_end = old_data;
	}
4798

4799
	/* setup the item for the new data */
4800 4801 4802
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4803
		item = btrfs_item_nr(slot + i);
4804 4805
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4806
		data_end -= data_size[i];
4807
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4808
	}
4809

4810
	btrfs_set_header_nritems(leaf, nritems + nr);
4811
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4812

4813 4814
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
		btrfs_print_leaf(fs_info, leaf);
4815
		BUG();
4816
	}
4817 4818 4819 4820 4821 4822 4823 4824 4825
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4826
			    const struct btrfs_key *cpu_key, u32 *data_size,
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4843
		return ret;
4844 4845 4846 4847

	slot = path->slots[0];
	BUG_ON(slot < 0);

4848
	setup_items_for_insert(root, path, cpu_key, data_size,
4849
			       total_data, total_size, nr);
4850
	return 0;
4851 4852 4853 4854 4855 4856
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4857 4858 4859
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4860 4861
{
	int ret = 0;
C
Chris Mason 已提交
4862
	struct btrfs_path *path;
4863 4864
	struct extent_buffer *leaf;
	unsigned long ptr;
4865

C
Chris Mason 已提交
4866
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4867 4868
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4869
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4870
	if (!ret) {
4871 4872 4873 4874
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4875
	}
C
Chris Mason 已提交
4876
	btrfs_free_path(path);
C
Chris Mason 已提交
4877
	return ret;
4878 4879
}

C
Chris Mason 已提交
4880
/*
C
Chris Mason 已提交
4881
 * delete the pointer from a given node.
C
Chris Mason 已提交
4882
 *
C
Chris Mason 已提交
4883 4884
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4885
 */
4886 4887
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4888
{
4889
	struct btrfs_fs_info *fs_info = root->fs_info;
4890
	struct extent_buffer *parent = path->nodes[level];
4891
	u32 nritems;
4892
	int ret;
4893

4894
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4895
	if (slot != nritems - 1) {
4896
		if (level)
4897
			tree_mod_log_eb_move(fs_info, parent, slot,
4898
					     slot + 1, nritems - slot - 1);
4899 4900 4901
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4902 4903
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4904
	} else if (level) {
4905
		ret = tree_mod_log_insert_key(fs_info, parent, slot,
4906
					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4907
		BUG_ON(ret < 0);
4908
	}
4909

4910
	nritems--;
4911
	btrfs_set_header_nritems(parent, nritems);
4912
	if (nritems == 0 && parent == root->node) {
4913
		BUG_ON(btrfs_header_level(root->node) != 1);
4914
		/* just turn the root into a leaf and break */
4915
		btrfs_set_header_level(root->node, 0);
4916
	} else if (slot == 0) {
4917 4918 4919
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4920
		fixup_low_keys(fs_info, path, &disk_key, level + 1);
4921
	}
C
Chris Mason 已提交
4922
	btrfs_mark_buffer_dirty(parent);
4923 4924
}

4925 4926
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4927
 * path->nodes[1].
4928 4929 4930 4931 4932 4933 4934
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4935 4936 4937 4938
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4939
{
4940
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4941
	del_ptr(root, path, 1, path->slots[1]);
4942

4943 4944 4945 4946 4947 4948
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4949 4950
	root_sub_used(root, leaf->len);

4951
	extent_buffer_get(leaf);
4952
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4953
	free_extent_buffer_stale(leaf);
4954
}
C
Chris Mason 已提交
4955 4956 4957 4958
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4959 4960
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4961
{
4962
	struct btrfs_fs_info *fs_info = root->fs_info;
4963 4964
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4965 4966
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4967 4968
	int ret = 0;
	int wret;
4969
	int i;
4970
	u32 nritems;
4971 4972 4973
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4974

4975
	leaf = path->nodes[0];
4976 4977 4978 4979 4980
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4981
	nritems = btrfs_header_nritems(leaf);
4982

4983
	if (slot + nr != nritems) {
4984
		int data_end = leaf_data_end(fs_info, leaf);
4985

4986
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4987
			      data_end + dsize,
4988
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4989
			      last_off - data_end);
4990

4991
		for (i = slot + nr; i < nritems; i++) {
4992
			u32 ioff;
4993

4994
			item = btrfs_item_nr(i);
4995 4996 4997
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4998
		}
4999

5000
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5001
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
5002
			      sizeof(struct btrfs_item) *
5003
			      (nritems - slot - nr));
5004
	}
5005 5006
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
5007

C
Chris Mason 已提交
5008
	/* delete the leaf if we've emptied it */
5009
	if (nritems == 0) {
5010 5011
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
5012
		} else {
5013
			btrfs_set_path_blocking(path);
5014
			clean_tree_block(fs_info, leaf);
5015
			btrfs_del_leaf(trans, root, path, leaf);
5016
		}
5017
	} else {
5018
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
5019
		if (slot == 0) {
5020 5021 5022
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
5023
			fixup_low_keys(fs_info, path, &disk_key, 1);
C
Chris Mason 已提交
5024 5025
		}

C
Chris Mason 已提交
5026
		/* delete the leaf if it is mostly empty */
5027
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5028 5029 5030 5031
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5032
			slot = path->slots[1];
5033 5034
			extent_buffer_get(leaf);

5035
			btrfs_set_path_blocking(path);
5036 5037
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5038
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5039
				ret = wret;
5040 5041 5042

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5043 5044
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5045
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5046 5047
					ret = wret;
			}
5048 5049

			if (btrfs_header_nritems(leaf) == 0) {
5050
				path->slots[1] = slot;
5051
				btrfs_del_leaf(trans, root, path, leaf);
5052
				free_extent_buffer(leaf);
5053
				ret = 0;
C
Chris Mason 已提交
5054
			} else {
5055 5056 5057 5058 5059 5060 5061
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5062
				free_extent_buffer(leaf);
5063
			}
5064
		} else {
5065
			btrfs_mark_buffer_dirty(leaf);
5066 5067
		}
	}
C
Chris Mason 已提交
5068
	return ret;
5069 5070
}

5071
/*
5072
 * search the tree again to find a leaf with lesser keys
5073 5074
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5075 5076 5077
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5078
 */
5079
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5080
{
5081 5082 5083
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5084

5085
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5086

5087
	if (key.offset > 0) {
5088
		key.offset--;
5089
	} else if (key.type > 0) {
5090
		key.type--;
5091 5092
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5093
		key.objectid--;
5094 5095 5096
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5097
		return 1;
5098
	}
5099

5100
	btrfs_release_path(path);
5101 5102 5103 5104 5105
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5117 5118
		return 0;
	return 1;
5119 5120
}

5121 5122
/*
 * A helper function to walk down the tree starting at min_key, and looking
5123 5124
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This does lock as it descends, and path->keep_locks should be set
 * to 1 by the caller.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5136 5137 5138 5139
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5140 5141 5142 5143
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5144
			 struct btrfs_path *path,
5145 5146
			 u64 min_trans)
{
5147
	struct btrfs_fs_info *fs_info = root->fs_info;
5148 5149 5150
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5151
	int sret;
5152 5153 5154
	u32 nritems;
	int level;
	int ret = 1;
5155
	int keep_locks = path->keep_locks;
5156

5157
	path->keep_locks = 1;
5158
again:
5159
	cur = btrfs_read_lock_root_node(root);
5160
	level = btrfs_header_level(cur);
5161
	WARN_ON(path->nodes[level]);
5162
	path->nodes[level] = cur;
5163
	path->locks[level] = BTRFS_READ_LOCK;
5164 5165 5166 5167 5168

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5169
	while (1) {
5170 5171
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5172
		sret = bin_search(cur, min_key, level, &slot);
5173

5174 5175
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5176 5177
			if (slot >= nritems)
				goto find_next_key;
5178 5179 5180 5181 5182
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5183 5184
		if (sret && slot > 0)
			slot--;
5185
		/*
5186 5187
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5188
		 */
C
Chris Mason 已提交
5189
		while (slot < nritems) {
5190
			u64 gen;
5191

5192 5193 5194 5195 5196
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5197
			break;
5198
		}
5199
find_next_key:
5200 5201 5202 5203 5204
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5205
			path->slots[level] = slot;
5206
			btrfs_set_path_blocking(path);
5207
			sret = btrfs_find_next_key(root, path, min_key, level,
5208
						  min_trans);
5209
			if (sret == 0) {
5210
				btrfs_release_path(path);
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5223
		btrfs_set_path_blocking(path);
5224
		cur = read_node_slot(fs_info, cur, slot);
5225 5226 5227 5228
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5229

5230
		btrfs_tree_read_lock(cur);
5231

5232
		path->locks[level - 1] = BTRFS_READ_LOCK;
5233
		path->nodes[level - 1] = cur;
5234
		unlock_up(path, level, 1, 0, NULL);
5235
		btrfs_clear_path_blocking(path, NULL, 0);
5236 5237
	}
out:
5238 5239 5240 5241
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5242
		memcpy(min_key, &found_key, sizeof(found_key));
5243
	}
5244 5245 5246
	return ret;
}

5247
static int tree_move_down(struct btrfs_fs_info *fs_info,
5248
			   struct btrfs_path *path,
5249
			   int *level)
5250
{
5251 5252
	struct extent_buffer *eb;

5253
	BUG_ON(*level == 0);
5254
	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5255 5256 5257 5258
	if (IS_ERR(eb))
		return PTR_ERR(eb);

	path->nodes[*level - 1] = eb;
5259 5260
	path->slots[*level - 1] = 0;
	(*level)--;
5261
	return 0;
5262 5263
}

5264
static int tree_move_next_or_upnext(struct btrfs_path *path,
5265 5266 5267 5268 5269 5270 5271 5272
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5273
	while (path->slots[*level] >= nritems) {
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
5294
static int tree_advance(struct btrfs_fs_info *fs_info,
5295 5296 5297 5298 5299 5300 5301 5302
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
5303
		ret = tree_move_next_or_upnext(path, level, root_level);
5304
	} else {
5305
		ret = tree_move_down(fs_info, path, level);
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

5318
static int tree_compare_item(struct btrfs_path *left_path,
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
5363
	struct btrfs_fs_info *fs_info = left_root->fs_info;
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5381 5382
	u64 left_gen;
	u64 right_gen;
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5395
	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5396
	if (!tmp_buf) {
5397 5398
		ret = -ENOMEM;
		goto out;
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5442
	down_read(&fs_info->commit_root_sem);
5443 5444 5445 5446 5447 5448 5449 5450 5451
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
	left_path->nodes[left_level] = left_root->commit_root;
	extent_buffer_get(left_path->nodes[left_level]);

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
	right_path->nodes[right_level] = right_root->commit_root;
	extent_buffer_get(right_path->nodes[right_level]);
5452
	up_read(&fs_info->commit_root_sem);
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
5472
			ret = tree_advance(fs_info, left_path, &left_level,
5473 5474 5475
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
5476
			if (ret == -1)
5477
				left_end_reached = ADVANCE;
5478 5479
			else if (ret < 0)
				goto out;
5480 5481 5482
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
5483
			ret = tree_advance(fs_info, right_path, &right_level,
5484 5485 5486
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
5487
			if (ret == -1)
5488
				right_end_reached = ADVANCE;
5489 5490
			else if (ret < 0)
				goto out;
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5544
				enum btrfs_compare_tree_result result;
5545

5546
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5547 5548
				ret = tree_compare_item(left_path, right_path,
							tmp_buf);
5549
				if (ret)
5550
					result = BTRFS_COMPARE_TREE_CHANGED;
5551
				else
5552
					result = BTRFS_COMPARE_TREE_SAME;
5553 5554
				ret = changed_cb(left_root, right_root,
						 left_path, right_path,
5555
						 &left_key, result, ctx);
5556 5557
				if (ret < 0)
					goto out;
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5574 5575 5576 5577 5578 5579 5580 5581
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5603
	kvfree(tmp_buf);
5604 5605 5606
	return ret;
}

5607 5608 5609
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5610
 * tree based on the current path and the min_trans parameters.
5611 5612 5613 5614 5615 5616 5617
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5618
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5619
			struct btrfs_key *key, int level, u64 min_trans)
5620 5621 5622 5623
{
	int slot;
	struct extent_buffer *c;

5624
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5625
	while (level < BTRFS_MAX_LEVEL) {
5626 5627 5628 5629 5630
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5631
next:
5632
		if (slot >= btrfs_header_nritems(c)) {
5633 5634 5635 5636 5637
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5638
				return 1;
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5652
			btrfs_release_path(path);
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5665
		}
5666

5667 5668
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5669 5670 5671 5672 5673 5674 5675
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5676
			btrfs_node_key_to_cpu(c, key, slot);
5677
		}
5678 5679 5680 5681 5682
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5683
/*
5684
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5685 5686
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5687
 */
C
Chris Mason 已提交
5688
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5689 5690 5691 5692 5693 5694
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5695 5696
{
	int slot;
5697
	int level;
5698
	struct extent_buffer *c;
5699
	struct extent_buffer *next;
5700 5701 5702
	struct btrfs_key key;
	u32 nritems;
	int ret;
5703
	int old_spinning = path->leave_spinning;
5704
	int next_rw_lock = 0;
5705 5706

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5707
	if (nritems == 0)
5708 5709
		return 1;

5710 5711 5712 5713
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5714
	next_rw_lock = 0;
5715
	btrfs_release_path(path);
5716

5717
	path->keep_locks = 1;
5718
	path->leave_spinning = 1;
5719

J
Jan Schmidt 已提交
5720 5721 5722 5723
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5724 5725 5726 5727 5728
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5729
	nritems = btrfs_header_nritems(path->nodes[0]);
5730 5731 5732 5733 5734 5735
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5736
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5737 5738
		if (ret == 0)
			path->slots[0]++;
5739
		ret = 0;
5740 5741
		goto done;
	}
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5760

C
Chris Mason 已提交
5761
	while (level < BTRFS_MAX_LEVEL) {
5762 5763 5764 5765
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5766

5767 5768
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5769
		if (slot >= btrfs_header_nritems(c)) {
5770
			level++;
5771 5772 5773 5774
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5775 5776
			continue;
		}
5777

5778
		if (next) {
5779
			btrfs_tree_unlock_rw(next, next_rw_lock);
5780
			free_extent_buffer(next);
5781
		}
5782

5783
		next = c;
5784
		next_rw_lock = path->locks[level];
5785
		ret = read_block_for_search(root, path, &next, level,
5786
					    slot, &key);
5787 5788
		if (ret == -EAGAIN)
			goto again;
5789

5790
		if (ret < 0) {
5791
			btrfs_release_path(path);
5792 5793 5794
			goto done;
		}

5795
		if (!path->skip_locking) {
5796
			ret = btrfs_try_tree_read_lock(next);
5797 5798 5799 5800 5801 5802 5803 5804
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5805
				free_extent_buffer(next);
5806 5807 5808 5809
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5810 5811
			if (!ret) {
				btrfs_set_path_blocking(path);
5812
				btrfs_tree_read_lock(next);
5813
				btrfs_clear_path_blocking(path, next,
5814
							  BTRFS_READ_LOCK);
5815
			}
5816
			next_rw_lock = BTRFS_READ_LOCK;
5817
		}
5818 5819 5820
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5821
	while (1) {
5822 5823
		level--;
		c = path->nodes[level];
5824
		if (path->locks[level])
5825
			btrfs_tree_unlock_rw(c, path->locks[level]);
5826

5827
		free_extent_buffer(c);
5828 5829
		path->nodes[level] = next;
		path->slots[level] = 0;
5830
		if (!path->skip_locking)
5831
			path->locks[level] = next_rw_lock;
5832 5833
		if (!level)
			break;
5834

5835
		ret = read_block_for_search(root, path, &next, level,
5836
					    0, &key);
5837 5838 5839
		if (ret == -EAGAIN)
			goto again;

5840
		if (ret < 0) {
5841
			btrfs_release_path(path);
5842 5843 5844
			goto done;
		}

5845
		if (!path->skip_locking) {
5846
			ret = btrfs_try_tree_read_lock(next);
5847 5848
			if (!ret) {
				btrfs_set_path_blocking(path);
5849
				btrfs_tree_read_lock(next);
5850
				btrfs_clear_path_blocking(path, next,
5851 5852
							  BTRFS_READ_LOCK);
			}
5853
			next_rw_lock = BTRFS_READ_LOCK;
5854
		}
5855
	}
5856
	ret = 0;
5857
done:
5858
	unlock_up(path, 0, 1, 0, NULL);
5859 5860 5861 5862 5863
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5864
}
5865

5866 5867 5868 5869 5870 5871
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5872 5873 5874 5875 5876 5877
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5878
	u32 nritems;
5879 5880
	int ret;

C
Chris Mason 已提交
5881
	while (1) {
5882
		if (path->slots[0] == 0) {
5883
			btrfs_set_path_blocking(path);
5884 5885 5886 5887 5888 5889 5890
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5891 5892 5893 5894 5895 5896
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5897
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5898 5899
		if (found_key.objectid < min_objectid)
			break;
5900 5901
		if (found_key.type == type)
			return 0;
5902 5903 5904
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5905 5906 5907
	}
	return 1;
}
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}