ctree.c 152.9 KB
Newer Older
C
Chris Mason 已提交
1
/*
C
Chris Mason 已提交
2
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/sched.h>
20
#include <linux/slab.h>
21
#include <linux/rbtree.h>
22
#include <linux/vmalloc.h>
23 24
#include "ctree.h"
#include "disk-io.h"
25
#include "transaction.h"
26
#include "print-tree.h"
27
#include "locking.h"
28

29 30
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
31 32 33
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
34
static int push_node_left(struct btrfs_trans_handle *trans,
35 36
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
37
			  struct extent_buffer *src, int empty);
38
static int balance_node_right(struct btrfs_trans_handle *trans,
39
			      struct btrfs_fs_info *fs_info,
40 41
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
42 43
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
44
static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
45
				 struct extent_buffer *eb);
46

C
Chris Mason 已提交
47
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
48
{
49
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
50 51
}

52 53 54 55 56 57 58 59
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 61 62 63 64 65 66
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 68 69 70 71
	}
}

/*
 * reset all the locked nodes in the patch to spinning locks.
72 73 74 75 76
 *
 * held is used to keep lockdep happy, when lockdep is enabled
 * we set held to a blocking lock before we go around and
 * retake all the spinlocks in the path.  You can safely use NULL
 * for held
77
 */
78
noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79
					struct extent_buffer *held, int held_rw)
80 81
{
	int i;
82

83 84 85 86 87 88 89
	if (held) {
		btrfs_set_lock_blocking_rw(held, held_rw);
		if (held_rw == BTRFS_WRITE_LOCK)
			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
		else if (held_rw == BTRFS_READ_LOCK)
			held_rw = BTRFS_READ_LOCK_BLOCKING;
	}
90 91 92
	btrfs_set_path_blocking(p);

	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 94 95 96 97 98 99
		if (p->nodes[i] && p->locks[i]) {
			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
				p->locks[i] = BTRFS_WRITE_LOCK;
			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
				p->locks[i] = BTRFS_READ_LOCK;
		}
100
	}
101 102

	if (held)
103
		btrfs_clear_lock_blocking_rw(held, held_rw);
104 105
}

C
Chris Mason 已提交
106
/* this also releases the path */
C
Chris Mason 已提交
107
void btrfs_free_path(struct btrfs_path *p)
108
{
109 110
	if (!p)
		return;
111
	btrfs_release_path(p);
C
Chris Mason 已提交
112
	kmem_cache_free(btrfs_path_cachep, p);
113 114
}

C
Chris Mason 已提交
115 116 117 118 119 120
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
121
noinline void btrfs_release_path(struct btrfs_path *p)
122 123
{
	int i;
124

C
Chris Mason 已提交
125
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126
		p->slots[i] = 0;
127
		if (!p->nodes[i])
128 129
			continue;
		if (p->locks[i]) {
130
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 132
			p->locks[i] = 0;
		}
133
		free_extent_buffer(p->nodes[i]);
134
		p->nodes[i] = NULL;
135 136 137
	}
}

C
Chris Mason 已提交
138 139 140 141 142 143 144 145 146 147
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
148 149 150
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
151

152 153 154 155 156 157
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
158
		 * it was COWed but we may not get the new root node yet so do
159 160 161 162 163 164 165 166 167 168
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
169 170 171
	return eb;
}

C
Chris Mason 已提交
172 173 174 175
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
176 177 178 179
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
180
	while (1) {
181 182
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
183
		if (eb == root->node)
184 185 186 187 188 189 190
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

191 192 193 194
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
195
static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 197 198 199 200 201 202 203 204 205 206 207 208 209
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
210 211 212 213
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
214 215
static void add_root_to_dirty_list(struct btrfs_root *root)
{
216 217
	struct btrfs_fs_info *fs_info = root->fs_info;

218 219 220 221
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

222
	spin_lock(&fs_info->trans_lock);
223 224 225 226
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
			list_move_tail(&root->dirty_list,
227
				       &fs_info->dirty_cowonly_roots);
228 229
		else
			list_move(&root->dirty_list,
230
				  &fs_info->dirty_cowonly_roots);
231
	}
232
	spin_unlock(&fs_info->trans_lock);
233 234
}

C
Chris Mason 已提交
235 236 237 238 239
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
240 241 242 243 244
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
245
	struct btrfs_fs_info *fs_info = root->fs_info;
246 247 248
	struct extent_buffer *cow;
	int ret = 0;
	int level;
249
	struct btrfs_disk_key disk_key;
250

251
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252
		trans->transid != fs_info->running_transaction->transid);
253 254
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
255 256

	level = btrfs_header_level(buf);
257 258 259 260
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
261

262 263
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
264
	if (IS_ERR(cow))
265 266
		return PTR_ERR(cow);

267
	copy_extent_buffer_full(cow, buf);
268 269
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
270 271 272 273 274 275 276
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
277

278
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
279

280
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
281
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282
		ret = btrfs_inc_ref(trans, root, cow, 1);
283
	else
284
		ret = btrfs_inc_ref(trans, root, cow, 0);
285

286 287 288 289 290 291 292 293
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_move {
	int dst_slot;
	int nr_items;
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
316
	u64 logical;
317
	u64 seq;
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
	struct tree_mod_move move;

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

337
static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338
{
339
	read_lock(&fs_info->tree_mod_log_lock);
340 341
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
{
	read_unlock(&fs_info->tree_mod_log_lock);
}

static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
{
	write_lock(&fs_info->tree_mod_log_lock);
}

static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
{
	write_unlock(&fs_info->tree_mod_log_lock);
}

357
/*
J
Josef Bacik 已提交
358
 * Pull a new tree mod seq number for our operation.
359
 */
J
Josef Bacik 已提交
360
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
361 362 363 364
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

365 366 367 368 369 370 371 372 373 374
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
375
{
376
	tree_mod_log_write_lock(fs_info);
377
	spin_lock(&fs_info->tree_mod_seq_lock);
378
	if (!elem->seq) {
J
Josef Bacik 已提交
379
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 381
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
382
	spin_unlock(&fs_info->tree_mod_seq_lock);
383 384
	tree_mod_log_write_unlock(fs_info);

J
Josef Bacik 已提交
385
	return elem->seq;
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
404
	elem->seq = 0;
405 406

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
407
		if (cur_elem->seq < min_seq) {
408 409 410 411 412
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
413 414
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
415 416 417 418
			}
			min_seq = cur_elem->seq;
		}
	}
419 420
	spin_unlock(&fs_info->tree_mod_seq_lock);

421 422 423 424
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
425
	tree_mod_log_write_lock(fs_info);
426 427 428
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
429
		tm = rb_entry(node, struct tree_mod_elem, node);
430
		if (tm->seq > min_seq)
431 432 433 434
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
435
	tree_mod_log_write_unlock(fs_info);
436 437 438 439
}

/*
 * key order of the log:
440
 *       node/leaf start address -> sequence
441
 *
442 443 444
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
445 446
 *
 * Note: must be called with write lock (tree_mod_log_write_lock).
447 448 449 450 451 452 453 454
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
455 456 457

	BUG_ON(!tm);

J
Josef Bacik 已提交
458
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
459 460 461 462

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
463
		cur = rb_entry(*new, struct tree_mod_elem, node);
464
		parent = *new;
465
		if (cur->logical < tm->logical)
466
			new = &((*new)->rb_left);
467
		else if (cur->logical > tm->logical)
468
			new = &((*new)->rb_right);
469
		else if (cur->seq < tm->seq)
470
			new = &((*new)->rb_left);
471
		else if (cur->seq > tm->seq)
472
			new = &((*new)->rb_right);
473 474
		else
			return -EEXIST;
475 476 477 478
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
479
	return 0;
480 481
}

482 483 484 485 486 487
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
 * call tree_mod_log_write_unlock() to release.
 */
488 489 490 491 492
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
493 494
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
495 496 497 498 499 500 501

	tree_mod_log_write_lock(fs_info);
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
		tree_mod_log_write_unlock(fs_info);
		return 1;
	}

502 503 504
	return 0;
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
521
{
522
	struct tree_mod_elem *tm;
523

524 525
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
526
		return NULL;
527

528
	tm->logical = eb->start;
529 530 531 532 533 534 535
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
536
	RB_CLEAR_NODE(&tm->node);
537

538
	return tm;
539 540 541
}

static noinline int
542 543 544
tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
			struct extent_buffer *eb, int slot,
			enum mod_log_op op, gfp_t flags)
545
{
546 547 548 549 550 551 552 553 554 555 556 557
	struct tree_mod_elem *tm;
	int ret;

	if (!tree_mod_need_log(fs_info, eb))
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

	if (tree_mod_dont_log(fs_info, eb)) {
		kfree(tm);
558
		return 0;
559 560 561 562 563 564
	}

	ret = __tree_mod_log_insert(fs_info, tm);
	tree_mod_log_write_unlock(fs_info);
	if (ret)
		kfree(tm);
565

566
	return ret;
567 568
}

569 570 571 572 573
static noinline int
tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
			 struct extent_buffer *eb, int dst_slot, int src_slot,
			 int nr_items, gfp_t flags)
{
574 575 576
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
577
	int i;
578
	int locked = 0;
579

580
	if (!tree_mod_need_log(fs_info, eb))
J
Jan Schmidt 已提交
581
		return 0;
582

583
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
584 585 586 587 588 589 590 591 592
	if (!tm_list)
		return -ENOMEM;

	tm = kzalloc(sizeof(*tm), flags);
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

593
	tm->logical = eb->start;
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, eb))
		goto free_tms;
	locked = 1;

612 613 614 615 616
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
617
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
618 619 620
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret)
			goto free_tms;
621 622
	}

623 624 625 626 627
	ret = __tree_mod_log_insert(fs_info, tm);
	if (ret)
		goto free_tms;
	tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);
J
Jan Schmidt 已提交
628

629 630 631 632 633 634 635 636 637 638 639
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
		tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);
	kfree(tm);
640

641
	return ret;
642 643
}

644 645 646 647
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
648
{
649
	int i, j;
650 651 652
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
653 654 655 656 657 658 659
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
660
	}
661 662

	return 0;
663 664
}

665 666 667
static noinline int
tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
			 struct extent_buffer *old_root,
668 669
			 struct extent_buffer *new_root, gfp_t flags,
			 int log_removal)
670
{
671 672 673 674 675
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
676

677
	if (!tree_mod_need_log(fs_info, NULL))
678 679
		return 0;

680 681
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
682
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
683 684 685 686 687 688 689 690 691 692 693 694 695 696
				  flags);
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
697

698
	tm = kzalloc(sizeof(*tm), flags);
699 700 701 702
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
703

704
	tm->logical = new_root->start;
705 706 707 708 709
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

	tree_mod_log_write_unlock(fs_info);
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
734 735 736 737 738 739 740 741 742 743 744
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

745
	tree_mod_log_read_lock(fs_info);
746 747 748
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
749
		cur = rb_entry(node, struct tree_mod_elem, node);
750
		if (cur->logical < start) {
751
			node = node->rb_left;
752
		} else if (cur->logical > start) {
753
			node = node->rb_right;
754
		} else if (cur->seq < min_seq) {
755 756 757 758
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
759
				BUG_ON(found->seq > cur->seq);
760 761
			found = cur;
			node = node->rb_left;
762
		} else if (cur->seq > min_seq) {
763 764
			/* we want the node with the smallest seq */
			if (found)
765
				BUG_ON(found->seq < cur->seq);
766 767 768 769 770 771 772
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
773
	tree_mod_log_read_unlock(fs_info);
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

801
static noinline int
802 803
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
804
		     unsigned long src_offset, int nr_items)
805
{
806 807 808
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
809
	int i;
810
	int locked = 0;
811

812 813
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
814

815
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
816 817
		return 0;

818
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
819 820 821
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
822

823 824
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
825
	for (i = 0; i < nr_items; i++) {
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
852
	}
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869

	tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
		tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);

	return ret;
870 871 872 873 874 875 876 877 878 879 880 881
}

static inline void
tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     int dst_offset, int src_offset, int nr_items)
{
	int ret;
	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
				       nr_items, GFP_NOFS);
	BUG_ON(ret < 0);
}

882
static noinline void
883
tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
L
Liu Bo 已提交
884
			  struct extent_buffer *eb, int slot, int atomic)
885 886 887
{
	int ret;

888
	ret = tree_mod_log_insert_key(fs_info, eb, slot,
889 890
					MOD_LOG_KEY_REPLACE,
					atomic ? GFP_ATOMIC : GFP_NOFS);
891 892 893
	BUG_ON(ret < 0);
}

894
static noinline int
895
tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
896
{
897 898 899 900 901 902 903 904 905 906 907 908
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

	if (!tree_mod_need_log(fs_info, NULL))
		return 0;

	nritems = btrfs_header_nritems(eb);
909
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
910 911 912 913 914 915 916 917 918 919 920 921
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

922
	if (tree_mod_dont_log(fs_info, eb))
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
		goto free_tms;

	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	tree_mod_log_write_unlock(fs_info);
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
939 940
}

941
static noinline void
942
tree_mod_log_set_root_pointer(struct btrfs_root *root,
943 944
			      struct extent_buffer *new_root_node,
			      int log_removal)
945 946 947
{
	int ret;
	ret = tree_mod_log_insert_root(root->fs_info, root->node,
948
				       new_root_node, GFP_NOFS, log_removal);
949 950 951
	BUG_ON(ret < 0);
}

952 953 954 955 956 957 958
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
959
	 * Tree blocks not in reference counted trees and tree roots
960 961 962 963
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
964
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
965 966 967 968 969 970
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
971
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
972 973 974 975 976 977 978 979 980
	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
		return 1;
#endif
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
981 982
				       struct extent_buffer *cow,
				       int *last_ref)
983
{
984
	struct btrfs_fs_info *fs_info = root->fs_info;
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
1009
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
1010 1011
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
1012 1013
		if (ret)
			return ret;
1014 1015
		if (refs == 0) {
			ret = -EROFS;
1016
			btrfs_handle_fs_error(fs_info, ret, NULL);
1017 1018
			return ret;
		}
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1036
			ret = btrfs_inc_ref(trans, root, buf, 1);
1037
			BUG_ON(ret); /* -ENOMEM */
1038 1039 1040

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
1041
				ret = btrfs_dec_ref(trans, root, buf, 0);
1042
				BUG_ON(ret); /* -ENOMEM */
1043
				ret = btrfs_inc_ref(trans, root, cow, 1);
1044
				BUG_ON(ret); /* -ENOMEM */
1045 1046 1047 1048 1049 1050
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
1051
				ret = btrfs_inc_ref(trans, root, cow, 1);
1052
			else
1053
				ret = btrfs_inc_ref(trans, root, cow, 0);
1054
			BUG_ON(ret); /* -ENOMEM */
1055 1056
		}
		if (new_flags != 0) {
1057 1058
			int level = btrfs_header_level(buf);

1059
			ret = btrfs_set_disk_extent_flags(trans, fs_info,
1060 1061
							  buf->start,
							  buf->len,
1062
							  new_flags, level, 0);
1063 1064
			if (ret)
				return ret;
1065 1066 1067 1068 1069
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
1070
				ret = btrfs_inc_ref(trans, root, cow, 1);
1071
			else
1072
				ret = btrfs_inc_ref(trans, root, cow, 0);
1073
			BUG_ON(ret); /* -ENOMEM */
1074
			ret = btrfs_dec_ref(trans, root, buf, 1);
1075
			BUG_ON(ret); /* -ENOMEM */
1076
		}
1077
		clean_tree_block(fs_info, buf);
1078
		*last_ref = 1;
1079 1080 1081 1082
	}
	return 0;
}

C
Chris Mason 已提交
1083
/*
C
Chris Mason 已提交
1084 1085 1086 1087
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1088 1089 1090
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1091 1092 1093
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1094
 */
C
Chris Mason 已提交
1095
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1096 1097 1098 1099
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1100
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1101
{
1102
	struct btrfs_fs_info *fs_info = root->fs_info;
1103
	struct btrfs_disk_key disk_key;
1104
	struct extent_buffer *cow;
1105
	int level, ret;
1106
	int last_ref = 0;
1107
	int unlock_orig = 0;
1108
	u64 parent_start = 0;
1109

1110 1111 1112
	if (*cow_ret == buf)
		unlock_orig = 1;

1113
	btrfs_assert_tree_locked(buf);
1114

1115
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116
		trans->transid != fs_info->running_transaction->transid);
1117 1118
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1119

1120
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1121

1122 1123 1124 1125 1126
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1127 1128
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1129

1130 1131 1132
	cow = btrfs_alloc_tree_block(trans, root, parent_start,
			root->root_key.objectid, &disk_key, level,
			search_start, empty_size);
1133 1134
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1135

1136 1137
	/* cow is set to blocking by btrfs_init_new_buffer */

1138
	copy_extent_buffer_full(cow, buf);
1139
	btrfs_set_header_bytenr(cow, cow->start);
1140
	btrfs_set_header_generation(cow, trans->transid);
1141 1142 1143 1144 1145 1146 1147
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1148

1149
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
1150

1151
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1152
	if (ret) {
1153
		btrfs_abort_transaction(trans, ret);
1154 1155
		return ret;
	}
Z
Zheng Yan 已提交
1156

1157
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1158
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1159
		if (ret) {
1160
			btrfs_abort_transaction(trans, ret);
1161
			return ret;
1162
		}
1163
	}
1164

C
Chris Mason 已提交
1165
	if (buf == root->node) {
1166
		WARN_ON(parent && parent != buf);
1167 1168 1169
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1170

1171
		extent_buffer_get(cow);
1172
		tree_mod_log_set_root_pointer(root, cow, 1);
1173
		rcu_assign_pointer(root->node, cow);
1174

1175
		btrfs_free_tree_block(trans, root, buf, parent_start,
1176
				      last_ref);
1177
		free_extent_buffer(buf);
1178
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1179
	} else {
1180
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1181
		tree_mod_log_insert_key(fs_info, parent, parent_slot,
1182
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1183
		btrfs_set_node_blockptr(parent, parent_slot,
1184
					cow->start);
1185 1186
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1187
		btrfs_mark_buffer_dirty(parent);
1188
		if (last_ref) {
1189
			ret = tree_mod_log_free_eb(fs_info, buf);
1190
			if (ret) {
1191
				btrfs_abort_transaction(trans, ret);
1192 1193 1194
				return ret;
			}
		}
1195
		btrfs_free_tree_block(trans, root, buf, parent_start,
1196
				      last_ref);
C
Chris Mason 已提交
1197
	}
1198 1199
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1200
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1201
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1202
	*cow_ret = cow;
C
Chris Mason 已提交
1203 1204 1205
	return 0;
}

J
Jan Schmidt 已提交
1206 1207 1208 1209 1210 1211
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
static struct tree_mod_elem *
__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1212
			   struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1213 1214 1215
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1216
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1217 1218 1219
	int looped = 0;

	if (!time_seq)
1220
		return NULL;
J
Jan Schmidt 已提交
1221 1222

	/*
1223 1224 1225 1226
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1227 1228 1229 1230 1231
	 */
	while (1) {
		tm = tree_mod_log_search_oldest(fs_info, root_logical,
						time_seq);
		if (!looped && !tm)
1232
			return NULL;
J
Jan Schmidt 已提交
1233
		/*
1234 1235 1236
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1237
		 */
1238 1239
		if (!tm)
			break;
J
Jan Schmidt 已提交
1240

1241 1242 1243 1244 1245
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1246 1247 1248 1249 1250 1251 1252 1253
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1254 1255 1256 1257
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1258 1259 1260 1261 1262
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1263
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1264 1265 1266
 * time_seq).
 */
static void
1267 1268
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1278
	tree_mod_log_read_lock(fs_info);
1279
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1280 1281 1282 1283 1284 1285 1286 1287
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1288
			/* Fallthrough */
1289
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1290
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1291 1292 1293 1294
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1295
			n++;
J
Jan Schmidt 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1305
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1306 1307 1308
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1309 1310 1311
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1329
		tm = rb_entry(next, struct tree_mod_elem, node);
1330
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1331 1332
			break;
	}
1333
	tree_mod_log_read_unlock(fs_info);
J
Jan Schmidt 已提交
1334 1335 1336
	btrfs_set_header_nritems(eb, n);
}

1337
/*
1338
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1339 1340 1341 1342 1343
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1344
static struct extent_buffer *
1345 1346
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1361 1362 1363
	btrfs_set_path_blocking(path);
	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);

J
Jan Schmidt 已提交
1364 1365
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1366
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1367
		if (!eb_rewin) {
1368
			btrfs_tree_read_unlock_blocking(eb);
1369 1370 1371
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1372 1373 1374 1375
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1376
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1377 1378
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1379
		if (!eb_rewin) {
1380
			btrfs_tree_read_unlock_blocking(eb);
1381 1382 1383
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1384 1385
	}

1386 1387
	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1388 1389
	free_extent_buffer(eb);

1390 1391
	extent_buffer_get(eb_rewin);
	btrfs_tree_read_lock(eb_rewin);
1392
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1393
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1394
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1395 1396 1397 1398

	return eb_rewin;
}

1399 1400 1401 1402 1403 1404 1405
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1406 1407 1408
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1409
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1410
	struct tree_mod_elem *tm;
1411 1412
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1413
	struct extent_buffer *old;
1414
	struct tree_mod_root *old_root = NULL;
1415
	u64 old_generation = 0;
1416
	u64 logical;
J
Jan Schmidt 已提交
1417

1418
	eb_root = btrfs_read_lock_root_node(root);
1419
	tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
J
Jan Schmidt 已提交
1420
	if (!tm)
1421
		return eb_root;
J
Jan Schmidt 已提交
1422

1423 1424 1425 1426 1427
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
	} else {
1428
		logical = eb_root->start;
1429
	}
J
Jan Schmidt 已提交
1430

1431
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1432
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1433 1434
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1435
		old = read_tree_block(fs_info, logical, 0);
1436 1437 1438
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1439 1440 1441
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1442
		} else {
1443 1444
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1445 1446
		}
	} else if (old_root) {
1447 1448
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1449
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1450
	} else {
1451
		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1452
		eb = btrfs_clone_extent_buffer(eb_root);
1453
		btrfs_tree_read_unlock_blocking(eb_root);
1454
		free_extent_buffer(eb_root);
1455 1456
	}

1457 1458
	if (!eb)
		return NULL;
1459
	extent_buffer_get(eb);
1460
	btrfs_tree_read_lock(eb);
1461
	if (old_root) {
J
Jan Schmidt 已提交
1462 1463
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1464
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1465 1466
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1467
	}
1468
	if (tm)
1469
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1470 1471
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1472
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1473 1474 1475 1476

	return eb;
}

J
Jan Schmidt 已提交
1477 1478 1479 1480
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1481
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1482

1483
	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
J
Jan Schmidt 已提交
1484 1485 1486
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1487
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1488
	}
1489
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1490 1491 1492 1493

	return level;
}

1494 1495 1496 1497
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1498
	if (btrfs_is_testing(root->fs_info))
1499
		return 0;
1500

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	/* ensure we can see the force_cow */
	smp_rmb();

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1511
	 *    when we create snapshot during committing the transaction,
1512 1513 1514
	 *    after we've finished coping src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
1515 1516 1517
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1518
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1519
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1520 1521 1522 1523
		return 0;
	return 1;
}

C
Chris Mason 已提交
1524 1525
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1526
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1527 1528
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1529
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1530 1531
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1532
		    struct extent_buffer **cow_ret)
1533
{
1534
	struct btrfs_fs_info *fs_info = root->fs_info;
1535
	u64 search_start;
1536
	int ret;
C
Chris Mason 已提交
1537

1538
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1539
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1540
		       trans->transid,
1541
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1542

1543
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1544
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1545
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1546

1547
	if (!should_cow_block(trans, root, buf)) {
1548
		trans->dirty = true;
1549 1550 1551
		*cow_ret = buf;
		return 0;
	}
1552

1553
	search_start = buf->start & ~((u64)SZ_1G - 1);
1554 1555 1556 1557 1558

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1559
	ret = __btrfs_cow_block(trans, root, buf, parent,
1560
				 parent_slot, cow_ret, search_start, 0);
1561 1562 1563

	trace_btrfs_cow_block(root, buf, *cow_ret);

1564
	return ret;
1565 1566
}

C
Chris Mason 已提交
1567 1568 1569 1570
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1571
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1572
{
1573
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1574
		return 1;
1575
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1576 1577 1578 1579
		return 1;
	return 0;
}

1580 1581 1582
/*
 * compare two keys in a memcmp fashion
 */
1583 1584
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1585 1586 1587 1588 1589
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1590
	return btrfs_comp_cpu_keys(&k1, k2);
1591 1592
}

1593 1594 1595
/*
 * same as comp_keys only with two btrfs_key's
 */
1596
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1612

C
Chris Mason 已提交
1613 1614 1615 1616 1617
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1618
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1619
		       struct btrfs_root *root, struct extent_buffer *parent,
1620
		       int start_slot, u64 *last_ret,
1621
		       struct btrfs_key *progress)
1622
{
1623
	struct btrfs_fs_info *fs_info = root->fs_info;
1624
	struct extent_buffer *cur;
1625
	u64 blocknr;
1626
	u64 gen;
1627 1628
	u64 search_start = *last_ret;
	u64 last_block = 0;
1629 1630 1631 1632 1633
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1634
	int parent_level;
1635 1636
	int uptodate;
	u32 blocksize;
1637 1638
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1639

1640 1641
	parent_level = btrfs_header_level(parent);

1642 1643
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1644

1645
	parent_nritems = btrfs_header_nritems(parent);
1646
	blocksize = fs_info->nodesize;
1647
	end_slot = parent_nritems - 1;
1648

1649
	if (parent_nritems <= 1)
1650 1651
		return 0;

1652 1653
	btrfs_set_lock_blocking(parent);

1654
	for (i = start_slot; i <= end_slot; i++) {
1655
		int close = 1;
1656

1657 1658 1659 1660 1661
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1662
		blocknr = btrfs_node_blockptr(parent, i);
1663
		gen = btrfs_node_ptr_generation(parent, i);
1664 1665
		if (last_block == 0)
			last_block = blocknr;
1666

1667
		if (i > 0) {
1668 1669
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1670
		}
1671
		if (!close && i < end_slot) {
1672 1673
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1674
		}
1675 1676
		if (close) {
			last_block = blocknr;
1677
			continue;
1678
		}
1679

1680
		cur = find_extent_buffer(fs_info, blocknr);
1681
		if (cur)
1682
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1683 1684
		else
			uptodate = 0;
1685
		if (!cur || !uptodate) {
1686
			if (!cur) {
1687
				cur = read_tree_block(fs_info, blocknr, gen);
1688 1689 1690
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1691
					free_extent_buffer(cur);
1692
					return -EIO;
1693
				}
1694
			} else if (!uptodate) {
1695 1696 1697 1698 1699
				err = btrfs_read_buffer(cur, gen);
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1700
			}
1701
		}
1702
		if (search_start == 0)
1703
			search_start = last_block;
1704

1705
		btrfs_tree_lock(cur);
1706
		btrfs_set_lock_blocking(cur);
1707
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1708
					&cur, search_start,
1709
					min(16 * blocksize,
1710
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1711
		if (err) {
1712
			btrfs_tree_unlock(cur);
1713
			free_extent_buffer(cur);
1714
			break;
Y
Yan 已提交
1715
		}
1716 1717
		search_start = cur->start;
		last_block = cur->start;
1718
		*last_ret = search_start;
1719 1720
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1721 1722 1723 1724
	}
	return err;
}

C
Chris Mason 已提交
1725
/*
1726 1727 1728
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1729 1730 1731 1732 1733 1734
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1735
static noinline int generic_bin_search(struct extent_buffer *eb,
1736 1737
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1738
				       int max, int *slot)
1739 1740 1741 1742 1743
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1744
	struct btrfs_disk_key *tmp = NULL;
1745 1746 1747 1748 1749
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1750
	int err;
1751

1752 1753 1754 1755 1756 1757 1758 1759
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1760
	while (low < high) {
1761
		mid = (low + high) / 2;
1762 1763
		offset = p + mid * item_size;

1764
		if (!kaddr || offset < map_start ||
1765 1766
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1767 1768

			err = map_private_extent_buffer(eb, offset,
1769
						sizeof(struct btrfs_disk_key),
1770
						&kaddr, &map_start, &map_len);
1771 1772 1773 1774

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1775
			} else if (err == 1) {
1776 1777 1778
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1779 1780
			} else {
				return err;
1781
			}
1782 1783 1784 1785 1786

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1802 1803 1804 1805
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1806
static int bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1807
		      int level, int *slot)
1808
{
1809
	if (level == 0)
1810 1811
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1812
					  sizeof(struct btrfs_item),
1813
					  key, btrfs_header_nritems(eb),
1814
					  slot);
1815
	else
1816 1817
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1818
					  sizeof(struct btrfs_key_ptr),
1819
					  key, btrfs_header_nritems(eb),
1820
					  slot);
1821 1822
}

1823
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1824 1825 1826 1827 1828
		     int level, int *slot)
{
	return bin_search(eb, key, level, slot);
}

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1845 1846 1847
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1848 1849 1850
static noinline struct extent_buffer *
read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
	       int slot)
1851
{
1852
	int level = btrfs_header_level(parent);
1853 1854
	struct extent_buffer *eb;

1855 1856
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1857 1858 1859

	BUG_ON(level == 0);

1860
	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1861
			     btrfs_node_ptr_generation(parent, slot));
1862 1863 1864
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1865 1866 1867
	}

	return eb;
1868 1869
}

C
Chris Mason 已提交
1870 1871 1872 1873 1874
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1875
static noinline int balance_level(struct btrfs_trans_handle *trans,
1876 1877
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1878
{
1879
	struct btrfs_fs_info *fs_info = root->fs_info;
1880 1881 1882 1883
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1884 1885 1886 1887
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1888
	u64 orig_ptr;
1889 1890 1891 1892

	if (level == 0)
		return 0;

1893
	mid = path->nodes[level];
1894

1895 1896
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1897 1898
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1899
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1900

L
Li Zefan 已提交
1901
	if (level < BTRFS_MAX_LEVEL - 1) {
1902
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1903 1904
		pslot = path->slots[level + 1];
	}
1905

C
Chris Mason 已提交
1906 1907 1908 1909
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1910 1911
	if (!parent) {
		struct extent_buffer *child;
1912

1913
		if (btrfs_header_nritems(mid) != 1)
1914 1915 1916
			return 0;

		/* promote the child to a root */
1917
		child = read_node_slot(fs_info, mid, 0);
1918 1919
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1920
			btrfs_handle_fs_error(fs_info, ret, NULL);
1921 1922 1923
			goto enospc;
		}

1924
		btrfs_tree_lock(child);
1925
		btrfs_set_lock_blocking(child);
1926
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1927 1928 1929 1930 1931
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1932

1933
		tree_mod_log_set_root_pointer(root, child, 1);
1934
		rcu_assign_pointer(root->node, child);
1935

1936
		add_root_to_dirty_list(root);
1937
		btrfs_tree_unlock(child);
1938

1939
		path->locks[level] = 0;
1940
		path->nodes[level] = NULL;
1941
		clean_tree_block(fs_info, mid);
1942
		btrfs_tree_unlock(mid);
1943
		/* once for the path */
1944
		free_extent_buffer(mid);
1945 1946

		root_sub_used(root, mid->len);
1947
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1948
		/* once for the root ptr */
1949
		free_extent_buffer_stale(mid);
1950
		return 0;
1951
	}
1952
	if (btrfs_header_nritems(mid) >
1953
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1954 1955
		return 0;

1956
	left = read_node_slot(fs_info, parent, pslot - 1);
1957 1958 1959
	if (IS_ERR(left))
		left = NULL;

1960
	if (left) {
1961
		btrfs_tree_lock(left);
1962
		btrfs_set_lock_blocking(left);
1963
		wret = btrfs_cow_block(trans, root, left,
1964
				       parent, pslot - 1, &left);
1965 1966 1967 1968
		if (wret) {
			ret = wret;
			goto enospc;
		}
1969
	}
1970

1971
	right = read_node_slot(fs_info, parent, pslot + 1);
1972 1973 1974
	if (IS_ERR(right))
		right = NULL;

1975
	if (right) {
1976
		btrfs_tree_lock(right);
1977
		btrfs_set_lock_blocking(right);
1978
		wret = btrfs_cow_block(trans, root, right,
1979
				       parent, pslot + 1, &right);
1980 1981 1982 1983 1984 1985 1986
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1987 1988
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1989
		wret = push_node_left(trans, fs_info, left, mid, 1);
1990 1991
		if (wret < 0)
			ret = wret;
1992
	}
1993 1994 1995 1996

	/*
	 * then try to empty the right most buffer into the middle
	 */
1997
	if (right) {
1998
		wret = push_node_left(trans, fs_info, mid, right, 1);
1999
		if (wret < 0 && wret != -ENOSPC)
2000
			ret = wret;
2001
		if (btrfs_header_nritems(right) == 0) {
2002
			clean_tree_block(fs_info, right);
2003
			btrfs_tree_unlock(right);
2004
			del_ptr(root, path, level + 1, pslot + 1);
2005
			root_sub_used(root, right->len);
2006
			btrfs_free_tree_block(trans, root, right, 0, 1);
2007
			free_extent_buffer_stale(right);
2008
			right = NULL;
2009
		} else {
2010 2011
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
2012
			tree_mod_log_set_node_key(fs_info, parent,
L
Liu Bo 已提交
2013
						  pslot + 1, 0);
2014 2015
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
2016 2017
		}
	}
2018
	if (btrfs_header_nritems(mid) == 1) {
2019 2020 2021 2022 2023 2024 2025 2026 2027
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
2028 2029
		if (!left) {
			ret = -EROFS;
2030
			btrfs_handle_fs_error(fs_info, ret, NULL);
2031 2032
			goto enospc;
		}
2033
		wret = balance_node_right(trans, fs_info, mid, left);
2034
		if (wret < 0) {
2035
			ret = wret;
2036 2037
			goto enospc;
		}
2038
		if (wret == 1) {
2039
			wret = push_node_left(trans, fs_info, left, mid, 1);
2040 2041 2042
			if (wret < 0)
				ret = wret;
		}
2043 2044
		BUG_ON(wret == 1);
	}
2045
	if (btrfs_header_nritems(mid) == 0) {
2046
		clean_tree_block(fs_info, mid);
2047
		btrfs_tree_unlock(mid);
2048
		del_ptr(root, path, level + 1, pslot);
2049
		root_sub_used(root, mid->len);
2050
		btrfs_free_tree_block(trans, root, mid, 0, 1);
2051
		free_extent_buffer_stale(mid);
2052
		mid = NULL;
2053 2054
	} else {
		/* update the parent key to reflect our changes */
2055 2056
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
2057
		tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2058 2059
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
2060
	}
2061

2062
	/* update the path */
2063 2064 2065
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
2066
			/* left was locked after cow */
2067
			path->nodes[level] = left;
2068 2069
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2070 2071
			if (mid) {
				btrfs_tree_unlock(mid);
2072
				free_extent_buffer(mid);
2073
			}
2074
		} else {
2075
			orig_slot -= btrfs_header_nritems(left);
2076 2077 2078
			path->slots[level] = orig_slot;
		}
	}
2079
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2080
	if (orig_ptr !=
2081
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2082
		BUG();
2083
enospc:
2084 2085
	if (right) {
		btrfs_tree_unlock(right);
2086
		free_extent_buffer(right);
2087 2088 2089 2090
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2091
		free_extent_buffer(left);
2092
	}
2093 2094 2095
	return ret;
}

C
Chris Mason 已提交
2096 2097 2098 2099
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2100
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2101 2102
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2103
{
2104
	struct btrfs_fs_info *fs_info = root->fs_info;
2105 2106 2107 2108
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2109 2110 2111 2112 2113 2114 2115 2116
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2117
	mid = path->nodes[level];
2118
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2119

L
Li Zefan 已提交
2120
	if (level < BTRFS_MAX_LEVEL - 1) {
2121
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2122 2123
		pslot = path->slots[level + 1];
	}
2124

2125
	if (!parent)
2126 2127
		return 1;

2128
	left = read_node_slot(fs_info, parent, pslot - 1);
2129 2130
	if (IS_ERR(left))
		left = NULL;
2131 2132

	/* first, try to make some room in the middle buffer */
2133
	if (left) {
2134
		u32 left_nr;
2135 2136

		btrfs_tree_lock(left);
2137 2138
		btrfs_set_lock_blocking(left);

2139
		left_nr = btrfs_header_nritems(left);
2140
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2141 2142
			wret = 1;
		} else {
2143
			ret = btrfs_cow_block(trans, root, left, parent,
2144
					      pslot - 1, &left);
2145 2146 2147
			if (ret)
				wret = 1;
			else {
2148
				wret = push_node_left(trans, fs_info,
2149
						      left, mid, 0);
2150
			}
C
Chris Mason 已提交
2151
		}
2152 2153 2154
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2155
			struct btrfs_disk_key disk_key;
2156
			orig_slot += left_nr;
2157
			btrfs_node_key(mid, &disk_key, 0);
2158
			tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2159 2160 2161 2162
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2163 2164
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2165
				btrfs_tree_unlock(mid);
2166
				free_extent_buffer(mid);
2167 2168
			} else {
				orig_slot -=
2169
					btrfs_header_nritems(left);
2170
				path->slots[level] = orig_slot;
2171
				btrfs_tree_unlock(left);
2172
				free_extent_buffer(left);
2173 2174 2175
			}
			return 0;
		}
2176
		btrfs_tree_unlock(left);
2177
		free_extent_buffer(left);
2178
	}
2179
	right = read_node_slot(fs_info, parent, pslot + 1);
2180 2181
	if (IS_ERR(right))
		right = NULL;
2182 2183 2184 2185

	/*
	 * then try to empty the right most buffer into the middle
	 */
2186
	if (right) {
C
Chris Mason 已提交
2187
		u32 right_nr;
2188

2189
		btrfs_tree_lock(right);
2190 2191
		btrfs_set_lock_blocking(right);

2192
		right_nr = btrfs_header_nritems(right);
2193
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2194 2195
			wret = 1;
		} else {
2196 2197
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2198
					      &right);
2199 2200 2201
			if (ret)
				wret = 1;
			else {
2202
				wret = balance_node_right(trans, fs_info,
2203
							  right, mid);
2204
			}
C
Chris Mason 已提交
2205
		}
2206 2207 2208
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2209 2210 2211
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2212
			tree_mod_log_set_node_key(fs_info, parent,
L
Liu Bo 已提交
2213
						  pslot + 1, 0);
2214 2215 2216 2217 2218
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2219 2220
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2221
					btrfs_header_nritems(mid);
2222
				btrfs_tree_unlock(mid);
2223
				free_extent_buffer(mid);
2224
			} else {
2225
				btrfs_tree_unlock(right);
2226
				free_extent_buffer(right);
2227 2228 2229
			}
			return 0;
		}
2230
		btrfs_tree_unlock(right);
2231
		free_extent_buffer(right);
2232 2233 2234 2235
	}
	return 1;
}

2236
/*
C
Chris Mason 已提交
2237 2238
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2239
 */
2240
static void reada_for_search(struct btrfs_fs_info *fs_info,
2241 2242
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2243
{
2244
	struct extent_buffer *node;
2245
	struct btrfs_disk_key disk_key;
2246 2247
	u32 nritems;
	u64 search;
2248
	u64 target;
2249
	u64 nread = 0;
2250
	struct extent_buffer *eb;
2251 2252 2253
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2254

2255
	if (level != 1)
2256 2257 2258
		return;

	if (!path->nodes[level])
2259 2260
		return;

2261
	node = path->nodes[level];
2262

2263
	search = btrfs_node_blockptr(node, slot);
2264 2265
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2266 2267
	if (eb) {
		free_extent_buffer(eb);
2268 2269 2270
		return;
	}

2271
	target = search;
2272

2273
	nritems = btrfs_header_nritems(node);
2274
	nr = slot;
2275

C
Chris Mason 已提交
2276
	while (1) {
2277
		if (path->reada == READA_BACK) {
2278 2279 2280
			if (nr == 0)
				break;
			nr--;
2281
		} else if (path->reada == READA_FORWARD) {
2282 2283 2284
			nr++;
			if (nr >= nritems)
				break;
2285
		}
2286
		if (path->reada == READA_BACK && objectid) {
2287 2288 2289 2290
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2291
		search = btrfs_node_blockptr(node, nr);
2292 2293
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2294
			readahead_tree_block(fs_info, search);
2295 2296 2297
			nread += blocksize;
		}
		nscan++;
2298
		if ((nread > 65536 || nscan > 32))
2299
			break;
2300 2301
	}
}
2302

2303
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2304
				       struct btrfs_path *path, int level)
2305 2306 2307 2308 2309 2310 2311 2312 2313
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2314
	parent = path->nodes[level + 1];
2315
	if (!parent)
J
Josef Bacik 已提交
2316
		return;
2317 2318

	nritems = btrfs_header_nritems(parent);
2319
	slot = path->slots[level + 1];
2320 2321 2322 2323

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2324
		eb = find_extent_buffer(fs_info, block1);
2325 2326 2327 2328 2329 2330
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2331 2332 2333
			block1 = 0;
		free_extent_buffer(eb);
	}
2334
	if (slot + 1 < nritems) {
2335 2336
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2337
		eb = find_extent_buffer(fs_info, block2);
2338
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2339 2340 2341
			block2 = 0;
		free_extent_buffer(eb);
	}
2342

J
Josef Bacik 已提交
2343
	if (block1)
2344
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2345
	if (block2)
2346
		readahead_tree_block(fs_info, block2);
2347 2348 2349
}


C
Chris Mason 已提交
2350
/*
C
Chris Mason 已提交
2351 2352 2353 2354
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2355
 *
C
Chris Mason 已提交
2356 2357 2358
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2359
 *
C
Chris Mason 已提交
2360 2361
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2362
 */
2363
static noinline void unlock_up(struct btrfs_path *path, int level,
2364 2365
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2366 2367 2368
{
	int i;
	int skip_level = level;
2369
	int no_skips = 0;
2370 2371 2372 2373 2374 2375 2376
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2377
		if (!no_skips && path->slots[i] == 0) {
2378 2379 2380
			skip_level = i + 1;
			continue;
		}
2381
		if (!no_skips && path->keep_locks) {
2382 2383 2384
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2385
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2386 2387 2388 2389
				skip_level = i + 1;
				continue;
			}
		}
2390 2391 2392
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2393 2394
		t = path->nodes[i];
		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2395
			btrfs_tree_unlock_rw(t, path->locks[i]);
2396
			path->locks[i] = 0;
2397 2398 2399 2400 2401
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2402 2403 2404 2405
		}
	}
}

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2419
	if (path->keep_locks)
2420 2421 2422 2423
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2424
			continue;
2425
		if (!path->locks[i])
2426
			continue;
2427
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2428 2429 2430 2431
		path->locks[i] = 0;
	}
}

2432 2433 2434 2435 2436 2437 2438 2439 2440
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2441 2442
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2443
		      const struct btrfs_key *key)
2444
{
2445
	struct btrfs_fs_info *fs_info = root->fs_info;
2446 2447 2448 2449
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2450
	int ret;
2451 2452 2453 2454

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);

2455
	tmp = find_extent_buffer(fs_info, blocknr);
2456
	if (tmp) {
2457
		/* first we do an atomic uptodate check */
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
		ret = btrfs_read_buffer(tmp, gen);
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2476
		}
2477 2478 2479
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2480 2481 2482 2483 2484
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2485 2486 2487
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2488
	 */
2489 2490 2491
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2492
	free_extent_buffer(tmp);
2493
	if (p->reada != READA_NONE)
2494
		reada_for_search(fs_info, p, level, slot, key->objectid);
2495

2496
	btrfs_release_path(p);
2497 2498

	ret = -EAGAIN;
2499
	tmp = read_tree_block(fs_info, blocknr, 0);
2500
	if (!IS_ERR(tmp)) {
2501 2502 2503 2504 2505 2506
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2507
		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2508
			ret = -EIO;
2509
		free_extent_buffer(tmp);
2510 2511
	} else {
		ret = PTR_ERR(tmp);
2512 2513
	}
	return ret;
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2528 2529
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2530
{
2531
	struct btrfs_fs_info *fs_info = root->fs_info;
2532
	int ret;
2533

2534
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2535
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2536 2537
		int sret;

2538 2539 2540 2541 2542 2543
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2544
		btrfs_set_path_blocking(p);
2545
		reada_for_balance(fs_info, p, level);
2546
		sret = split_node(trans, root, p, level);
2547
		btrfs_clear_path_blocking(p, NULL, 0);
2548 2549 2550 2551 2552 2553 2554 2555

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2556
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2557 2558
		int sret;

2559 2560 2561 2562 2563 2564
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2565
		btrfs_set_path_blocking(p);
2566
		reada_for_balance(fs_info, p, level);
2567
		sret = balance_level(trans, root, p, level);
2568
		btrfs_clear_path_blocking(p, NULL, 0);
2569 2570 2571 2572 2573 2574 2575

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2576
			btrfs_release_path(p);
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2589
static void key_search_validate(struct extent_buffer *b,
2590
				const struct btrfs_key *key,
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
				int level)
{
#ifdef CONFIG_BTRFS_ASSERT
	struct btrfs_disk_key disk_key;

	btrfs_cpu_key_to_disk(&disk_key, key);

	if (level == 0)
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_leaf, items[0].key),
		    sizeof(disk_key)));
	else
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_node, ptrs[0].key),
		    sizeof(disk_key)));
#endif
}

2609
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
		*prev_cmp = bin_search(b, key, level, slot);
		return *prev_cmp;
	}

	key_search_validate(b, key, level);
	*slot = 0;

	return 0;
}

2623
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2624 2625 2626 2627 2628 2629
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2630 2631

	ASSERT(path);
2632
	ASSERT(found_key);
2633 2634 2635 2636 2637 2638

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2639
	if (ret < 0)
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

C
Chris Mason 已提交
2658 2659 2660 2661 2662 2663
/*
 * look for key in the tree.  path is filled in with nodes along the way
 * if key is found, we return zero and you can find the item in the leaf
 * level of the path (level 0)
 *
 * If the key isn't found, the path points to the slot where it should
C
Chris Mason 已提交
2664 2665
 * be inserted, and 1 is returned.  If there are other errors during the
 * search a negative error number is returned.
C
Chris Mason 已提交
2666 2667 2668 2669
 *
 * if ins_len > 0, nodes and leaves will be split as we walk down the
 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
 * possible)
C
Chris Mason 已提交
2670
 */
2671 2672 2673
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2674
{
2675
	struct btrfs_fs_info *fs_info = root->fs_info;
2676
	struct extent_buffer *b;
2677 2678
	int slot;
	int ret;
2679
	int err;
2680
	int level;
2681
	int lowest_unlock = 1;
2682 2683 2684
	int root_lock;
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2685
	u8 lowest_level = 0;
2686
	int min_write_lock_level;
2687
	int prev_cmp;
2688

2689
	lowest_level = p->lowest_level;
2690
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2691
	WARN_ON(p->nodes[0] != NULL);
2692
	BUG_ON(!cow && ins_len);
2693

2694
	if (ins_len < 0) {
2695
		lowest_unlock = 2;
2696

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2713
	if (cow && (p->keep_locks || p->lowest_level))
2714 2715
		write_lock_level = BTRFS_MAX_LEVEL;

2716 2717
	min_write_lock_level = write_lock_level;

2718
again:
2719
	prev_cmp = -1;
2720 2721 2722 2723 2724
	/*
	 * we try very hard to do read locks on the root
	 */
	root_lock = BTRFS_READ_LOCK;
	level = 0;
2725
	if (p->search_commit_root) {
2726 2727 2728 2729
		/*
		 * the commit roots are read only
		 * so we always do read locks
		 */
2730
		if (p->need_commit_sem)
2731
			down_read(&fs_info->commit_root_sem);
2732 2733
		b = root->commit_root;
		extent_buffer_get(b);
2734
		level = btrfs_header_level(b);
2735
		if (p->need_commit_sem)
2736
			up_read(&fs_info->commit_root_sem);
2737
		if (!p->skip_locking)
2738
			btrfs_tree_read_lock(b);
2739
	} else {
2740
		if (p->skip_locking) {
2741
			b = btrfs_root_node(root);
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
			level = btrfs_header_level(b);
		} else {
			/* we don't know the level of the root node
			 * until we actually have it read locked
			 */
			b = btrfs_read_lock_root_node(root);
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
				/* whoops, must trade for write lock */
				btrfs_tree_read_unlock(b);
				free_extent_buffer(b);
				b = btrfs_lock_root_node(root);
				root_lock = BTRFS_WRITE_LOCK;

				/* the level might have changed, check again */
				level = btrfs_header_level(b);
			}
		}
2760
	}
2761 2762 2763
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
2764

2765
	while (b) {
2766
		level = btrfs_header_level(b);
2767 2768 2769 2770 2771

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2772
		if (cow) {
2773 2774 2775 2776 2777
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2778 2779
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2780
				goto cow_done;
2781
			}
2782

2783 2784 2785 2786
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2787 2788 2789 2790
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2791 2792 2793 2794 2795
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2796
			btrfs_set_path_blocking(p);
2797 2798 2799 2800 2801
			err = btrfs_cow_block(trans, root, b,
					      p->nodes[level + 1],
					      p->slots[level + 1], &b);
			if (err) {
				ret = err;
2802
				goto done;
2803
			}
C
Chris Mason 已提交
2804
		}
2805
cow_done:
2806
		p->nodes[level] = b;
2807
		btrfs_clear_path_blocking(p, NULL, 0);
2808 2809 2810 2811 2812 2813 2814

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2815 2816 2817 2818
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2819
		 */
2820 2821 2822 2823 2824 2825 2826 2827
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2828

2829
		ret = key_search(b, key, level, &prev_cmp, &slot);
2830 2831
		if (ret < 0)
			goto done;
2832

2833
		if (level != 0) {
2834 2835 2836
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2837
				slot -= 1;
2838
			}
2839
			p->slots[level] = slot;
2840
			err = setup_nodes_for_search(trans, root, p, b, level,
2841
					     ins_len, &write_lock_level);
2842
			if (err == -EAGAIN)
2843
				goto again;
2844 2845
			if (err) {
				ret = err;
2846
				goto done;
2847
			}
2848 2849
			b = p->nodes[level];
			slot = p->slots[level];
2850

2851 2852 2853 2854 2855 2856
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2857
			if (slot == 0 && ins_len &&
2858 2859 2860 2861 2862 2863
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2864 2865
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2866

2867
			if (level == lowest_level) {
2868 2869
				if (dec)
					p->slots[level]++;
2870
				goto done;
2871
			}
2872

2873
			err = read_block_for_search(root, p, &b, level,
2874
						    slot, key);
2875
			if (err == -EAGAIN)
2876
				goto again;
2877 2878
			if (err) {
				ret = err;
2879
				goto done;
2880
			}
2881

2882
			if (!p->skip_locking) {
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_WRITE_LOCK);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2894
					err = btrfs_tree_read_lock_atomic(b);
2895 2896 2897 2898 2899 2900 2901
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_READ_LOCK);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2902
				}
2903
				p->nodes[level] = b;
2904
			}
2905 2906
		} else {
			p->slots[level] = slot;
2907
			if (ins_len > 0 &&
2908
			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2909 2910 2911 2912 2913 2914
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2915
				btrfs_set_path_blocking(p);
2916 2917
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2918
				btrfs_clear_path_blocking(p, NULL, 0);
2919

2920 2921 2922
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2923 2924
					goto done;
				}
C
Chris Mason 已提交
2925
			}
2926
			if (!p->search_for_split)
2927 2928
				unlock_up(p, level, lowest_unlock,
					  min_write_lock_level, &write_lock_level);
2929
			goto done;
2930 2931
		}
	}
2932 2933
	ret = 1;
done:
2934 2935 2936 2937
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2938 2939
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2940
	if (ret < 0 && !p->skip_release_on_error)
2941
		btrfs_release_path(p);
2942
	return ret;
2943 2944
}

J
Jan Schmidt 已提交
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2956
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2957 2958
			  struct btrfs_path *p, u64 time_seq)
{
2959
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2960 2961 2962 2963 2964 2965 2966
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2967
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;
		btrfs_clear_path_blocking(p, NULL, 0);

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

2995
		/*
2996
		 * Since we can unwind ebs we want to do a real search every
2997 2998 2999
		 * time.
		 */
		prev_cmp = -1;
3000
		ret = key_search(b, key, level, &prev_cmp, &slot);
J
Jan Schmidt 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

3017
			err = read_block_for_search(root, p, &b, level,
3018
						    slot, key);
J
Jan Schmidt 已提交
3019 3020 3021 3022 3023 3024 3025 3026
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3027
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3028 3029 3030 3031 3032 3033
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
				btrfs_clear_path_blocking(p, b,
							  BTRFS_READ_LOCK);
			}
3034
			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3035 3036 3037 3038
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3070 3071 3072
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3107 3108 3109 3110 3111
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3112 3113 3114
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3115
				return 0;
3116
			}
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3128 3129 3130 3131 3132 3133
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3134 3135 3136 3137 3138 3139
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3140
 *
C
Chris Mason 已提交
3141
 */
3142 3143
static void fixup_low_keys(struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path,
3144
			   struct btrfs_disk_key *key, int level)
3145 3146
{
	int i;
3147 3148
	struct extent_buffer *t;

C
Chris Mason 已提交
3149
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3150
		int tslot = path->slots[i];
3151
		if (!path->nodes[i])
3152
			break;
3153
		t = path->nodes[i];
3154
		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3155
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3156
		btrfs_mark_buffer_dirty(path->nodes[i]);
3157 3158 3159 3160 3161
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3162 3163 3164 3165 3166 3167
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3168 3169
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3170
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3180
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3181 3182 3183
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3184
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3185 3186 3187 3188 3189 3190
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3191
		fixup_low_keys(fs_info, path, &disk_key, 1);
Z
Zheng Yan 已提交
3192 3193
}

C
Chris Mason 已提交
3194 3195
/*
 * try to push data from one node into the next node left in the
3196
 * tree.
C
Chris Mason 已提交
3197 3198 3199
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3200
 */
3201
static int push_node_left(struct btrfs_trans_handle *trans,
3202 3203
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
3204
			  struct extent_buffer *src, int empty)
3205 3206
{
	int push_items = 0;
3207 3208
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3209
	int ret = 0;
3210

3211 3212
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3213
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3214 3215
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3216

3217
	if (!empty && src_nritems <= 8)
3218 3219
		return 1;

C
Chris Mason 已提交
3220
	if (push_items <= 0)
3221 3222
		return 1;

3223
	if (empty) {
3224
		push_items = min(src_nritems, push_items);
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3237

3238
	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3239 3240
				   push_items);
	if (ret) {
3241
		btrfs_abort_transaction(trans, ret);
3242 3243
		return ret;
	}
3244 3245 3246
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3247
			   push_items * sizeof(struct btrfs_key_ptr));
3248

3249
	if (push_items < src_nritems) {
3250 3251 3252 3253
		/*
		 * don't call tree_mod_log_eb_move here, key removal was already
		 * fully logged by tree_mod_log_eb_copy above.
		 */
3254 3255 3256 3257 3258 3259 3260 3261 3262
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3263

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3276
static int balance_node_right(struct btrfs_trans_handle *trans,
3277
			      struct btrfs_fs_info *fs_info,
3278 3279
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3280 3281 3282 3283 3284 3285 3286
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3287 3288 3289
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3290 3291
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3292
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3293
	if (push_items <= 0)
3294
		return 1;
3295

C
Chris Mason 已提交
3296
	if (src_nritems < 4)
3297
		return 1;
3298 3299 3300

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3301
	if (max_push >= src_nritems)
3302
		return 1;
Y
Yan 已提交
3303

3304 3305 3306
	if (max_push < push_items)
		push_items = max_push;

3307
	tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
3308 3309 3310 3311
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3312

3313
	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3314 3315
				   src_nritems - push_items, push_items);
	if (ret) {
3316
		btrfs_abort_transaction(trans, ret);
3317 3318
		return ret;
	}
3319 3320 3321
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3322
			   push_items * sizeof(struct btrfs_key_ptr));
3323

3324 3325
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3326

3327 3328
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3329

C
Chris Mason 已提交
3330
	return ret;
3331 3332
}

C
Chris Mason 已提交
3333 3334 3335 3336
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3337 3338
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3339
 */
C
Chris Mason 已提交
3340
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3341
			   struct btrfs_root *root,
3342
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3343
{
3344
	struct btrfs_fs_info *fs_info = root->fs_info;
3345
	u64 lower_gen;
3346 3347
	struct extent_buffer *lower;
	struct extent_buffer *c;
3348
	struct extent_buffer *old;
3349
	struct btrfs_disk_key lower_key;
C
Chris Mason 已提交
3350 3351 3352 3353

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3354 3355 3356 3357 3358 3359
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3360 3361
	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				   &lower_key, level, root->node->start, 0);
3362 3363
	if (IS_ERR(c))
		return PTR_ERR(c);
3364

3365
	root_add_used(root, fs_info->nodesize);
3366

3367
	memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3368 3369
	btrfs_set_header_nritems(c, 1);
	btrfs_set_header_level(c, level);
3370
	btrfs_set_header_bytenr(c, c->start);
3371
	btrfs_set_header_generation(c, trans->transid);
3372
	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3373 3374
	btrfs_set_header_owner(c, root->root_key.objectid);

3375 3376
	write_extent_buffer_fsid(c, fs_info->fsid);
	write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3377

3378
	btrfs_set_node_key(c, &lower_key, 0);
3379
	btrfs_set_node_blockptr(c, 0, lower->start);
3380
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3381
	WARN_ON(lower_gen != trans->transid);
3382 3383

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3384

3385
	btrfs_mark_buffer_dirty(c);
3386

3387
	old = root->node;
3388
	tree_mod_log_set_root_pointer(root, c, 0);
3389
	rcu_assign_pointer(root->node, c);
3390 3391 3392 3393

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3394
	add_root_to_dirty_list(root);
3395 3396
	extent_buffer_get(c);
	path->nodes[level] = c;
3397
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3398 3399 3400 3401
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3402 3403 3404
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3405
 *
C
Chris Mason 已提交
3406 3407 3408
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3409
static void insert_ptr(struct btrfs_trans_handle *trans,
3410
		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3411
		       struct btrfs_disk_key *key, u64 bytenr,
3412
		       int slot, int level)
C
Chris Mason 已提交
3413
{
3414
	struct extent_buffer *lower;
C
Chris Mason 已提交
3415
	int nritems;
3416
	int ret;
C
Chris Mason 已提交
3417 3418

	BUG_ON(!path->nodes[level]);
3419
	btrfs_assert_tree_locked(path->nodes[level]);
3420 3421
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3422
	BUG_ON(slot > nritems);
3423
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
C
Chris Mason 已提交
3424
	if (slot != nritems) {
3425
		if (level)
3426
			tree_mod_log_eb_move(fs_info, lower, slot + 1,
3427
					     slot, nritems - slot);
3428 3429 3430
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3431
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3432
	}
3433
	if (level) {
3434
		ret = tree_mod_log_insert_key(fs_info, lower, slot,
3435
					      MOD_LOG_KEY_ADD, GFP_NOFS);
3436 3437
		BUG_ON(ret < 0);
	}
3438
	btrfs_set_node_key(lower, key, slot);
3439
	btrfs_set_node_blockptr(lower, slot, bytenr);
3440 3441
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3442 3443
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3444 3445
}

C
Chris Mason 已提交
3446 3447 3448 3449 3450 3451
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3452 3453
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3454
 */
3455 3456 3457
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3458
{
3459
	struct btrfs_fs_info *fs_info = root->fs_info;
3460 3461 3462
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3463
	int mid;
C
Chris Mason 已提交
3464
	int ret;
3465
	u32 c_nritems;
3466

3467
	c = path->nodes[level];
3468
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3469
	if (c == root->node) {
3470
		/*
3471 3472
		 * trying to split the root, lets make a new one
		 *
3473
		 * tree mod log: We don't log_removal old root in
3474 3475 3476 3477 3478
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3479
		 */
3480
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3481 3482
		if (ret)
			return ret;
3483
	} else {
3484
		ret = push_nodes_for_insert(trans, root, path, level);
3485 3486
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3487
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3488
			return 0;
3489 3490
		if (ret < 0)
			return ret;
3491
	}
3492

3493
	c_nritems = btrfs_header_nritems(c);
3494 3495
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3496

3497 3498
	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, level, c->start, 0);
3499 3500 3501
	if (IS_ERR(split))
		return PTR_ERR(split);

3502
	root_add_used(root, fs_info->nodesize);
3503

3504
	memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3505
	btrfs_set_header_level(split, btrfs_header_level(c));
3506
	btrfs_set_header_bytenr(split, split->start);
3507
	btrfs_set_header_generation(split, trans->transid);
3508
	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3509
	btrfs_set_header_owner(split, root->root_key.objectid);
3510 3511
	write_extent_buffer_fsid(split, fs_info->fsid);
	write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3512

3513
	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3514
	if (ret) {
3515
		btrfs_abort_transaction(trans, ret);
3516 3517
		return ret;
	}
3518 3519 3520 3521 3522 3523
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3524 3525
	ret = 0;

3526 3527 3528
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3529
	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3530
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3531

C
Chris Mason 已提交
3532
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3533
		path->slots[level] -= mid;
3534
		btrfs_tree_unlock(c);
3535 3536
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3537 3538
		path->slots[level + 1] += 1;
	} else {
3539
		btrfs_tree_unlock(split);
3540
		free_extent_buffer(split);
3541
	}
C
Chris Mason 已提交
3542
	return ret;
3543 3544
}

C
Chris Mason 已提交
3545 3546 3547 3548 3549
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3550
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3551
{
J
Josef Bacik 已提交
3552 3553 3554
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3555
	int data_len;
3556
	int nritems = btrfs_header_nritems(l);
3557
	int end = min(nritems, start + nr) - 1;
3558 3559 3560

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3561
	btrfs_init_map_token(&token);
3562 3563
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3564 3565 3566
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3567
	data_len += sizeof(struct btrfs_item) * nr;
3568
	WARN_ON(data_len < 0);
3569 3570 3571
	return data_len;
}

3572 3573 3574 3575 3576
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3577
noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3578
				   struct extent_buffer *leaf)
3579
{
3580 3581
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3582 3583

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3584
	if (ret < 0) {
3585 3586 3587 3588 3589
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3590 3591
	}
	return ret;
3592 3593
}

3594 3595 3596 3597
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3598
static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3599 3600 3601
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3602 3603
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3604
{
3605
	struct extent_buffer *left = path->nodes[0];
3606
	struct extent_buffer *upper = path->nodes[1];
3607
	struct btrfs_map_token token;
3608
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3609
	int slot;
3610
	u32 i;
C
Chris Mason 已提交
3611 3612
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3613
	struct btrfs_item *item;
3614
	u32 nr;
3615
	u32 right_nritems;
3616
	u32 data_end;
3617
	u32 this_item_size;
C
Chris Mason 已提交
3618

3619 3620
	btrfs_init_map_token(&token);

3621 3622 3623
	if (empty)
		nr = 0;
	else
3624
		nr = max_t(u32, 1, min_slot);
3625

Z
Zheng Yan 已提交
3626
	if (path->slots[0] >= left_nritems)
3627
		push_space += data_size;
Z
Zheng Yan 已提交
3628

3629
	slot = path->slots[1];
3630 3631
	i = left_nritems - 1;
	while (i >= nr) {
3632
		item = btrfs_item_nr(i);
3633

Z
Zheng Yan 已提交
3634 3635 3636 3637
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3638
				int space = btrfs_leaf_free_space(fs_info, left);
Z
Zheng Yan 已提交
3639 3640 3641 3642 3643
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3644
		if (path->slots[0] == i)
3645
			push_space += data_size;
3646 3647 3648

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3649
			break;
Z
Zheng Yan 已提交
3650

C
Chris Mason 已提交
3651
		push_items++;
3652
		push_space += this_item_size + sizeof(*item);
3653 3654 3655
		if (i == 0)
			break;
		i--;
3656
	}
3657

3658 3659
	if (push_items == 0)
		goto out_unlock;
3660

J
Julia Lawall 已提交
3661
	WARN_ON(!empty && push_items == left_nritems);
3662

C
Chris Mason 已提交
3663
	/* push left to right */
3664
	right_nritems = btrfs_header_nritems(right);
3665

3666
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3667
	push_space -= leaf_data_end(fs_info, left);
3668

C
Chris Mason 已提交
3669
	/* make room in the right data area */
3670
	data_end = leaf_data_end(fs_info, right);
3671 3672 3673
	memmove_extent_buffer(right,
			      btrfs_leaf_data(right) + data_end - push_space,
			      btrfs_leaf_data(right) + data_end,
3674
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3675

C
Chris Mason 已提交
3676
	/* copy from the left data area */
3677
	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3678
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3679
		     btrfs_leaf_data(left) + leaf_data_end(fs_info, left),
C
Chris Mason 已提交
3680
		     push_space);
3681 3682 3683 3684 3685

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3686
	/* copy the items from left to right */
3687 3688 3689
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3690 3691

	/* update the item pointers */
3692
	right_nritems += push_items;
3693
	btrfs_set_header_nritems(right, right_nritems);
3694
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3695
	for (i = 0; i < right_nritems; i++) {
3696
		item = btrfs_item_nr(i);
3697 3698
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3699 3700
	}

3701
	left_nritems -= push_items;
3702
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3703

3704 3705
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3706
	else
3707
		clean_tree_block(fs_info, left);
3708

3709
	btrfs_mark_buffer_dirty(right);
3710

3711 3712
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3713
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3714

C
Chris Mason 已提交
3715
	/* then fixup the leaf pointer in the path */
3716 3717
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3718
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3719
			clean_tree_block(fs_info, path->nodes[0]);
3720
		btrfs_tree_unlock(path->nodes[0]);
3721 3722
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3723 3724
		path->slots[1] += 1;
	} else {
3725
		btrfs_tree_unlock(right);
3726
		free_extent_buffer(right);
C
Chris Mason 已提交
3727 3728
	}
	return 0;
3729 3730 3731 3732 3733

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3734
}
3735

3736 3737 3738 3739 3740 3741
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3742 3743 3744
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3745 3746
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3747 3748 3749
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3750
{
3751
	struct btrfs_fs_info *fs_info = root->fs_info;
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3770
	right = read_node_slot(fs_info, upper, slot + 1);
3771 3772 3773 3774 3775
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3776 3777
		return 1;

3778 3779 3780
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

3781
	free_space = btrfs_leaf_free_space(fs_info, right);
3782 3783 3784 3785 3786 3787 3788 3789 3790
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3791
	free_space = btrfs_leaf_free_space(fs_info, right);
3792 3793 3794 3795 3796 3797 3798
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
		 * no need to touch/dirty our left leaft. */
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3812
	return __push_leaf_right(fs_info, path, min_data_size, empty,
3813
				right, free_space, left_nritems, min_slot);
3814 3815 3816 3817 3818 3819
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3820 3821 3822
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3823 3824 3825 3826
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3827
 */
3828
static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3829
				     struct btrfs_fs_info *fs_info,
3830 3831
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3832 3833
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3834
{
3835 3836
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3837 3838 3839
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3840
	struct btrfs_item *item;
3841
	u32 old_left_nritems;
3842
	u32 nr;
C
Chris Mason 已提交
3843
	int ret = 0;
3844 3845
	u32 this_item_size;
	u32 old_left_item_size;
3846 3847 3848
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3849

3850
	if (empty)
3851
		nr = min(right_nritems, max_slot);
3852
	else
3853
		nr = min(right_nritems - 1, max_slot);
3854 3855

	for (i = 0; i < nr; i++) {
3856
		item = btrfs_item_nr(i);
3857

Z
Zheng Yan 已提交
3858 3859 3860 3861
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3862
				int space = btrfs_leaf_free_space(fs_info, right);
Z
Zheng Yan 已提交
3863 3864 3865 3866 3867
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3868
		if (path->slots[0] == i)
3869
			push_space += data_size;
3870 3871 3872

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3873
			break;
3874

3875
		push_items++;
3876 3877 3878
		push_space += this_item_size + sizeof(*item);
	}

3879
	if (push_items == 0) {
3880 3881
		ret = 1;
		goto out;
3882
	}
3883
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3884

3885
	/* push data from right to left */
3886 3887 3888 3889 3890
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3891
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3892
		     btrfs_item_offset_nr(right, push_items - 1);
3893 3894

	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3895
		     leaf_data_end(fs_info, left) - push_space,
C
Chris Mason 已提交
3896
		     btrfs_leaf_data(right) +
3897
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3898
		     push_space);
3899
	old_left_nritems = btrfs_header_nritems(left);
3900
	BUG_ON(old_left_nritems <= 0);
3901

3902
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3903
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3904
		u32 ioff;
3905

3906
		item = btrfs_item_nr(i);
3907

3908 3909
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3910
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3911
		      &token);
3912
	}
3913
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3914 3915

	/* fixup right node */
J
Julia Lawall 已提交
3916 3917
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3918
		       right_nritems);
3919 3920 3921

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3922
						  leaf_data_end(fs_info, right);
3923
		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3924
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3925
				      btrfs_leaf_data(right) +
3926
				      leaf_data_end(fs_info, right), push_space);
3927 3928

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3929 3930 3931
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3932
	}
3933 3934
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3935
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3936
	for (i = 0; i < right_nritems; i++) {
3937
		item = btrfs_item_nr(i);
3938

3939 3940 3941
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3942
	}
3943

3944
	btrfs_mark_buffer_dirty(left);
3945 3946
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3947
	else
3948
		clean_tree_block(fs_info, right);
3949

3950
	btrfs_item_key(right, &disk_key, 0);
3951
	fixup_low_keys(fs_info, path, &disk_key, 1);
3952 3953 3954 3955

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3956
		btrfs_tree_unlock(path->nodes[0]);
3957 3958
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3959 3960
		path->slots[1] -= 1;
	} else {
3961
		btrfs_tree_unlock(left);
3962
		free_extent_buffer(left);
3963 3964
		path->slots[0] -= push_items;
	}
3965
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3966
	return ret;
3967 3968 3969 3970
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3971 3972
}

3973 3974 3975
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3976 3977 3978 3979
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3980 3981
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3982 3983
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3984
{
3985
	struct btrfs_fs_info *fs_info = root->fs_info;
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

4005
	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4006 4007 4008 4009 4010
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
4011 4012
		return 1;

4013 4014 4015
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

4016
	free_space = btrfs_leaf_free_space(fs_info, left);
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4027 4028
		if (ret == -ENOSPC)
			ret = 1;
4029 4030 4031
		goto out;
	}

4032
	free_space = btrfs_leaf_free_space(fs_info, left);
4033 4034 4035 4036 4037
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4038
	return __push_leaf_left(trans, fs_info, path, min_data_size,
4039 4040
			       empty, left, free_space, right_nritems,
			       max_slot);
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4051
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4052
				    struct btrfs_fs_info *fs_info,
4053 4054 4055 4056
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4057 4058 4059 4060 4061
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4062 4063 4064
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4065 4066 4067

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4068
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4069 4070 4071 4072 4073 4074

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4075
		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(fs_info) -
4076
		     data_copy_size, btrfs_leaf_data(l) +
4077
		     leaf_data_end(fs_info, l), data_copy_size);
4078

4079
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4080 4081

	for (i = 0; i < nritems; i++) {
4082
		struct btrfs_item *item = btrfs_item_nr(i);
4083 4084
		u32 ioff;

4085 4086 4087
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4088 4089 4090 4091
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4092
	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4093
		   path->slots[1] + 1, 1);
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
4128
	struct btrfs_fs_info *fs_info = root->fs_info;
4129 4130 4131 4132
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4133
	int space_needed = data_size;
4134 4135

	slot = path->slots[0];
4136
	if (slot < btrfs_header_nritems(path->nodes[0]))
4137
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4138 4139 4140 4141 4142

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4143
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4158
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4159 4160 4161 4162
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4163
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4175 4176 4177
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4178 4179
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4180
 */
4181 4182
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4183
			       const struct btrfs_key *ins_key,
4184 4185
			       struct btrfs_path *path, int data_size,
			       int extend)
4186
{
4187
	struct btrfs_disk_key disk_key;
4188
	struct extent_buffer *l;
4189
	u32 nritems;
4190 4191
	int mid;
	int slot;
4192
	struct extent_buffer *right;
4193
	struct btrfs_fs_info *fs_info = root->fs_info;
4194
	int ret = 0;
C
Chris Mason 已提交
4195
	int wret;
4196
	int split;
4197
	int num_doubles = 0;
4198
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4199

4200 4201 4202
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4203
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4204 4205
		return -EOVERFLOW;

C
Chris Mason 已提交
4206
	/* first try to make some room by pushing left and right */
4207
	if (data_size && path->nodes[1]) {
4208 4209 4210
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4211
			space_needed -= btrfs_leaf_free_space(fs_info, l);
4212 4213 4214

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4215
		if (wret < 0)
C
Chris Mason 已提交
4216
			return wret;
4217
		if (wret) {
4218 4219
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4220 4221 4222 4223
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4224

4225
		/* did the pushes work? */
4226
		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4227
			return 0;
4228
	}
C
Chris Mason 已提交
4229

C
Chris Mason 已提交
4230
	if (!path->nodes[1]) {
4231
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4232 4233 4234
		if (ret)
			return ret;
	}
4235
again:
4236
	split = 1;
4237
	l = path->nodes[0];
4238
	slot = path->slots[0];
4239
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4240
	mid = (nritems + 1) / 2;
4241

4242 4243 4244
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4245
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4246 4247 4248 4249 4250 4251
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4252
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4253 4254
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4255 4256 4257 4258 4259 4260
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4261
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4262 4263 4264 4265 4266 4267 4268 4269
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4270
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4271 4272
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4273
					split = 2;
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4284 4285
	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, 0, l->start, 0);
4286
	if (IS_ERR(right))
4287
		return PTR_ERR(right);
4288

4289
	root_add_used(root, fs_info->nodesize);
4290

4291
	memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4292
	btrfs_set_header_bytenr(right, right->start);
4293
	btrfs_set_header_generation(right, trans->transid);
4294
	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4295 4296
	btrfs_set_header_owner(right, root->root_key.objectid);
	btrfs_set_header_level(right, 0);
4297 4298
	write_extent_buffer_fsid(right, fs_info->fsid);
	write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4299

4300 4301 4302
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4303 4304
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1] + 1, 1);
4305 4306 4307 4308 4309 4310 4311
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4312 4313
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1], 1);
4314 4315 4316 4317
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4318
			if (path->slots[1] == 0)
4319
				fixup_low_keys(fs_info, path, &disk_key, 1);
4320
		}
4321 4322 4323 4324 4325
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4326
		return ret;
4327
	}
C
Chris Mason 已提交
4328

4329
	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4330

4331
	if (split == 2) {
4332 4333 4334
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4335
	}
4336

4337
	return 0;
4338 4339 4340 4341

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4342
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4343 4344
		return 0;
	goto again;
4345 4346
}

Y
Yan, Zheng 已提交
4347 4348 4349
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4350
{
4351
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan, Zheng 已提交
4352
	struct btrfs_key key;
4353
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4354 4355 4356 4357
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4358 4359

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4360 4361 4362 4363 4364
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4365
	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
Y
Yan, Zheng 已提交
4366
		return 0;
4367 4368

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4369 4370 4371 4372 4373
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4374
	btrfs_release_path(path);
4375 4376

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4377 4378
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4379
	path->search_for_split = 0;
4380 4381
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4382 4383
	if (ret < 0)
		goto err;
4384

Y
Yan, Zheng 已提交
4385 4386
	ret = -EAGAIN;
	leaf = path->nodes[0];
4387 4388
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4389 4390
		goto err;

4391
	/* the leaf has  changed, it now has room.  return now */
4392
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4393 4394
		goto err;

Y
Yan, Zheng 已提交
4395 4396 4397 4398 4399
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4400 4401
	}

4402
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4403
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4404 4405
	if (ret)
		goto err;
4406

Y
Yan, Zheng 已提交
4407
	path->keep_locks = 0;
4408
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4409 4410 4411 4412 4413 4414
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4415
static noinline int split_item(struct btrfs_fs_info *fs_info,
Y
Yan, Zheng 已提交
4416
			       struct btrfs_path *path,
4417
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4430
	leaf = path->nodes[0];
4431
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4432

4433 4434
	btrfs_set_path_blocking(path);

4435
	item = btrfs_item_nr(path->slots[0]);
4436 4437 4438 4439
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4440 4441 4442
	if (!buf)
		return -ENOMEM;

4443 4444 4445
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4446
	slot = path->slots[0] + 1;
4447 4448 4449 4450
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4451 4452
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4453 4454 4455 4456 4457
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4458
	new_item = btrfs_item_nr(slot);
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4480
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4481
	kfree(buf);
Y
Yan, Zheng 已提交
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4503
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4504 4505 4506 4507 4508 4509 4510 4511
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4512
	ret = split_item(root->fs_info, path, new_key, split_offset);
4513 4514 4515
	return ret;
}

Y
Yan, Zheng 已提交
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4527
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4541
	setup_items_for_insert(root, path, new_key, &item_size,
4542 4543
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4544 4545 4546 4547 4548 4549 4550 4551
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4552 4553 4554 4555 4556 4557
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4558 4559
void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
			 struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4560 4561
{
	int slot;
4562 4563
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4564 4565 4566 4567 4568 4569
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4570 4571 4572
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4573

4574
	leaf = path->nodes[0];
4575 4576 4577 4578
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4579
		return;
C
Chris Mason 已提交
4580

4581
	nritems = btrfs_header_nritems(leaf);
4582
	data_end = leaf_data_end(fs_info, leaf);
C
Chris Mason 已提交
4583

4584
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4585

C
Chris Mason 已提交
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4596
		u32 ioff;
4597
		item = btrfs_item_nr(i);
4598

4599 4600 4601
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4602
	}
4603

C
Chris Mason 已提交
4604
	/* shift the data */
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
	if (from_end) {
		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
			      data_end + size_diff, btrfs_leaf_data(leaf) +
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4628
				      (unsigned long)fi,
4629
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
			}
		}

		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
			      data_end + size_diff, btrfs_leaf_data(leaf) +
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4641
			fixup_low_keys(fs_info, path, &disk_key, 1);
4642
	}
4643

4644
	item = btrfs_item_nr(slot);
4645 4646
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4647

4648 4649
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
		btrfs_print_leaf(fs_info, leaf);
C
Chris Mason 已提交
4650
		BUG();
4651
	}
C
Chris Mason 已提交
4652 4653
}

C
Chris Mason 已提交
4654
/*
S
Stefan Behrens 已提交
4655
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4656
 */
4657
void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4658
		       u32 data_size)
4659 4660
{
	int slot;
4661 4662
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4663 4664 4665 4666 4667
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4668 4669 4670
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4671

4672
	leaf = path->nodes[0];
4673

4674
	nritems = btrfs_header_nritems(leaf);
4675
	data_end = leaf_data_end(fs_info, leaf);
4676

4677 4678
	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
		btrfs_print_leaf(fs_info, leaf);
4679
		BUG();
4680
	}
4681
	slot = path->slots[0];
4682
	old_data = btrfs_item_end_nr(leaf, slot);
4683 4684

	BUG_ON(slot < 0);
4685
	if (slot >= nritems) {
4686
		btrfs_print_leaf(fs_info, leaf);
4687 4688
		btrfs_crit(fs_info, "slot %d too large, nritems %d",
			   slot, nritems);
4689 4690
		BUG_ON(1);
	}
4691 4692 4693 4694 4695 4696

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4697
		u32 ioff;
4698
		item = btrfs_item_nr(i);
4699

4700 4701 4702
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4703
	}
4704

4705
	/* shift the data */
4706
	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4707 4708
		      data_end - data_size, btrfs_leaf_data(leaf) +
		      data_end, old_data - data_end);
4709

4710
	data_end = old_data;
4711
	old_size = btrfs_item_size_nr(leaf, slot);
4712
	item = btrfs_item_nr(slot);
4713 4714
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4715

4716 4717
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
		btrfs_print_leaf(fs_info, leaf);
4718
		BUG();
4719
	}
4720 4721
}

C
Chris Mason 已提交
4722
/*
4723 4724 4725
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4726
 */
4727
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4728
			    const struct btrfs_key *cpu_key, u32 *data_size,
4729
			    u32 total_data, u32 total_size, int nr)
4730
{
4731
	struct btrfs_fs_info *fs_info = root->fs_info;
4732
	struct btrfs_item *item;
4733
	int i;
4734
	u32 nritems;
4735
	unsigned int data_end;
C
Chris Mason 已提交
4736
	struct btrfs_disk_key disk_key;
4737 4738
	struct extent_buffer *leaf;
	int slot;
4739 4740
	struct btrfs_map_token token;

4741 4742
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4743
		fixup_low_keys(fs_info, path, &disk_key, 1);
4744 4745 4746
	}
	btrfs_unlock_up_safe(path, 1);

4747
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4748

4749
	leaf = path->nodes[0];
4750
	slot = path->slots[0];
C
Chris Mason 已提交
4751

4752
	nritems = btrfs_header_nritems(leaf);
4753
	data_end = leaf_data_end(fs_info, leaf);
4754

4755 4756
	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
		btrfs_print_leaf(fs_info, leaf);
4757
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4758
			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4759
		BUG();
4760
	}
4761

4762
	if (slot != nritems) {
4763
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4764

4765
		if (old_data < data_end) {
4766
			btrfs_print_leaf(fs_info, leaf);
4767
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4768
				   slot, old_data, data_end);
4769 4770
			BUG_ON(1);
		}
4771 4772 4773 4774
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4775
		for (i = slot; i < nritems; i++) {
4776
			u32 ioff;
4777

4778
			item = btrfs_item_nr(i);
4779 4780 4781
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4782
		}
4783
		/* shift the items */
4784
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4785
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4786
			      (nritems - slot) * sizeof(struct btrfs_item));
4787 4788

		/* shift the data */
4789
		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4790
			      data_end - total_data, btrfs_leaf_data(leaf) +
C
Chris Mason 已提交
4791
			      data_end, old_data - data_end);
4792 4793
		data_end = old_data;
	}
4794

4795
	/* setup the item for the new data */
4796 4797 4798
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4799
		item = btrfs_item_nr(slot + i);
4800 4801
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4802
		data_end -= data_size[i];
4803
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4804
	}
4805

4806
	btrfs_set_header_nritems(leaf, nritems + nr);
4807
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4808

4809 4810
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
		btrfs_print_leaf(fs_info, leaf);
4811
		BUG();
4812
	}
4813 4814 4815 4816 4817 4818 4819 4820 4821
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4822
			    const struct btrfs_key *cpu_key, u32 *data_size,
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4839
		return ret;
4840 4841 4842 4843

	slot = path->slots[0];
	BUG_ON(slot < 0);

4844
	setup_items_for_insert(root, path, cpu_key, data_size,
4845
			       total_data, total_size, nr);
4846
	return 0;
4847 4848 4849 4850 4851 4852
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4853 4854 4855
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4856 4857
{
	int ret = 0;
C
Chris Mason 已提交
4858
	struct btrfs_path *path;
4859 4860
	struct extent_buffer *leaf;
	unsigned long ptr;
4861

C
Chris Mason 已提交
4862
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4863 4864
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4865
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4866
	if (!ret) {
4867 4868 4869 4870
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4871
	}
C
Chris Mason 已提交
4872
	btrfs_free_path(path);
C
Chris Mason 已提交
4873
	return ret;
4874 4875
}

C
Chris Mason 已提交
4876
/*
C
Chris Mason 已提交
4877
 * delete the pointer from a given node.
C
Chris Mason 已提交
4878
 *
C
Chris Mason 已提交
4879 4880
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4881
 */
4882 4883
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4884
{
4885
	struct btrfs_fs_info *fs_info = root->fs_info;
4886
	struct extent_buffer *parent = path->nodes[level];
4887
	u32 nritems;
4888
	int ret;
4889

4890
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4891
	if (slot != nritems - 1) {
4892
		if (level)
4893
			tree_mod_log_eb_move(fs_info, parent, slot,
4894
					     slot + 1, nritems - slot - 1);
4895 4896 4897
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4898 4899
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4900
	} else if (level) {
4901
		ret = tree_mod_log_insert_key(fs_info, parent, slot,
4902
					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4903
		BUG_ON(ret < 0);
4904
	}
4905

4906
	nritems--;
4907
	btrfs_set_header_nritems(parent, nritems);
4908
	if (nritems == 0 && parent == root->node) {
4909
		BUG_ON(btrfs_header_level(root->node) != 1);
4910
		/* just turn the root into a leaf and break */
4911
		btrfs_set_header_level(root->node, 0);
4912
	} else if (slot == 0) {
4913 4914 4915
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4916
		fixup_low_keys(fs_info, path, &disk_key, level + 1);
4917
	}
C
Chris Mason 已提交
4918
	btrfs_mark_buffer_dirty(parent);
4919 4920
}

4921 4922
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4923
 * path->nodes[1].
4924 4925 4926 4927 4928 4929 4930
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4931 4932 4933 4934
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4935
{
4936
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4937
	del_ptr(root, path, 1, path->slots[1]);
4938

4939 4940 4941 4942 4943 4944
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4945 4946
	root_sub_used(root, leaf->len);

4947
	extent_buffer_get(leaf);
4948
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4949
	free_extent_buffer_stale(leaf);
4950
}
C
Chris Mason 已提交
4951 4952 4953 4954
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4955 4956
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4957
{
4958
	struct btrfs_fs_info *fs_info = root->fs_info;
4959 4960
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4961 4962
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4963 4964
	int ret = 0;
	int wret;
4965
	int i;
4966
	u32 nritems;
4967 4968 4969
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4970

4971
	leaf = path->nodes[0];
4972 4973 4974 4975 4976
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4977
	nritems = btrfs_header_nritems(leaf);
4978

4979
	if (slot + nr != nritems) {
4980
		int data_end = leaf_data_end(fs_info, leaf);
4981 4982

		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
C
Chris Mason 已提交
4983 4984
			      data_end + dsize,
			      btrfs_leaf_data(leaf) + data_end,
4985
			      last_off - data_end);
4986

4987
		for (i = slot + nr; i < nritems; i++) {
4988
			u32 ioff;
4989

4990
			item = btrfs_item_nr(i);
4991 4992 4993
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4994
		}
4995

4996
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4997
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4998
			      sizeof(struct btrfs_item) *
4999
			      (nritems - slot - nr));
5000
	}
5001 5002
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
5003

C
Chris Mason 已提交
5004
	/* delete the leaf if we've emptied it */
5005
	if (nritems == 0) {
5006 5007
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
5008
		} else {
5009
			btrfs_set_path_blocking(path);
5010
			clean_tree_block(fs_info, leaf);
5011
			btrfs_del_leaf(trans, root, path, leaf);
5012
		}
5013
	} else {
5014
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
5015
		if (slot == 0) {
5016 5017 5018
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
5019
			fixup_low_keys(fs_info, path, &disk_key, 1);
C
Chris Mason 已提交
5020 5021
		}

C
Chris Mason 已提交
5022
		/* delete the leaf if it is mostly empty */
5023
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5024 5025 5026 5027
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5028
			slot = path->slots[1];
5029 5030
			extent_buffer_get(leaf);

5031
			btrfs_set_path_blocking(path);
5032 5033
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5034
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5035
				ret = wret;
5036 5037 5038

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5039 5040
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5041
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5042 5043
					ret = wret;
			}
5044 5045

			if (btrfs_header_nritems(leaf) == 0) {
5046
				path->slots[1] = slot;
5047
				btrfs_del_leaf(trans, root, path, leaf);
5048
				free_extent_buffer(leaf);
5049
				ret = 0;
C
Chris Mason 已提交
5050
			} else {
5051 5052 5053 5054 5055 5056 5057
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5058
				free_extent_buffer(leaf);
5059
			}
5060
		} else {
5061
			btrfs_mark_buffer_dirty(leaf);
5062 5063
		}
	}
C
Chris Mason 已提交
5064
	return ret;
5065 5066
}

5067
/*
5068
 * search the tree again to find a leaf with lesser keys
5069 5070
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5071 5072 5073
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5074
 */
5075
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5076
{
5077 5078 5079
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5080

5081
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5082

5083
	if (key.offset > 0) {
5084
		key.offset--;
5085
	} else if (key.type > 0) {
5086
		key.type--;
5087 5088
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5089
		key.objectid--;
5090 5091 5092
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5093
		return 1;
5094
	}
5095

5096
	btrfs_release_path(path);
5097 5098 5099 5100 5101
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5113 5114
		return 0;
	return 1;
5115 5116
}

5117 5118
/*
 * A helper function to walk down the tree starting at min_key, and looking
5119 5120
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This does lock as it descends, and path->keep_locks should be set
 * to 1 by the caller.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5132 5133 5134 5135
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5136 5137 5138 5139
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5140
			 struct btrfs_path *path,
5141 5142
			 u64 min_trans)
{
5143
	struct btrfs_fs_info *fs_info = root->fs_info;
5144 5145 5146
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5147
	int sret;
5148 5149 5150
	u32 nritems;
	int level;
	int ret = 1;
5151
	int keep_locks = path->keep_locks;
5152

5153
	path->keep_locks = 1;
5154
again:
5155
	cur = btrfs_read_lock_root_node(root);
5156
	level = btrfs_header_level(cur);
5157
	WARN_ON(path->nodes[level]);
5158
	path->nodes[level] = cur;
5159
	path->locks[level] = BTRFS_READ_LOCK;
5160 5161 5162 5163 5164

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5165
	while (1) {
5166 5167
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5168
		sret = bin_search(cur, min_key, level, &slot);
5169

5170 5171
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5172 5173
			if (slot >= nritems)
				goto find_next_key;
5174 5175 5176 5177 5178
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5179 5180
		if (sret && slot > 0)
			slot--;
5181
		/*
5182 5183
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5184
		 */
C
Chris Mason 已提交
5185
		while (slot < nritems) {
5186
			u64 gen;
5187

5188 5189 5190 5191 5192
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5193
			break;
5194
		}
5195
find_next_key:
5196 5197 5198 5199 5200
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5201
			path->slots[level] = slot;
5202
			btrfs_set_path_blocking(path);
5203
			sret = btrfs_find_next_key(root, path, min_key, level,
5204
						  min_trans);
5205
			if (sret == 0) {
5206
				btrfs_release_path(path);
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5219
		btrfs_set_path_blocking(path);
5220
		cur = read_node_slot(fs_info, cur, slot);
5221 5222 5223 5224
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5225

5226
		btrfs_tree_read_lock(cur);
5227

5228
		path->locks[level - 1] = BTRFS_READ_LOCK;
5229
		path->nodes[level - 1] = cur;
5230
		unlock_up(path, level, 1, 0, NULL);
5231
		btrfs_clear_path_blocking(path, NULL, 0);
5232 5233
	}
out:
5234 5235 5236 5237
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5238
		memcpy(min_key, &found_key, sizeof(found_key));
5239
	}
5240 5241 5242
	return ret;
}

5243
static int tree_move_down(struct btrfs_fs_info *fs_info,
5244 5245 5246
			   struct btrfs_path *path,
			   int *level, int root_level)
{
5247 5248
	struct extent_buffer *eb;

5249
	BUG_ON(*level == 0);
5250
	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5251 5252 5253 5254
	if (IS_ERR(eb))
		return PTR_ERR(eb);

	path->nodes[*level - 1] = eb;
5255 5256
	path->slots[*level - 1] = 0;
	(*level)--;
5257
	return 0;
5258 5259
}

5260
static int tree_move_next_or_upnext(struct btrfs_fs_info *fs_info,
5261 5262 5263 5264 5265 5266 5267 5268 5269
				    struct btrfs_path *path,
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5270
	while (path->slots[*level] >= nritems) {
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
5291
static int tree_advance(struct btrfs_fs_info *fs_info,
5292 5293 5294 5295 5296 5297 5298 5299
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
5300 5301
		ret = tree_move_next_or_upnext(fs_info, path, level,
					       root_level);
5302
	} else {
5303
		ret = tree_move_down(fs_info, path, level, root_level);
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

5316
static int tree_compare_item(struct btrfs_path *left_path,
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
5361
	struct btrfs_fs_info *fs_info = left_root->fs_info;
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5379 5380
	u64 left_gen;
	u64 right_gen;
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5393
	tmp_buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
5394
	if (!tmp_buf) {
5395
		tmp_buf = vmalloc(fs_info->nodesize);
5396 5397 5398 5399
		if (!tmp_buf) {
			ret = -ENOMEM;
			goto out;
		}
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5443
	down_read(&fs_info->commit_root_sem);
5444 5445 5446 5447 5448 5449 5450 5451 5452
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
	left_path->nodes[left_level] = left_root->commit_root;
	extent_buffer_get(left_path->nodes[left_level]);

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
	right_path->nodes[right_level] = right_root->commit_root;
	extent_buffer_get(right_path->nodes[right_level]);
5453
	up_read(&fs_info->commit_root_sem);
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
5473
			ret = tree_advance(fs_info, left_path, &left_level,
5474 5475 5476
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
5477
			if (ret == -1)
5478
				left_end_reached = ADVANCE;
5479 5480
			else if (ret < 0)
				goto out;
5481 5482 5483
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
5484
			ret = tree_advance(fs_info, right_path, &right_level,
5485 5486 5487
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
5488
			if (ret == -1)
5489
				right_end_reached = ADVANCE;
5490 5491
			else if (ret < 0)
				goto out;
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5545
				enum btrfs_compare_tree_result result;
5546

5547
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5548 5549
				ret = tree_compare_item(left_path, right_path,
							tmp_buf);
5550
				if (ret)
5551
					result = BTRFS_COMPARE_TREE_CHANGED;
5552
				else
5553
					result = BTRFS_COMPARE_TREE_SAME;
5554 5555
				ret = changed_cb(left_root, right_root,
						 left_path, right_path,
5556
						 &left_key, result, ctx);
5557 5558
				if (ret < 0)
					goto out;
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5575 5576 5577 5578 5579 5580 5581 5582
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5604
	kvfree(tmp_buf);
5605 5606 5607
	return ret;
}

5608 5609 5610
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5611
 * tree based on the current path and the min_trans parameters.
5612 5613 5614 5615 5616 5617 5618
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5619
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5620
			struct btrfs_key *key, int level, u64 min_trans)
5621 5622 5623 5624
{
	int slot;
	struct extent_buffer *c;

5625
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5626
	while (level < BTRFS_MAX_LEVEL) {
5627 5628 5629 5630 5631
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5632
next:
5633
		if (slot >= btrfs_header_nritems(c)) {
5634 5635 5636 5637 5638
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5639
				return 1;
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5653
			btrfs_release_path(path);
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5666
		}
5667

5668 5669
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5670 5671 5672 5673 5674 5675 5676
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5677
			btrfs_node_key_to_cpu(c, key, slot);
5678
		}
5679 5680 5681 5682 5683
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5684
/*
5685
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5686 5687
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5688
 */
C
Chris Mason 已提交
5689
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5690 5691 5692 5693 5694 5695
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5696 5697
{
	int slot;
5698
	int level;
5699
	struct extent_buffer *c;
5700
	struct extent_buffer *next;
5701 5702 5703
	struct btrfs_key key;
	u32 nritems;
	int ret;
5704
	int old_spinning = path->leave_spinning;
5705
	int next_rw_lock = 0;
5706 5707

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5708
	if (nritems == 0)
5709 5710
		return 1;

5711 5712 5713 5714
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5715
	next_rw_lock = 0;
5716
	btrfs_release_path(path);
5717

5718
	path->keep_locks = 1;
5719
	path->leave_spinning = 1;
5720

J
Jan Schmidt 已提交
5721 5722 5723 5724
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5725 5726 5727 5728 5729
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5730
	nritems = btrfs_header_nritems(path->nodes[0]);
5731 5732 5733 5734 5735 5736
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5737
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5738 5739
		if (ret == 0)
			path->slots[0]++;
5740
		ret = 0;
5741 5742
		goto done;
	}
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5761

C
Chris Mason 已提交
5762
	while (level < BTRFS_MAX_LEVEL) {
5763 5764 5765 5766
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5767

5768 5769
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5770
		if (slot >= btrfs_header_nritems(c)) {
5771
			level++;
5772 5773 5774 5775
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5776 5777
			continue;
		}
5778

5779
		if (next) {
5780
			btrfs_tree_unlock_rw(next, next_rw_lock);
5781
			free_extent_buffer(next);
5782
		}
5783

5784
		next = c;
5785
		next_rw_lock = path->locks[level];
5786
		ret = read_block_for_search(root, path, &next, level,
5787
					    slot, &key);
5788 5789
		if (ret == -EAGAIN)
			goto again;
5790

5791
		if (ret < 0) {
5792
			btrfs_release_path(path);
5793 5794 5795
			goto done;
		}

5796
		if (!path->skip_locking) {
5797
			ret = btrfs_try_tree_read_lock(next);
5798 5799 5800 5801 5802 5803 5804 5805
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5806
				free_extent_buffer(next);
5807 5808 5809 5810
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5811 5812
			if (!ret) {
				btrfs_set_path_blocking(path);
5813
				btrfs_tree_read_lock(next);
5814
				btrfs_clear_path_blocking(path, next,
5815
							  BTRFS_READ_LOCK);
5816
			}
5817
			next_rw_lock = BTRFS_READ_LOCK;
5818
		}
5819 5820 5821
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5822
	while (1) {
5823 5824
		level--;
		c = path->nodes[level];
5825
		if (path->locks[level])
5826
			btrfs_tree_unlock_rw(c, path->locks[level]);
5827

5828
		free_extent_buffer(c);
5829 5830
		path->nodes[level] = next;
		path->slots[level] = 0;
5831
		if (!path->skip_locking)
5832
			path->locks[level] = next_rw_lock;
5833 5834
		if (!level)
			break;
5835

5836
		ret = read_block_for_search(root, path, &next, level,
5837
					    0, &key);
5838 5839 5840
		if (ret == -EAGAIN)
			goto again;

5841
		if (ret < 0) {
5842
			btrfs_release_path(path);
5843 5844 5845
			goto done;
		}

5846
		if (!path->skip_locking) {
5847
			ret = btrfs_try_tree_read_lock(next);
5848 5849
			if (!ret) {
				btrfs_set_path_blocking(path);
5850
				btrfs_tree_read_lock(next);
5851
				btrfs_clear_path_blocking(path, next,
5852 5853
							  BTRFS_READ_LOCK);
			}
5854
			next_rw_lock = BTRFS_READ_LOCK;
5855
		}
5856
	}
5857
	ret = 0;
5858
done:
5859
	unlock_up(path, 0, 1, 0, NULL);
5860 5861 5862 5863 5864
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5865
}
5866

5867 5868 5869 5870 5871 5872
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5873 5874 5875 5876 5877 5878
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5879
	u32 nritems;
5880 5881
	int ret;

C
Chris Mason 已提交
5882
	while (1) {
5883
		if (path->slots[0] == 0) {
5884
			btrfs_set_path_blocking(path);
5885 5886 5887 5888 5889 5890 5891
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5892 5893 5894 5895 5896 5897
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5898
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5899 5900
		if (found_key.objectid < min_objectid)
			break;
5901 5902
		if (found_key.type == type)
			return 0;
5903 5904 5905
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5906 5907 5908
	}
	return 1;
}
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}