intel_ringbuffer.h 21.7 KB
Newer Older
1 2 3
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

4
#include <linux/hashtable.h>
5
#include "i915_gem_batch_pool.h"
6
#include "i915_gem_request.h"
7
#include "i915_gem_timeline.h"
8 9 10

#define I915_CMD_HASH_ORDER 9

11 12 13 14 15 16
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
17
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
18

19 20 21 22 23 24 25 26 27 28 29
/*
 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
 *
 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
 * cacheline, the Head Pointer must not be greater than the Tail
 * Pointer."
 */
#define I915_RING_FREE_SPACE 64

30 31 32 33
struct intel_hw_status_page {
	struct i915_vma *vma;
	u32 *page_addr;
	u32 ggtt_offset;
34 35
};

36 37
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
38

39 40
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
41

42 43
#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
44

45 46
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
47

48 49
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
50

51 52
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
53

54 55 56
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
57 58 59
#define gen8_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
60
#define GEN8_SIGNAL_OFFSET(__ring, to)			     \
61
	(dev_priv->semaphore->node.start + \
62
	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
63
#define GEN8_WAIT_OFFSET(__ring, from)			     \
64
	(dev_priv->semaphore->node.start + \
65
	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
66

67
enum intel_engine_hangcheck_action {
68 69 70 71 72 73 74
	ENGINE_IDLE = 0,
	ENGINE_WAIT,
	ENGINE_ACTIVE_SEQNO,
	ENGINE_ACTIVE_HEAD,
	ENGINE_ACTIVE_SUBUNITS,
	ENGINE_WAIT_KICK,
	ENGINE_DEAD,
75
};
76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
static inline const char *
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
{
	switch (a) {
	case ENGINE_IDLE:
		return "idle";
	case ENGINE_WAIT:
		return "wait";
	case ENGINE_ACTIVE_SEQNO:
		return "active seqno";
	case ENGINE_ACTIVE_HEAD:
		return "active head";
	case ENGINE_ACTIVE_SUBUNITS:
		return "active subunits";
	case ENGINE_WAIT_KICK:
		return "wait kick";
	case ENGINE_DEAD:
		return "dead";
	}

	return "unknown";
}
99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#define I915_MAX_SLICES	3
#define I915_MAX_SUBSLICES 3

#define instdone_slice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)

#define instdone_subslice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)

#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
	for ((slice__) = 0, (subslice__) = 0; \
	     (slice__) < I915_MAX_SLICES; \
	     (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
	       (slice__) += ((subslice__) == 0)) \
		for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
			    (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))

119 120 121 122
struct intel_instdone {
	u32 instdone;
	/* The following exist only in the RCS engine */
	u32 slice_common;
123 124
	u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
	u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
125 126
};

127
struct intel_engine_hangcheck {
128
	u64 acthd;
129
	u32 seqno;
130
	enum intel_engine_hangcheck_action action;
131
	unsigned long action_timestamp;
132
	int deadlock;
133
	struct intel_instdone instdone;
134
	bool stalled;
135 136
};

137
struct intel_ring {
138
	struct i915_vma *vma;
139
	void *vaddr;
140

141
	struct intel_engine_cs *engine;
142

143 144
	struct list_head request_list;

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	u32 head;
	u32 tail;
	int space;
	int size;
	int effective_size;

	/** We track the position of the requests in the ring buffer, and
	 * when each is retired we increment last_retired_head as the GPU
	 * must have finished processing the request and so we know we
	 * can advance the ringbuffer up to that position.
	 *
	 * last_retired_head is set to -1 after the value is consumed so
	 * we can detect new retirements.
	 */
	u32 last_retired_head;
};

162
struct i915_gem_context;
163
struct drm_i915_reg_table;
164

165 166 167 168 169 170 171 172 173 174 175
/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
176
struct i915_ctx_workarounds {
177 178 179 180
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
181
	struct i915_vma *vma;
182 183
};

184
struct drm_i915_gem_request;
185
struct intel_render_state;
186

187 188
struct intel_engine_cs {
	struct drm_i915_private *i915;
189
	const char	*name;
190
	enum intel_engine_id {
191
		RCS = 0,
192
		BCS,
193 194 195
		VCS,
		VCS2,	/* Keep instances of the same type engine together. */
		VECS
196
	} id;
197
#define _VCS(n) (VCS + (n))
198
	unsigned int exec_id;
199 200 201 202 203 204 205 206
	enum intel_engine_hw_id {
		RCS_HW = 0,
		VCS_HW,
		BCS_HW,
		VECS_HW,
		VCS2_HW
	} hw_id;
	enum intel_engine_hw_id guc_id; /* XXX same as hw_id? */
207
	u32		mmio_base;
208
	unsigned int irq_shift;
209
	struct intel_ring *buffer;
210
	struct intel_timeline *timeline;
211

212 213
	struct intel_render_state *render_state;

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
231
		struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
232 233
		bool irq_posted;

234
		spinlock_t lock; /* protects the lists of requests; irqsafe */
235
		struct rb_root waiters; /* sorted by retirement, priority */
236
		struct rb_root signals; /* sorted by retirement */
237
		struct intel_wait *first_wait; /* oldest waiter by retirement */
238
		struct task_struct *signaler; /* used for fence signalling */
239
		struct drm_i915_gem_request *first_signal;
240
		struct timer_list fake_irq; /* used after a missed interrupt */
241 242 243
		struct timer_list hangcheck; /* detect missed interrupts */

		unsigned long timeout;
244 245 246

		bool irq_enabled : 1;
		bool rpm_wakelock : 1;
247 248
	} breadcrumbs;

249 250 251 252 253 254 255
	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

256
	struct intel_hw_status_page status_page;
257
	struct i915_ctx_workarounds wa_ctx;
258
	struct i915_vma *scratch;
259

260 261
	u32             irq_keep_mask; /* always keep these interrupts */
	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
262 263
	void		(*irq_enable)(struct intel_engine_cs *engine);
	void		(*irq_disable)(struct intel_engine_cs *engine);
264

265
	int		(*init_hw)(struct intel_engine_cs *engine);
266 267
	void		(*reset_hw)(struct intel_engine_cs *engine,
				    struct drm_i915_gem_request *req);
268

269 270 271 272
	int		(*context_pin)(struct intel_engine_cs *engine,
				       struct i915_gem_context *ctx);
	void		(*context_unpin)(struct intel_engine_cs *engine,
					 struct i915_gem_context *ctx);
273
	int		(*init_context)(struct drm_i915_gem_request *req);
274

275 276 277 278 279 280 281 282 283 284 285
	int		(*emit_flush)(struct drm_i915_gem_request *request,
				      u32 mode);
#define EMIT_INVALIDATE	BIT(0)
#define EMIT_FLUSH	BIT(1)
#define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
					 u64 offset, u32 length,
					 unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
#define I915_DISPATCH_RS     BIT(2)
C
Chris Wilson 已提交
286 287
	void		(*emit_breadcrumb)(struct drm_i915_gem_request *req,
					   u32 *out);
288
	int		emit_breadcrumb_sz;
289 290 291 292 293 294 295

	/* Pass the request to the hardware queue (e.g. directly into
	 * the legacy ringbuffer or to the end of an execlist).
	 *
	 * This is called from an atomic context with irqs disabled; must
	 * be irq safe.
	 */
296
	void		(*submit_request)(struct drm_i915_gem_request *req);
297

298 299 300 301 302 303 304 305 306
	/* Call when the priority on a request has changed and it and its
	 * dependencies may need rescheduling. Note the request itself may
	 * not be ready to run!
	 *
	 * Called under the struct_mutex.
	 */
	void		(*schedule)(struct drm_i915_gem_request *request,
				    int priority);

307 308 309 310 311 312
	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
313 314
	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
	void		(*cleanup)(struct intel_engine_cs *engine);
315

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
353
	struct {
354
		union {
355 356 357
#define GEN6_SEMAPHORE_LAST	VECS_HW
#define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
#define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
358 359
			struct {
				/* our mbox written by others */
360
				u32		wait[GEN6_NUM_SEMAPHORES];
361
				/* mboxes this ring signals to */
362
				i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
363
			} mbox;
364
			u64		signal_ggtt[I915_NUM_ENGINES];
365
		};
366 367

		/* AKA wait() */
368 369
		int	(*sync_to)(struct drm_i915_gem_request *req,
				   struct drm_i915_gem_request *signal);
C
Chris Wilson 已提交
370
		u32	*(*signal)(struct drm_i915_gem_request *req, u32 *out);
371
	} semaphore;
372

373
	/* Execlists */
374
	struct tasklet_struct irq_tasklet;
375 376 377 378
	struct execlist_port {
		struct drm_i915_gem_request *request;
		unsigned int count;
	} execlist_port[2];
379 380
	struct rb_root execlist_queue;
	struct rb_node *execlist_first;
381
	unsigned int fw_domains;
382
	bool disable_lite_restore_wa;
383
	bool preempt_wa;
384
	u32 ctx_desc_template;
385

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	/* Contexts are pinned whilst they are active on the GPU. The last
	 * context executed remains active whilst the GPU is idle - the
	 * switch away and write to the context object only occurs on the
	 * next execution.  Contexts are only unpinned on retirement of the
	 * following request ensuring that we can always write to the object
	 * on the context switch even after idling. Across suspend, we switch
	 * to the kernel context and trash it as the save may not happen
	 * before the hardware is powered down.
	 */
	struct i915_gem_context *last_retired_context;

	/* We track the current MI_SET_CONTEXT in order to eliminate
	 * redudant context switches. This presumes that requests are not
	 * reordered! Or when they are the tracking is updated along with
	 * the emission of individual requests into the legacy command
	 * stream (ring).
	 */
	struct i915_gem_context *legacy_active_context;
404

405
	struct intel_engine_hangcheck hangcheck;
406

407 408
	bool needs_cmd_parser;

409
	/*
410
	 * Table of commands the command parser needs to know about
411
	 * for this engine.
412
	 */
413
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
414 415 416 417

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
418 419
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;
420 421 422 423 424

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
425
	 * If the command parser finds an entry for a command in the engine's
426
	 * cmd_tables, it gets the command's length based on the table entry.
427 428 429
	 * If not, it calls this function to determine the per-engine length
	 * field encoding for the command (i.e. different opcode ranges use
	 * certain bits to encode the command length in the header).
430 431
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
432 433
};

434
static inline unsigned
435
intel_engine_flag(const struct intel_engine_cs *engine)
436
{
437
	return 1 << engine->id;
438 439
}

440
static inline void
441
intel_flush_status_page(struct intel_engine_cs *engine, int reg)
442
{
443 444 445
	mb();
	clflush(&engine->status_page.page_addr[reg]);
	mb();
446 447
}

448
static inline u32
449
intel_read_status_page(struct intel_engine_cs *engine, int reg)
450
{
451
	/* Ensure that the compiler doesn't optimize away the load. */
452
	return READ_ONCE(engine->status_page.page_addr[reg]);
453 454
}

M
Mika Kuoppala 已提交
455
static inline void
456
intel_write_status_page(struct intel_engine_cs *engine,
M
Mika Kuoppala 已提交
457 458
			int reg, u32 value)
{
459
	engine->status_page.page_addr[reg] = value;
M
Mika Kuoppala 已提交
460 461
}

462
/*
C
Chris Wilson 已提交
463 464 465 466 467 468 469 470 471 472 473
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
474
 * 0x20-0x2f: Reserved (Gen6+)
C
Chris Wilson 已提交
475
 *
476
 * The area from dword 0x30 to 0x3ff is available for driver usage.
C
Chris Wilson 已提交
477
 */
478
#define I915_GEM_HWS_INDEX		0x30
479
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
480
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
481
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
C
Chris Wilson 已提交
482

483 484
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size);
485 486
int intel_ring_pin(struct intel_ring *ring);
void intel_ring_unpin(struct intel_ring *ring);
487
void intel_ring_free(struct intel_ring *ring);
488

489 490
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
491

492 493
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);

494 495
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);

496
int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
497
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
498

499
static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
500
{
501 502
	*(uint32_t *)(ring->vaddr + ring->tail) = data;
	ring->tail += 4;
503 504
}

505
static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
506
{
507
	intel_ring_emit(ring, i915_mmio_reg_offset(reg));
508
}
509

510
static inline void intel_ring_advance(struct intel_ring *ring)
511
{
512 513 514 515 516 517 518
	/* Dummy function.
	 *
	 * This serves as a placeholder in the code so that the reader
	 * can compare against the preceding intel_ring_begin() and
	 * check that the number of dwords emitted matches the space
	 * reserved for the command packet (i.e. the value passed to
	 * intel_ring_begin()).
519
	 */
520 521
}

C
Chris Wilson 已提交
522
static inline u32 intel_ring_offset(struct intel_ring *ring, void *addr)
523 524
{
	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
C
Chris Wilson 已提交
525 526
	u32 offset = addr - ring->vaddr;
	return offset & (ring->size - 1);
527
}
528

529
int __intel_ring_space(int head, int tail, int size);
530
void intel_ring_update_space(struct intel_ring *ring);
531

532
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
533

534 535
void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);
536
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
537
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
538

539 540 541 542 543
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
544

545
u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
546 547
u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);

548 549 550 551
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
552

553 554 555 556 557 558 559 560 561 562 563 564
static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
{
	/* We are only peeking at the tail of the submit queue (and not the
	 * queue itself) in order to gain a hint as to the current active
	 * state of the engine. Callers are not expected to be taking
	 * engine->timeline->lock, nor are they expected to be concerned
	 * wtih serialising this hint with anything, so document it as
	 * a hint and nothing more.
	 */
	return READ_ONCE(engine->timeline->last_submitted_seqno);
}

565
int init_workarounds_ring(struct intel_engine_cs *engine);
566

567 568 569
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone);

570 571 572
/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
573 574 575
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
576
 */
577
#define MIN_SPACE_FOR_ADD_REQUEST 336
578

579 580
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
581
	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
582 583
}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);
602
void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
603

604
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
605
{
606
	return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
607 608
}

609
static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
610 611
{
	bool wakeup = false;
612

613
	/* Note that for this not to dangerously chase a dangling pointer,
614
	 * we must hold the rcu_read_lock here.
615 616 617 618 619
	 *
	 * Also note that tsk is likely to be in !TASK_RUNNING state so an
	 * early test for tsk->state != TASK_RUNNING before wake_up_process()
	 * is unlikely to be beneficial.
	 */
620 621 622 623 624 625 626 627 628 629
	if (intel_engine_has_waiter(engine)) {
		struct task_struct *tsk;

		rcu_read_lock();
		tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
		if (tsk)
			wakeup = wake_up_process(tsk);
		rcu_read_unlock();
	}

630 631 632
	return wakeup;
}

633
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
634
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
635
unsigned int intel_breadcrumbs_busy(struct drm_i915_private *i915);
636

637
#endif /* _INTEL_RINGBUFFER_H_ */