intel_pm.c 206.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33
#include <linux/vgaarb.h>
34
#include <drm/i915_powerwell.h>
35
#include <linux/pm_runtime.h>
36

B
Ben Widawsky 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58 59 60
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
 * during in-memory transfers and, therefore, reduce the power packet.
61
 *
62 63
 * The benefits of FBC are mostly visible with solid backgrounds and
 * variation-less patterns.
64
 *
65 66
 * FBC-related functionality can be enabled by the means of the
 * i915.i915_enable_fbc parameter
67 68
 */

69
static void i8xx_disable_fbc(struct drm_device *dev)
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

91
static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 93 94
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
95
	struct drm_framebuffer *fb = crtc->primary->fb;
96
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
97 98
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int cfb_pitch;
99
	int i;
100
	u32 fbc_ctl;
101

102
	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
103 104 105
	if (fb->pitches[0] < cfb_pitch)
		cfb_pitch = fb->pitches[0];

106 107 108 109 110
	/* FBC_CTL wants 32B or 64B units */
	if (IS_GEN2(dev))
		cfb_pitch = (cfb_pitch / 32) - 1;
	else
		cfb_pitch = (cfb_pitch / 64) - 1;
111 112 113 114 115

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

116 117 118 119 120
	if (IS_GEN4(dev)) {
		u32 fbc_ctl2;

		/* Set it up... */
		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
121
		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
122 123 124
		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
		I915_WRITE(FBC_FENCE_OFF, crtc->y);
	}
125 126

	/* enable it... */
127 128 129
	fbc_ctl = I915_READ(FBC_CONTROL);
	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
130 131 132 133 134 135
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= obj->fence_reg;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

136
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
137
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
138 139
}

140
static bool i8xx_fbc_enabled(struct drm_device *dev)
141 142 143 144 145 146
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

147
static void g4x_enable_fbc(struct drm_crtc *crtc)
148 149 150
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_framebuffer *fb = crtc->primary->fb;
152
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
153 154 155
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	u32 dpfc_ctl;

156 157 158 159 160
	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
	else
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
161 162 163 164 165
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;

	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
166
	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
167

168
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
169 170
}

171
static void g4x_disable_fbc(struct drm_device *dev)
172 173 174 175 176 177 178 179 180 181 182 183 184 185
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

186
static bool g4x_fbc_enabled(struct drm_device *dev)
187 188 189 190 191 192 193 194 195 196 197 198
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
199 200 201 202

	/* Blitter is part of Media powerwell on VLV. No impact of
	 * his param in other platforms for now */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
203

204 205 206 207 208 209 210 211 212 213
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
214

215
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
216 217
}

218
static void ironlake_enable_fbc(struct drm_crtc *crtc)
219 220 221
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
222
	struct drm_framebuffer *fb = crtc->primary->fb;
223
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
224 225 226
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	u32 dpfc_ctl;

227
	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
228
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
B
Ben Widawsky 已提交
229 230 231 232 233 234 235 236
		dev_priv->fbc.threshold++;

	switch (dev_priv->fbc.threshold) {
	case 4:
	case 3:
		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
		break;
	case 2:
237
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
B
Ben Widawsky 已提交
238 239
		break;
	case 1:
240
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
B
Ben Widawsky 已提交
241 242
		break;
	}
243 244 245
	dpfc_ctl |= DPFC_CTL_FENCE_EN;
	if (IS_GEN5(dev))
		dpfc_ctl |= obj->fence_reg;
246 247

	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
248
	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
249 250 251 252 253 254 255 256 257 258
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

259
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
260 261
}

262
static void ironlake_disable_fbc(struct drm_device *dev)
263 264 265 266 267 268 269 270 271 272 273 274 275 276
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

277
static bool ironlake_fbc_enabled(struct drm_device *dev)
278 279 280 281 282 283
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

284
static void gen7_enable_fbc(struct drm_crtc *crtc)
285 286 287
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
288
	struct drm_framebuffer *fb = crtc->primary->fb;
289
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
290
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
291
	u32 dpfc_ctl;
292

293 294
	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
B
Ben Widawsky 已提交
295 296 297 298 299 300 301 302
		dev_priv->fbc.threshold++;

	switch (dev_priv->fbc.threshold) {
	case 4:
	case 3:
		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
		break;
	case 2:
303
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
B
Ben Widawsky 已提交
304 305
		break;
	case 1:
306
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
B
Ben Widawsky 已提交
307 308 309
		break;
	}

310 311
	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;

312 313 314
	if (dev_priv->fbc.false_color)
		dpfc_ctl |= FBC_CTL_FALSE_COLOR;

315
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
316

R
Rodrigo Vivi 已提交
317
	if (IS_IVYBRIDGE(dev)) {
318
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
319 320 321
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
322
	} else {
323
		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
324 325 326
		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
			   HSW_FBCQ_DIS);
R
Rodrigo Vivi 已提交
327
	}
328

329 330 331 332 333 334
	I915_WRITE(SNB_DPFC_CTL_SA,
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);

	sandybridge_blit_fbc_update(dev);

335
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
336 337
}

338 339 340 341 342 343 344 345 346 347
bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.fbc_enabled)
		return false;

	return dev_priv->display.fbc_enabled(dev);
}

R
Rodrigo Vivi 已提交
348 349 350 351 352 353 354 355 356 357
void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!IS_GEN8(dev))
		return;

	I915_WRITE(MSG_FBC_REND_STATE, value);
}

358 359 360 361 362 363 364 365 366
static void intel_fbc_work_fn(struct work_struct *__work)
{
	struct intel_fbc_work *work =
		container_of(to_delayed_work(__work),
			     struct intel_fbc_work, work);
	struct drm_device *dev = work->crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
367
	if (work == dev_priv->fbc.fbc_work) {
368 369 370
		/* Double check that we haven't switched fb without cancelling
		 * the prior work.
		 */
371
		if (work->crtc->primary->fb == work->fb) {
372
			dev_priv->display.enable_fbc(work->crtc);
373

374
			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
375
			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
376
			dev_priv->fbc.y = work->crtc->y;
377 378
		}

379
		dev_priv->fbc.fbc_work = NULL;
380 381 382 383 384 385 386 387
	}
	mutex_unlock(&dev->struct_mutex);

	kfree(work);
}

static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
388
	if (dev_priv->fbc.fbc_work == NULL)
389 390 391 392 393
		return;

	DRM_DEBUG_KMS("cancelling pending FBC enable\n");

	/* Synchronisation is provided by struct_mutex and checking of
394
	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
395 396
	 * entirely asynchronously.
	 */
397
	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
398
		/* tasklet was killed before being run, clean up */
399
		kfree(dev_priv->fbc.fbc_work);
400 401 402 403 404 405

	/* Mark the work as no longer wanted so that if it does
	 * wake-up (because the work was already running and waiting
	 * for our mutex), it will discover that is no longer
	 * necessary to run.
	 */
406
	dev_priv->fbc.fbc_work = NULL;
407 408
}

409
static void intel_enable_fbc(struct drm_crtc *crtc)
410 411 412 413 414 415 416 417 418 419
{
	struct intel_fbc_work *work;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	intel_cancel_fbc_work(dev_priv);

420
	work = kzalloc(sizeof(*work), GFP_KERNEL);
421
	if (work == NULL) {
422
		DRM_ERROR("Failed to allocate FBC work structure\n");
423
		dev_priv->display.enable_fbc(crtc);
424 425 426 427
		return;
	}

	work->crtc = crtc;
428
	work->fb = crtc->primary->fb;
429 430
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);

431
	dev_priv->fbc.fbc_work = work;
432 433 434 435 436 437 438 439 440 441 442

	/* Delay the actual enabling to let pageflipping cease and the
	 * display to settle before starting the compression. Note that
	 * this delay also serves a second purpose: it allows for a
	 * vblank to pass after disabling the FBC before we attempt
	 * to modify the control registers.
	 *
	 * A more complicated solution would involve tracking vblanks
	 * following the termination of the page-flipping sequence
	 * and indeed performing the enable as a co-routine and not
	 * waiting synchronously upon the vblank.
443 444
	 *
	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
445 446 447 448 449 450 451 452 453 454 455 456 457 458
	 */
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_cancel_fbc_work(dev_priv);

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
459
	dev_priv->fbc.plane = -1;
460 461
}

462 463 464 465 466 467 468 469 470 471
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
			      enum no_fbc_reason reason)
{
	if (dev_priv->fbc.no_fbc_reason == reason)
		return false;

	dev_priv->fbc.no_fbc_reason = reason;
	return true;
}

472 473 474 475 476 477 478 479 480 481
/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
482
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct drm_i915_gem_object *obj;
498
	const struct drm_display_mode *adjusted_mode;
499
	unsigned int max_width, max_height;
500

501
	if (!HAS_FBC(dev)) {
502
		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
503
		return;
504
	}
505

506
	if (!i915.powersave) {
507 508
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
509
		return;
510
	}
511 512 513 514 515 516 517 518 519 520

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
521
	for_each_crtc(dev, tmp_crtc) {
522
		if (intel_crtc_active(tmp_crtc) &&
523
		    to_intel_crtc(tmp_crtc)->primary_enabled) {
524
			if (crtc) {
525 526
				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
527 528 529 530 531 532
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

533
	if (!crtc || crtc->primary->fb == NULL) {
534 535
		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
			DRM_DEBUG_KMS("no output, disabling\n");
536 537 538 539
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
540
	fb = crtc->primary->fb;
541
	obj = intel_fb_obj(fb);
542
	adjusted_mode = &intel_crtc->config.adjusted_mode;
543

544
	if (i915.enable_fbc < 0) {
545 546
		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
			DRM_DEBUG_KMS("disabled per chip default\n");
547
		goto out_disable;
548
	}
549
	if (!i915.enable_fbc) {
550 551
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
552 553
		goto out_disable;
	}
554 555
	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
556 557 558
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("mode incompatible with compression, "
				      "disabling\n");
559 560
		goto out_disable;
	}
561

562 563 564 565
	if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
		max_width = 4096;
		max_height = 4096;
	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
566 567
		max_width = 4096;
		max_height = 2048;
568
	} else {
569 570
		max_width = 2048;
		max_height = 1536;
571
	}
572 573
	if (intel_crtc->config.pipe_src_w > max_width ||
	    intel_crtc->config.pipe_src_h > max_height) {
574 575
		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
576 577
		goto out_disable;
	}
B
Ben Widawsky 已提交
578
	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
579
	    intel_crtc->plane != PLANE_A) {
580
		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
581
			DRM_DEBUG_KMS("plane not A, disabling compression\n");
582 583 584 585 586 587 588 589
		goto out_disable;
	}

	/* The use of a CPU fence is mandatory in order to detect writes
	 * by the CPU to the scanout and trigger updates to the FBC.
	 */
	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
590 591
		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
592 593
		goto out_disable;
	}
594 595 596 597 598 599
	if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
	    to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
		goto out_disable;
	}
600 601 602 603 604

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

605
	if (i915_gem_stolen_setup_compression(dev, obj->base.size,
B
Ben Widawsky 已提交
606
					      drm_format_plane_cpp(fb->pixel_format, 0))) {
607 608
		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
609 610 611
		goto out_disable;
	}

612 613 614 615 616
	/* If the scanout has not changed, don't modify the FBC settings.
	 * Note that we make the fundamental assumption that the fb->obj
	 * cannot be unpinned (and have its GTT offset and fence revoked)
	 * without first being decoupled from the scanout and FBC disabled.
	 */
617 618 619
	if (dev_priv->fbc.plane == intel_crtc->plane &&
	    dev_priv->fbc.fb_id == fb->base.id &&
	    dev_priv->fbc.y == crtc->y)
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
		return;

	if (intel_fbc_enabled(dev)) {
		/* We update FBC along two paths, after changing fb/crtc
		 * configuration (modeswitching) and after page-flipping
		 * finishes. For the latter, we know that not only did
		 * we disable the FBC at the start of the page-flip
		 * sequence, but also more than one vblank has passed.
		 *
		 * For the former case of modeswitching, it is possible
		 * to switch between two FBC valid configurations
		 * instantaneously so we do need to disable the FBC
		 * before we can modify its control registers. We also
		 * have to wait for the next vblank for that to take
		 * effect. However, since we delay enabling FBC we can
		 * assume that a vblank has passed since disabling and
		 * that we can safely alter the registers in the deferred
		 * callback.
		 *
		 * In the scenario that we go from a valid to invalid
		 * and then back to valid FBC configuration we have
		 * no strict enforcement that a vblank occurred since
		 * disabling the FBC. However, along all current pipe
		 * disabling paths we do need to wait for a vblank at
		 * some point. And we wait before enabling FBC anyway.
		 */
		DRM_DEBUG_KMS("disabling active FBC for update\n");
		intel_disable_fbc(dev);
	}

650
	intel_enable_fbc(crtc);
651
	dev_priv->fbc.no_fbc_reason = FBC_OK;
652 653 654 655 656 657 658 659
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
660
	i915_gem_stolen_cleanup_compression(dev);
661 662
}

663 664
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
665
	struct drm_i915_private *dev_priv = dev->dev_private;
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
704
	struct drm_i915_private *dev_priv = dev->dev_private;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

730
	dev_priv->ips.r_t = dev_priv->mem_freq;
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
762
		dev_priv->ips.c_m = 0;
763
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
764
		dev_priv->ips.c_m = 1;
765
	} else {
766
		dev_priv->ips.c_m = 2;
767 768 769
	}
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

808
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

832
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
833
{
834 835
	struct drm_device *dev = dev_priv->dev;
	u32 val;
836

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
856

857 858
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
static const int latency_ns = 5000;

877
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

893
static int i830_get_fifo_size(struct drm_device *dev, int plane)
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

910
static int i845_get_fifo_size(struct drm_device *dev, int plane)
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
928 929 930 931 932
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
933 934
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
935 936 937 938 939
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
940 941
};
static const struct intel_watermark_params pineview_cursor_wm = {
942 943 944 945 946
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
947 948
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
949 950 951 952 953
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
954 955
};
static const struct intel_watermark_params g4x_wm_info = {
956 957 958 959 960
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
961 962
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
963 964 965 966 967
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
968 969
};
static const struct intel_watermark_params valleyview_wm_info = {
970 971 972 973 974
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
975 976
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
977 978 979 980 981
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
982 983
};
static const struct intel_watermark_params i965_cursor_wm_info = {
984 985 986 987 988
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
989 990
};
static const struct intel_watermark_params i945_wm_info = {
991 992 993 994 995
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
996 997
};
static const struct intel_watermark_params i915_wm_info = {
998 999 1000 1001 1002
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
1003
};
1004
static const struct intel_watermark_params i830_wm_info = {
1005 1006 1007 1008 1009
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
1010
};
1011
static const struct intel_watermark_params i845_wm_info = {
1012 1013 1014 1015 1016
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

1073
	for_each_crtc(dev, crtc) {
1074
		if (intel_crtc_active(crtc)) {
1075 1076 1077 1078 1079 1080 1081 1082 1083
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

1084
static void pineview_update_wm(struct drm_crtc *unused_crtc)
1085
{
1086
	struct drm_device *dev = unused_crtc->dev;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1097
		intel_set_memory_cxsr(dev_priv, false);
1098 1099 1100 1101 1102
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
1103
		const struct drm_display_mode *adjusted_mode;
1104
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1105 1106 1107 1108
		int clock;

		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		clock = adjusted_mode->crtc_clock;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

1148
		intel_set_memory_cxsr(dev_priv, true);
1149
	} else {
1150
		intel_set_memory_cxsr(dev_priv, false);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
1164
	const struct drm_display_mode *adjusted_mode;
1165 1166 1167 1168 1169
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
1170
	if (!intel_crtc_active(crtc)) {
1171 1172 1173 1174 1175
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

1176
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1177
	clock = adjusted_mode->crtc_clock;
1178
	htotal = adjusted_mode->crtc_htotal;
1179
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1180
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
1193
	line_time_us = max(htotal * 1000 / clock, 1);
1194
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1195
	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1250
	const struct drm_display_mode *adjusted_mode;
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1263
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1264
	clock = adjusted_mode->crtc_clock;
1265
	htotal = adjusted_mode->crtc_htotal;
1266
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1267
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1268

1269
	line_time_us = max(htotal * 1000 / clock, 1);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
1281
	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1282 1283 1284 1285 1286 1287 1288 1289
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

1290 1291 1292 1293
static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
				      int pixel_size,
				      int *prec_mult,
				      int *drain_latency)
1294 1295
{
	int entries;
1296
	int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1297

1298
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
1299 1300
		return false;

1301 1302
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
		return false;
1303

1304
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1305 1306 1307
	*prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
				       DRAIN_LATENCY_PRECISION_32;
	*drain_latency = (64 * (*prec_mult) * 4) / entries;
1308

1309 1310
	if (*drain_latency > DRAIN_LATENCY_MASK)
		*drain_latency = DRAIN_LATENCY_MASK;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

1323
static void vlv_update_drain_latency(struct drm_crtc *crtc)
1324
{
1325 1326 1327 1328 1329 1330
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pixel_size;
	int drain_latency;
	enum pipe pipe = intel_crtc->pipe;
	int plane_prec, prec_mult, plane_dl;
1331

1332 1333 1334 1335 1336 1337 1338 1339
	plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
		   DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
		   (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));

	if (!intel_crtc_active(crtc)) {
		I915_WRITE(VLV_DDL(pipe), plane_dl);
		return;
	}
1340

1341 1342 1343 1344 1345 1346 1347
	/* Primary plane Drain Latency */
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
	if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_PLANE_PRECISION_64 :
					   DDL_PLANE_PRECISION_32;
		plane_dl |= plane_prec | drain_latency;
1348 1349
	}

1350 1351 1352 1353
	/* Cursor Drain Latency
	 * BPP is always 4 for cursor
	 */
	pixel_size = 4;
1354

1355 1356 1357 1358 1359 1360 1361
	/* Program cursor DL only if it is enabled */
	if (intel_crtc->cursor_base &&
	    vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_CURSOR_PRECISION_64 :
					   DDL_CURSOR_PRECISION_32;
		plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1362
	}
1363 1364

	I915_WRITE(VLV_DDL(pipe), plane_dl);
1365 1366 1367 1368
}

#define single_plane_enabled(mask) is_power_of_2(mask)

1369
static void valleyview_update_wm(struct drm_crtc *crtc)
1370
{
1371
	struct drm_device *dev = crtc->dev;
1372 1373 1374 1375
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
1376
	int ignore_plane_sr, ignore_cursor_sr;
1377
	unsigned int enabled = 0;
1378
	bool cxsr_enabled;
1379

1380
	vlv_update_drain_latency(crtc);
1381

1382
	if (g4x_compute_wm0(dev, PIPE_A,
1383 1384 1385
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1386
		enabled |= 1 << PIPE_A;
1387

1388
	if (g4x_compute_wm0(dev, PIPE_B,
1389 1390 1391
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1392
		enabled |= 1 << PIPE_B;
1393 1394 1395 1396 1397 1398

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1399 1400 1401 1402 1403
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1404
			     &ignore_plane_sr, &cursor_sr)) {
1405
		cxsr_enabled = true;
1406
	} else {
1407
		cxsr_enabled = false;
1408
		intel_set_memory_cxsr(dev_priv, false);
1409 1410
		plane_sr = cursor_sr = 0;
	}
1411

1412 1413
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1414 1415 1416 1417 1418 1419 1420 1421
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1422
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1423
	I915_WRITE(DSPFW2,
1424
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1425 1426
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
1427 1428
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1429 1430 1431

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1432 1433
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
static void cherryview_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, planec_wm;
	int cursora_wm, cursorb_wm, cursorc_wm;
	int plane_sr, cursor_sr;
	int ignore_plane_sr, ignore_cursor_sr;
	unsigned int enabled = 0;
	bool cxsr_enabled;

	vlv_update_drain_latency(crtc);

	if (g4x_compute_wm0(dev, PIPE_A,
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
		enabled |= 1 << PIPE_A;

	if (g4x_compute_wm0(dev, PIPE_B,
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
		enabled |= 1 << PIPE_B;

	if (g4x_compute_wm0(dev, PIPE_C,
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planec_wm, &cursorc_wm))
		enabled |= 1 << PIPE_C;

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &ignore_plane_sr, &cursor_sr)) {
		cxsr_enabled = true;
	} else {
		cxsr_enabled = false;
		intel_set_memory_cxsr(dev_priv, false);
		plane_sr = cursor_sr = 0;
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      planec_wm, cursorc_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   (planea_wm << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2,
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
	I915_WRITE(DSPFW9_CHV,
		   (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
					      DSPFW_CURSORC_MASK)) |
		   (planec_wm << DSPFW_PLANEC_SHIFT) |
		   (cursorc_wm << DSPFW_CURSORC_SHIFT));

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe = to_intel_plane(plane)->pipe;
	int sprite = to_intel_plane(plane)->plane;
	int drain_latency;
	int plane_prec;
	int sprite_dl;
	int prec_mult;

	sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
		    (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));

	if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
						 &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_SPRITE_PRECISION_64(sprite) :
					   DDL_SPRITE_PRECISION_32(sprite);
		sprite_dl |= plane_prec |
			     (drain_latency << DDL_SPRITE_SHIFT(sprite));
	}

	I915_WRITE(VLV_DDL(pipe), sprite_dl);
}

1544
static void g4x_update_wm(struct drm_crtc *crtc)
1545
{
1546
	struct drm_device *dev = crtc->dev;
1547 1548 1549 1550 1551
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1552
	bool cxsr_enabled;
1553

1554
	if (g4x_compute_wm0(dev, PIPE_A,
1555 1556 1557
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1558
		enabled |= 1 << PIPE_A;
1559

1560
	if (g4x_compute_wm0(dev, PIPE_B,
1561 1562 1563
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1564
		enabled |= 1 << PIPE_B;
1565 1566 1567 1568 1569 1570

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1571
			     &plane_sr, &cursor_sr)) {
1572
		cxsr_enabled = true;
1573
	} else {
1574
		cxsr_enabled = false;
1575
		intel_set_memory_cxsr(dev_priv, false);
1576 1577
		plane_sr = cursor_sr = 0;
	}
1578

1579 1580
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1581 1582 1583 1584 1585 1586 1587 1588
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1589
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1590
	I915_WRITE(DSPFW2,
1591
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1592 1593 1594
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1595
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1596
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1597 1598 1599

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1600 1601
}

1602
static void i965_update_wm(struct drm_crtc *unused_crtc)
1603
{
1604
	struct drm_device *dev = unused_crtc->dev;
1605 1606 1607 1608
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1609
	bool cxsr_enabled;
1610 1611 1612 1613 1614 1615

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1616 1617
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(crtc)->config.adjusted_mode;
1618
		int clock = adjusted_mode->crtc_clock;
1619
		int htotal = adjusted_mode->crtc_htotal;
1620
		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1621
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1622 1623 1624
		unsigned long line_time_us;
		int entries;

1625
		line_time_us = max(htotal * 1000 / clock, 1);
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1639
			pixel_size * to_intel_crtc(crtc)->cursor_width;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1651
		cxsr_enabled = true;
1652
	} else {
1653
		cxsr_enabled = false;
1654
		/* Turn off self refresh if both pipes are enabled */
1655
		intel_set_memory_cxsr(dev_priv, false);
1656 1657 1658 1659 1660 1661 1662
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1663 1664 1665 1666 1667
		   (8 << DSPFW_CURSORB_SHIFT) |
		   (8 << DSPFW_PLANEB_SHIFT) |
		   (8 << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
		   (8 << DSPFW_PLANEC_SHIFT_OLD));
1668 1669
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1670 1671 1672

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1673 1674
}

1675
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1676
{
1677
	struct drm_device *dev = unused_crtc->dev;
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1692
		wm_info = &i830_wm_info;
1693 1694 1695

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1696
	if (intel_crtc_active(crtc)) {
1697
		const struct drm_display_mode *adjusted_mode;
1698
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1699 1700 1701
		if (IS_GEN2(dev))
			cpp = 4;

1702 1703
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1704
					       wm_info, fifo_size, cpp,
1705 1706 1707 1708 1709 1710 1711
					       latency_ns);
		enabled = crtc;
	} else
		planea_wm = fifo_size - wm_info->guard_size;

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1712
	if (intel_crtc_active(crtc)) {
1713
		const struct drm_display_mode *adjusted_mode;
1714
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1715 1716 1717
		if (IS_GEN2(dev))
			cpp = 4;

1718 1719
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1720
					       wm_info, fifo_size, cpp,
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
					       latency_ns);
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
	} else
		planeb_wm = fifo_size - wm_info->guard_size;

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1731
	if (IS_I915GM(dev) && enabled) {
1732
		struct drm_i915_gem_object *obj;
1733

1734
		obj = intel_fb_obj(enabled->primary->fb);
1735 1736

		/* self-refresh seems busted with untiled */
1737
		if (obj->tiling_mode == I915_TILING_NONE)
1738 1739 1740
			enabled = NULL;
	}

1741 1742 1743 1744 1745 1746
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1747
	intel_set_memory_cxsr(dev_priv, false);
1748 1749 1750 1751 1752

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1753 1754
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(enabled)->config.adjusted_mode;
1755
		int clock = adjusted_mode->crtc_clock;
1756
		int htotal = adjusted_mode->crtc_htotal;
1757
		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1758
		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1759 1760 1761
		unsigned long line_time_us;
		int entries;

1762
		line_time_us = max(htotal * 1000 / clock, 1);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1793 1794
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1795 1796
}

1797
static void i845_update_wm(struct drm_crtc *unused_crtc)
1798
{
1799
	struct drm_device *dev = unused_crtc->dev;
1800 1801
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1802
	const struct drm_display_mode *adjusted_mode;
1803 1804 1805 1806 1807 1808 1809
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1810 1811
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1812
				       &i845_wm_info,
1813
				       dev_priv->display.get_fifo_size(dev, 0),
1814
				       4, latency_ns);
1815 1816 1817 1818 1819 1820 1821 1822
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1823 1824
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1825 1826
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1827
	uint32_t pixel_rate;
1828

1829
	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1830 1831 1832 1833

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1834
	if (intel_crtc->config.pch_pfit.enabled) {
1835
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1836
		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1837

1838 1839
		pipe_w = intel_crtc->config.pipe_src_w;
		pipe_h = intel_crtc->config.pipe_src_h;
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1854
/* latency must be in 0.1us units. */
1855
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1856 1857 1858 1859
			       uint32_t latency)
{
	uint64_t ret;

1860 1861 1862
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1863 1864 1865 1866 1867 1868
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1869
/* latency must be in 0.1us units. */
1870
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1871 1872 1873 1874 1875
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1876 1877 1878
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1879 1880 1881 1882 1883 1884
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1885
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1886 1887 1888 1889 1890
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1891
struct ilk_pipe_wm_parameters {
1892 1893 1894
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1895 1896 1897
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1898 1899
};

1900
struct ilk_wm_maximums {
1901 1902 1903 1904 1905 1906
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1907 1908 1909 1910 1911 1912 1913
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1914 1915 1916 1917
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1918
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1919 1920
				   uint32_t mem_value,
				   bool is_lp)
1921
{
1922 1923
	uint32_t method1, method2;

1924
	if (!params->active || !params->pri.enabled)
1925 1926
		return 0;

1927
	method1 = ilk_wm_method1(params->pixel_rate,
1928
				 params->pri.bytes_per_pixel,
1929 1930 1931 1932 1933
				 mem_value);

	if (!is_lp)
		return method1;

1934
	method2 = ilk_wm_method2(params->pixel_rate,
1935
				 params->pipe_htotal,
1936 1937
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1938 1939 1940
				 mem_value);

	return min(method1, method2);
1941 1942
}

1943 1944 1945 1946
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1947
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1948 1949 1950 1951
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1952
	if (!params->active || !params->spr.enabled)
1953 1954
		return 0;

1955
	method1 = ilk_wm_method1(params->pixel_rate,
1956
				 params->spr.bytes_per_pixel,
1957
				 mem_value);
1958
	method2 = ilk_wm_method2(params->pixel_rate,
1959
				 params->pipe_htotal,
1960 1961
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
1962 1963 1964 1965
				 mem_value);
	return min(method1, method2);
}

1966 1967 1968 1969
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1970
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1971 1972
				   uint32_t mem_value)
{
1973
	if (!params->active || !params->cur.enabled)
1974 1975
		return 0;

1976
	return ilk_wm_method2(params->pixel_rate,
1977
			      params->pipe_htotal,
1978 1979
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
1980 1981 1982
			      mem_value);
}

1983
/* Only for WM_LP. */
1984
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1985
				   uint32_t pri_val)
1986
{
1987
	if (!params->active || !params->pri.enabled)
1988 1989
		return 0;

1990
	return ilk_wm_fbc(pri_val,
1991 1992
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
1993 1994
}

1995 1996
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1997 1998 1999
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
2000 2001 2002 2003 2004
		return 768;
	else
		return 512;
}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

2039 2040 2041
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2042
				     const struct intel_wm_config *config,
2043 2044 2045 2046 2047 2048
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
2049
	if (is_sprite && !config->sprites_enabled)
2050 2051 2052
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2053
	if (level == 0 || config->num_pipes_active > 1) {
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

2065
	if (config->sprites_enabled) {
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2077
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2078 2079 2080 2081
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2082 2083
				      int level,
				      const struct intel_wm_config *config)
2084 2085
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2086
	if (level > 0 && config->num_pipes_active > 1)
2087 2088 2089
		return 64;

	/* otherwise just report max that registers can hold */
2090
	return ilk_cursor_wm_reg_max(dev, level);
2091 2092
}

2093
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2094 2095 2096
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2097
				    struct ilk_wm_maximums *max)
2098
{
2099 2100 2101
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2102
	max->fbc = ilk_fbc_wm_reg_max(dev);
2103 2104
}

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

2115
static bool ilk_validate_wm_level(int level,
2116
				  const struct ilk_wm_maximums *max,
2117
				  struct intel_wm_level *result)
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2156
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2157
				 int level,
2158
				 const struct ilk_pipe_wm_parameters *p,
2159
				 struct intel_wm_level *result)
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

2179 2180
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2181 2182
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2183 2184
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2185
	u32 linetime, ips_linetime;
2186

2187 2188
	if (!intel_crtc_active(crtc))
		return 0;
2189

2190 2191 2192
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2193 2194 2195
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2196
					 intel_ddi_get_cdclk_freq(dev_priv));
2197

2198 2199
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2200 2201
}

2202 2203 2204 2205
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2206
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2207 2208 2209 2210 2211
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2212 2213 2214 2215
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2216 2217 2218 2219 2220 2221 2222
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2223 2224 2225 2226 2227 2228 2229
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2230 2231 2232
	}
}

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2251
int ilk_wm_max_level(const struct drm_device *dev)
2252 2253
{
	/* how many WM levels are we expecting */
2254
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2255
		return 4;
2256
	else if (INTEL_INFO(dev)->gen >= 6)
2257
		return 3;
2258
	else
2259 2260 2261 2262 2263 2264 2265 2266
		return 2;
}

static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
				   const uint16_t wm[5])
{
	int level, max_level = ilk_wm_max_level(dev);
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

		/* WM1+ latency values in 0.5us units */
		if (level > 0)
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2324
static void ilk_setup_wm_latency(struct drm_device *dev)
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2337 2338 2339 2340

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2341 2342 2343

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2344 2345
}

2346
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2347
				      struct ilk_pipe_wm_parameters *p)
2348
{
2349 2350 2351 2352
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2353

2354 2355
	if (!intel_crtc_active(crtc))
		return;
2356

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	p->active = true;
	p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
	p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
	p->cur.bytes_per_pixel = 4;
	p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
	p->cur.horiz_pixels = intel_crtc->cursor_width;
	/* TODO: for now, assume primary and cursor planes are always enabled. */
	p->pri.enabled = true;
	p->cur.enabled = true;
2367

2368
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2369 2370
		struct intel_plane *intel_plane = to_intel_plane(plane);

2371
		if (intel_plane->pipe == pipe) {
2372
			p->spr = intel_plane->wm;
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
2384
	for_each_intel_crtc(dev, intel_crtc) {
2385
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2386

2387 2388
		if (!wm->pipe_enabled)
			continue;
2389

2390 2391 2392
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
2393
	}
2394 2395
}

2396 2397
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2398
				  const struct ilk_pipe_wm_parameters *params,
2399 2400 2401
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2402
	const struct drm_i915_private *dev_priv = dev->dev_private;
2403 2404 2405 2406 2407 2408 2409
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2410
	struct ilk_wm_maximums max;
2411

2412 2413 2414 2415
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2416 2417 2418 2419 2420 2421 2422 2423
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2424
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2425

2426
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2427
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2428

2429 2430 2431
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2432
	/* At least LP0 must be valid */
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2466 2467
	ret_wm->enable = true;

2468
	for_each_intel_crtc(dev, intel_crtc) {
2469 2470 2471 2472 2473
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2474

2475 2476 2477 2478 2479
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2480
		if (!wm->enable)
2481
			ret_wm->enable = false;
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2494
			 const struct intel_wm_config *config,
2495
			 const struct ilk_wm_maximums *max,
2496 2497 2498
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2499
	int last_enabled_level = max_level;
2500

2501 2502 2503 2504 2505
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2506 2507
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2508 2509 2510 2511 2512 2513 2514

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2515 2516 2517 2518 2519
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2520 2521 2522 2523 2524 2525

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2526 2527
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2528 2529 2530
			wm->fbc_val = 0;
		}
	}
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2545 2546
}

2547 2548 2549 2550 2551 2552
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2553 2554 2555 2556 2557
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2558
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2559 2560 2561 2562 2563
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2564
static void ilk_compute_wm_results(struct drm_device *dev,
2565
				   const struct intel_pipe_wm *merged,
2566
				   enum intel_ddb_partitioning partitioning,
2567
				   struct ilk_wm_values *results)
2568
{
2569 2570
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2571

2572
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2573
	results->partitioning = partitioning;
2574

2575
	/* LP1+ register values */
2576
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2577
		const struct intel_wm_level *r;
2578

2579
		level = ilk_wm_lp_to_level(wm_lp, merged);
2580

2581
		r = &merged->wm[level];
2582

2583 2584 2585 2586 2587
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2588
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2589 2590 2591
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2592 2593 2594
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2595 2596 2597 2598 2599 2600 2601
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2602 2603 2604 2605
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2606 2607 2608 2609 2610
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2611
	}
2612

2613
	/* LP0 register values */
2614
	for_each_intel_crtc(dev, intel_crtc) {
2615 2616 2617 2618 2619 2620 2621 2622
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2623

2624 2625 2626 2627
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2628 2629 2630
	}
}

2631 2632
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2633
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2634 2635
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2636
{
2637 2638
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2639

2640 2641 2642 2643 2644
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2645 2646
	}

2647 2648
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2649 2650 2651
			return r2;
		else
			return r1;
2652
	} else if (level1 > level2) {
2653 2654 2655 2656 2657 2658
		return r1;
	} else {
		return r2;
	}
}

2659 2660 2661 2662 2663 2664 2665 2666
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2667
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2668 2669
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2670 2671 2672 2673 2674
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2675
	for_each_pipe(dev_priv, pipe) {
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2719 2720
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2721
{
2722
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2723
	bool changed = false;
2724

2725 2726 2727
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2728
		changed = true;
2729 2730 2731 2732
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2733
		changed = true;
2734 2735 2736 2737
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2738
		changed = true;
2739
	}
2740

2741 2742 2743 2744
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2745

2746 2747 2748 2749 2750 2751 2752
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2753 2754
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2755 2756
{
	struct drm_device *dev = dev_priv->dev;
2757
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2758 2759 2760
	unsigned int dirty;
	uint32_t val;

2761
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2762 2763 2764 2765 2766
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2767
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2768
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2769
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2770
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2771
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2772 2773
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2774
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2775
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2776
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2777
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2778
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2779 2780
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2781
	if (dirty & WM_DIRTY_DDB) {
2782
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2797 2798
	}

2799
	if (dirty & WM_DIRTY_FBC) {
2800 2801 2802 2803 2804 2805 2806 2807
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2808 2809 2810 2811 2812
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2813 2814 2815 2816 2817
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2818

2819
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2820
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2821
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2822
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2823
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2824
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2825 2826

	dev_priv->wm.hw = *results;
2827 2828
}

2829 2830 2831 2832 2833 2834 2835
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2836
static void ilk_update_wm(struct drm_crtc *crtc)
2837
{
2838
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2839
	struct drm_device *dev = crtc->dev;
2840
	struct drm_i915_private *dev_priv = dev->dev_private;
2841 2842 2843
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
2844
	enum intel_ddb_partitioning partitioning;
2845
	struct intel_pipe_wm pipe_wm = {};
2846
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2847
	struct intel_wm_config config = {};
2848

2849
	ilk_compute_wm_parameters(crtc, &params);
2850 2851 2852 2853 2854

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
2855

2856
	intel_crtc->wm.active = pipe_wm;
2857

2858 2859
	ilk_compute_wm_config(dev, &config);

2860
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2861
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2862 2863

	/* 5/6 split only in single pipe config on IVB+ */
2864 2865
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
2866
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2867
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2868

2869
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2870
	} else {
2871
		best_lp_wm = &lp_wm_1_2;
2872 2873
	}

2874
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
2875
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2876

2877
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2878

2879
	ilk_write_wm_values(dev_priv, &results);
2880 2881
}

2882 2883 2884 2885 2886
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
2887
{
2888
	struct drm_device *dev = plane->dev;
2889
	struct intel_plane *intel_plane = to_intel_plane(plane);
2890

2891 2892 2893
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
2894
	intel_plane->wm.vert_pixels = sprite_width;
2895
	intel_plane->wm.bytes_per_pixel = pixel_size;
2896

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

2907
	ilk_update_wm(crtc);
2908 2909
}

2910 2911 2912 2913
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2914
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2925
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2926
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2927

2928 2929 2930
	active->pipe_enabled = intel_crtc_active(crtc);

	if (active->pipe_enabled) {
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2960
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2961 2962
	struct drm_crtc *crtc;

2963
	for_each_crtc(dev, crtc)
2964 2965 2966 2967 2968 2969 2970
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2971 2972 2973 2974
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
2975

2976
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2977 2978 2979 2980 2981
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2982 2983 2984 2985 2986

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3019
void intel_update_watermarks(struct drm_crtc *crtc)
3020
{
3021
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3022 3023

	if (dev_priv->display.update_wm)
3024
		dev_priv->display.update_wm(crtc);
3025 3026
}

3027 3028
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3029 3030 3031
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3032
				    bool enabled, bool scaled)
3033
{
3034
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3035 3036

	if (dev_priv->display.update_sprite_wm)
3037 3038
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3039
						   pixel_size, enabled, scaled);
3040 3041
}

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

3056
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
B
Ben Widawsky 已提交
3071
	i915_gem_object_ggtt_unpin(ctx);
3072 3073 3074 3075 3076
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

3077 3078 3079 3080 3081 3082 3083 3084 3085
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3086 3087 3088 3089 3090
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3091 3092
	assert_spin_locked(&mchdev_lock);

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3110
static void ironlake_enable_drps(struct drm_device *dev)
3111 3112 3113 3114 3115
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3116 3117
	spin_lock_irq(&mchdev_lock);

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3141 3142
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3143

3144 3145 3146
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3163
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3164
		DRM_ERROR("stuck trying to change perf mode\n");
3165
	mdelay(1);
3166 3167 3168

	ironlake_set_drps(dev, fstart);

3169
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3170
		I915_READ(0x112e0);
3171 3172
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3173
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3174 3175

	spin_unlock_irq(&mchdev_lock);
3176 3177
}

3178
static void ironlake_disable_drps(struct drm_device *dev)
3179 3180
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3181 3182 3183 3184 3185
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3186 3187 3188 3189 3190 3191 3192 3193 3194

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3195
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3196
	mdelay(1);
3197 3198
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3199
	mdelay(1);
3200

3201
	spin_unlock_irq(&mchdev_lock);
3202 3203
}

3204 3205 3206 3207 3208
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3209
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3210
{
3211
	u32 limits;
3212

3213 3214 3215 3216 3217 3218
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3219 3220 3221
	limits = dev_priv->rps.max_freq_softlimit << 24;
	if (val <= dev_priv->rps.min_freq_softlimit)
		limits |= dev_priv->rps.min_freq_softlimit << 16;
3222 3223 3224 3225

	return limits;
}

3226 3227 3228 3229 3230 3231 3232
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
3233
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3234 3235 3236 3237
			new_power = BETWEEN;
		break;

	case BETWEEN:
3238
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3239
			new_power = LOW_POWER;
3240
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3241 3242 3243 3244
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
3245
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3246 3247 3248 3249
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
3250
	if (val == dev_priv->rps.min_freq_softlimit)
3251
		new_power = LOW_POWER;
3252
	if (val == dev_priv->rps.max_freq_softlimit)
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3318 3319 3320 3321 3322 3323 3324 3325 3326
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
	if (val < dev_priv->rps.max_freq_softlimit)
		mask |= GEN6_PM_RP_UP_THRESHOLD;

3327 3328 3329
	mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
	mask &= dev_priv->pm_rps_events;

3330 3331 3332 3333 3334 3335
	/* IVB and SNB hard hangs on looping batchbuffer
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
	 */
	if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
		mask |= GEN6_PM_RP_UP_EI_EXPIRED;

3336 3337 3338
	if (IS_GEN8(dev_priv->dev))
		mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;

3339 3340 3341
	return ~mask;
}

3342 3343 3344
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3345 3346 3347
void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3348

3349
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3350 3351
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3352

C
Chris Wilson 已提交
3353 3354 3355 3356 3357
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
3358

3359
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
3360 3361 3362 3363 3364 3365 3366
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
3367
	}
3368 3369 3370 3371

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
C
Chris Wilson 已提交
3372
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3373
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3374

3375 3376
	POSTING_READ(GEN6_RPNSWREQ);

3377
	dev_priv->rps.cur_freq = val;
3378
	trace_intel_gpu_freq_change(val * 50);
3379 3380
}

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
3392 3393 3394 3395 3396 3397 3398 3399
	struct drm_device *dev = dev_priv->dev;

	/* Latest VLV doesn't need to force the gfx clock */
	if (dev->pdev->revision >= 0xd) {
		valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		return;
	}

3400 3401 3402 3403
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

3404
	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3405 3406 3407 3408 3409
		return;

	/* Mask turbo interrupt so that they will not come in between */
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);

3410
	vlv_force_gfx_clock(dev_priv, true);
3411

3412
	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3413 3414

	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3415
					dev_priv->rps.min_freq_softlimit);
3416 3417 3418 3419 3420

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
				& GENFREQSTATUS) == 0, 5))
		DRM_ERROR("timed out waiting for Punit\n");

3421
	vlv_force_gfx_clock(dev_priv, false);
3422

3423 3424
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3425 3426
}

3427 3428
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
3429 3430
	struct drm_device *dev = dev_priv->dev;

3431
	mutex_lock(&dev_priv->rps.hw_lock);
3432
	if (dev_priv->rps.enabled) {
3433 3434 3435
		if (IS_CHERRYVIEW(dev))
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		else if (IS_VALLEYVIEW(dev))
3436
			vlv_set_rps_idle(dev_priv);
3437
		else
3438
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3439 3440
		dev_priv->rps.last_adj = 0;
	}
3441 3442 3443 3444 3445
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
3446 3447
	struct drm_device *dev = dev_priv->dev;

3448
	mutex_lock(&dev_priv->rps.hw_lock);
3449
	if (dev_priv->rps.enabled) {
3450
		if (IS_VALLEYVIEW(dev))
3451
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3452
		else
3453
			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3454 3455
		dev_priv->rps.last_adj = 0;
	}
3456 3457 3458
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3459 3460 3461
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3462

3463
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3464 3465
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3466

3467
	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3468 3469
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq,
3470
			 vlv_gpu_freq(dev_priv, val), val);
3471

3472 3473
	if (val != dev_priv->rps.cur_freq)
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3474

3475
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3476

3477
	dev_priv->rps.cur_freq = val;
3478
	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3479 3480
}

3481 3482 3483 3484
static void gen8_disable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3485
	I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
	I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
				   ~dev_priv->pm_rps_events);
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
	 * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
	 * gen8_enable_rps will clean up. */

	spin_lock_irq(&dev_priv->irq_lock);
	dev_priv->rps.pm_iir = 0;
	spin_unlock_irq(&dev_priv->irq_lock);

	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
}

3501
static void gen6_disable_rps_interrupts(struct drm_device *dev)
3502 3503 3504 3505
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3506 3507
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
				~dev_priv->pm_rps_events);
3508 3509 3510 3511 3512
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

3513
	spin_lock_irq(&dev_priv->irq_lock);
3514
	dev_priv->rps.pm_iir = 0;
3515
	spin_unlock_irq(&dev_priv->irq_lock);
3516

3517
	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3518 3519
}

3520
static void gen6_disable_rps(struct drm_device *dev)
3521 3522 3523 3524
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3525
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3526

3527 3528 3529 3530
	if (IS_BROADWELL(dev))
		gen8_disable_rps_interrupts(dev);
	else
		gen6_disable_rps_interrupts(dev);
3531 3532
}

3533 3534 3535 3536 3537
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3538 3539

	gen8_disable_rps_interrupts(dev);
3540 3541
}

3542 3543 3544 3545
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3546 3547 3548 3549
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);

3550
	I915_WRITE(GEN6_RC_CONTROL, 0);
3551

3552 3553
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);

3554
	gen6_disable_rps_interrupts(dev);
3555 3556
}

B
Ben Widawsky 已提交
3557 3558
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
3559 3560 3561 3562 3563 3564
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
3565 3566 3567 3568
	DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
		      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
		      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
		      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
3569 3570
}

I
Imre Deak 已提交
3571
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3572
{
3573 3574 3575 3576
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
3577 3578 3579 3580
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

3581
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
	if (enable_rc6 >= 0) {
		int mask;

		if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
3592 3593
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
3594 3595 3596

		return enable_rc6 & mask;
	}
3597

3598 3599 3600
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3601

3602
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
3603
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3604 3605

	return INTEL_RC6_ENABLE;
3606 3607
}

I
Imre Deak 已提交
3608 3609 3610 3611 3612
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

3613 3614 3615 3616 3617 3618
static void gen8_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
	WARN_ON(dev_priv->rps.pm_iir);
3619
	gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3620 3621 3622 3623
	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
	spin_unlock_irq(&dev_priv->irq_lock);
}

3624 3625 3626 3627 3628
static void gen6_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
3629
	WARN_ON(dev_priv->rps.pm_iir);
3630
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3631
	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3632 3633 3634
	spin_unlock_irq(&dev_priv->irq_lock);
}

3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
{
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
	/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
	/* XXX: only BYT has a special efficient freq */
	dev_priv->rps.efficient_freq	= dev_priv->rps.rp1_freq;
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
}

3656 3657 3658
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3659
	struct intel_engine_cs *ring;
3660 3661 3662 3663 3664 3665 3666 3667
	uint32_t rc6_mask = 0, rp_state_cap;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3668
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3669 3670 3671 3672 3673

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3674
	parse_rp_state_cap(dev_priv, rp_state_cap);
3675 3676 3677 3678 3679 3680 3681 3682

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
3683 3684 3685 3686
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3687 3688 3689 3690

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3691
	intel_print_rc6_info(dev, rc6_mask);
3692 3693 3694 3695 3696 3697 3698 3699
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
3700 3701

	/* 4 Program defaults and thresholds for RPS*/
3702 3703 3704 3705
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3706 3707 3708 3709 3710
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3711 3712
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3725
		   GEN6_RP_MEDIA_IS_GFX |
3726 3727 3728 3729 3730 3731 3732 3733
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);

3734
	gen8_enable_rps_interrupts(dev);
3735

3736
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3737 3738
}

3739
static void gen6_enable_rps(struct drm_device *dev)
3740
{
3741
	struct drm_i915_private *dev_priv = dev->dev_private;
3742
	struct intel_engine_cs *ring;
3743
	u32 rp_state_cap;
3744
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3745 3746
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
3747
	int i, ret;
3748

3749
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3750

3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

3765
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3766

3767 3768
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);

3769
	parse_rp_state_cap(dev_priv, rp_state_cap);
J
Jeff McGee 已提交
3770

3771 3772 3773 3774 3775 3776 3777 3778 3779
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

3780 3781
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3782 3783 3784

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3785
	if (IS_IVYBRIDGE(dev))
3786 3787 3788
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3789
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3790 3791
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

3792
	/* Check if we are enabling RC6 */
3793 3794 3795 3796
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

3797 3798 3799 3800
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3801

3802 3803 3804
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
3805

B
Ben Widawsky 已提交
3806
	intel_print_rc6_info(dev, rc6_mask);
3807 3808 3809 3810 3811 3812

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

3813 3814
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3815 3816
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
3817
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3818
	if (ret)
B
Ben Widawsky 已提交
3819
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3820 3821 3822 3823

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3824
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3825
				 (pcu_mbox & 0xff) * 50);
3826
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
3827 3828
	}

3829
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
3830
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3831

3832
	gen6_enable_rps_interrupts(dev);
3833

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

3848
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3849 3850
}

3851
static void __gen6_update_ring_freq(struct drm_device *dev)
3852
{
3853
	struct drm_i915_private *dev_priv = dev->dev_private;
3854
	int min_freq = 15;
3855 3856
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
3857
	int scaling_factor = 180;
3858
	struct cpufreq_policy *policy;
3859

3860
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3861

3862 3863 3864 3865 3866 3867 3868 3869 3870
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
3871
		max_ia_freq = tsc_khz;
3872
	}
3873 3874 3875 3876

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

3877
	min_ring_freq = I915_READ(DCLK) & 0xf;
3878 3879
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3880

3881 3882 3883 3884 3885
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
3886
	for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3887
	     gpu_freq--) {
3888
		int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3889 3890
		unsigned int ia_freq = 0, ring_freq = 0;

3891 3892 3893 3894
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
3895
			ring_freq = mult_frac(gpu_freq, 5, 4);
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
3912

B
Ben Widawsky 已提交
3913 3914
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3915 3916 3917
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
3918 3919 3920
	}
}

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3933
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
{
	u32 val, rp0;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
	rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;

	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;

	return rp1;
}

3963
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
3964 3965 3966 3967 3968 3969 3970 3971
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
	rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
	return rpn;
}

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

3983
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3984 3985 3986
{
	u32 val, rp0;

3987
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4000
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4001
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4002
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4003 4004 4005 4006 4007
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

4008
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4009
{
4010
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4011 4012
}

4013 4014 4015 4016 4017 4018 4019 4020 4021
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
}

4051 4052 4053 4054 4055 4056 4057 4058
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4059 4060
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4061 4062 4063 4064 4065 4066 4067 4068
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4069
								      I915_GTT_OFFSET_NONE,
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
								      pctx_size);
		goto out;
	}

	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
	dev_priv->vlv_pctx = pctx;
}

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4106 4107 4108
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4109
	u32 val;
4110 4111 4112 4113 4114

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

4141 4142 4143 4144 4145
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
			 dev_priv->rps.rp1_freq);

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
			 dev_priv->rps.min_freq);

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

4161 4162
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
4163
	struct drm_i915_private *dev_priv = dev->dev_private;
4164
	u32 val;
4165

4166
	cherryview_setup_pctx(dev);
4167 4168 4169

	mutex_lock(&dev_priv->rps.hw_lock);

4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
	val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

4207 4208 4209 4210 4211
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
			 dev_priv->rps.rp1_freq);

4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
			 dev_priv->rps.min_freq);

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
4225 4226
}

4227 4228 4229 4230 4231
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

4232 4233 4234 4235
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
4236
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);

	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

4283 4284 4285 4286 4287 4288 4289 4290
	/* 4 Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

4291 4292 4293 4294
	/* WaDisablePwrmtrEvent:chv (pre-production hw) */
	I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
	I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);

4295 4296 4297
	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4298
		   GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

4319 4320
	gen8_enable_rps_interrupts(dev);

4321 4322 4323
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
}

4324 4325 4326
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4327
	struct intel_engine_cs *ring;
4328
	u32 gtfifodbg, val, rc6_mode = 0;
4329 4330 4331 4332
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

4333 4334
	valleyview_check_pctx(dev_priv);

4335
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4336 4337
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
4338 4339 4340
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4341 4342
	/* If VLV, Forcewake all wells, else re-direct to regular path */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4343 4344 4345 4346 4347 4348 4349

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4350
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

4367
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4368 4369

	/* allows RC6 residency counter to work */
4370
	I915_WRITE(VLV_COUNTER_CONTROL,
4371 4372
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
4373 4374
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
4375

4376
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4377
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
4378 4379 4380

	intel_print_rc6_info(dev, rc6_mode);

4381
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4382

4383
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4384 4385 4386 4387

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

4388
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4389
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4390 4391
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq);
4392

4393
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4394 4395
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);
4396

4397
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4398

4399
	gen6_enable_rps_interrupts(dev);
4400

4401
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4402 4403
}

4404
void ironlake_teardown_rc6(struct drm_device *dev)
4405 4406 4407
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4408
	if (dev_priv->ips.renderctx) {
B
Ben Widawsky 已提交
4409
		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4410 4411
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
4412 4413
	}

4414
	if (dev_priv->ips.pwrctx) {
B
Ben Widawsky 已提交
4415
		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4416 4417
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
4418 4419 4420
	}
}

4421
static void ironlake_disable_rc6(struct drm_device *dev)
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4443 4444 4445
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
4446 4447
		return -ENOMEM;

4448 4449 4450
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
4451 4452 4453 4454 4455 4456 4457
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

4458
static void ironlake_enable_rc6(struct drm_device *dev)
4459 4460
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4461
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4462
	bool was_interruptible;
4463 4464 4465 4466 4467 4468 4469 4470
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

4471 4472
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4473
	ret = ironlake_setup_rc6(dev);
4474
	if (ret)
4475 4476
		return;

4477 4478 4479
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

4480 4481 4482 4483
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
4484
	ret = intel_ring_begin(ring, 6);
4485 4486
	if (ret) {
		ironlake_teardown_rc6(dev);
4487
		dev_priv->mm.interruptible = was_interruptible;
4488 4489 4490
		return;
	}

4491 4492
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
4493
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4494 4495 4496 4497 4498 4499 4500 4501
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
4502 4503 4504 4505 4506 4507

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
4508 4509
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
4510
	if (ret) {
4511
		DRM_ERROR("failed to enable ironlake power savings\n");
4512 4513 4514 4515
		ironlake_teardown_rc6(dev);
		return;
	}

4516
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4517
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
B
Ben Widawsky 已提交
4518

4519
	intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4520 4521
}

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

4551
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4552 4553 4554 4555 4556 4557
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

4558 4559
	assert_spin_locked(&mchdev_lock);

4560
	diff1 = now - dev_priv->ips.last_time1;
4561 4562 4563 4564 4565 4566 4567

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
4568
		return dev_priv->ips.chipset_power;
4569 4570 4571 4572 4573 4574 4575 4576

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
4577 4578
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
4579 4580
		diff += total_count;
	} else {
4581
		diff = total_count - dev_priv->ips.last_count1;
4582 4583 4584
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4585 4586
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

4597 4598
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
4599

4600
	dev_priv->ips.chipset_power = ret;
4601 4602 4603 4604

	return ret;
}

4605 4606
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
4607
	struct drm_device *dev = dev_priv->dev;
4608 4609
	unsigned long val;

4610
	if (INTEL_INFO(dev)->gen != 5)
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
4639
	struct drm_device *dev = dev_priv->dev;
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
	static const struct v_table {
		u16 vd; /* in .1 mil */
		u16 vm; /* in .1 mil */
	} v_table[] = {
		{ 0, 0, },
		{ 375, 0, },
		{ 500, 0, },
		{ 625, 0, },
		{ 750, 0, },
		{ 875, 0, },
		{ 1000, 0, },
		{ 1125, 0, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4250, 3125, },
		{ 4375, 3250, },
		{ 4500, 3375, },
		{ 4625, 3500, },
		{ 4750, 3625, },
		{ 4875, 3750, },
		{ 5000, 3875, },
		{ 5125, 4000, },
		{ 5250, 4125, },
		{ 5375, 4250, },
		{ 5500, 4375, },
		{ 5625, 4500, },
		{ 5750, 4625, },
		{ 5875, 4750, },
		{ 6000, 4875, },
		{ 6125, 5000, },
		{ 6250, 5125, },
		{ 6375, 5250, },
		{ 6500, 5375, },
		{ 6625, 5500, },
		{ 6750, 5625, },
		{ 6875, 5750, },
		{ 7000, 5875, },
		{ 7125, 6000, },
		{ 7250, 6125, },
		{ 7375, 6250, },
		{ 7500, 6375, },
		{ 7625, 6500, },
		{ 7750, 6625, },
		{ 7875, 6750, },
		{ 8000, 6875, },
		{ 8125, 7000, },
		{ 8250, 7125, },
		{ 8375, 7250, },
		{ 8500, 7375, },
		{ 8625, 7500, },
		{ 8750, 7625, },
		{ 8875, 7750, },
		{ 9000, 7875, },
		{ 9125, 8000, },
		{ 9250, 8125, },
		{ 9375, 8250, },
		{ 9500, 8375, },
		{ 9625, 8500, },
		{ 9750, 8625, },
		{ 9875, 8750, },
		{ 10000, 8875, },
		{ 10125, 9000, },
		{ 10250, 9125, },
		{ 10375, 9250, },
		{ 10500, 9375, },
		{ 10625, 9500, },
		{ 10750, 9625, },
		{ 10875, 9750, },
		{ 11000, 9875, },
		{ 11125, 10000, },
		{ 11250, 10125, },
		{ 11375, 10250, },
		{ 11500, 10375, },
		{ 11625, 10500, },
		{ 11750, 10625, },
		{ 11875, 10750, },
		{ 12000, 10875, },
		{ 12125, 11000, },
		{ 12250, 11125, },
		{ 12375, 11250, },
		{ 12500, 11375, },
		{ 12625, 11500, },
		{ 12750, 11625, },
		{ 12875, 11750, },
		{ 13000, 11875, },
		{ 13125, 12000, },
		{ 13250, 12125, },
		{ 13375, 12250, },
		{ 13500, 12375, },
		{ 13625, 12500, },
		{ 13750, 12625, },
		{ 13875, 12750, },
		{ 14000, 12875, },
		{ 14125, 13000, },
		{ 14250, 13125, },
		{ 14375, 13250, },
		{ 14500, 13375, },
		{ 14625, 13500, },
		{ 14750, 13625, },
		{ 14875, 13750, },
		{ 15000, 13875, },
		{ 15125, 14000, },
		{ 15250, 14125, },
		{ 15375, 14250, },
		{ 15500, 14375, },
		{ 15625, 14500, },
		{ 15750, 14625, },
		{ 15875, 14750, },
		{ 16000, 14875, },
		{ 16125, 15000, },
	};
4773
	if (INTEL_INFO(dev)->is_mobile)
4774 4775 4776 4777 4778
		return v_table[pxvid].vm;
	else
		return v_table[pxvid].vd;
}

4779
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4780
{
4781
	u64 now, diff, diffms;
4782 4783
	u32 count;

4784
	assert_spin_locked(&mchdev_lock);
4785

4786 4787 4788
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
4789 4790 4791 4792 4793 4794 4795

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

4796 4797
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
4798 4799
		diff += count;
	} else {
4800
		diff = count - dev_priv->ips.last_count2;
4801 4802
	}

4803 4804
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
4805 4806 4807 4808

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
4809
	dev_priv->ips.gfx_power = diff;
4810 4811
}

4812 4813
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
4814 4815 4816
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
4817 4818
		return;

4819
	spin_lock_irq(&mchdev_lock);
4820 4821 4822

	__i915_update_gfx_val(dev_priv);

4823
	spin_unlock_irq(&mchdev_lock);
4824 4825
}

4826
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4827 4828 4829 4830
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

4831 4832
	assert_spin_locked(&mchdev_lock);

4833
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
4853
	corr2 = (corr * dev_priv->ips.corr);
4854 4855 4856 4857

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

4858
	__i915_update_gfx_val(dev_priv);
4859

4860
	return dev_priv->ips.gfx_power + state2;
4861 4862
}

4863 4864
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
4865
	struct drm_device *dev = dev_priv->dev;
4866 4867
	unsigned long val;

4868
	if (INTEL_INFO(dev)->gen != 5)
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

4891
	spin_lock_irq(&mchdev_lock);
4892 4893 4894 4895
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4896 4897
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
4898 4899 4900 4901

	ret = chipset_val + graphics_val;

out_unlock:
4902
	spin_unlock_irq(&mchdev_lock);
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4918
	spin_lock_irq(&mchdev_lock);
4919 4920 4921 4922 4923 4924
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4925 4926
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
4927 4928

out_unlock:
4929
	spin_unlock_irq(&mchdev_lock);
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4946
	spin_lock_irq(&mchdev_lock);
4947 4948 4949 4950 4951 4952
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4953 4954
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
4955 4956

out_unlock:
4957
	spin_unlock_irq(&mchdev_lock);
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
4971
	struct intel_engine_cs *ring;
4972
	bool ret = false;
4973
	int i;
4974

4975
	spin_lock_irq(&mchdev_lock);
4976 4977 4978 4979
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4980 4981
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
4982 4983

out_unlock:
4984
	spin_unlock_irq(&mchdev_lock);
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5001
	spin_lock_irq(&mchdev_lock);
5002 5003 5004 5005 5006 5007
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5008
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5009

5010
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5011 5012 5013
		ret = false;

out_unlock:
5014
	spin_unlock_irq(&mchdev_lock);
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5042 5043
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5044
	spin_lock_irq(&mchdev_lock);
5045
	i915_mch_dev = dev_priv;
5046
	spin_unlock_irq(&mchdev_lock);
5047 5048 5049 5050 5051 5052

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5053
	spin_lock_irq(&mchdev_lock);
5054
	i915_mch_dev = NULL;
5055
	spin_unlock_irq(&mchdev_lock);
5056
}
5057

5058
static void intel_init_emon(struct drm_device *dev)
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

5126
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5127 5128
}

5129 5130
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
5131 5132
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

5133 5134 5135
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
5136
		valleyview_init_gt_powersave(dev);
5137 5138 5139 5140
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
5141 5142 5143
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
5144
		valleyview_cleanup_gt_powersave(dev);
5145 5146
}

5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Interrupts should be disabled already to avoid re-arming. */
5160
	WARN_ON(intel_irqs_enabled(dev_priv));
5161 5162 5163 5164

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

	cancel_work_sync(&dev_priv->rps.work);
5165 5166 5167

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
5168 5169
}

5170 5171
void intel_disable_gt_powersave(struct drm_device *dev)
{
5172 5173
	struct drm_i915_private *dev_priv = dev->dev_private;

5174
	/* Interrupts should be disabled already to avoid re-arming. */
5175
	WARN_ON(intel_irqs_enabled(dev_priv));
5176

5177
	if (IS_IRONLAKE_M(dev)) {
5178
		ironlake_disable_drps(dev);
5179
		ironlake_disable_rc6(dev);
5180
	} else if (INTEL_INFO(dev)->gen >= 6) {
5181
		intel_suspend_gt_powersave(dev);
5182

5183
		mutex_lock(&dev_priv->rps.hw_lock);
5184 5185 5186
		if (IS_CHERRYVIEW(dev))
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
5187 5188 5189
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
5190
		dev_priv->rps.enabled = false;
5191
		mutex_unlock(&dev_priv->rps.hw_lock);
5192
	}
5193 5194
}

5195 5196 5197 5198 5199 5200 5201
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

5202
	mutex_lock(&dev_priv->rps.hw_lock);
5203

5204 5205 5206
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
5207
		valleyview_enable_rps(dev);
5208 5209
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
5210
		__gen6_update_ring_freq(dev);
5211 5212
	} else {
		gen6_enable_rps(dev);
5213
		__gen6_update_ring_freq(dev);
5214
	}
5215
	dev_priv->rps.enabled = true;
5216
	mutex_unlock(&dev_priv->rps.hw_lock);
5217 5218

	intel_runtime_pm_put(dev_priv);
5219 5220
}

5221 5222
void intel_enable_gt_powersave(struct drm_device *dev)
{
5223 5224
	struct drm_i915_private *dev_priv = dev->dev_private;

5225
	if (IS_IRONLAKE_M(dev)) {
5226
		mutex_lock(&dev->struct_mutex);
5227 5228 5229
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
5230
		mutex_unlock(&dev->struct_mutex);
5231
	} else if (INTEL_INFO(dev)->gen >= 6) {
5232 5233 5234 5235
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
5236 5237 5238 5239 5240 5241 5242
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
5243
		 */
5244 5245 5246
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
5247 5248 5249
	}
}

5250 5251 5252 5253 5254 5255 5256 5257
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->rps.enabled = false;
	intel_enable_gt_powersave(dev);
}

5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

5270 5271 5272 5273 5274
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

5275
	for_each_pipe(dev_priv, pipe) {
5276 5277 5278
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
5279
		intel_flush_primary_plane(dev_priv, pipe);
5280 5281 5282
	}
}

5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5297
static void ironlake_init_clock_gating(struct drm_device *dev)
5298 5299
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5300
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5301

5302 5303 5304 5305
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
5306 5307 5308
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5326
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5327 5328 5329
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
5330 5331

	ilk_init_lp_watermarks(dev);
5332 5333 5334 5335 5336 5337 5338 5339 5340

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5341
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5342 5343 5344 5345 5346 5347 5348 5349
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5350 5351
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5352 5353 5354 5355 5356 5357
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5358

5359
	/* WaDisableRenderCachePipelinedFlush:ilk */
5360 5361
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5362

5363 5364 5365
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5366
	g4x_disable_trickle_feed(dev);
5367

5368 5369 5370 5371 5372 5373 5374
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5375
	uint32_t val;
5376 5377 5378 5379 5380 5381

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5382 5383 5384
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5385 5386
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5387 5388 5389
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5390
	for_each_pipe(dev_priv, pipe) {
5391 5392 5393
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5394
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5395
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5396 5397 5398
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5399 5400
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5401
	/* WADP0ClockGatingDisable */
5402
	for_each_pipe(dev_priv, pipe) {
5403 5404 5405
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5406 5407
}

5408 5409 5410 5411 5412 5413
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
5414 5415 5416
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
5417 5418
}

5419
static void gen6_init_clock_gating(struct drm_device *dev)
5420 5421
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5422
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5423

5424
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5425 5426 5427 5428 5429

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5430
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5431 5432 5433
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5434
	/* WaSetupGtModeTdRowDispatch:snb */
5435 5436 5437 5438
	if (IS_SNB_GT1(dev))
		I915_WRITE(GEN6_GT_MODE,
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));

5439 5440 5441
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5442 5443 5444
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5445 5446 5447 5448
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5449 5450 5451 5452
	 */
	I915_WRITE(GEN6_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5453
	ilk_init_lp_watermarks(dev);
5454 5455

	I915_WRITE(CACHE_MODE_0,
5456
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5472
	 *
5473 5474
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
5475 5476 5477 5478 5479
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5480
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
5481 5482
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5483

5484 5485 5486 5487 5488 5489 5490 5491
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

5492 5493 5494 5495 5496 5497 5498 5499
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5500 5501
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5502 5503 5504 5505 5506 5507 5508
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5509 5510 5511 5512
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5513

5514
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
5515

5516
	cpt_init_clock_gating(dev);
5517 5518

	gen6_check_mch_setup(dev);
5519 5520 5521 5522 5523 5524
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

5525
	/*
5526
	 * WaVSThreadDispatchOverride:ivb,vlv
5527 5528 5529 5530
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
5531 5532 5533 5534 5535 5536 5537 5538
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
5551 5552 5553 5554 5555

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5556 5557
}

5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

5570
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
5571 5572
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5573
	enum pipe pipe;
B
Ben Widawsky 已提交
5574 5575 5576 5577

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
5578 5579 5580 5581

	/* FIXME(BDW): Check all the w/a, some might only apply to
	 * pre-production hw. */

5582

5583 5584
	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));

5585
	I915_WRITE(_3D_CHICKEN3,
5586
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5587

5588

5589
	/* WaSwitchSolVfFArbitrationPriority:bdw */
5590
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5591

5592
	/* WaPsrDPAMaskVBlankInSRD:bdw */
5593 5594 5595
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

5596
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5597
	for_each_pipe(dev_priv, pipe) {
5598
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
5599
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
5600
			   BDW_DPRS_MASK_VBLANK_SRD);
5601
	}
5602

5603 5604 5605 5606 5607
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5608

5609 5610
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5611 5612 5613 5614

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5615

5616
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
5617 5618
}

5619 5620 5621 5622
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5623
	ilk_init_lp_watermarks(dev);
5624

5625 5626 5627 5628 5629
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

5630
	/* This is required by WaCatErrorRejectionIssue:hsw */
5631 5632 5633 5634
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5635 5636 5637
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5638

5639 5640 5641
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5642 5643 5644 5645
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

5646
	/* WaDisable4x2SubspanOptimization:hsw */
5647 5648
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5649

5650 5651 5652
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5653 5654 5655 5656
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5657 5658 5659 5660
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5661
	/* WaSwitchSolVfFArbitrationPriority:hsw */
5662 5663
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

5664 5665 5666
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5667

5668
	lpt_init_clock_gating(dev);
5669 5670
}

5671
static void ivybridge_init_clock_gating(struct drm_device *dev)
5672 5673
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5674
	uint32_t snpcr;
5675

5676
	ilk_init_lp_watermarks(dev);
5677

5678
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5679

5680
	/* WaDisableEarlyCull:ivb */
5681 5682 5683
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5684
	/* WaDisableBackToBackFlipFix:ivb */
5685 5686 5687 5688
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5689
	/* WaDisablePSDDualDispatchEnable:ivb */
5690 5691 5692 5693
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

5694 5695 5696
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5697
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5698 5699 5700
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5701
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
5702 5703 5704
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5705 5706 5707 5708
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5709 5710 5711 5712
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5713 5714
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5715
	}
5716

5717
	/* WaForceL3Serialization:ivb */
5718 5719 5720
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5721
	/*
5722
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5723
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5724 5725
	 */
	I915_WRITE(GEN6_UCGCTL2,
5726
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5727

5728
	/* This is required by WaCatErrorRejectionIssue:ivb */
5729 5730 5731 5732
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5733
	g4x_disable_trickle_feed(dev);
5734 5735

	gen7_setup_fixed_func_scheduler(dev_priv);
5736

5737 5738 5739 5740 5741
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
5742

5743
	/* WaDisable4x2SubspanOptimization:ivb */
5744 5745
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5746

5747 5748 5749
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5750 5751 5752 5753
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5754 5755 5756 5757
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5758 5759 5760 5761
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5762

5763 5764
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
5765 5766

	gen6_check_mch_setup(dev);
5767 5768
}

5769
static void valleyview_init_clock_gating(struct drm_device *dev)
5770 5771 5772
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5773
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5774

5775
	/* WaDisableEarlyCull:vlv */
5776 5777 5778
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5779
	/* WaDisableBackToBackFlipFix:vlv */
5780 5781 5782 5783
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5784
	/* WaPsdDispatchEnable:vlv */
5785
	/* WaDisablePSDDualDispatchEnable:vlv */
5786
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5787 5788
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5789

5790 5791 5792
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5793
	/* WaForceL3Serialization:vlv */
5794 5795 5796
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5797
	/* WaDisableDopClockGating:vlv */
5798 5799 5800
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

5801
	/* This is required by WaCatErrorRejectionIssue:vlv */
5802 5803 5804 5805
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5806 5807
	gen7_setup_fixed_func_scheduler(dev_priv);

5808
	/*
5809
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5810
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5811 5812
	 */
	I915_WRITE(GEN6_UCGCTL2,
5813
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5814

5815 5816 5817 5818 5819
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5820

5821
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5822

5823 5824 5825 5826
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
5827 5828
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5829

5830 5831 5832 5833 5834 5835
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

5836
	/*
5837
	 * WaDisableVLVClockGating_VBIIssue:vlv
5838 5839 5840
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
5841
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5842 5843
}

5844 5845 5846 5847 5848 5849 5850
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5851 5852 5853 5854

	/* WaDisablePartialInstShootdown:chv */
	I915_WRITE(GEN8_ROW_CHICKEN,
		   _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5855 5856 5857 5858

	/* WaDisableThreadStallDopClockGating:chv */
	I915_WRITE(GEN8_ROW_CHICKEN,
		   _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5859 5860 5861 5862 5863 5864

	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5865 5866 5867 5868

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5869 5870 5871 5872

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5873 5874 5875 5876

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5877 5878 5879 5880

	/* WaDisableSamplerPowerBypass:chv (pre-production hw) */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894

	/* WaDisableGunitClockGating:chv (pre-production hw) */
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
		   GINT_DIS);

	/* WaDisableFfDopClockGating:chv (pre-production hw) */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));

	/* WaDisableDopClockGating:chv (pre-production hw) */
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5895 5896
}

5897
static void g4x_init_clock_gating(struct drm_device *dev)
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5913 5914 5915 5916

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5917

5918 5919 5920
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5921
	g4x_disable_trickle_feed(dev);
5922 5923
}

5924
static void crestline_init_clock_gating(struct drm_device *dev)
5925 5926 5927 5928 5929 5930 5931 5932
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
5933 5934
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5935 5936 5937

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5938 5939
}

5940
static void broadwater_init_clock_gating(struct drm_device *dev)
5941 5942 5943 5944 5945 5946 5947 5948 5949
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
5950 5951
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5952 5953 5954

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5955 5956
}

5957
static void gen3_init_clock_gating(struct drm_device *dev)
5958 5959 5960 5961 5962 5963 5964
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
5965 5966 5967

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5968 5969 5970

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5971 5972

	/* interrupts should cause a wake up from C3 */
5973
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
5974 5975 5976

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5977 5978
}

5979
static void i85x_init_clock_gating(struct drm_device *dev)
5980 5981 5982 5983
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5984 5985 5986 5987

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5988 5989
}

5990
static void i830_init_clock_gating(struct drm_device *dev)
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->display.init_clock_gating(dev);
}

6004 6005 6006 6007 6008 6009
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
#define for_each_power_well(i, power_well, domain_mask, power_domains)	\
	for (i = 0;							\
	     i < (power_domains)->power_well_count &&			\
		 ((power_well) = &(power_domains)->power_wells[i]);	\
	     i++)							\
		if ((power_well)->domains & (domain_mask))

#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
	for (i = (power_domains)->power_well_count - 1;			 \
	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
	     i--)							 \
		if ((power_well)->domains & (domain_mask))

6023 6024 6025 6026 6027
/**
 * We should only use the power well if we explicitly asked the hardware to
 * enable it, so check if it's enabled and also check if we've requested it to
 * be enabled.
 */
6028
static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
6029 6030 6031 6032 6033 6034
				   struct i915_power_well *power_well)
{
	return I915_READ(HSW_PWR_WELL_DRIVER) ==
		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
}

6035 6036
bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
					  enum intel_display_power_domain domain)
6037 6038
{
	struct i915_power_domains *power_domains;
6039 6040 6041 6042 6043 6044
	struct i915_power_well *power_well;
	bool is_enabled;
	int i;

	if (dev_priv->pm.suspended)
		return false;
6045 6046

	power_domains = &dev_priv->power_domains;
6047

6048
	is_enabled = true;
6049

6050 6051 6052
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
		if (power_well->always_on)
			continue;
6053

6054
		if (!power_well->hw_enabled) {
6055 6056 6057 6058
			is_enabled = false;
			break;
		}
	}
6059

6060
	return is_enabled;
6061 6062
}

6063
bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
6064
				 enum intel_display_power_domain domain)
6065
{
6066
	struct i915_power_domains *power_domains;
6067
	bool ret;
6068

6069 6070 6071
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6072
	ret = intel_display_power_enabled_unlocked(dev_priv, domain);
6073 6074
	mutex_unlock(&power_domains->lock);

6075
	return ret;
6076 6077
}

6078 6079 6080 6081 6082 6083
/*
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
 * when not needed anymore. We have 4 registers that can request the power well
 * to be enabled, and it will only be disabled if none of the registers is
 * requesting it to be enabled.
 */
6084 6085 6086 6087
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101
	/*
	 * After we re-enable the power well, if we touch VGA register 0x3d5
	 * we'll get unclaimed register interrupts. This stops after we write
	 * anything to the VGA MSR register. The vgacon module uses this
	 * register all the time, so if we unbind our driver and, as a
	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
	 * console_unlock(). So make here we touch the VGA MSR register, making
	 * sure vgacon can keep working normally without triggering interrupts
	 * and error messages.
	 */
	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);

6102 6103
	if (IS_BROADWELL(dev))
		gen8_irq_power_well_post_enable(dev_priv);
6104 6105
}

6106
static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6107
			       struct i915_power_well *power_well, bool enable)
6108
{
6109 6110
	bool is_enabled, enable_requested;
	uint32_t tmp;
6111

6112
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6113 6114
	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6115

6116 6117
	if (enable) {
		if (!enable_requested)
6118 6119
			I915_WRITE(HSW_PWR_WELL_DRIVER,
				   HSW_PWR_WELL_ENABLE_REQUEST);
6120

6121 6122 6123
		if (!is_enabled) {
			DRM_DEBUG_KMS("Enabling power well\n");
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6124
				      HSW_PWR_WELL_STATE_ENABLED), 20))
6125 6126
				DRM_ERROR("Timeout enabling power well\n");
		}
6127

6128
		hsw_power_well_post_enable(dev_priv);
6129 6130 6131
	} else {
		if (enable_requested) {
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6132
			POSTING_READ(HSW_PWR_WELL_DRIVER);
6133
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
6134 6135
		}
	}
6136
}
6137

6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);

	/*
	 * We're taking over the BIOS, so clear any requests made by it since
	 * the driver is in charge now.
	 */
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}

static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
				  struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, true);
}

static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, false);
}

6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
}

static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
					     struct i915_power_well *power_well)
{
	return true;
}

6174 6175
static void vlv_set_power_well(struct drm_i915_private *dev_priv,
			       struct i915_power_well *power_well, bool enable)
6176
{
6177
	enum punit_power_well power_well_id = power_well->data;
6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
	u32 mask;
	u32 state;
	u32 ctrl;

	mask = PUNIT_PWRGT_MASK(power_well_id);
	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
			 PUNIT_PWRGT_PWR_GATE(power_well_id);

	mutex_lock(&dev_priv->rps.hw_lock);

#define COND \
	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)

	if (COND)
		goto out;

	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
	ctrl &= ~mask;
	ctrl |= state;
	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);

	if (wait_for(COND, 100))
		DRM_ERROR("timout setting power well state %08x (%08x)\n",
			  state,
			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));

#undef COND

out:
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
}

static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
				  struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, true);
}

static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, false);
}

static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	int power_well_id = power_well->data;
	bool enabled = false;
	u32 mask;
	u32 state;
	u32 ctrl;

	mask = PUNIT_PWRGT_MASK(power_well_id);
	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);

	mutex_lock(&dev_priv->rps.hw_lock);

	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
	/*
	 * We only ever set the power-on and power-gate states, anything
	 * else is unexpected.
	 */
	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
	if (state == ctrl)
		enabled = true;

	/*
	 * A transient state at this point would mean some unexpected party
	 * is poking at the power controls too.
	 */
	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
	WARN_ON(ctrl != state);

	mutex_unlock(&dev_priv->rps.hw_lock);

	return enabled;
}

static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
					  struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);

	vlv_set_power_well(dev_priv, power_well, true);

	spin_lock_irq(&dev_priv->irq_lock);
	valleyview_enable_display_irqs(dev_priv);
	spin_unlock_irq(&dev_priv->irq_lock);

	/*
6276 6277
	 * During driver initialization/resume we can avoid restoring the
	 * part of the HW/SW state that will be inited anyway explicitly.
6278
	 */
6279 6280 6281 6282
	if (dev_priv->power_domains.initializing)
		return;

	intel_hpd_init(dev_priv->dev);
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298

	i915_redisable_vga_power_on(dev_priv->dev);
}

static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);

	spin_lock_irq(&dev_priv->irq_lock);
	valleyview_disable_display_irqs(dev_priv);
	spin_unlock_irq(&dev_priv->irq_lock);

	vlv_set_power_well(dev_priv, power_well, false);
}

6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335
static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);

	/*
	 * Enable the CRI clock source so we can get at the
	 * display and the reference clock for VGA
	 * hotplug / manual detection.
	 */
	I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
		   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */

	vlv_set_power_well(dev_priv, power_well, true);

	/*
	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
	 *   b.	The other bits such as sfr settings / modesel may all
	 *	be set to 0.
	 *
	 * This should only be done on init and resume from S3 with
	 * both PLLs disabled, or we risk losing DPIO and PLL
	 * synchronization.
	 */
	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
}

static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
					    struct i915_power_well *power_well)
{
	enum pipe pipe;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);

6336
	for_each_pipe(dev_priv, pipe)
6337 6338 6339 6340 6341 6342 6343 6344
		assert_pll_disabled(dev_priv, pipe);

	/* Assert common reset */
	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);

	vlv_set_power_well(dev_priv, power_well, false);
}

6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	enum dpio_phy phy;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);

	/*
	 * Enable the CRI clock source so we can get at the
	 * display and the reference clock for VGA
	 * hotplug / manual detection.
	 */
	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		phy = DPIO_PHY0;
		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
			   DPLL_REFA_CLK_ENABLE_VLV);
		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
			   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	} else {
		phy = DPIO_PHY1;
		I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
			   DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
	}
	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
	vlv_set_power_well(dev_priv, power_well, true);

	/* Poll for phypwrgood signal */
	if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
		DRM_ERROR("Display PHY %d is not power up\n", phy);

6376 6377
	I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
		   PHY_COM_LANE_RESET_DEASSERT(phy));
6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
}

static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
					    struct i915_power_well *power_well)
{
	enum dpio_phy phy;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);

	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		phy = DPIO_PHY0;
		assert_pll_disabled(dev_priv, PIPE_A);
		assert_pll_disabled(dev_priv, PIPE_B);
	} else {
		phy = DPIO_PHY1;
		assert_pll_disabled(dev_priv, PIPE_C);
	}

6397 6398
	I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
		   ~PHY_COM_LANE_RESET_DEASSERT(phy));
6399 6400 6401 6402

	vlv_set_power_well(dev_priv, power_well, false);
}

6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	enum pipe pipe = power_well->data;
	bool enabled;
	u32 state, ctrl;

	mutex_lock(&dev_priv->rps.hw_lock);

	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
	/*
	 * We only ever set the power-on and power-gate states, anything
	 * else is unexpected.
	 */
	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
	enabled = state == DP_SSS_PWR_ON(pipe);

	/*
	 * A transient state at this point would mean some unexpected party
	 * is poking at the power controls too.
	 */
	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
	WARN_ON(ctrl << 16 != state);

	mutex_unlock(&dev_priv->rps.hw_lock);

	return enabled;
}

static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
				    struct i915_power_well *power_well,
				    bool enable)
{
	enum pipe pipe = power_well->data;
	u32 state;
	u32 ctrl;

	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);

	mutex_lock(&dev_priv->rps.hw_lock);

#define COND \
	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)

	if (COND)
		goto out;

	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	ctrl &= ~DP_SSC_MASK(pipe);
	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);

	if (wait_for(COND, 100))
		DRM_ERROR("timout setting power well state %08x (%08x)\n",
			  state,
			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));

#undef COND

out:
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
}

static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
				       struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PIPE_A &&
		     power_well->data != PIPE_B &&
		     power_well->data != PIPE_C);

	chv_set_pipe_power_well(dev_priv, power_well, true);
}

static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PIPE_A &&
		     power_well->data != PIPE_B &&
		     power_well->data != PIPE_C);

	chv_set_pipe_power_well(dev_priv, power_well, false);
}

6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
static void check_power_well_state(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	bool enabled = power_well->ops->is_enabled(dev_priv, power_well);

	if (power_well->always_on || !i915.disable_power_well) {
		if (!enabled)
			goto mismatch;

		return;
	}

	if (enabled != (power_well->count > 0))
		goto mismatch;

	return;

mismatch:
	WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
		  power_well->name, power_well->always_on, enabled,
		  power_well->count, i915.disable_power_well);
}

6515
void intel_display_power_get(struct drm_i915_private *dev_priv,
6516 6517
			     enum intel_display_power_domain domain)
{
6518
	struct i915_power_domains *power_domains;
6519 6520
	struct i915_power_well *power_well;
	int i;
6521

6522 6523
	intel_runtime_pm_get(dev_priv);

6524 6525 6526
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6527

6528 6529 6530
	for_each_power_well(i, power_well, BIT(domain), power_domains) {
		if (!power_well->count++) {
			DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6531
			power_well->ops->enable(dev_priv, power_well);
6532
			power_well->hw_enabled = true;
6533 6534 6535 6536
		}

		check_power_well_state(dev_priv, power_well);
	}
6537

6538 6539
	power_domains->domain_use_count[domain]++;

6540
	mutex_unlock(&power_domains->lock);
6541 6542
}

6543
void intel_display_power_put(struct drm_i915_private *dev_priv,
6544 6545
			     enum intel_display_power_domain domain)
{
6546
	struct i915_power_domains *power_domains;
6547 6548
	struct i915_power_well *power_well;
	int i;
6549

6550 6551 6552
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
6553 6554 6555

	WARN_ON(!power_domains->domain_use_count[domain]);
	power_domains->domain_use_count[domain]--;
6556

6557 6558 6559
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
		WARN_ON(!power_well->count);

6560 6561
		if (!--power_well->count && i915.disable_power_well) {
			DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6562
			power_well->hw_enabled = false;
6563
			power_well->ops->disable(dev_priv, power_well);
6564 6565 6566
		}

		check_power_well_state(dev_priv, power_well);
6567
	}
6568

6569
	mutex_unlock(&power_domains->lock);
6570 6571

	intel_runtime_pm_put(dev_priv);
6572 6573
}

6574
static struct i915_power_domains *hsw_pwr;
6575 6576

/* Display audio driver power well request */
6577
int i915_request_power_well(void)
6578
{
6579 6580
	struct drm_i915_private *dev_priv;

6581 6582
	if (!hsw_pwr)
		return -ENODEV;
6583

6584 6585
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
6586
	intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6587
	return 0;
6588 6589 6590 6591
}
EXPORT_SYMBOL_GPL(i915_request_power_well);

/* Display audio driver power well release */
6592
int i915_release_power_well(void)
6593
{
6594 6595
	struct drm_i915_private *dev_priv;

6596 6597
	if (!hsw_pwr)
		return -ENODEV;
6598

6599 6600
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
6601
	intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6602
	return 0;
6603 6604 6605
}
EXPORT_SYMBOL_GPL(i915_release_power_well);

6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
/*
 * Private interface for the audio driver to get CDCLK in kHz.
 *
 * Caller must request power well using i915_request_power_well() prior to
 * making the call.
 */
int i915_get_cdclk_freq(void)
{
	struct drm_i915_private *dev_priv;

	if (!hsw_pwr)
		return -ENODEV;

	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);

	return intel_ddi_get_cdclk_freq(dev_priv);
}
EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);


6627 6628 6629 6630
#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)

#define HSW_ALWAYS_ON_POWER_DOMAINS (			\
	BIT(POWER_DOMAIN_PIPE_A) |			\
6631
	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
I
Imre Deak 已提交
6632 6633 6634 6635 6636 6637 6638 6639 6640
	BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |		\
	BIT(POWER_DOMAIN_PORT_CRT) |			\
P
Paulo Zanoni 已提交
6641
	BIT(POWER_DOMAIN_PLLS) |			\
6642
	BIT(POWER_DOMAIN_INIT))
6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
#define HSW_DISPLAY_POWER_DOMAINS (				\
	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
	BIT(POWER_DOMAIN_INIT))

#define BDW_ALWAYS_ON_POWER_DOMAINS (			\
	HSW_ALWAYS_ON_POWER_DOMAINS |			\
	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
#define BDW_DISPLAY_POWER_DOMAINS (				\
	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
	BIT(POWER_DOMAIN_INIT))

6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682
#define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
#define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK

#define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_CRT) |		\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694
#define CHV_PIPE_A_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_A) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_PIPE_B_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_B) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_PIPE_C_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PIPE_C) |	\
	BIT(POWER_DOMAIN_INIT))

6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
#define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6707 6708 6709 6710 6711 6712 6713 6714 6715
#define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

#define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS (	\
	BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |	\
	BIT(POWER_DOMAIN_INIT))

6716 6717 6718 6719 6720 6721
static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
	.sync_hw = i9xx_always_on_power_well_noop,
	.enable = i9xx_always_on_power_well_noop,
	.disable = i9xx_always_on_power_well_noop,
	.is_enabled = i9xx_always_on_power_well_enabled,
};
6722

6723 6724 6725 6726 6727 6728 6729
static const struct i915_power_well_ops chv_pipe_power_well_ops = {
	.sync_hw = chv_pipe_power_well_sync_hw,
	.enable = chv_pipe_power_well_enable,
	.disable = chv_pipe_power_well_disable,
	.is_enabled = chv_pipe_power_well_enabled,
};

6730 6731 6732 6733 6734 6735 6736
static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = chv_dpio_cmn_power_well_enable,
	.disable = chv_dpio_cmn_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6737 6738 6739 6740 6741
static struct i915_power_well i9xx_always_on_power_well[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = POWER_DOMAIN_MASK,
6742
		.ops = &i9xx_always_on_power_well_ops,
6743 6744 6745
	},
};

6746 6747 6748 6749 6750 6751 6752
static const struct i915_power_well_ops hsw_power_well_ops = {
	.sync_hw = hsw_power_well_sync_hw,
	.enable = hsw_power_well_enable,
	.disable = hsw_power_well_disable,
	.is_enabled = hsw_power_well_enabled,
};

6753
static struct i915_power_well hsw_power_wells[] = {
6754 6755 6756 6757
	{
		.name = "always-on",
		.always_on = 1,
		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6758
		.ops = &i9xx_always_on_power_well_ops,
6759
	},
6760 6761
	{
		.name = "display",
6762
		.domains = HSW_DISPLAY_POWER_DOMAINS,
6763
		.ops = &hsw_power_well_ops,
6764 6765 6766 6767
	},
};

static struct i915_power_well bdw_power_wells[] = {
6768 6769 6770 6771
	{
		.name = "always-on",
		.always_on = 1,
		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6772
		.ops = &i9xx_always_on_power_well_ops,
6773
	},
6774 6775
	{
		.name = "display",
6776
		.domains = BDW_DISPLAY_POWER_DOMAINS,
6777
		.ops = &hsw_power_well_ops,
6778 6779 6780
	},
};

6781 6782 6783 6784 6785 6786 6787
static const struct i915_power_well_ops vlv_display_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_display_power_well_enable,
	.disable = vlv_display_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6788 6789 6790 6791 6792 6793 6794
static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_dpio_cmn_power_well_enable,
	.disable = vlv_dpio_cmn_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850
static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_power_well_enable,
	.disable = vlv_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

static struct i915_power_well vlv_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
	{
		.name = "display",
		.domains = VLV_DISPLAY_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DISP2D,
		.ops = &vlv_display_power_well_ops,
	},
	{
		.name = "dpio-tx-b-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
	},
	{
		.name = "dpio-tx-b-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
	},
	{
		.name = "dpio-tx-c-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
	},
	{
		.name = "dpio-tx-c-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
	},
6851 6852 6853 6854
	{
		.name = "dpio-common",
		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6855
		.ops = &vlv_dpio_cmn_power_well_ops,
6856
	},
6857 6858
};

6859 6860 6861 6862 6863 6864 6865
static struct i915_power_well chv_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
6866 6867 6868 6869 6870 6871 6872
#if 0
	{
		.name = "display",
		.domains = VLV_DISPLAY_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DISP2D,
		.ops = &vlv_display_power_well_ops,
	},
6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890
	{
		.name = "pipe-a",
		.domains = CHV_PIPE_A_POWER_DOMAINS,
		.data = PIPE_A,
		.ops = &chv_pipe_power_well_ops,
	},
	{
		.name = "pipe-b",
		.domains = CHV_PIPE_B_POWER_DOMAINS,
		.data = PIPE_B,
		.ops = &chv_pipe_power_well_ops,
	},
	{
		.name = "pipe-c",
		.domains = CHV_PIPE_C_POWER_DOMAINS,
		.data = PIPE_C,
		.ops = &chv_pipe_power_well_ops,
	},
6891
#endif
6892 6893
	{
		.name = "dpio-common-bc",
6894 6895 6896 6897 6898 6899
		/*
		 * XXX: cmnreset for one PHY seems to disturb the other.
		 * As a workaround keep both powered on at the same
		 * time for now.
		 */
		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
6900 6901 6902 6903 6904
		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
		.ops = &chv_dpio_cmn_power_well_ops,
	},
	{
		.name = "dpio-common-d",
6905 6906 6907 6908 6909 6910
		/*
		 * XXX: cmnreset for one PHY seems to disturb the other.
		 * As a workaround keep both powered on at the same
		 * time for now.
		 */
		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
6911 6912 6913
		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
		.ops = &chv_dpio_cmn_power_well_ops,
	},
6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
#if 0
	{
		.name = "dpio-tx-b-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
	},
	{
		.name = "dpio-tx-b-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
	},
	{
		.name = "dpio-tx-c-01",
		.domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
	},
	{
		.name = "dpio-tx-c-23",
		.domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
	},
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956
	{
		.name = "dpio-tx-d-01",
		.domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
			   CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
	},
	{
		.name = "dpio-tx-d-23",
		.domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
			   CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
	},
6957
#endif
6958 6959
};

6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
						 enum punit_power_well power_well_id)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
	int i;

	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
		if (power_well->data == power_well_id)
			return power_well;
	}

	return NULL;
}

6975 6976 6977 6978 6979
#define set_power_wells(power_domains, __power_wells) ({		\
	(power_domains)->power_wells = (__power_wells);			\
	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
})

6980
int intel_power_domains_init(struct drm_i915_private *dev_priv)
6981
{
6982
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
6983

6984
	mutex_init(&power_domains->lock);
6985

6986 6987 6988 6989
	/*
	 * The enabling order will be from lower to higher indexed wells,
	 * the disabling order is reversed.
	 */
6990
	if (IS_HASWELL(dev_priv->dev)) {
6991 6992
		set_power_wells(power_domains, hsw_power_wells);
		hsw_pwr = power_domains;
6993
	} else if (IS_BROADWELL(dev_priv->dev)) {
6994 6995
		set_power_wells(power_domains, bdw_power_wells);
		hsw_pwr = power_domains;
6996 6997
	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
		set_power_wells(power_domains, chv_power_wells);
6998 6999
	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
		set_power_wells(power_domains, vlv_power_wells);
7000
	} else {
7001
		set_power_wells(power_domains, i9xx_always_on_power_well);
7002
	}
7003 7004 7005 7006

	return 0;
}

7007
void intel_power_domains_remove(struct drm_i915_private *dev_priv)
7008 7009 7010 7011
{
	hsw_pwr = NULL;
}

7012
static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
7013
{
7014 7015
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
7016
	int i;
7017

7018
	mutex_lock(&power_domains->lock);
7019
	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7020
		power_well->ops->sync_hw(dev_priv, power_well);
7021 7022 7023
		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
								     power_well);
	}
7024
	mutex_unlock(&power_domains->lock);
7025 7026
}

7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057
static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *cmn =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
	struct i915_power_well *disp2d =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);

	/* nothing to do if common lane is already off */
	if (!cmn->ops->is_enabled(dev_priv, cmn))
		return;

	/* If the display might be already active skip this */
	if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
		return;

	DRM_DEBUG_KMS("toggling display PHY side reset\n");

	/* cmnlane needs DPLL registers */
	disp2d->ops->enable(dev_priv, disp2d);

	/*
	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
	 * Need to assert and de-assert PHY SB reset by gating the
	 * common lane power, then un-gating it.
	 * Simply ungating isn't enough to reset the PHY enough to get
	 * ports and lanes running.
	 */
	cmn->ops->disable(dev_priv, cmn);
}

7058
void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
7059
{
7060
	struct drm_device *dev = dev_priv->dev;
7061 7062 7063
	struct i915_power_domains *power_domains = &dev_priv->power_domains;

	power_domains->initializing = true;
7064 7065 7066 7067 7068 7069 7070

	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
		mutex_lock(&power_domains->lock);
		vlv_cmnlane_wa(dev_priv);
		mutex_unlock(&power_domains->lock);
	}

7071
	/* For now, we need the power well to be always enabled. */
7072 7073
	intel_display_set_init_power(dev_priv, true);
	intel_power_domains_resume(dev_priv);
7074
	power_domains->initializing = false;
7075 7076
}

7077 7078
void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
{
7079
	intel_runtime_pm_get(dev_priv);
7080 7081 7082 7083
}

void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
{
7084
	intel_runtime_pm_put(dev_priv);
7085 7086
}

7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098
void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_get_sync(device);
	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
}

7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110
void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
	pm_runtime_get_noresume(device);
}

7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132
void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_mark_last_busy(device);
	pm_runtime_put_autosuspend(device);
}

void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_set_active(device);

7133 7134 7135 7136 7137 7138 7139 7140 7141
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!intel_enable_rc6(dev)) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		return;
	}

7142 7143 7144
	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
	pm_runtime_mark_last_busy(device);
	pm_runtime_use_autosuspend(device);
7145 7146

	pm_runtime_put_autosuspend(device);
7147 7148 7149 7150 7151 7152 7153 7154 7155 7156
}

void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

7157 7158 7159
	if (!intel_enable_rc6(dev))
		return;

7160 7161 7162 7163 7164
	/* Make sure we're not suspended first. */
	pm_runtime_get_sync(device);
	pm_runtime_disable(device);
}

7165 7166 7167 7168 7169
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7170
	if (HAS_FBC(dev)) {
7171
		if (INTEL_INFO(dev)->gen >= 7) {
7172
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7173 7174 7175 7176 7177
			dev_priv->display.enable_fbc = gen7_enable_fbc;
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (INTEL_INFO(dev)->gen >= 5) {
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
			dev_priv->display.enable_fbc = ironlake_enable_fbc;
7178 7179 7180 7181 7182
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (IS_GM45(dev)) {
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
			dev_priv->display.enable_fbc = g4x_enable_fbc;
			dev_priv->display.disable_fbc = g4x_disable_fbc;
7183
		} else {
7184 7185 7186
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
7187 7188 7189

			/* This value was pulled out of someone's hat */
			I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7190 7191 7192
		}
	}

7193 7194 7195 7196 7197 7198
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7199 7200
	/* For FIFO watermark updates */
	if (HAS_PCH_SPLIT(dev)) {
7201
		ilk_setup_wm_latency(dev);
7202

7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
7215
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7216
		else if (IS_GEN6(dev))
7217
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7218
		else if (IS_IVYBRIDGE(dev))
7219
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7220
		else if (IS_HASWELL(dev))
7221
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7222
		else if (INTEL_INFO(dev)->gen == 8)
7223
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7224
	} else if (IS_CHERRYVIEW(dev)) {
7225
		dev_priv->display.update_wm = cherryview_update_wm;
7226
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7227 7228
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7229 7230
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
7231
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7245
			intel_set_memory_cxsr(dev_priv, false);
7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7263 7264 7265
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7266
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7267 7268
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7269
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7270 7271 7272 7273 7274 7275 7276 7277
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7278 7279 7280
	}
}

B
Ben Widawsky 已提交
7281 7282
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
7283
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
7307
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7327

7328
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7329
{
7330
	int div;
7331

7332
	/* 4 x czclk */
7333
	switch (dev_priv->mem_freq) {
7334
	case 800:
7335
		div = 10;
7336 7337
		break;
	case 1066:
7338
		div = 12;
7339 7340
		break;
	case 1333:
7341
		div = 16;
7342 7343 7344 7345 7346
		break;
	default:
		return -1;
	}

7347
	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
7348 7349
}

7350
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7351
{
7352
	int mul;
7353

7354
	/* 4 x czclk */
7355
	switch (dev_priv->mem_freq) {
7356
	case 800:
7357
		mul = 10;
7358 7359
		break;
	case 1066:
7360
		mul = 12;
7361 7362
		break;
	case 1333:
7363
		mul = 16;
7364 7365 7366 7367 7368
		break;
	default:
		return -1;
	}

7369
	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7370 7371
}

7372
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396
{
	int div, freq;

	switch (dev_priv->rps.cz_freq) {
	case 200:
		div = 5;
		break;
	case 267:
		div = 6;
		break;
	case 320:
	case 333:
	case 400:
		div = 8;
		break;
	default:
		return -1;
	}

	freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);

	return freq;
}

7397
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445
{
	int mul, opcode;

	switch (dev_priv->rps.cz_freq) {
	case 200:
		mul = 5;
		break;
	case 267:
		mul = 6;
		break;
	case 320:
	case 333:
	case 400:
		mul = 8;
		break;
	default:
		return -1;
	}

	opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);

	return opcode;
}

int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int ret = -1;

	if (IS_CHERRYVIEW(dev_priv->dev))
		ret = chv_gpu_freq(dev_priv, val);
	else if (IS_VALLEYVIEW(dev_priv->dev))
		ret = byt_gpu_freq(dev_priv, val);

	return ret;
}

int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
	int ret = -1;

	if (IS_CHERRYVIEW(dev_priv->dev))
		ret = chv_freq_opcode(dev_priv, val);
	else if (IS_VALLEYVIEW(dev_priv->dev))
		ret = byt_freq_opcode(dev_priv, val);

	return ret;
}

D
Daniel Vetter 已提交
7446
void intel_pm_setup(struct drm_device *dev)
7447 7448 7449
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7450 7451
	mutex_init(&dev_priv->rps.hw_lock);

7452 7453
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7454

7455
	dev_priv->pm.suspended = false;
7456
	dev_priv->pm._irqs_disabled = false;
7457
}