falcon.c 94.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2006-2008 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
16
#include <linux/i2c.h>
B
Ben Hutchings 已提交
17
#include <linux/mii.h>
18 19 20 21 22 23
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "mac.h"
#include "spi.h"
#include "falcon.h"
24
#include "regs.h"
25
#include "io.h"
26 27 28 29
#include "mdio_10g.h"
#include "phy.h"
#include "workarounds.h"

B
Ben Hutchings 已提交
30
/* Hardware control for SFC4000 (aka Falcon). */
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

/**************************************************************************
 *
 * Configurable values
 *
 **************************************************************************
 */

/* This is set to 16 for a good reason.  In summary, if larger than
 * 16, the descriptor cache holds more than a default socket
 * buffer's worth of packets (for UDP we can only have at most one
 * socket buffer's worth outstanding).  This combined with the fact
 * that we only get 1 TX event per descriptor cache means the NIC
 * goes idle.
 */
#define TX_DC_ENTRIES 16
B
Ben Hutchings 已提交
47
#define TX_DC_ENTRIES_ORDER 1
48 49

#define RX_DC_ENTRIES 64
B
Ben Hutchings 已提交
50
#define RX_DC_ENTRIES_ORDER 3
51

52 53 54 55 56 57 58 59 60 61 62 63 64 65
static const unsigned int
/* "Large" EEPROM device: Atmel AT25640 or similar
 * 8 KB, 16-bit address, 32 B write block */
large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
/* Default flash device: Atmel AT25F1024
 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));

66 67 68 69 70 71
/* RX FIFO XOFF watermark
 *
 * When the amount of the RX FIFO increases used increases past this
 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
72 73
int efx_nic_rx_xoff_thresh = -1;
module_param_named(rx_xoff_thresh_bytes, efx_nic_rx_xoff_thresh, int, 0644);
74 75 76 77 78 79 80 81
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");

/* RX FIFO XON watermark
 *
 * When the amount of the RX FIFO used decreases below this
 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
82 83
int efx_nic_rx_xon_thresh = -1;
module_param_named(rx_xon_thresh_bytes, efx_nic_rx_xon_thresh, int, 0644);
84 85
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");

86 87
/* If EFX_MAX_INT_ERRORS internal errors occur within
 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
88 89
 * disable it.
 */
90 91
#define EFX_INT_ERROR_EXPIRE 3600
#define EFX_MAX_INT_ERRORS 5
92

93 94
/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
 */
95 96
#define EFX_FLUSH_INTERVAL 10
#define EFX_FLUSH_POLL_COUNT 100
97 98 99 100 101 102 103 104 105

/**************************************************************************
 *
 * Falcon constants
 *
 **************************************************************************
 */

/* Size and alignment of special buffers (4KB) */
106
#define EFX_BUF_SIZE 4096
107

B
Ben Hutchings 已提交
108
/* Depth of RX flush request fifo */
109
#define EFX_RX_FLUSH_COUNT 4
110 111 112

/**************************************************************************
 *
113
 * Solarstorm hardware access
114 115 116
 *
 **************************************************************************/

117 118
static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
				     unsigned int index)
119 120 121 122 123
{
	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
			value, index);
}

124
/* Read the current event from the event queue */
125 126
static inline efx_qword_t *efx_event(struct efx_channel *channel,
				     unsigned int index)
127 128 129 130 131 132 133 134 135 136 137 138 139 140
{
	return (((efx_qword_t *) (channel->eventq.addr)) + index);
}

/* See if an event is present
 *
 * We check both the high and low dword of the event for all ones.  We
 * wrote all ones when we cleared the event, and no valid event can
 * have all ones in either its high or low dwords.  This approach is
 * robust against reordering.
 *
 * Note that using a single 64-bit comparison is incorrect; even
 * though the CPU read will be atomic, the DMA write may not be.
 */
141
static inline int efx_event_present(efx_qword_t *event)
142 143 144 145 146 147 148 149 150 151 152 153 154
{
	return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
		  EFX_DWORD_IS_ALL_ONES(event->dword[1])));
}

/**************************************************************************
 *
 * I2C bus - this is a bit-bashing interface using GPIO pins
 * Note that it uses the output enables to tristate the outputs
 * SDA is the data pin and SCL is the clock
 *
 **************************************************************************
 */
155
static void falcon_setsda(void *data, int state)
156
{
157
	struct efx_nic *efx = (struct efx_nic *)data;
158 159
	efx_oword_t reg;

160
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
161
	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
162
	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
163 164
}

165
static void falcon_setscl(void *data, int state)
166
{
167
	struct efx_nic *efx = (struct efx_nic *)data;
168 169
	efx_oword_t reg;

170
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
171
	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
172
	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
173 174 175 176 177 178 179
}

static int falcon_getsda(void *data)
{
	struct efx_nic *efx = (struct efx_nic *)data;
	efx_oword_t reg;

180
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
181
	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
182 183
}

184
static int falcon_getscl(void *data)
185
{
186
	struct efx_nic *efx = (struct efx_nic *)data;
187 188
	efx_oword_t reg;

189
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
190
	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
191 192
}

193 194 195
static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
	.setsda		= falcon_setsda,
	.setscl		= falcon_setscl,
196 197
	.getsda		= falcon_getsda,
	.getscl		= falcon_getscl,
198
	.udelay		= 5,
199 200
	/* Wait up to 50 ms for slave to let us pull SCL high */
	.timeout	= DIV_ROUND_UP(HZ, 20),
201 202 203 204
};

/**************************************************************************
 *
205
 * Special buffer handling
206 207 208 209 210 211
 * Special buffers are used for event queues and the TX and RX
 * descriptor rings.
 *
 *************************************************************************/

/*
212
 * Initialise a special buffer
213 214
 *
 * This will define a buffer (previously allocated via
215
 * efx_alloc_special_buffer()) in the buffer table, allowing
216 217
 * it to be used for event queues, descriptor rings etc.
 */
218
static void
219
efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
220 221 222 223 224 225 226 227 228 229 230 231 232 233
{
	efx_qword_t buf_desc;
	int index;
	dma_addr_t dma_addr;
	int i;

	EFX_BUG_ON_PARANOID(!buffer->addr);

	/* Write buffer descriptors to NIC */
	for (i = 0; i < buffer->entries; i++) {
		index = buffer->index + i;
		dma_addr = buffer->dma_addr + (i * 4096);
		EFX_LOG(efx, "mapping special buffer %d at %llx\n",
			index, (unsigned long long)dma_addr);
234 235 236 237
		EFX_POPULATE_QWORD_3(buf_desc,
				     FRF_AZ_BUF_ADR_REGION, 0,
				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
238
		efx_write_buf_tbl(efx, &buf_desc, index);
239 240 241
	}
}

242
/* Unmaps a buffer and clears the buffer table entries */
243
static void
244
efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
245 246 247 248 249 250 251 252 253 254 255 256
{
	efx_oword_t buf_tbl_upd;
	unsigned int start = buffer->index;
	unsigned int end = (buffer->index + buffer->entries - 1);

	if (!buffer->entries)
		return;

	EFX_LOG(efx, "unmapping special buffers %d-%d\n",
		buffer->index, buffer->index + buffer->entries - 1);

	EFX_POPULATE_OWORD_4(buf_tbl_upd,
257 258 259 260
			     FRF_AZ_BUF_UPD_CMD, 0,
			     FRF_AZ_BUF_CLR_CMD, 1,
			     FRF_AZ_BUF_CLR_END_ID, end,
			     FRF_AZ_BUF_CLR_START_ID, start);
261
	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
262 263 264
}

/*
265
 * Allocate a new special buffer
266 267
 *
 * This allocates memory for a new buffer, clears it and allocates a
268
 * new buffer ID range.  It does not write into the buffer table.
269
 *
270 271
 * This call will allocate 4KB buffers, since 8KB buffers can't be
 * used for event queues and descriptor rings.
272
 */
273 274 275
static int efx_alloc_special_buffer(struct efx_nic *efx,
				    struct efx_special_buffer *buffer,
				    unsigned int len)
276
{
277
	len = ALIGN(len, EFX_BUF_SIZE);
278 279 280 281 282 283

	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
284 285
	buffer->entries = len / EFX_BUF_SIZE;
	BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
286 287 288 289 290

	/* All zeros is a potentially valid event so memset to 0xff */
	memset(buffer->addr, 0xff, len);

	/* Select new buffer ID */
291 292
	buffer->index = efx->next_buffer_table;
	efx->next_buffer_table += buffer->entries;
293 294

	EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
295
		"(virt %p phys %llx)\n", buffer->index,
296
		buffer->index + buffer->entries - 1,
297 298
		(u64)buffer->dma_addr, len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));
299 300 301 302

	return 0;
}

303 304
static void
efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
305 306 307 308 309
{
	if (!buffer->addr)
		return;

	EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
310
		"(virt %p phys %llx)\n", buffer->index,
311
		buffer->index + buffer->entries - 1,
312 313
		(u64)buffer->dma_addr, buffer->len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));
314 315 316 317 318 319 320 321 322

	pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
			    buffer->dma_addr);
	buffer->addr = NULL;
	buffer->entries = 0;
}

/**************************************************************************
 *
323
 * Generic buffer handling
324 325 326 327
 * These buffers are used for interrupt status and MAC stats
 *
 **************************************************************************/

328 329
int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
			 unsigned int len)
330 331 332 333 334 335 336 337 338 339
{
	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	memset(buffer->addr, 0, len);
	return 0;
}

340
void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
341 342 343 344 345 346 347 348 349 350
{
	if (buffer->addr) {
		pci_free_consistent(efx->pci_dev, buffer->len,
				    buffer->addr, buffer->dma_addr);
		buffer->addr = NULL;
	}
}

/**************************************************************************
 *
351
 * TX path
352 353 354 355 356 357
 *
 **************************************************************************/

/* Returns a pointer to the specified transmit descriptor in the TX
 * descriptor queue belonging to the specified channel.
 */
358 359
static inline efx_qword_t *
efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
360 361 362 363 364
{
	return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
}

/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
365
static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
366 367 368 369
{
	unsigned write_ptr;
	efx_dword_t reg;

370
	write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
371
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
372 373
	efx_writed_page(tx_queue->efx, &reg,
			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
374 375 376 377 378 379 380
}


/* For each entry inserted into the software descriptor ring, create a
 * descriptor in the hardware TX descriptor ring (in host memory), and
 * write a doorbell.
 */
381
void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
382 383 384 385 386 387 388 389 390
{

	struct efx_tx_buffer *buffer;
	efx_qword_t *txd;
	unsigned write_ptr;

	BUG_ON(tx_queue->write_count == tx_queue->insert_count);

	do {
391
		write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
392
		buffer = &tx_queue->buffer[write_ptr];
393
		txd = efx_tx_desc(tx_queue, write_ptr);
394 395 396
		++tx_queue->write_count;

		/* Create TX descriptor ring entry */
397 398 399 400 401
		EFX_POPULATE_QWORD_4(*txd,
				     FSF_AZ_TX_KER_CONT, buffer->continuation,
				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
				     FSF_AZ_TX_KER_BUF_REGION, 0,
				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
402 403 404
	} while (tx_queue->write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */
405
	efx_notify_tx_desc(tx_queue);
406 407 408
}

/* Allocate hardware resources for a TX queue */
409
int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
410 411
{
	struct efx_nic *efx = tx_queue->efx;
412 413
	BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
		     EFX_TXQ_SIZE & EFX_TXQ_MASK);
414 415
	return efx_alloc_special_buffer(efx, &tx_queue->txd,
					EFX_TXQ_SIZE * sizeof(efx_qword_t));
416 417
}

418
void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
419 420 421 422
{
	efx_oword_t tx_desc_ptr;
	struct efx_nic *efx = tx_queue->efx;

B
Ben Hutchings 已提交
423
	tx_queue->flushed = FLUSH_NONE;
424

425
	/* Pin TX descriptor ring */
426
	efx_init_special_buffer(efx, &tx_queue->txd);
427 428 429

	/* Push TX descriptor ring to card */
	EFX_POPULATE_OWORD_10(tx_desc_ptr,
430 431 432 433 434 435 436 437
			      FRF_AZ_TX_DESCQ_EN, 1,
			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
			      FRF_AZ_TX_DESCQ_EVQ_ID,
			      tx_queue->channel->channel,
			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
438 439
			      FRF_AZ_TX_DESCQ_SIZE,
			      __ffs(tx_queue->txd.entries),
440 441
			      FRF_AZ_TX_DESCQ_TYPE, 0,
			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
442

443
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
444
		int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
445 446 447
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
				    !csum);
448 449
	}

450 451
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);
452

453
	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
454 455
		efx_oword_t reg;

456 457
		/* Only 128 bits in this register */
		BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
458

459
		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
460
		if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
461 462 463
			clear_bit_le(tx_queue->queue, (void *)&reg);
		else
			set_bit_le(tx_queue->queue, (void *)&reg);
464
		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
465 466 467
	}
}

468
static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
469 470 471 472
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_flush_descq;

B
Ben Hutchings 已提交
473 474
	tx_queue->flushed = FLUSH_PENDING;

475 476
	/* Post a flush command */
	EFX_POPULATE_OWORD_2(tx_flush_descq,
477 478
			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
479
	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
480 481
}

482
void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
483 484 485 486
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_desc_ptr;

487
	/* The queue should have been flushed */
B
Ben Hutchings 已提交
488
	WARN_ON(tx_queue->flushed != FLUSH_DONE);
489 490 491

	/* Remove TX descriptor ring from card */
	EFX_ZERO_OWORD(tx_desc_ptr);
492 493
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);
494 495

	/* Unpin TX descriptor ring */
496
	efx_fini_special_buffer(efx, &tx_queue->txd);
497 498 499
}

/* Free buffers backing TX queue */
500
void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
501
{
502
	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
503 504 505 506
}

/**************************************************************************
 *
507
 * RX path
508 509 510 511
 *
 **************************************************************************/

/* Returns a pointer to the specified descriptor in the RX descriptor queue */
512 513
static inline efx_qword_t *
efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
514 515 516 517 518
{
	return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
}

/* This creates an entry in the RX descriptor queue */
519 520
static inline void
efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
521 522 523 524
{
	struct efx_rx_buffer *rx_buf;
	efx_qword_t *rxd;

525
	rxd = efx_rx_desc(rx_queue, index);
526 527
	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_POPULATE_QWORD_3(*rxd,
528
			     FSF_AZ_RX_KER_BUF_SIZE,
529 530
			     rx_buf->len -
			     rx_queue->efx->type->rx_buffer_padding,
531 532
			     FSF_AZ_RX_KER_BUF_REGION, 0,
			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
533 534 535 536 537
}

/* This writes to the RX_DESC_WPTR register for the specified receive
 * descriptor ring.
 */
538
void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
539 540 541 542 543
{
	efx_dword_t reg;
	unsigned write_ptr;

	while (rx_queue->notified_count != rx_queue->added_count) {
544 545 546
		efx_build_rx_desc(rx_queue,
				  rx_queue->notified_count &
				  EFX_RXQ_MASK);
547 548 549 550
		++rx_queue->notified_count;
	}

	wmb();
551
	write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
552
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
553 554
	efx_writed_page(rx_queue->efx, &reg,
			FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
555 556
}

557
int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
558 559
{
	struct efx_nic *efx = rx_queue->efx;
560 561
	BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
		     EFX_RXQ_SIZE & EFX_RXQ_MASK);
562 563
	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
					EFX_RXQ_SIZE * sizeof(efx_qword_t));
564 565
}

566
void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
567 568 569
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;
570
	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
571
	bool iscsi_digest_en = is_b0;
572 573 574 575 576

	EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
		rx_queue->queue, rx_queue->rxd.index,
		rx_queue->rxd.index + rx_queue->rxd.entries - 1);

B
Ben Hutchings 已提交
577
	rx_queue->flushed = FLUSH_NONE;
578

579
	/* Pin RX descriptor ring */
580
	efx_init_special_buffer(efx, &rx_queue->rxd);
581 582 583

	/* Push RX descriptor ring to card */
	EFX_POPULATE_OWORD_10(rx_desc_ptr,
584 585 586 587 588 589 590
			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
			      FRF_AZ_RX_DESCQ_EVQ_ID,
			      rx_queue->channel->channel,
			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
591 592
			      FRF_AZ_RX_DESCQ_SIZE,
			      __ffs(rx_queue->rxd.entries),
593
			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
594
			      /* For >=B0 this is scatter so disable */
595 596
			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
			      FRF_AZ_RX_DESCQ_EN, 1);
597 598
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 rx_queue->queue);
599 600
}

601
static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
602 603 604 605
{
	struct efx_nic *efx = rx_queue->efx;
	efx_oword_t rx_flush_descq;

B
Ben Hutchings 已提交
606 607
	rx_queue->flushed = FLUSH_PENDING;

608 609
	/* Post a flush command */
	EFX_POPULATE_OWORD_2(rx_flush_descq,
610 611
			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
612
	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
613 614
}

615
void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
616 617 618 619
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;

620
	/* The queue should already have been flushed */
B
Ben Hutchings 已提交
621
	WARN_ON(rx_queue->flushed != FLUSH_DONE);
622 623 624

	/* Remove RX descriptor ring from card */
	EFX_ZERO_OWORD(rx_desc_ptr);
625 626
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 rx_queue->queue);
627 628

	/* Unpin RX descriptor ring */
629
	efx_fini_special_buffer(efx, &rx_queue->rxd);
630 631 632
}

/* Free buffers backing RX queue */
633
void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
634
{
635
	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
636 637 638 639
}

/**************************************************************************
 *
640
 * Event queue processing
641 642 643 644 645 646 647 648 649 650 651 652 653
 * Event queues are processed by per-channel tasklets.
 *
 **************************************************************************/

/* Update a channel's event queue's read pointer (RPTR) register
 *
 * This writes the EVQ_RPTR_REG register for the specified channel's
 * event queue.
 *
 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
 * whereas channel->eventq_read_ptr contains the index of the "next to
 * read" event.
 */
654
void efx_nic_eventq_read_ack(struct efx_channel *channel)
655 656 657 658
{
	efx_dword_t reg;
	struct efx_nic *efx = channel->efx;

659
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
660
	efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
661
			    channel->channel);
662 663 664
}

/* Use HW to insert a SW defined event */
665
void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
666 667 668
{
	efx_oword_t drv_ev_reg;

669 670 671 672 673 674 675
	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
	drv_ev_reg.u32[0] = event->u32[0];
	drv_ev_reg.u32[1] = event->u32[1];
	drv_ev_reg.u32[2] = 0;
	drv_ev_reg.u32[3] = 0;
	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
676
	efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
677 678 679 680
}

/* Handle a transmit completion event
 *
681
 * The NIC batches TX completion events; the message we receive is of
682 683
 * the form "complete all TX events up to this index".
 */
684 685
static void
efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
686 687 688 689 690 691
{
	unsigned int tx_ev_desc_ptr;
	unsigned int tx_ev_q_label;
	struct efx_tx_queue *tx_queue;
	struct efx_nic *efx = channel->efx;

692
	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
693
		/* Transmit completion */
694 695
		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
696
		tx_queue = &efx->tx_queue[tx_ev_q_label];
697 698
		channel->irq_mod_score +=
			(tx_ev_desc_ptr - tx_queue->read_count) &
699
			EFX_TXQ_MASK;
700
		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
701
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
702
		/* Rewrite the FIFO write pointer */
703
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
704 705
		tx_queue = &efx->tx_queue[tx_ev_q_label];

706
		if (efx_dev_registered(efx))
707
			netif_tx_lock(efx->net_dev);
708
		efx_notify_tx_desc(tx_queue);
709
		if (efx_dev_registered(efx))
710
			netif_tx_unlock(efx->net_dev);
711
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
712 713 714 715 716 717 718 719 720 721
		   EFX_WORKAROUND_10727(efx)) {
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
	} else {
		EFX_ERR(efx, "channel %d unexpected TX event "
			EFX_QWORD_FMT"\n", channel->channel,
			EFX_QWORD_VAL(*event));
	}
}

/* Detect errors included in the rx_evt_pkt_ok bit. */
722 723 724 725
static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
				 const efx_qword_t *event,
				 bool *rx_ev_pkt_ok,
				 bool *discard)
726 727
{
	struct efx_nic *efx = rx_queue->efx;
728 729 730 731
	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
	bool rx_ev_other_err, rx_ev_pause_frm;
B
Ben Hutchings 已提交
732
	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
733
	unsigned rx_ev_pkt_type;
734

735 736 737 738
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
739
	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
740
						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
741
	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
742
						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
743
	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
744 745 746
						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
747
	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
748 749
			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
750 751 752 753 754 755

	/* Every error apart from tobe_disc and pause_frm */
	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);

756 757
	/* Count errors that are not in MAC stats.  Ignore expected
	 * checksum errors during self-test. */
758 759 760 761
	if (rx_ev_frm_trunc)
		++rx_queue->channel->n_rx_frm_trunc;
	else if (rx_ev_tobe_disc)
		++rx_queue->channel->n_rx_tobe_disc;
762 763 764 765 766 767
	else if (!efx->loopback_selftest) {
		if (rx_ev_ip_hdr_chksum_err)
			++rx_queue->channel->n_rx_ip_hdr_chksum_err;
		else if (rx_ev_tcp_udp_chksum_err)
			++rx_queue->channel->n_rx_tcp_udp_chksum_err;
	}
768 769 770 771 772 773 774 775 776 777 778 779

	/* The frame must be discarded if any of these are true. */
	*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
		    rx_ev_tobe_disc | rx_ev_pause_frm);

	/* TOBE_DISC is expected on unicast mismatches; don't print out an
	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
	 * to a FIFO overflow.
	 */
#ifdef EFX_ENABLE_DEBUG
	if (rx_ev_other_err) {
		EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
780
			    EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
781 782 783 784 785 786 787 788 789 790
			    rx_queue->queue, EFX_QWORD_VAL(*event),
			    rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
			    rx_ev_ip_hdr_chksum_err ?
			    " [IP_HDR_CHKSUM_ERR]" : "",
			    rx_ev_tcp_udp_chksum_err ?
			    " [TCP_UDP_CHKSUM_ERR]" : "",
			    rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
			    rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
			    rx_ev_drib_nib ? " [DRIB_NIB]" : "",
			    rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
791
			    rx_ev_pause_frm ? " [PAUSE]" : "");
792 793 794 795 796
	}
#endif
}

/* Handle receive events that are not in-order. */
797 798
static void
efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
799 800 801 802
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned expected, dropped;

803 804
	expected = rx_queue->removed_count & EFX_RXQ_MASK;
	dropped = (index - expected) & EFX_RXQ_MASK;
805 806 807 808 809 810 811 812 813
	EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
		dropped, index, expected);

	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
}

/* Handle a packet received event
 *
814
 * The NIC gives a "discard" flag if it's a unicast packet with the
815 816 817 818
 * wrong destination address
 * Also "is multicast" and "matches multicast filter" flags can be used to
 * discard non-matching multicast packets.
 */
819 820
static void
efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
821
{
B
Ben Hutchings 已提交
822
	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
823
	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
824
	unsigned expected_ptr;
825
	bool rx_ev_pkt_ok, discard = false, checksummed;
826 827 828 829
	struct efx_rx_queue *rx_queue;
	struct efx_nic *efx = channel->efx;

	/* Basic packet information */
830 831 832 833 834 835 836
	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
		channel->channel);
837

B
Ben Hutchings 已提交
838
	rx_queue = &efx->rx_queue[channel->channel];
839

840
	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
841
	expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
B
Ben Hutchings 已提交
842
	if (unlikely(rx_ev_desc_ptr != expected_ptr))
843
		efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
844 845

	if (likely(rx_ev_pkt_ok)) {
846 847
		/* If packet is marked as OK and packet type is TCP/IP or
		 * UDP/IP, then we can rely on the hardware checksum.
848
		 */
849
		checksummed =
B
Ben Hutchings 已提交
850
			likely(efx->rx_checksum_enabled) &&
851 852
			(rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
			 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
853
	} else {
854
		efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
855
		checksummed = false;
856 857 858
	}

	/* Detect multicast packets that didn't match the filter */
859
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
860 861
	if (rx_ev_mcast_pkt) {
		unsigned int rx_ev_mcast_hash_match =
862
			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
863

B
Ben Hutchings 已提交
864 865
		if (unlikely(!rx_ev_mcast_hash_match)) {
			++channel->n_rx_mcast_mismatch;
866
			discard = true;
B
Ben Hutchings 已提交
867
		}
868 869
	}

870 871
	channel->irq_mod_score += 2;

872 873 874 875 876 877
	/* Handle received packet */
	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
		      checksummed, discard);
}

/* Global events are basically PHY events */
878 879
static void
efx_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
880 881
{
	struct efx_nic *efx = channel->efx;
882
	bool handled = false;
883

884 885 886
	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
S
Steve Hodgson 已提交
887
		/* Ignored */
888 889
		handled = true;
	}
890

891
	if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) &&
892
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
B
Ben Hutchings 已提交
893
		efx->xmac_poll_required = true;
894
		handled = true;
895 896
	}

897
	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
898 899
	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
900 901 902 903 904 905
		EFX_ERR(efx, "channel %d seen global RX_RESET "
			"event. Resetting.\n", channel->channel);

		atomic_inc(&efx->rx_reset);
		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
906
		handled = true;
907 908 909 910 911 912 913 914
	}

	if (!handled)
		EFX_ERR(efx, "channel %d unknown global event "
			EFX_QWORD_FMT "\n", channel->channel,
			EFX_QWORD_VAL(*event));
}

915 916
static void
efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
917 918 919 920 921
{
	struct efx_nic *efx = channel->efx;
	unsigned int ev_sub_code;
	unsigned int ev_sub_data;

922 923
	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
924 925

	switch (ev_sub_code) {
926
	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
927 928 929
		EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
930
	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
931 932 933
		EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
934
	case FSE_AZ_EVQ_INIT_DONE_EV:
935 936 937
		EFX_LOG(efx, "channel %d EVQ %d initialised\n",
			channel->channel, ev_sub_data);
		break;
938
	case FSE_AZ_SRM_UPD_DONE_EV:
939 940 941
		EFX_TRACE(efx, "channel %d SRAM update done\n",
			  channel->channel);
		break;
942
	case FSE_AZ_WAKE_UP_EV:
943 944 945
		EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
			  channel->channel, ev_sub_data);
		break;
946
	case FSE_AZ_TIMER_EV:
947 948 949
		EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
			  channel->channel, ev_sub_data);
		break;
950
	case FSE_AA_RX_RECOVER_EV:
951 952
		EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
			"Resetting.\n", channel->channel);
953
		atomic_inc(&efx->rx_reset);
954 955 956 957 958
		efx_schedule_reset(efx,
				   EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY :
				   RESET_TYPE_DISABLE);
		break;
959
	case FSE_BZ_RX_DSC_ERROR_EV:
960 961 962 963
		EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
			" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
		break;
964
	case FSE_BZ_TX_DSC_ERROR_EV:
965 966 967 968 969 970 971 972 973 974 975 976
		EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
			" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
		break;
	default:
		EFX_TRACE(efx, "channel %d unknown driver event code %d "
			  "data %04x\n", channel->channel, ev_sub_code,
			  ev_sub_data);
		break;
	}
}

977
int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota)
978 979 980 981
{
	unsigned int read_ptr;
	efx_qword_t event, *p_event;
	int ev_code;
B
Ben Hutchings 已提交
982
	int rx_packets = 0;
983 984 985 986

	read_ptr = channel->eventq_read_ptr;

	do {
987
		p_event = efx_event(channel, read_ptr);
988 989
		event = *p_event;

990
		if (!efx_event_present(&event))
991 992 993 994 995 996 997 998 999
			/* End of events */
			break;

		EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
			  channel->channel, EFX_QWORD_VAL(event));

		/* Clear this event by marking it all ones */
		EFX_SET_QWORD(*p_event);

1000
		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1001 1002

		switch (ev_code) {
1003
		case FSE_AZ_EV_CODE_RX_EV:
1004
			efx_handle_rx_event(channel, &event);
B
Ben Hutchings 已提交
1005
			++rx_packets;
1006
			break;
1007
		case FSE_AZ_EV_CODE_TX_EV:
1008
			efx_handle_tx_event(channel, &event);
1009
			break;
1010 1011 1012
		case FSE_AZ_EV_CODE_DRV_GEN_EV:
			channel->eventq_magic = EFX_QWORD_FIELD(
				event, FSF_AZ_DRV_GEN_EV_MAGIC);
1013 1014 1015 1016
			EFX_LOG(channel->efx, "channel %d received generated "
				"event "EFX_QWORD_FMT"\n", channel->channel,
				EFX_QWORD_VAL(event));
			break;
1017
		case FSE_AZ_EV_CODE_GLOBAL_EV:
1018
			efx_handle_global_event(channel, &event);
1019
			break;
1020
		case FSE_AZ_EV_CODE_DRIVER_EV:
1021
			efx_handle_driver_event(channel, &event);
1022 1023 1024 1025 1026 1027 1028 1029
			break;
		default:
			EFX_ERR(channel->efx, "channel %d unknown event type %d"
				" (data " EFX_QWORD_FMT ")\n", channel->channel,
				ev_code, EFX_QWORD_VAL(event));
		}

		/* Increment read pointer */
1030
		read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1031

B
Ben Hutchings 已提交
1032
	} while (rx_packets < rx_quota);
1033 1034

	channel->eventq_read_ptr = read_ptr;
B
Ben Hutchings 已提交
1035
	return rx_packets;
1036 1037
}

1038
static void falcon_push_irq_moderation(struct efx_channel *channel)
1039 1040 1041 1042 1043 1044 1045
{
	efx_dword_t timer_cmd;
	struct efx_nic *efx = channel->efx;

	/* Set timer register */
	if (channel->irq_moderation) {
		EFX_POPULATE_DWORD_2(timer_cmd,
1046 1047 1048
				     FRF_AB_TC_TIMER_MODE,
				     FFE_BB_TIMER_MODE_INT_HLDOFF,
				     FRF_AB_TC_TIMER_VAL,
1049
				     channel->irq_moderation - 1);
1050 1051
	} else {
		EFX_POPULATE_DWORD_2(timer_cmd,
1052 1053 1054
				     FRF_AB_TC_TIMER_MODE,
				     FFE_BB_TIMER_MODE_DIS,
				     FRF_AB_TC_TIMER_VAL, 0);
1055
	}
1056
	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1057 1058
	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
			       channel->channel);
1059 1060 1061 1062

}

/* Allocate buffer table entries for event queue */
1063
int efx_nic_probe_eventq(struct efx_channel *channel)
1064 1065
{
	struct efx_nic *efx = channel->efx;
1066 1067
	BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
		     EFX_EVQ_SIZE & EFX_EVQ_MASK);
1068 1069
	return efx_alloc_special_buffer(efx, &channel->eventq,
					EFX_EVQ_SIZE * sizeof(efx_qword_t));
1070 1071
}

1072
void efx_nic_init_eventq(struct efx_channel *channel)
1073 1074 1075 1076 1077 1078 1079 1080 1081
{
	efx_oword_t evq_ptr;
	struct efx_nic *efx = channel->efx;

	EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
		channel->channel, channel->eventq.index,
		channel->eventq.index + channel->eventq.entries - 1);

	/* Pin event queue buffer */
1082
	efx_init_special_buffer(efx, &channel->eventq);
1083 1084 1085 1086 1087 1088

	/* Fill event queue with all ones (i.e. empty events) */
	memset(channel->eventq.addr, 0xff, channel->eventq.len);

	/* Push event queue to card */
	EFX_POPULATE_OWORD_3(evq_ptr,
1089
			     FRF_AZ_EVQ_EN, 1,
1090
			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1091
			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1092 1093
	efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
			 channel->channel);
1094

1095
	efx->type->push_irq_moderation(channel);
1096 1097
}

1098
void efx_nic_fini_eventq(struct efx_channel *channel)
1099 1100 1101 1102 1103 1104
{
	efx_oword_t eventq_ptr;
	struct efx_nic *efx = channel->efx;

	/* Remove event queue from card */
	EFX_ZERO_OWORD(eventq_ptr);
1105 1106
	efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
			 channel->channel);
1107 1108

	/* Unpin event queue */
1109
	efx_fini_special_buffer(efx, &channel->eventq);
1110 1111 1112
}

/* Free buffers backing event queue */
1113
void efx_nic_remove_eventq(struct efx_channel *channel)
1114
{
1115
	efx_free_special_buffer(channel->efx, &channel->eventq);
1116 1117 1118 1119 1120 1121 1122
}


/* Generates a test event on the event queue.  A subsequent call to
 * process_eventq() should pick up the event and place the value of
 * "magic" into channel->eventq_magic;
 */
1123
void efx_nic_generate_test_event(struct efx_channel *channel, unsigned int magic)
1124 1125 1126
{
	efx_qword_t test_event;

1127 1128 1129
	EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_DRV_GEN_EV,
			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1130
	efx_generate_event(channel, &test_event);
1131 1132
}

1133 1134 1135 1136 1137 1138 1139
/**************************************************************************
 *
 * Flush handling
 *
 **************************************************************************/


1140
static void efx_poll_flush_events(struct efx_nic *efx)
1141 1142 1143 1144
{
	struct efx_channel *channel = &efx->channel[0];
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1145
	unsigned int read_ptr = channel->eventq_read_ptr;
1146
	unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1147

1148
	do {
1149
		efx_qword_t *event = efx_event(channel, read_ptr);
1150 1151
		int ev_code, ev_sub_code, ev_queue;
		bool ev_failed;
1152

1153
		if (!efx_event_present(event))
1154 1155
			break;

1156 1157 1158 1159 1160
		ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
		ev_sub_code = EFX_QWORD_FIELD(*event,
					      FSF_AZ_DRIVER_EV_SUBCODE);
		if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
		    ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1161
			ev_queue = EFX_QWORD_FIELD(*event,
1162
						   FSF_AZ_DRIVER_EV_SUBDATA);
1163 1164
			if (ev_queue < EFX_TX_QUEUE_COUNT) {
				tx_queue = efx->tx_queue + ev_queue;
B
Ben Hutchings 已提交
1165
				tx_queue->flushed = FLUSH_DONE;
1166
			}
1167 1168 1169 1170 1171 1172
		} else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
			   ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
			ev_queue = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
			ev_failed = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1173 1174
			if (ev_queue < efx->n_rx_queues) {
				rx_queue = efx->rx_queue + ev_queue;
B
Ben Hutchings 已提交
1175 1176
				rx_queue->flushed =
					ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1177 1178 1179
			}
		}

B
Ben Hutchings 已提交
1180 1181 1182 1183
		/* We're about to destroy the queue anyway, so
		 * it's ok to throw away every non-flush event */
		EFX_SET_QWORD(*event);

1184
		read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1185
	} while (read_ptr != end_ptr);
B
Ben Hutchings 已提交
1186 1187 1188 1189

	channel->eventq_read_ptr = read_ptr;
}

B
Ben Hutchings 已提交
1190 1191
static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);

B
Ben Hutchings 已提交
1192 1193 1194 1195 1196 1197 1198 1199
static void falcon_prepare_flush(struct efx_nic *efx)
{
	falcon_deconfigure_mac_wrapper(efx);

	/* Wait for the tx and rx fifo's to get to the next packet boundary
	 * (~1ms without back-pressure), then to drain the remainder of the
	 * fifo's at data path speeds (negligible), with a healthy margin. */
	msleep(10);
1200 1201 1202 1203 1204
}

/* Handle tx and rx flushes at the same time, since they run in
 * parallel in the hardware and there's no reason for us to
 * serialise them */
1205
int efx_nic_flush_queues(struct efx_nic *efx)
1206 1207 1208
{
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
B
Ben Hutchings 已提交
1209
	int i, tx_pending, rx_pending;
1210

1211 1212
	/* If necessary prepare the hardware for flushing */
	efx->type->prepare_flush(efx);
B
Ben Hutchings 已提交
1213 1214 1215

	/* Flush all tx queues in parallel */
	efx_for_each_tx_queue(tx_queue, efx)
1216
		efx_flush_tx_queue(tx_queue);
1217

B
Ben Hutchings 已提交
1218 1219
	/* The hardware supports four concurrent rx flushes, each of which may
	 * need to be retried if there is an outstanding descriptor fetch */
1220
	for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
B
Ben Hutchings 已提交
1221 1222 1223 1224 1225 1226
		rx_pending = tx_pending = 0;
		efx_for_each_rx_queue(rx_queue, efx) {
			if (rx_queue->flushed == FLUSH_PENDING)
				++rx_pending;
		}
		efx_for_each_rx_queue(rx_queue, efx) {
1227
			if (rx_pending == EFX_RX_FLUSH_COUNT)
B
Ben Hutchings 已提交
1228 1229 1230
				break;
			if (rx_queue->flushed == FLUSH_FAILED ||
			    rx_queue->flushed == FLUSH_NONE) {
1231
				efx_flush_rx_queue(rx_queue);
B
Ben Hutchings 已提交
1232 1233 1234 1235 1236 1237 1238
				++rx_pending;
			}
		}
		efx_for_each_tx_queue(tx_queue, efx) {
			if (tx_queue->flushed != FLUSH_DONE)
				++tx_pending;
		}
1239

B
Ben Hutchings 已提交
1240
		if (rx_pending == 0 && tx_pending == 0)
1241
			return 0;
B
Ben Hutchings 已提交
1242

1243 1244
		msleep(EFX_FLUSH_INTERVAL);
		efx_poll_flush_events(efx);
1245 1246 1247
	}

	/* Mark the queues as all flushed. We're going to return failure
B
Ben Hutchings 已提交
1248
	 * leading to a reset, or fake up success anyway */
1249
	efx_for_each_tx_queue(tx_queue, efx) {
B
Ben Hutchings 已提交
1250
		if (tx_queue->flushed != FLUSH_DONE)
1251 1252
			EFX_ERR(efx, "tx queue %d flush command timed out\n",
				tx_queue->queue);
B
Ben Hutchings 已提交
1253
		tx_queue->flushed = FLUSH_DONE;
1254 1255
	}
	efx_for_each_rx_queue(rx_queue, efx) {
B
Ben Hutchings 已提交
1256
		if (rx_queue->flushed != FLUSH_DONE)
1257 1258
			EFX_ERR(efx, "rx queue %d flush command timed out\n",
				rx_queue->queue);
B
Ben Hutchings 已提交
1259
		rx_queue->flushed = FLUSH_DONE;
1260 1261 1262 1263 1264 1265 1266
	}

	if (EFX_WORKAROUND_7803(efx))
		return 0;

	return -ETIMEDOUT;
}
1267 1268 1269

/**************************************************************************
 *
1270
 * Hardware interrupts
1271 1272 1273 1274 1275
 * The hardware interrupt handler does very little work; all the event
 * queue processing is carried out by per-channel tasklets.
 *
 **************************************************************************/

1276 1277 1278
/* Enable/disable/generate interrupts */
static inline void efx_nic_interrupts(struct efx_nic *efx,
				      bool enabled, bool force)
1279 1280 1281 1282
{
	efx_oword_t int_en_reg_ker;

	EFX_POPULATE_OWORD_2(int_en_reg_ker,
1283 1284
			     FRF_AZ_KER_INT_KER, force,
			     FRF_AZ_DRV_INT_EN_KER, enabled);
1285
	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1286 1287
}

1288
void efx_nic_enable_interrupts(struct efx_nic *efx)
1289 1290 1291 1292 1293 1294 1295
{
	struct efx_channel *channel;

	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */

	/* Enable interrupts */
1296
	efx_nic_interrupts(efx, true, false);
1297 1298 1299

	/* Force processing of all the channels to get the EVQ RPTRs up to
	   date */
1300
	efx_for_each_channel(channel, efx)
1301 1302 1303
		efx_schedule_channel(channel);
}

1304
void efx_nic_disable_interrupts(struct efx_nic *efx)
1305 1306
{
	/* Disable interrupts */
1307
	efx_nic_interrupts(efx, false, false);
1308 1309
}

1310
/* Generate a test interrupt
1311 1312 1313
 * Interrupt must already have been enabled, otherwise nasty things
 * may happen.
 */
1314
void efx_nic_generate_interrupt(struct efx_nic *efx)
1315
{
1316
	efx_nic_interrupts(efx, true, true);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
}

/* Acknowledge a legacy interrupt from Falcon
 *
 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 *
 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 * BIU. Interrupt acknowledge is read sensitive so must write instead
 * (then read to ensure the BIU collector is flushed)
 *
 * NB most hardware supports MSI interrupts
 */
1329
inline void falcon_irq_ack_a1(struct efx_nic *efx)
1330 1331 1332
{
	efx_dword_t reg;

1333
	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1334 1335
	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1336 1337 1338 1339 1340
}

/* Process a fatal interrupt
 * Disable bus mastering ASAP and schedule a reset
 */
1341
irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1342 1343
{
	struct falcon_nic_data *nic_data = efx->nic_data;
1344
	efx_oword_t *int_ker = efx->irq_status.addr;
1345 1346 1347
	efx_oword_t fatal_intr;
	int error, mem_perr;

1348
	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1349
	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1350 1351 1352 1353 1354 1355 1356 1357 1358

	EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
		EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
		EFX_OWORD_VAL(fatal_intr),
		error ? "disabling bus mastering" : "no recognised error");
	if (error == 0)
		goto out;

	/* If this is a memory parity error dump which blocks are offending */
1359
	mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1360 1361
	if (mem_perr) {
		efx_oword_t reg;
1362
		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1363 1364 1365 1366
		EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
			EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
	}

1367
	/* Disable both devices */
1368
	pci_clear_master(efx->pci_dev);
1369
	if (efx_nic_is_dual_func(efx))
1370
		pci_clear_master(nic_data->pci_dev2);
1371
	efx_nic_disable_interrupts(efx);
1372

1373
	/* Count errors and reset or disable the NIC accordingly */
1374 1375 1376 1377
	if (efx->int_error_count == 0 ||
	    time_after(jiffies, efx->int_error_expire)) {
		efx->int_error_count = 0;
		efx->int_error_expire =
1378
			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1379
	}
1380
	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
	} else {
		EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
			"NIC will be disabled\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	}
out:
	return IRQ_HANDLED;
}

1392
/* Handle a legacy interrupt
1393 1394
 * Acknowledges the interrupt and schedule event queue processing.
 */
1395
static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1396
{
1397 1398
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
1399
	irqreturn_t result = IRQ_NONE;
1400 1401 1402 1403 1404 1405
	struct efx_channel *channel;
	efx_dword_t reg;
	u32 queues;
	int syserr;

	/* Read the ISR which also ACKs the interrupts */
1406
	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1407 1408 1409
	queues = EFX_EXTRACT_DWORD(reg, 0, 31);

	/* Check to see if we have a serious error condition */
1410
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1411
	if (unlikely(syserr))
1412
		return efx_nic_fatal_interrupt(efx);
1413 1414

	/* Schedule processing of any interrupting queues */
1415 1416
	efx_for_each_channel(channel, efx) {
		if ((queues & 1) ||
1417 1418
		    efx_event_present(
			    efx_event(channel, channel->eventq_read_ptr))) {
1419
			efx_schedule_channel(channel);
1420 1421
			result = IRQ_HANDLED;
		}
1422 1423 1424
		queues >>= 1;
	}

1425 1426 1427 1428 1429 1430 1431
	if (result == IRQ_HANDLED) {
		efx->last_irq_cpu = raw_smp_processor_id();
		EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
			  irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
	}

	return result;
1432 1433 1434
}


1435
irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1436
{
1437 1438
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	struct efx_channel *channel;
	int syserr;
	int queues;

	/* Check to see if this is our interrupt.  If it isn't, we
	 * exit without having touched the hardware.
	 */
	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
		EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
			  raw_smp_processor_id());
		return IRQ_NONE;
	}
	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
1456
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1457
	if (unlikely(syserr))
1458
		return efx_nic_fatal_interrupt(efx);
1459 1460 1461 1462

	/* Determine interrupting queues, clear interrupt status
	 * register and acknowledge the device interrupt.
	 */
1463 1464
	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
	queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	EFX_ZERO_OWORD(*int_ker);
	wmb(); /* Ensure the vector is cleared before interrupt ack */
	falcon_irq_ack_a1(efx);

	/* Schedule processing of any interrupting queues */
	channel = &efx->channel[0];
	while (queues) {
		if (queues & 0x01)
			efx_schedule_channel(channel);
		channel++;
		queues >>= 1;
	}

	return IRQ_HANDLED;
}

1481
/* Handle an MSI interrupt
1482 1483 1484 1485 1486 1487
 *
 * Handle an MSI hardware interrupt.  This routine schedules event
 * queue processing.  No interrupt acknowledgement cycle is necessary.
 * Also, we never need to check that the interrupt is for us, since
 * MSI interrupts cannot be shared.
 */
1488
static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1489
{
1490
	struct efx_channel *channel = dev_id;
1491
	struct efx_nic *efx = channel->efx;
1492
	efx_oword_t *int_ker = efx->irq_status.addr;
1493 1494 1495 1496 1497 1498 1499
	int syserr;

	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
1500
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1501
	if (unlikely(syserr))
1502
		return efx_nic_fatal_interrupt(efx);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

	/* Schedule processing of the channel */
	efx_schedule_channel(channel);

	return IRQ_HANDLED;
}


/* Setup RSS indirection table.
 * This maps from the hash value of the packet to RXQ
 */
1514
static void efx_setup_rss_indir_table(struct efx_nic *efx)
1515 1516 1517 1518 1519
{
	int i = 0;
	unsigned long offset;
	efx_dword_t dword;

1520
	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1521 1522
		return;

1523 1524
	for (offset = FR_BZ_RX_INDIRECTION_TBL;
	     offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1525
	     offset += 0x10) {
1526
		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1527
				     i % efx->n_rx_queues);
1528
		efx_writed(efx, &dword, offset);
1529 1530 1531 1532 1533 1534 1535
		i++;
	}
}

/* Hook interrupt handler(s)
 * Try MSI and then legacy interrupts.
 */
1536
int efx_nic_init_interrupt(struct efx_nic *efx)
1537 1538 1539 1540 1541 1542
{
	struct efx_channel *channel;
	int rc;

	if (!EFX_INT_MODE_USE_MSI(efx)) {
		irq_handler_t handler;
1543
		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1544
			handler = efx_legacy_interrupt;
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		else
			handler = falcon_legacy_interrupt_a1;

		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
				 efx->name, efx);
		if (rc) {
			EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
				efx->pci_dev->irq);
			goto fail1;
		}
		return 0;
	}

	/* Hook MSI or MSI-X interrupt */
1559
	efx_for_each_channel(channel, efx) {
1560
		rc = request_irq(channel->irq, efx_msi_interrupt,
1561
				 IRQF_PROBE_SHARED, /* Not shared */
1562
				 channel->name, channel);
1563 1564 1565 1566 1567 1568 1569 1570 1571
		if (rc) {
			EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
			goto fail2;
		}
	}

	return 0;

 fail2:
1572
	efx_for_each_channel(channel, efx)
1573 1574 1575 1576 1577
		free_irq(channel->irq, channel);
 fail1:
	return rc;
}

1578
void efx_nic_fini_interrupt(struct efx_nic *efx)
1579 1580 1581 1582 1583
{
	struct efx_channel *channel;
	efx_oword_t reg;

	/* Disable MSI/MSI-X interrupts */
1584
	efx_for_each_channel(channel, efx) {
1585 1586
		if (channel->irq)
			free_irq(channel->irq, channel);
1587
	}
1588 1589

	/* ACK legacy interrupt */
1590
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1591
		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
	else
		falcon_irq_ack_a1(efx);

	/* Disable legacy interrupt */
	if (efx->legacy_irq)
		free_irq(efx->legacy_irq, efx);
}

/**************************************************************************
 *
 * EEPROM/flash
 *
 **************************************************************************
 */

1607
#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1608

1609 1610 1611
static int falcon_spi_poll(struct efx_nic *efx)
{
	efx_oword_t reg;
1612
	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1613
	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1614 1615
}

1616 1617 1618
/* Wait for SPI command completion */
static int falcon_spi_wait(struct efx_nic *efx)
{
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	/* Most commands will finish quickly, so we start polling at
	 * very short intervals.  Sometimes the command may have to
	 * wait for VPD or expansion ROM access outside of our
	 * control, so we allow up to 100 ms. */
	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
	int i;

	for (i = 0; i < 10; i++) {
		if (!falcon_spi_poll(efx))
			return 0;
		udelay(10);
	}
1631

1632
	for (;;) {
1633
		if (!falcon_spi_poll(efx))
1634
			return 0;
1635 1636 1637 1638
		if (time_after_eq(jiffies, timeout)) {
			EFX_ERR(efx, "timed out waiting for SPI\n");
			return -ETIMEDOUT;
		}
1639
		schedule_timeout_uninterruptible(1);
1640
	}
1641 1642
}

1643
int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
1644
		   unsigned int command, int address,
1645
		   const void *in, void *out, size_t len)
1646
{
1647 1648
	bool addressed = (address >= 0);
	bool reading = (out != NULL);
1649 1650 1651
	efx_oword_t reg;
	int rc;

1652 1653 1654
	/* Input validation */
	if (len > FALCON_SPI_MAX_LEN)
		return -EINVAL;
1655
	BUG_ON(!mutex_is_locked(&efx->spi_lock));
1656

1657 1658
	/* Check that previous command is not still running */
	rc = falcon_spi_poll(efx);
1659 1660 1661
	if (rc)
		return rc;

1662 1663
	/* Program address register, if we have an address */
	if (addressed) {
1664
		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1665
		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1666 1667 1668 1669 1670
	}

	/* Program data register, if we have data */
	if (in != NULL) {
		memcpy(&reg, in, len);
1671
		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1672
	}
1673

1674
	/* Issue read/write command */
1675
	EFX_POPULATE_OWORD_7(reg,
1676 1677 1678 1679 1680 1681
			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
			     FRF_AB_EE_SPI_HCMD_READ, reading,
			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
			     FRF_AB_EE_SPI_HCMD_ADBCNT,
1682
			     (addressed ? spi->addr_len : 0),
1683
			     FRF_AB_EE_SPI_HCMD_ENC, command);
1684
	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1685

1686
	/* Wait for read/write to complete */
1687 1688 1689 1690 1691
	rc = falcon_spi_wait(efx);
	if (rc)
		return rc;

	/* Read data */
1692
	if (out != NULL) {
1693
		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1694 1695 1696
		memcpy(out, &reg, len);
	}

1697 1698 1699
	return 0;
}

1700 1701
static size_t
falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
{
	return min(FALCON_SPI_MAX_LEN,
		   (spi->block_size - (start & (spi->block_size - 1))));
}

static inline u8
efx_spi_munge_command(const struct efx_spi_device *spi,
		      const u8 command, const unsigned int address)
{
	return command | (((address >> 8) & spi->munge_address) << 3);
}

1714
/* Wait up to 10 ms for buffered write completion */
1715 1716
int
falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
1717
{
1718
	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1719
	u8 status;
1720
	int rc;
1721

1722
	for (;;) {
1723
		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
1724 1725 1726 1727 1728
				    &status, sizeof(status));
		if (rc)
			return rc;
		if (!(status & SPI_STATUS_NRDY))
			return 0;
1729 1730 1731 1732 1733 1734 1735
		if (time_after_eq(jiffies, timeout)) {
			EFX_ERR(efx, "SPI write timeout on device %d"
				" last status=0x%02x\n",
				spi->device_id, status);
			return -ETIMEDOUT;
		}
		schedule_timeout_uninterruptible(1);
1736 1737 1738
	}
}

1739 1740
int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
		    loff_t start, size_t len, size_t *retlen, u8 *buffer)
1741
{
1742 1743
	size_t block_len, pos = 0;
	unsigned int command;
1744 1745 1746
	int rc = 0;

	while (pos < len) {
1747
		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1748 1749

		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1750
		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
				    buffer + pos, block_len);
		if (rc)
			break;
		pos += block_len;

		/* Avoid locking up the system */
		cond_resched();
		if (signal_pending(current)) {
			rc = -EINTR;
			break;
		}
	}

	if (retlen)
		*retlen = pos;
	return rc;
}

1769 1770 1771
int
falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
1772 1773
{
	u8 verify_buffer[FALCON_SPI_MAX_LEN];
1774 1775
	size_t block_len, pos = 0;
	unsigned int command;
1776 1777 1778
	int rc = 0;

	while (pos < len) {
1779
		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
1780 1781 1782
		if (rc)
			break;

1783
		block_len = min(len - pos,
1784 1785
				falcon_spi_write_limit(spi, start + pos));
		command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1786
		rc = falcon_spi_cmd(efx, spi, command, start + pos,
1787 1788 1789 1790
				    buffer + pos, NULL, block_len);
		if (rc)
			break;

1791
		rc = falcon_spi_wait_write(efx, spi);
1792 1793 1794 1795
		if (rc)
			break;

		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1796
		rc = falcon_spi_cmd(efx, spi, command, start + pos,
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
				    NULL, verify_buffer, block_len);
		if (memcmp(verify_buffer, buffer + pos, block_len)) {
			rc = -EIO;
			break;
		}

		pos += block_len;

		/* Avoid locking up the system */
		cond_resched();
		if (signal_pending(current)) {
			rc = -EINTR;
			break;
		}
	}

	if (retlen)
		*retlen = pos;
	return rc;
}

1818 1819 1820 1821 1822 1823
/**************************************************************************
 *
 * MAC wrapper
 *
 **************************************************************************
 */
1824

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
static void falcon_push_multicast_hash(struct efx_nic *efx)
{
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;

	WARN_ON(!mutex_is_locked(&efx->mac_lock));

	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
}

B
Ben Hutchings 已提交
1835
static void falcon_reset_macs(struct efx_nic *efx)
1836
{
B
Ben Hutchings 已提交
1837 1838
	struct falcon_nic_data *nic_data = efx->nic_data;
	efx_oword_t reg, mac_ctrl;
1839 1840
	int count;

1841
	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1842 1843 1844 1845
		/* It's not safe to use GLB_CTL_REG to reset the
		 * macs, so instead use the internal MAC resets
		 */
		if (!EFX_IS10G(efx)) {
1846
			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1847
			efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1848 1849
			udelay(1000);

1850
			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1851
			efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1852
			udelay(1000);
B
Ben Hutchings 已提交
1853
			return;
1854
		} else {
1855
			EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1856
			efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1857 1858

			for (count = 0; count < 10000; count++) {
1859
				efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1860 1861
				if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
				    0)
B
Ben Hutchings 已提交
1862
					return;
1863 1864
				udelay(10);
			}
1865

1866 1867 1868
			EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
		}
	}
1869

B
Ben Hutchings 已提交
1870 1871
	/* Mac stats will fail whist the TX fifo is draining */
	WARN_ON(nic_data->stats_disable_count == 0);
1872

B
Ben Hutchings 已提交
1873 1874 1875
	efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
	EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1876

1877
	efx_reado(efx, &reg, FR_AB_GLB_CTL);
1878 1879 1880
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1881
	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1882 1883 1884

	count = 0;
	while (1) {
1885
		efx_reado(efx, &reg, FR_AB_GLB_CTL);
1886 1887 1888
		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
			EFX_LOG(efx, "Completed MAC reset after %d loops\n",
				count);
			break;
		}
		if (count > 20) {
			EFX_ERR(efx, "MAC reset failed\n");
			break;
		}
		count++;
		udelay(10);
	}

B
Ben Hutchings 已提交
1901 1902 1903
	/* Ensure the correct MAC is selected before statistics
	 * are re-enabled by the caller */
	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1904 1905 1906 1907 1908 1909
}

void falcon_drain_tx_fifo(struct efx_nic *efx)
{
	efx_oword_t reg;

1910
	if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1911 1912 1913
	    (efx->loopback_mode != LOOPBACK_NONE))
		return;

1914
	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1915
	/* There is no point in draining more than once */
1916
	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1917 1918 1919
		return;

	falcon_reset_macs(efx);
1920 1921
}

B
Ben Hutchings 已提交
1922
static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1923
{
1924
	efx_oword_t reg;
1925

1926
	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1927 1928 1929
		return;

	/* Isolate the MAC -> RX */
1930
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1931
	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1932
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1933

B
Ben Hutchings 已提交
1934 1935
	/* Isolate TX -> MAC */
	falcon_drain_tx_fifo(efx);
1936 1937 1938 1939
}

void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
{
1940
	struct efx_link_state *link_state = &efx->link_state;
1941 1942 1943
	efx_oword_t reg;
	int link_speed;

1944
	switch (link_state->speed) {
B
Ben Hutchings 已提交
1945 1946 1947 1948 1949
	case 10000: link_speed = 3; break;
	case 1000:  link_speed = 2; break;
	case 100:   link_speed = 1; break;
	default:    link_speed = 0; break;
	}
1950 1951 1952 1953 1954
	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
	 * as advertised.  Disable to ensure packets are not
	 * indefinitely held and TX queue can be flushed at any point
	 * while the link is down. */
	EFX_POPULATE_OWORD_5(reg,
1955 1956 1957 1958 1959
			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
			     FRF_AB_MAC_BCAD_ACPT, 1,
			     FRF_AB_MAC_UC_PROM, efx->promiscuous,
			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
			     FRF_AB_MAC_SPEED, link_speed);
1960 1961
	/* On B0, MAC backpressure can be disabled and packets get
	 * discarded. */
1962
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1963
		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1964
				    !link_state->up);
1965 1966
	}

1967
	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1968 1969

	/* Restore the multicast hash registers. */
1970
	falcon_push_multicast_hash(efx);
1971

1972
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1973 1974 1975
	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
	 * initialisation but it may read back as 0) */
	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1976
	/* Unisolate the MAC -> RX */
1977
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1978
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1979
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1980 1981
}

1982
static void falcon_stats_request(struct efx_nic *efx)
1983
{
1984
	struct falcon_nic_data *nic_data = efx->nic_data;
1985 1986
	efx_oword_t reg;

1987 1988
	WARN_ON(nic_data->stats_pending);
	WARN_ON(nic_data->stats_disable_count);
1989

1990 1991
	if (nic_data->stats_dma_done == NULL)
		return;	/* no mac selected */
1992

1993 1994
	*nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
	nic_data->stats_pending = true;
1995 1996 1997 1998
	wmb(); /* ensure done flag is clear */

	/* Initiate DMA transfer of stats */
	EFX_POPULATE_OWORD_2(reg,
1999 2000
			     FRF_AB_MAC_STAT_DMA_CMD, 1,
			     FRF_AB_MAC_STAT_DMA_ADR,
2001
			     efx->stats_buffer.dma_addr);
2002
	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
}

static void falcon_stats_complete(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;

	if (!nic_data->stats_pending)
		return;

	nic_data->stats_pending = 0;
	if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
		rmb(); /* read the done flag before the stats */
		efx->mac_op->update_stats(efx);
	} else {
		EFX_ERR(efx, "timed out waiting for statistics\n");
2020
	}
2021
}
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
static void falcon_stats_timer_func(unsigned long context)
{
	struct efx_nic *efx = (struct efx_nic *)context;
	struct falcon_nic_data *nic_data = efx->nic_data;

	spin_lock(&efx->stats_lock);

	falcon_stats_complete(efx);
	if (nic_data->stats_disable_count == 0)
		falcon_stats_request(efx);

	spin_unlock(&efx->stats_lock);
2035 2036
}

B
Ben Hutchings 已提交
2037 2038
static void falcon_switch_mac(struct efx_nic *efx);

S
Steve Hodgson 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
static bool falcon_loopback_link_poll(struct efx_nic *efx)
{
	struct efx_link_state old_state = efx->link_state;

	WARN_ON(!mutex_is_locked(&efx->mac_lock));
	WARN_ON(!LOOPBACK_INTERNAL(efx));

	efx->link_state.fd = true;
	efx->link_state.fc = efx->wanted_fc;
	efx->link_state.up = true;

	if (efx->loopback_mode == LOOPBACK_GMAC)
		efx->link_state.speed = 1000;
	else
		efx->link_state.speed = 10000;

	return !efx_link_state_equal(&efx->link_state, &old_state);
}

B
Ben Hutchings 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
static int falcon_reconfigure_port(struct efx_nic *efx)
{
	int rc;

	WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);

	/* Poll the PHY link state *before* reconfiguring it. This means we
	 * will pick up the correct speed (in loopback) to select the correct
	 * MAC.
	 */
	if (LOOPBACK_INTERNAL(efx))
		falcon_loopback_link_poll(efx);
	else
		efx->phy_op->poll(efx);

	falcon_stop_nic_stats(efx);
	falcon_deconfigure_mac_wrapper(efx);

	falcon_switch_mac(efx);

	efx->phy_op->reconfigure(efx);
	rc = efx->mac_op->reconfigure(efx);
	BUG_ON(rc);

	falcon_start_nic_stats(efx);

	/* Synchronise efx->link_state with the kernel */
	efx_link_status_changed(efx);

	return 0;
}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
/**************************************************************************
 *
 * PHY access via GMII
 *
 **************************************************************************
 */

/* Wait for GMII access to complete */
static int falcon_gmii_wait(struct efx_nic *efx)
{
2100
	efx_oword_t md_stat;
2101 2102
	int count;

2103 2104
	/* wait upto 50ms - taken max from datasheet */
	for (count = 0; count < 5000; count++) {
2105 2106 2107 2108
		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2109
				EFX_ERR(efx, "error from GMII access "
2110 2111
					EFX_OWORD_FMT"\n",
					EFX_OWORD_VAL(md_stat));
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
				return -EIO;
			}
			return 0;
		}
		udelay(10);
	}
	EFX_ERR(efx, "timed out waiting for GMII\n");
	return -ETIMEDOUT;
}

2122 2123 2124
/* Write an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_write(struct net_device *net_dev,
			     int prtad, int devad, u16 addr, u16 value)
2125
{
2126
	struct efx_nic *efx = netdev_priv(net_dev);
2127
	efx_oword_t reg;
2128
	int rc;
2129

2130 2131
	EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
		    prtad, devad, addr, value);
2132

2133
	mutex_lock(&efx->mdio_lock);
2134

2135 2136 2137
	/* Check MDIO not currently being accessed */
	rc = falcon_gmii_wait(efx);
	if (rc)
2138 2139 2140
		goto out;

	/* Write the address/ID register */
2141
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2142
	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2143

2144 2145
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
			     FRF_AB_MD_DEV_ADR, devad);
2146
	efx_writeo(efx, &reg, FR_AB_MD_ID);
2147 2148

	/* Write data */
2149
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2150
	efx_writeo(efx, &reg, FR_AB_MD_TXD);
2151 2152

	EFX_POPULATE_OWORD_2(reg,
2153 2154
			     FRF_AB_MD_WRC, 1,
			     FRF_AB_MD_GC, 0);
2155
	efx_writeo(efx, &reg, FR_AB_MD_CS);
2156 2157

	/* Wait for data to be written */
2158 2159
	rc = falcon_gmii_wait(efx);
	if (rc) {
2160 2161
		/* Abort the write operation */
		EFX_POPULATE_OWORD_2(reg,
2162 2163
				     FRF_AB_MD_WRC, 0,
				     FRF_AB_MD_GC, 1);
2164
		efx_writeo(efx, &reg, FR_AB_MD_CS);
2165 2166 2167
		udelay(10);
	}

2168 2169
out:
	mutex_unlock(&efx->mdio_lock);
2170
	return rc;
2171 2172
}

2173 2174 2175
/* Read an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_read(struct net_device *net_dev,
			    int prtad, int devad, u16 addr)
2176
{
2177
	struct efx_nic *efx = netdev_priv(net_dev);
2178
	efx_oword_t reg;
2179
	int rc;
2180

2181
	mutex_lock(&efx->mdio_lock);
2182

2183 2184 2185
	/* Check MDIO not currently being accessed */
	rc = falcon_gmii_wait(efx);
	if (rc)
2186 2187
		goto out;

2188
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2189
	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2190

2191 2192
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
			     FRF_AB_MD_DEV_ADR, devad);
2193
	efx_writeo(efx, &reg, FR_AB_MD_ID);
2194 2195

	/* Request data to be read */
2196
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2197
	efx_writeo(efx, &reg, FR_AB_MD_CS);
2198 2199

	/* Wait for data to become available */
2200 2201
	rc = falcon_gmii_wait(efx);
	if (rc == 0) {
2202
		efx_reado(efx, &reg, FR_AB_MD_RXD);
2203
		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2204 2205
		EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
			    prtad, devad, addr, rc);
2206 2207 2208
	} else {
		/* Abort the read operation */
		EFX_POPULATE_OWORD_2(reg,
2209 2210
				     FRF_AB_MD_RIC, 0,
				     FRF_AB_MD_GC, 1);
2211
		efx_writeo(efx, &reg, FR_AB_MD_CS);
2212

2213 2214
		EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
			prtad, devad, addr, rc);
2215 2216
	}

2217 2218
out:
	mutex_unlock(&efx->mdio_lock);
2219
	return rc;
2220 2221
}

2222 2223 2224 2225 2226 2227 2228 2229
static void falcon_clock_mac(struct efx_nic *efx)
{
	unsigned strap_val;
	efx_oword_t nic_stat;

	/* Configure the NIC generated MAC clock correctly */
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
	strap_val = EFX_IS10G(efx) ? 5 : 3;
2230
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
		efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
	} else {
		/* Falcon A1 does not support 1G/10G speed switching
		 * and must not be used with a PHY that does. */
		BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
		       strap_val);
	}
}

B
Ben Hutchings 已提交
2242
static void falcon_switch_mac(struct efx_nic *efx)
2243 2244
{
	struct efx_mac_operations *old_mac_op = efx->mac_op;
2245 2246
	struct falcon_nic_data *nic_data = efx->nic_data;
	unsigned int stats_done_offset;
2247

2248
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
B
Ben Hutchings 已提交
2249 2250
	WARN_ON(nic_data->stats_disable_count == 0);

2251 2252 2253
	efx->mac_op = (EFX_IS10G(efx) ?
		       &falcon_xmac_operations : &falcon_gmac_operations);

2254 2255 2256 2257 2258 2259
	if (EFX_IS10G(efx))
		stats_done_offset = XgDmaDone_offset;
	else
		stats_done_offset = GDmaDone_offset;
	nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;

2260
	if (old_mac_op == efx->mac_op)
B
Ben Hutchings 已提交
2261
		return;
2262

2263 2264
	falcon_clock_mac(efx);

2265
	EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2266
	/* Not all macs support a mac-level link state */
B
Ben Hutchings 已提交
2267
	efx->xmac_poll_required = false;
B
Ben Hutchings 已提交
2268
	falcon_reset_macs(efx);
2269 2270
}

2271
/* This call is responsible for hooking in the MAC and PHY operations */
2272
static int falcon_probe_port(struct efx_nic *efx)
2273 2274 2275
{
	int rc;

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	switch (efx->phy_type) {
	case PHY_TYPE_SFX7101:
		efx->phy_op = &falcon_sfx7101_phy_ops;
		break;
	case PHY_TYPE_SFT9001A:
	case PHY_TYPE_SFT9001B:
		efx->phy_op = &falcon_sft9001_phy_ops;
		break;
	case PHY_TYPE_QT2022C2:
	case PHY_TYPE_QT2025C:
2286
		efx->phy_op = &falcon_qt202x_phy_ops;
2287 2288 2289 2290 2291 2292 2293
		break;
	default:
		EFX_ERR(efx, "Unknown PHY type %d\n",
			efx->phy_type);
		return -ENODEV;
	}

2294
	/* Fill out MDIO structure and loopback modes */
2295 2296
	efx->mdio.mdio_read = falcon_mdio_read;
	efx->mdio.mdio_write = falcon_mdio_write;
2297 2298 2299
	rc = efx->phy_op->probe(efx);
	if (rc != 0)
		return rc;
2300

2301 2302 2303 2304
	/* Initial assumption */
	efx->link_state.speed = 10000;
	efx->link_state.fd = true;

2305
	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2306
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
B
Ben Hutchings 已提交
2307
		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2308
	else
B
Ben Hutchings 已提交
2309
		efx->wanted_fc = EFX_FC_RX;
2310 2311

	/* Allocate buffer for stats */
2312 2313
	rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
				  FALCON_MAC_STATS_SIZE);
2314 2315
	if (rc)
		return rc;
2316 2317
	EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
		(u64)efx->stats_buffer.dma_addr,
2318
		efx->stats_buffer.addr,
2319
		(u64)virt_to_phys(efx->stats_buffer.addr));
2320 2321 2322 2323

	return 0;
}

2324
static void falcon_remove_port(struct efx_nic *efx)
2325
{
2326
	efx_nic_free_buffer(efx, &efx->stats_buffer);
2327 2328
}

B
Ben Hutchings 已提交
2329 2330 2331 2332 2333 2334
/**************************************************************************
 *
 * Falcon test code
 *
 **************************************************************************/

2335 2336
static int
falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
B
Ben Hutchings 已提交
2337 2338 2339 2340 2341 2342 2343 2344
{
	struct falcon_nvconfig *nvconfig;
	struct efx_spi_device *spi;
	void *region;
	int rc, magic_num, struct_ver;
	__le16 *word, *limit;
	u32 csum;

2345 2346 2347 2348
	spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
	if (!spi)
		return -EINVAL;

2349
	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
B
Ben Hutchings 已提交
2350 2351
	if (!region)
		return -ENOMEM;
2352
	nvconfig = region + FALCON_NVCONFIG_OFFSET;
B
Ben Hutchings 已提交
2353

2354
	mutex_lock(&efx->spi_lock);
2355
	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
2356
	mutex_unlock(&efx->spi_lock);
B
Ben Hutchings 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	if (rc) {
		EFX_ERR(efx, "Failed to read %s\n",
			efx->spi_flash ? "flash" : "EEPROM");
		rc = -EIO;
		goto out;
	}

	magic_num = le16_to_cpu(nvconfig->board_magic_num);
	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);

	rc = -EINVAL;
2368
	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
B
Ben Hutchings 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
		EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
		goto out;
	}
	if (struct_ver < 2) {
		EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
		goto out;
	} else if (struct_ver < 4) {
		word = &nvconfig->board_magic_num;
		limit = (__le16 *) (nvconfig + 1);
	} else {
		word = region;
2380
		limit = region + FALCON_NVCONFIG_END;
B
Ben Hutchings 已提交
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	}
	for (csum = 0; word < limit; ++word)
		csum += le16_to_cpu(*word);

	if (~csum & 0xffff) {
		EFX_ERR(efx, "NVRAM has incorrect checksum\n");
		goto out;
	}

	rc = 0;
	if (nvconfig_out)
		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));

 out:
	kfree(region);
	return rc;
}

2399 2400 2401 2402 2403
static int falcon_test_nvram(struct efx_nic *efx)
{
	return falcon_read_nvram(efx, NULL);
}

2404
static const struct efx_nic_register_test falcon_b0_register_tests[] = {
2405
	{ FR_AZ_ADR_REGION,
B
Ben Hutchings 已提交
2406
	  EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2407
	{ FR_AZ_RX_CFG,
B
Ben Hutchings 已提交
2408
	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2409
	{ FR_AZ_TX_CFG,
B
Ben Hutchings 已提交
2410
	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2411
	{ FR_AZ_TX_RESERVED,
B
Ben Hutchings 已提交
2412
	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2413
	{ FR_AB_MAC_CTRL,
B
Ben Hutchings 已提交
2414
	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2415
	{ FR_AZ_SRM_TX_DC_CFG,
B
Ben Hutchings 已提交
2416
	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2417
	{ FR_AZ_RX_DC_CFG,
B
Ben Hutchings 已提交
2418
	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2419
	{ FR_AZ_RX_DC_PF_WM,
B
Ben Hutchings 已提交
2420
	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2421
	{ FR_BZ_DP_CTRL,
B
Ben Hutchings 已提交
2422
	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2423
	{ FR_AB_GM_CFG2,
2424
	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2425
	{ FR_AB_GMF_CFG0,
2426
	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2427
	{ FR_AB_XM_GLB_CFG,
B
Ben Hutchings 已提交
2428
	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2429
	{ FR_AB_XM_TX_CFG,
B
Ben Hutchings 已提交
2430
	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2431
	{ FR_AB_XM_RX_CFG,
B
Ben Hutchings 已提交
2432
	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2433
	{ FR_AB_XM_RX_PARAM,
B
Ben Hutchings 已提交
2434
	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2435
	{ FR_AB_XM_FC,
B
Ben Hutchings 已提交
2436
	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2437
	{ FR_AB_XM_ADR_LO,
B
Ben Hutchings 已提交
2438
	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2439
	{ FR_AB_XX_SD_CTL,
B
Ben Hutchings 已提交
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
};

static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
				     const efx_oword_t *mask)
{
	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}

2450 2451 2452
int efx_nic_test_registers(struct efx_nic *efx,
			   const struct efx_nic_register_test *regs,
			   size_t n_regs)
B
Ben Hutchings 已提交
2453 2454 2455 2456 2457 2458 2459
{
	unsigned address = 0, i, j;
	efx_oword_t mask, imask, original, reg, buf;

	/* Falcon should be in loopback to isolate the XMAC from the PHY */
	WARN_ON(!LOOPBACK_INTERNAL(efx));

2460 2461 2462
	for (i = 0; i < n_regs; ++i) {
		address = regs[i].address;
		mask = imask = regs[i].mask;
B
Ben Hutchings 已提交
2463 2464
		EFX_INVERT_OWORD(imask);

2465
		efx_reado(efx, &original, address);
B
Ben Hutchings 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

		/* bit sweep on and off */
		for (j = 0; j < 128; j++) {
			if (!EFX_EXTRACT_OWORD32(mask, j, j))
				continue;

			/* Test this testable bit can be set in isolation */
			EFX_AND_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 1);

2476 2477
			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);
B
Ben Hutchings 已提交
2478 2479 2480 2481 2482 2483 2484 2485

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;

			/* Test this testable bit can be cleared in isolation */
			EFX_OR_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 0);

2486 2487
			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);
B
Ben Hutchings 已提交
2488 2489 2490 2491 2492

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;
		}

2493
		efx_writeo(efx, &original, address);
B
Ben Hutchings 已提交
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	}

	return 0;

fail:
	EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
		" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
		EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
	return -EIO;
}

2505 2506 2507 2508 2509 2510
static int falcon_b0_test_registers(struct efx_nic *efx)
{
	return efx_nic_test_registers(efx, falcon_b0_register_tests,
				      ARRAY_SIZE(falcon_b0_register_tests));
}

2511 2512 2513 2514 2515 2516 2517 2518 2519
/**************************************************************************
 *
 * Device reset
 *
 **************************************************************************
 */

/* Resets NIC to known state.  This routine must be called in process
 * context and is allowed to sleep. */
2520
static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2521 2522 2523 2524 2525
{
	struct falcon_nic_data *nic_data = efx->nic_data;
	efx_oword_t glb_ctl_reg_ker;
	int rc;

2526
	EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
2527 2528 2529 2530 2531 2532 2533 2534 2535

	/* Initiate device reset */
	if (method == RESET_TYPE_WORLD) {
		rc = pci_save_state(efx->pci_dev);
		if (rc) {
			EFX_ERR(efx, "failed to backup PCI state of primary "
				"function prior to hardware reset\n");
			goto fail1;
		}
2536
		if (efx_nic_is_dual_func(efx)) {
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
			rc = pci_save_state(nic_data->pci_dev2);
			if (rc) {
				EFX_ERR(efx, "failed to backup PCI state of "
					"secondary function prior to "
					"hardware reset\n");
				goto fail2;
			}
		}

		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2547 2548 2549
				     FRF_AB_EXT_PHY_RST_DUR,
				     FFE_AB_EXT_PHY_RST_DUR_10240US,
				     FRF_AB_SWRST, 1);
2550 2551
	} else {
		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
				     /* exclude PHY from "invisible" reset */
				     FRF_AB_EXT_PHY_RST_CTL,
				     method == RESET_TYPE_INVISIBLE,
				     /* exclude EEPROM/flash and PCIe */
				     FRF_AB_PCIE_CORE_RST_CTL, 1,
				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
				     FRF_AB_PCIE_SD_RST_CTL, 1,
				     FRF_AB_EE_RST_CTL, 1,
				     FRF_AB_EXT_PHY_RST_DUR,
				     FFE_AB_EXT_PHY_RST_DUR_10240US,
				     FRF_AB_SWRST, 1);
	}
2564
	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2565 2566 2567 2568 2569 2570

	EFX_LOG(efx, "waiting for hardware reset\n");
	schedule_timeout_uninterruptible(HZ / 20);

	/* Restore PCI configuration if needed */
	if (method == RESET_TYPE_WORLD) {
2571
		if (efx_nic_is_dual_func(efx)) {
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
			rc = pci_restore_state(nic_data->pci_dev2);
			if (rc) {
				EFX_ERR(efx, "failed to restore PCI config for "
					"the secondary function\n");
				goto fail3;
			}
		}
		rc = pci_restore_state(efx->pci_dev);
		if (rc) {
			EFX_ERR(efx, "failed to restore PCI config for the "
				"primary function\n");
			goto fail4;
		}
		EFX_LOG(efx, "successfully restored PCI config\n");
	}

	/* Assert that reset complete */
2589
	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2590
	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
		rc = -ETIMEDOUT;
		EFX_ERR(efx, "timed out waiting for hardware reset\n");
		goto fail5;
	}
	EFX_LOG(efx, "hardware reset complete\n");

	return 0;

	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
fail2:
fail3:
	pci_restore_state(efx->pci_dev);
fail1:
fail4:
fail5:
	return rc;
}

2609
static void falcon_monitor(struct efx_nic *efx)
2610
{
S
Steve Hodgson 已提交
2611
	bool link_changed;
2612 2613
	int rc;

S
Steve Hodgson 已提交
2614 2615
	BUG_ON(!mutex_is_locked(&efx->mac_lock));

2616 2617 2618 2619 2620
	rc = falcon_board(efx)->type->monitor(efx);
	if (rc) {
		EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
			(rc == -ERANGE) ? "reported fault" : "failed");
		efx->phy_mode |= PHY_MODE_LOW_POWER;
B
Ben Hutchings 已提交
2621 2622
		rc = __efx_reconfigure_port(efx);
		WARN_ON(rc);
2623
	}
S
Steve Hodgson 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634

	if (LOOPBACK_INTERNAL(efx))
		link_changed = falcon_loopback_link_poll(efx);
	else
		link_changed = efx->phy_op->poll(efx);

	if (link_changed) {
		falcon_stop_nic_stats(efx);
		falcon_deconfigure_mac_wrapper(efx);

		falcon_switch_mac(efx);
B
Ben Hutchings 已提交
2635 2636
		rc = efx->mac_op->reconfigure(efx);
		BUG_ON(rc);
S
Steve Hodgson 已提交
2637 2638 2639 2640 2641 2642

		falcon_start_nic_stats(efx);

		efx_link_status_changed(efx);
	}

B
Ben Hutchings 已提交
2643 2644
	if (EFX_IS10G(efx))
		falcon_poll_xmac(efx);
2645 2646
}

2647 2648 2649 2650 2651 2652 2653 2654 2655
/* Zeroes out the SRAM contents.  This routine must be called in
 * process context and is allowed to sleep.
 */
static int falcon_reset_sram(struct efx_nic *efx)
{
	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
	int count;

	/* Set the SRAM wake/sleep GPIO appropriately. */
2656
	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2657 2658
	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2659
	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2660 2661 2662

	/* Initiate SRAM reset */
	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2663 2664
			     FRF_AZ_SRM_INIT_EN, 1,
			     FRF_AZ_SRM_NB_SZ, 0);
2665
	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675

	/* Wait for SRAM reset to complete */
	count = 0;
	do {
		EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);

		/* SRAM reset is slow; expect around 16ms */
		schedule_timeout_uninterruptible(HZ / 50);

		/* Check for reset complete */
2676
		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2677
		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
			EFX_LOG(efx, "SRAM reset complete\n");

			return 0;
		}
	} while (++count < 20);	/* wait upto 0.4 sec */

	EFX_ERR(efx, "timed out waiting for SRAM reset\n");
	return -ETIMEDOUT;
}

2688 2689 2690 2691 2692 2693 2694
static int falcon_spi_device_init(struct efx_nic *efx,
				  struct efx_spi_device **spi_device_ret,
				  unsigned int device_id, u32 device_type)
{
	struct efx_spi_device *spi_device;

	if (device_type != 0) {
2695
		spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2696 2697 2698 2699 2700 2701 2702 2703 2704
		if (!spi_device)
			return -ENOMEM;
		spi_device->device_id = device_id;
		spi_device->size =
			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
		spi_device->addr_len =
			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
		spi_device->munge_address = (spi_device->size == 1 << 9 &&
					     spi_device->addr_len == 1);
2705 2706 2707 2708 2709
		spi_device->erase_command =
			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
		spi_device->erase_size =
			1 << SPI_DEV_TYPE_FIELD(device_type,
						SPI_DEV_TYPE_ERASE_SIZE);
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
		spi_device->block_size =
			1 << SPI_DEV_TYPE_FIELD(device_type,
						SPI_DEV_TYPE_BLOCK_SIZE);
	} else {
		spi_device = NULL;
	}

	kfree(*spi_device_ret);
	*spi_device_ret = spi_device;
	return 0;
}


static void falcon_remove_spi_devices(struct efx_nic *efx)
{
	kfree(efx->spi_eeprom);
	efx->spi_eeprom = NULL;
	kfree(efx->spi_flash);
	efx->spi_flash = NULL;
}

2731 2732 2733 2734
/* Extract non-volatile configuration */
static int falcon_probe_nvconfig(struct efx_nic *efx)
{
	struct falcon_nvconfig *nvconfig;
B
Ben Hutchings 已提交
2735
	int board_rev;
2736 2737 2738
	int rc;

	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2739 2740
	if (!nvconfig)
		return -ENOMEM;
2741

B
Ben Hutchings 已提交
2742 2743 2744
	rc = falcon_read_nvram(efx, nvconfig);
	if (rc == -EINVAL) {
		EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2745
		efx->phy_type = PHY_TYPE_NONE;
2746
		efx->mdio.prtad = MDIO_PRTAD_NONE;
2747
		board_rev = 0;
B
Ben Hutchings 已提交
2748 2749 2750
		rc = 0;
	} else if (rc) {
		goto fail1;
2751 2752
	} else {
		struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2753
		struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2754 2755

		efx->phy_type = v2->port0_phy_type;
2756
		efx->mdio.prtad = v2->port0_phy_addr;
2757
		board_rev = le16_to_cpu(v2->board_revision);
2758

B
Ben Hutchings 已提交
2759
		if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2760 2761 2762 2763
			rc = falcon_spi_device_init(
				efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
				le32_to_cpu(v3->spi_device_type
					    [FFE_AB_SPI_DEVICE_FLASH]));
2764 2765
			if (rc)
				goto fail2;
2766 2767 2768 2769
			rc = falcon_spi_device_init(
				efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
				le32_to_cpu(v3->spi_device_type
					    [FFE_AB_SPI_DEVICE_EEPROM]));
2770 2771 2772
			if (rc)
				goto fail2;
		}
2773 2774
	}

B
Ben Hutchings 已提交
2775 2776 2777
	/* Read the MAC addresses */
	memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);

2778
	EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2779

2780
	falcon_probe_board(efx, board_rev);
2781

2782 2783 2784 2785 2786 2787
	kfree(nvconfig);
	return 0;

 fail2:
	falcon_remove_spi_devices(efx);
 fail1:
2788 2789 2790 2791
	kfree(nvconfig);
	return rc;
}

2792 2793 2794 2795 2796 2797 2798 2799
u32 efx_nic_fpga_ver(struct efx_nic *efx)
{
	efx_oword_t altera_build;

	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
}

2800 2801 2802 2803
/* Probe all SPI devices on the NIC */
static void falcon_probe_spi_devices(struct efx_nic *efx)
{
	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2804
	int boot_dev;
2805

2806 2807 2808
	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2809

2810 2811 2812
	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2813
		EFX_LOG(efx, "Booted from %s\n",
2814
			boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2815 2816 2817 2818 2819 2820
	} else {
		/* Disable VPD and set clock dividers to safe
		 * values for initial programming. */
		boot_dev = -1;
		EFX_LOG(efx, "Booted from internal ASIC settings;"
			" setting SPI config\n");
2821
		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2822
				     /* 125 MHz / 7 ~= 20 MHz */
2823
				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2824
				     /* 125 MHz / 63 ~= 2 MHz */
2825
				     FRF_AB_EE_EE_CLOCK_DIV, 63);
2826
		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2827 2828
	}

2829 2830 2831
	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
		falcon_spi_device_init(efx, &efx->spi_flash,
				       FFE_AB_SPI_DEVICE_FLASH,
2832
				       default_flash_type);
2833 2834 2835
	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
		falcon_spi_device_init(efx, &efx->spi_eeprom,
				       FFE_AB_SPI_DEVICE_EEPROM,
2836
				       large_eeprom_type);
2837 2838
}

2839
static int falcon_probe_nic(struct efx_nic *efx)
2840 2841
{
	struct falcon_nic_data *nic_data;
2842
	struct falcon_board *board;
2843 2844 2845 2846
	int rc;

	/* Allocate storage for hardware specific data */
	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2847 2848
	if (!nic_data)
		return -ENOMEM;
2849
	efx->nic_data = nic_data;
2850

2851 2852 2853 2854
	rc = -ENODEV;

	if (efx_nic_fpga_ver(efx) != 0) {
		EFX_ERR(efx, "Falcon FPGA not supported\n");
2855
		goto fail1;
2856 2857 2858 2859 2860 2861
	}

	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
		efx_oword_t nic_stat;
		struct pci_dev *dev;
		u8 pci_rev = efx->pci_dev->revision;
2862

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
		if ((pci_rev == 0xff) || (pci_rev == 0)) {
			EFX_ERR(efx, "Falcon rev A0 not supported\n");
			goto fail1;
		}
		efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
		if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
			EFX_ERR(efx, "Falcon rev A1 1G not supported\n");
			goto fail1;
		}
		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
			EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
			goto fail1;
		}
2876

2877
		dev = pci_dev_get(efx->pci_dev);
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
		while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
					     dev))) {
			if (dev->bus == efx->pci_dev->bus &&
			    dev->devfn == efx->pci_dev->devfn + 1) {
				nic_data->pci_dev2 = dev;
				break;
			}
		}
		if (!nic_data->pci_dev2) {
			EFX_ERR(efx, "failed to find secondary function\n");
			rc = -ENODEV;
			goto fail2;
		}
	}

	/* Now we can reset the NIC */
	rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
	if (rc) {
		EFX_ERR(efx, "failed to reset NIC\n");
		goto fail3;
	}

	/* Allocate memory for INT_KER */
2901
	rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2902 2903 2904 2905
	if (rc)
		goto fail4;
	BUG_ON(efx->irq_status.dma_addr & 0x0f);

2906 2907 2908
	EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
		(u64)efx->irq_status.dma_addr,
		efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2909

2910 2911
	falcon_probe_spi_devices(efx);

2912 2913 2914 2915 2916
	/* Read in the non-volatile configuration */
	rc = falcon_probe_nvconfig(efx);
	if (rc)
		goto fail5;

2917
	/* Initialise I2C adapter */
2918 2919 2920 2921 2922 2923 2924 2925 2926
	board = falcon_board(efx);
	board->i2c_adap.owner = THIS_MODULE;
	board->i2c_data = falcon_i2c_bit_operations;
	board->i2c_data.data = efx;
	board->i2c_adap.algo_data = &board->i2c_data;
	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
		sizeof(board->i2c_adap.name));
	rc = i2c_bit_add_bus(&board->i2c_adap);
2927 2928 2929
	if (rc)
		goto fail5;

2930
	rc = falcon_board(efx)->type->init(efx);
2931 2932 2933 2934 2935
	if (rc) {
		EFX_ERR(efx, "failed to initialise board\n");
		goto fail6;
	}

2936 2937 2938 2939
	nic_data->stats_disable_count = 1;
	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
		    (unsigned long)efx);

2940 2941
	return 0;

2942
 fail6:
2943 2944
	BUG_ON(i2c_del_adapter(&board->i2c_adap));
	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2945
 fail5:
2946
	falcon_remove_spi_devices(efx);
2947
	efx_nic_free_buffer(efx, &efx->irq_status);
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
 fail4:
 fail3:
	if (nic_data->pci_dev2) {
		pci_dev_put(nic_data->pci_dev2);
		nic_data->pci_dev2 = NULL;
	}
 fail2:
 fail1:
	kfree(efx->nic_data);
	return rc;
}

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
static void falcon_init_rx_cfg(struct efx_nic *efx)
{
	/* Prior to Siena the RX DMA engine will split each frame at
	 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
	 * be so large that that never happens. */
	const unsigned huge_buf_size = (3 * 4096) >> 5;
	/* RX control FIFO thresholds (32 entries) */
	const unsigned ctrl_xon_thr = 20;
	const unsigned ctrl_xoff_thr = 25;
	/* RX data FIFO thresholds (256-byte units; size varies) */
2970 2971
	int data_xon_thr = efx_nic_rx_xon_thresh >> 8;
	int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8;
2972 2973
	efx_oword_t reg;

2974
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
2975
	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2976 2977 2978 2979 2980
		/* Data FIFO size is 5.5K */
		if (data_xon_thr < 0)
			data_xon_thr = 512 >> 8;
		if (data_xoff_thr < 0)
			data_xoff_thr = 2048 >> 8;
2981 2982 2983 2984 2985 2986 2987
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
				    huge_buf_size);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2988
	} else {
2989 2990 2991 2992 2993
		/* Data FIFO size is 80K; register fields moved */
		if (data_xon_thr < 0)
			data_xon_thr = 27648 >> 8; /* ~3*max MTU */
		if (data_xoff_thr < 0)
			data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
2994 2995 2996 2997 2998 2999 3000 3001
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
				    huge_buf_size);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
3002
	}
3003 3004 3005
	/* Always enable XOFF signal from RX FIFO.  We enable
	 * or disable transmission of pause frames at the MAC. */
	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
3006
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
3007 3008
}

3009
void efx_nic_init_common(struct efx_nic *efx)
3010 3011 3012 3013
{
	efx_oword_t temp;

	/* Set positions of descriptor caches in SRAM. */
3014 3015
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
			     efx->type->tx_dc_base / 8);
3016
	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
3017 3018
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
			     efx->type->rx_dc_base / 8);
3019
	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
3020 3021

	/* Set TX descriptor cache size. */
B
Ben Hutchings 已提交
3022
	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
3023
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3024
	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
3025 3026 3027 3028

	/* Set RX descriptor cache size.  Set low watermark to size-8, as
	 * this allows most efficient prefetching.
	 */
B
Ben Hutchings 已提交
3029
	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
3030
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3031
	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
3032
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3033
	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
3034

3035 3036 3037 3038 3039 3040 3041
	/* Program INT_KER address */
	EFX_POPULATE_OWORD_2(temp,
			     FRF_AZ_NORM_INT_VEC_DIS_KER,
			     EFX_INT_MODE_USE_MSI(efx),
			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);

3042 3043 3044 3045 3046 3047 3048
	/* Enable all the genuinely fatal interrupts.  (They are still
	 * masked by the overall interrupt mask, controlled by
	 * falcon_interrupts()).
	 *
	 * Note: All other fatal interrupts are enabled
	 */
	EFX_POPULATE_OWORD_3(temp,
3049 3050 3051
			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3052
	EFX_INVERT_OWORD(temp);
3053
	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3054

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	efx_setup_rss_indir_table(efx);

	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
	 */
	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
	/* Enable SW_EV to inherit in char driver - assume harmless here */
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
	/* Squash TX of packets of 16 bytes or less */
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
}

/* This call performs hardware-specific global initialisation, such as
 * defining the descriptor cache sizes and number of RSS channels.
 * It does not set up any buffers, descriptor rings or event queues.
 */
static int falcon_init_nic(struct efx_nic *efx)
{
	efx_oword_t temp;
	int rc;

	/* Use on-chip SRAM */
	efx_reado(efx, &temp, FR_AB_NIC_STAT);
	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
	efx_writeo(efx, &temp, FR_AB_NIC_STAT);

	/* Set the source of the GMAC clock */
	if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
		efx_reado(efx, &temp, FR_AB_GPIO_CTL);
		EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
		efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
	}

	/* Select the correct MAC */
	falcon_clock_mac(efx);

	rc = falcon_reset_sram(efx);
	if (rc)
		return rc;

	/* Clear the parity enables on the TX data fifos as
	 * they produce false parity errors because of timing issues
	 */
	if (EFX_WORKAROUND_5129(efx)) {
		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
	}

3113
	if (EFX_WORKAROUND_7244(efx)) {
3114
		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3115 3116 3117 3118
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3119
		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3120 3121
	}

3122
	/* XXX This is documented only for Falcon A0/A1 */
3123 3124 3125
	/* Setup RX.  Wait for descriptor is broken and must
	 * be disabled.  RXDP recovery shouldn't be needed, but is.
	 */
3126
	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3127 3128
	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3129
	if (EFX_WORKAROUND_5583(efx))
3130
		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3131
	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3132 3133 3134 3135

	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
	 * descriptors (which is bad).
	 */
3136
	efx_reado(efx, &temp, FR_AZ_TX_CFG);
3137
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3138
	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3139

3140
	falcon_init_rx_cfg(efx);
3141 3142

	/* Set destination of both TX and RX Flush events */
3143
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
3144
		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3145
		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3146 3147
	}

3148 3149
	efx_nic_init_common(efx);

3150 3151 3152
	return 0;
}

3153
static void falcon_remove_nic(struct efx_nic *efx)
3154 3155
{
	struct falcon_nic_data *nic_data = efx->nic_data;
3156
	struct falcon_board *board = falcon_board(efx);
3157 3158
	int rc;

3159
	board->type->fini(efx);
3160

3161
	/* Remove I2C adapter and clear it in preparation for a retry */
3162
	rc = i2c_del_adapter(&board->i2c_adap);
3163
	BUG_ON(rc);
3164
	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
3165

3166
	falcon_remove_spi_devices(efx);
3167
	efx_nic_free_buffer(efx, &efx->irq_status);
3168

B
Ben Hutchings 已提交
3169
	falcon_reset_hw(efx, RESET_TYPE_ALL);
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181

	/* Release the second function after the reset */
	if (nic_data->pci_dev2) {
		pci_dev_put(nic_data->pci_dev2);
		nic_data->pci_dev2 = NULL;
	}

	/* Tear down the private nic state */
	kfree(efx->nic_data);
	efx->nic_data = NULL;
}

3182
static void falcon_update_nic_stats(struct efx_nic *efx)
3183
{
3184
	struct falcon_nic_data *nic_data = efx->nic_data;
3185 3186
	efx_oword_t cnt;

3187 3188 3189
	if (nic_data->stats_disable_count)
		return;

3190
	efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3191 3192
	efx->n_rx_nodesc_drop_cnt +=
		EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235

	if (nic_data->stats_pending &&
	    *nic_data->stats_dma_done == FALCON_STATS_DONE) {
		nic_data->stats_pending = false;
		rmb(); /* read the done flag before the stats */
		efx->mac_op->update_stats(efx);
	}
}

void falcon_start_nic_stats(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;

	spin_lock_bh(&efx->stats_lock);
	if (--nic_data->stats_disable_count == 0)
		falcon_stats_request(efx);
	spin_unlock_bh(&efx->stats_lock);
}

void falcon_stop_nic_stats(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
	int i;

	might_sleep();

	spin_lock_bh(&efx->stats_lock);
	++nic_data->stats_disable_count;
	spin_unlock_bh(&efx->stats_lock);

	del_timer_sync(&nic_data->stats_timer);

	/* Wait enough time for the most recent transfer to
	 * complete. */
	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
		if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
			break;
		msleep(1);
	}

	spin_lock_bh(&efx->stats_lock);
	falcon_stats_complete(efx);
	spin_unlock_bh(&efx->stats_lock);
3236 3237
}

3238 3239 3240 3241 3242
static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
	falcon_board(efx)->type->set_id_led(efx, mode);
}

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
/**************************************************************************
 *
 * Wake on LAN
 *
 **************************************************************************
 */

static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
{
	wol->supported = 0;
	wol->wolopts = 0;
	memset(&wol->sopass, 0, sizeof(wol->sopass));
}

static int falcon_set_wol(struct efx_nic *efx, u32 type)
{
	if (type != 0)
		return -EINVAL;
	return 0;
}

3264 3265 3266 3267 3268 3269 3270
/**************************************************************************
 *
 * Revision-dependent attributes used by efx.c
 *
 **************************************************************************
 */

3271
struct efx_nic_type falcon_a1_nic_type = {
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	.probe = falcon_probe_nic,
	.remove = falcon_remove_nic,
	.init = falcon_init_nic,
	.fini = efx_port_dummy_op_void,
	.monitor = falcon_monitor,
	.reset = falcon_reset_hw,
	.probe_port = falcon_probe_port,
	.remove_port = falcon_remove_port,
	.prepare_flush = falcon_prepare_flush,
	.update_stats = falcon_update_nic_stats,
	.start_stats = falcon_start_nic_stats,
	.stop_stats = falcon_stop_nic_stats,
3284
	.set_id_led = falcon_set_id_led,
3285 3286
	.push_irq_moderation = falcon_push_irq_moderation,
	.push_multicast_hash = falcon_push_multicast_hash,
B
Ben Hutchings 已提交
3287
	.reconfigure_port = falcon_reconfigure_port,
3288 3289 3290
	.get_wol = falcon_get_wol,
	.set_wol = falcon_set_wol,
	.resume_wol = efx_port_dummy_op_void,
3291
	.test_nvram = falcon_test_nvram,
3292 3293
	.default_mac_ops = &falcon_xmac_operations,

3294
	.revision = EFX_REV_FALCON_A1,
3295
	.mem_map_size = 0x20000,
3296 3297 3298 3299 3300
	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3301
	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3302 3303 3304
	.rx_buffer_padding = 0x24,
	.max_interrupt_mode = EFX_INT_MODE_MSI,
	.phys_addr_channels = 4,
3305 3306
	.tx_dc_base = 0x130000,
	.rx_dc_base = 0x100000,
3307
	.offload_features = NETIF_F_IP_CSUM,
3308
	.reset_world_flags = ETH_RESET_IRQ,
3309 3310
};

3311
struct efx_nic_type falcon_b0_nic_type = {
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	.probe = falcon_probe_nic,
	.remove = falcon_remove_nic,
	.init = falcon_init_nic,
	.fini = efx_port_dummy_op_void,
	.monitor = falcon_monitor,
	.reset = falcon_reset_hw,
	.probe_port = falcon_probe_port,
	.remove_port = falcon_remove_port,
	.prepare_flush = falcon_prepare_flush,
	.update_stats = falcon_update_nic_stats,
	.start_stats = falcon_start_nic_stats,
	.stop_stats = falcon_stop_nic_stats,
3324
	.set_id_led = falcon_set_id_led,
3325 3326
	.push_irq_moderation = falcon_push_irq_moderation,
	.push_multicast_hash = falcon_push_multicast_hash,
B
Ben Hutchings 已提交
3327
	.reconfigure_port = falcon_reconfigure_port,
3328 3329 3330
	.get_wol = falcon_get_wol,
	.set_wol = falcon_set_wol,
	.resume_wol = efx_port_dummy_op_void,
3331
	.test_registers = falcon_b0_test_registers,
3332
	.test_nvram = falcon_test_nvram,
3333 3334
	.default_mac_ops = &falcon_xmac_operations,

3335
	.revision = EFX_REV_FALCON_B0,
3336 3337 3338
	/* Map everything up to and including the RSS indirection
	 * table.  Don't map MSI-X table, MSI-X PBA since Linux
	 * requires that they not be mapped.  */
3339 3340 3341 3342 3343 3344 3345 3346
	.mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
			 FR_BZ_RX_INDIRECTION_TBL_STEP *
			 FR_BZ_RX_INDIRECTION_TBL_ROWS),
	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3347
	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3348 3349 3350 3351 3352
	.rx_buffer_padding = 0,
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
	.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
				   * interrupt handler only supports 32
				   * channels */
3353 3354
	.tx_dc_base = 0x130000,
	.rx_dc_base = 0x100000,
3355
	.offload_features = NETIF_F_IP_CSUM,
3356
	.reset_world_flags = ETH_RESET_IRQ,
3357 3358
};