falcon.c 90.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2006-2008 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
16 17
#include <linux/i2c.h>
#include <linux/i2c-algo-bit.h>
B
Ben Hutchings 已提交
18
#include <linux/mii.h>
19 20 21 22 23 24
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "mac.h"
#include "spi.h"
#include "falcon.h"
25
#include "regs.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include "falcon_io.h"
#include "mdio_10g.h"
#include "phy.h"
#include "workarounds.h"

/* Falcon hardware control.
 * Falcon is the internal codename for the SFC4000 controller that is
 * present in SFE400X evaluation boards
 */

/**
 * struct falcon_nic_data - Falcon NIC state
 * @next_buffer_table: First available buffer table id
 * @pci_dev2: The secondary PCI device if present
40
 * @i2c_data: Operations and state for I2C bit-bashing algorithm
41 42
 * @int_error_count: Number of internal errors seen recently
 * @int_error_expire: Time at which error count will be expired
43 44 45 46
 */
struct falcon_nic_data {
	unsigned next_buffer_table;
	struct pci_dev *pci_dev2;
47
	struct i2c_algo_bit_data i2c_data;
48 49 50

	unsigned int_error_count;
	unsigned long int_error_expire;
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
};

/**************************************************************************
 *
 * Configurable values
 *
 **************************************************************************
 */

static int disable_dma_stats;

/* This is set to 16 for a good reason.  In summary, if larger than
 * 16, the descriptor cache holds more than a default socket
 * buffer's worth of packets (for UDP we can only have at most one
 * socket buffer's worth outstanding).  This combined with the fact
 * that we only get 1 TX event per descriptor cache means the NIC
 * goes idle.
 */
#define TX_DC_ENTRIES 16
#define TX_DC_ENTRIES_ORDER 0
#define TX_DC_BASE 0x130000

#define RX_DC_ENTRIES 64
#define RX_DC_ENTRIES_ORDER 2
#define RX_DC_BASE 0x100000

77 78 79 80 81 82 83 84 85 86 87 88 89 90
static const unsigned int
/* "Large" EEPROM device: Atmel AT25640 or similar
 * 8 KB, 16-bit address, 32 B write block */
large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
/* Default flash device: Atmel AT25F1024
 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
/* RX FIFO XOFF watermark
 *
 * When the amount of the RX FIFO increases used increases past this
 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
static int rx_xoff_thresh_bytes = -1;
module_param(rx_xoff_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");

/* RX FIFO XON watermark
 *
 * When the amount of the RX FIFO used decreases below this
 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
static int rx_xon_thresh_bytes = -1;
module_param(rx_xon_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");

/* TX descriptor ring size - min 512 max 4k */
112
#define FALCON_TXD_RING_ORDER FFE_AZ_TX_DESCQ_SIZE_1K
113 114 115 116
#define FALCON_TXD_RING_SIZE 1024
#define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)

/* RX descriptor ring size - min 512 max 4k */
117
#define FALCON_RXD_RING_ORDER FFE_AZ_RX_DESCQ_SIZE_1K
118 119 120 121
#define FALCON_RXD_RING_SIZE 1024
#define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)

/* Event queue size - max 32k */
122
#define FALCON_EVQ_ORDER FFE_AZ_EVQ_SIZE_4K
123 124 125
#define FALCON_EVQ_SIZE 4096
#define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)

126 127 128 129 130 131
/* If FALCON_MAX_INT_ERRORS internal errors occur within
 * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
 * disable it.
 */
#define FALCON_INT_ERROR_EXPIRE 3600
#define FALCON_MAX_INT_ERRORS 5
132

133 134 135 136
/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
 */
#define FALCON_FLUSH_INTERVAL 10
#define FALCON_FLUSH_POLL_COUNT 100
137 138 139 140 141 142 143 144

/**************************************************************************
 *
 * Falcon constants
 *
 **************************************************************************
 */

145 146
/* DMA address mask */
#define FALCON_DMA_MASK DMA_BIT_MASK(46)
147 148 149 150 151 152 153 154 155 156 157

/* TX DMA length mask (13-bit) */
#define FALCON_TX_DMA_MASK (4096 - 1)

/* Size and alignment of special buffers (4KB) */
#define FALCON_BUF_SIZE 4096

/* Dummy SRAM size code */
#define SRM_NB_BSZ_ONCHIP_ONLY (-1)

#define FALCON_IS_DUAL_FUNC(efx)		\
158
	(falcon_rev(efx) < FALCON_REV_B0)
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

/**************************************************************************
 *
 * Falcon hardware access
 *
 **************************************************************************/

/* Read the current event from the event queue */
static inline efx_qword_t *falcon_event(struct efx_channel *channel,
					unsigned int index)
{
	return (((efx_qword_t *) (channel->eventq.addr)) + index);
}

/* See if an event is present
 *
 * We check both the high and low dword of the event for all ones.  We
 * wrote all ones when we cleared the event, and no valid event can
 * have all ones in either its high or low dwords.  This approach is
 * robust against reordering.
 *
 * Note that using a single 64-bit comparison is incorrect; even
 * though the CPU read will be atomic, the DMA write may not be.
 */
static inline int falcon_event_present(efx_qword_t *event)
{
	return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
		  EFX_DWORD_IS_ALL_ONES(event->dword[1])));
}

/**************************************************************************
 *
 * I2C bus - this is a bit-bashing interface using GPIO pins
 * Note that it uses the output enables to tristate the outputs
 * SDA is the data pin and SCL is the clock
 *
 **************************************************************************
 */
197
static void falcon_setsda(void *data, int state)
198
{
199
	struct efx_nic *efx = (struct efx_nic *)data;
200 201
	efx_oword_t reg;

202 203 204
	falcon_read(efx, &reg, FR_AB_GPIO_CTL);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
	falcon_write(efx, &reg, FR_AB_GPIO_CTL);
205 206
}

207
static void falcon_setscl(void *data, int state)
208
{
209
	struct efx_nic *efx = (struct efx_nic *)data;
210 211
	efx_oword_t reg;

212 213 214
	falcon_read(efx, &reg, FR_AB_GPIO_CTL);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
	falcon_write(efx, &reg, FR_AB_GPIO_CTL);
215 216 217 218 219 220 221
}

static int falcon_getsda(void *data)
{
	struct efx_nic *efx = (struct efx_nic *)data;
	efx_oword_t reg;

222 223
	falcon_read(efx, &reg, FR_AB_GPIO_CTL);
	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
224 225
}

226
static int falcon_getscl(void *data)
227
{
228
	struct efx_nic *efx = (struct efx_nic *)data;
229 230
	efx_oword_t reg;

231 232
	falcon_read(efx, &reg, FR_AB_GPIO_CTL);
	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
233 234
}

235 236 237
static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
	.setsda		= falcon_setsda,
	.setscl		= falcon_setscl,
238 239
	.getsda		= falcon_getsda,
	.getscl		= falcon_getscl,
240
	.udelay		= 5,
241 242
	/* Wait up to 50 ms for slave to let us pull SCL high */
	.timeout	= DIV_ROUND_UP(HZ, 20),
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
};

/**************************************************************************
 *
 * Falcon special buffer handling
 * Special buffers are used for event queues and the TX and RX
 * descriptor rings.
 *
 *************************************************************************/

/*
 * Initialise a Falcon special buffer
 *
 * This will define a buffer (previously allocated via
 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
 * it to be used for event queues, descriptor rings etc.
 */
260
static void
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
falcon_init_special_buffer(struct efx_nic *efx,
			   struct efx_special_buffer *buffer)
{
	efx_qword_t buf_desc;
	int index;
	dma_addr_t dma_addr;
	int i;

	EFX_BUG_ON_PARANOID(!buffer->addr);

	/* Write buffer descriptors to NIC */
	for (i = 0; i < buffer->entries; i++) {
		index = buffer->index + i;
		dma_addr = buffer->dma_addr + (i * 4096);
		EFX_LOG(efx, "mapping special buffer %d at %llx\n",
			index, (unsigned long long)dma_addr);
277 278 279 280
		EFX_POPULATE_QWORD_3(buf_desc,
				     FRF_AZ_BUF_ADR_REGION, 0,
				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
		falcon_write_sram(efx, &buf_desc, index);
	}
}

/* Unmaps a buffer from Falcon and clears the buffer table entries */
static void
falcon_fini_special_buffer(struct efx_nic *efx,
			   struct efx_special_buffer *buffer)
{
	efx_oword_t buf_tbl_upd;
	unsigned int start = buffer->index;
	unsigned int end = (buffer->index + buffer->entries - 1);

	if (!buffer->entries)
		return;

	EFX_LOG(efx, "unmapping special buffers %d-%d\n",
		buffer->index, buffer->index + buffer->entries - 1);

	EFX_POPULATE_OWORD_4(buf_tbl_upd,
301 302 303 304 305
			     FRF_AZ_BUF_UPD_CMD, 0,
			     FRF_AZ_BUF_CLR_CMD, 1,
			     FRF_AZ_BUF_CLR_END_ID, end,
			     FRF_AZ_BUF_CLR_START_ID, start);
	falcon_write(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
}

/*
 * Allocate a new Falcon special buffer
 *
 * This allocates memory for a new buffer, clears it and allocates a
 * new buffer ID range.  It does not write into Falcon's buffer table.
 *
 * This call will allocate 4KB buffers, since Falcon can't use 8KB
 * buffers for event queues and descriptor rings.
 */
static int falcon_alloc_special_buffer(struct efx_nic *efx,
				       struct efx_special_buffer *buffer,
				       unsigned int len)
{
	struct falcon_nic_data *nic_data = efx->nic_data;

	len = ALIGN(len, FALCON_BUF_SIZE);

	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	buffer->entries = len / FALCON_BUF_SIZE;
	BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));

	/* All zeros is a potentially valid event so memset to 0xff */
	memset(buffer->addr, 0xff, len);

	/* Select new buffer ID */
	buffer->index = nic_data->next_buffer_table;
	nic_data->next_buffer_table += buffer->entries;

	EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
341
		"(virt %p phys %llx)\n", buffer->index,
342
		buffer->index + buffer->entries - 1,
343 344
		(u64)buffer->dma_addr, len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));
345 346 347 348 349 350 351 352 353 354 355

	return 0;
}

static void falcon_free_special_buffer(struct efx_nic *efx,
				       struct efx_special_buffer *buffer)
{
	if (!buffer->addr)
		return;

	EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
356
		"(virt %p phys %llx)\n", buffer->index,
357
		buffer->index + buffer->entries - 1,
358 359
		(u64)buffer->dma_addr, buffer->len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

	pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
			    buffer->dma_addr);
	buffer->addr = NULL;
	buffer->entries = 0;
}

/**************************************************************************
 *
 * Falcon generic buffer handling
 * These buffers are used for interrupt status and MAC stats
 *
 **************************************************************************/

static int falcon_alloc_buffer(struct efx_nic *efx,
			       struct efx_buffer *buffer, unsigned int len)
{
	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	memset(buffer->addr, 0, len);
	return 0;
}

static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
	if (buffer->addr) {
		pci_free_consistent(efx->pci_dev, buffer->len,
				    buffer->addr, buffer->dma_addr);
		buffer->addr = NULL;
	}
}

/**************************************************************************
 *
 * Falcon TX path
 *
 **************************************************************************/

/* Returns a pointer to the specified transmit descriptor in the TX
 * descriptor queue belonging to the specified channel.
 */
static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
					       unsigned int index)
{
	return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
}

/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
	unsigned write_ptr;
	efx_dword_t reg;

	write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
417
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
418
	falcon_writel_page(tx_queue->efx, &reg,
419
			   FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
}


/* For each entry inserted into the software descriptor ring, create a
 * descriptor in the hardware TX descriptor ring (in host memory), and
 * write a doorbell.
 */
void falcon_push_buffers(struct efx_tx_queue *tx_queue)
{

	struct efx_tx_buffer *buffer;
	efx_qword_t *txd;
	unsigned write_ptr;

	BUG_ON(tx_queue->write_count == tx_queue->insert_count);

	do {
		write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
		buffer = &tx_queue->buffer[write_ptr];
		txd = falcon_tx_desc(tx_queue, write_ptr);
		++tx_queue->write_count;

		/* Create TX descriptor ring entry */
443 444 445 446 447
		EFX_POPULATE_QWORD_4(*txd,
				     FSF_AZ_TX_KER_CONT, buffer->continuation,
				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
				     FSF_AZ_TX_KER_BUF_REGION, 0,
				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
	} while (tx_queue->write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */
	falcon_notify_tx_desc(tx_queue);
}

/* Allocate hardware resources for a TX queue */
int falcon_probe_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	return falcon_alloc_special_buffer(efx, &tx_queue->txd,
					   FALCON_TXD_RING_SIZE *
					   sizeof(efx_qword_t));
}

463
void falcon_init_tx(struct efx_tx_queue *tx_queue)
464 465 466 467
{
	efx_oword_t tx_desc_ptr;
	struct efx_nic *efx = tx_queue->efx;

468 469
	tx_queue->flushed = false;

470
	/* Pin TX descriptor ring */
471
	falcon_init_special_buffer(efx, &tx_queue->txd);
472 473 474

	/* Push TX descriptor ring to card */
	EFX_POPULATE_OWORD_10(tx_desc_ptr,
475 476 477 478 479 480 481 482 483 484 485
			      FRF_AZ_TX_DESCQ_EN, 1,
			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
			      FRF_AZ_TX_DESCQ_EVQ_ID,
			      tx_queue->channel->channel,
			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
			      FRF_AZ_TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
			      FRF_AZ_TX_DESCQ_TYPE, 0,
			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
486

487
	if (falcon_rev(efx) >= FALCON_REV_B0) {
488
		int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
489 490 491
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
				    !csum);
492 493 494 495 496
	}

	falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			   tx_queue->queue);

497
	if (falcon_rev(efx) < FALCON_REV_B0) {
498 499
		efx_oword_t reg;

500 501
		/* Only 128 bits in this register */
		BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
502

503
		falcon_read(efx, &reg, FR_AA_TX_CHKSM_CFG);
504
		if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
505 506 507
			clear_bit_le(tx_queue->queue, (void *)&reg);
		else
			set_bit_le(tx_queue->queue, (void *)&reg);
508
		falcon_write(efx, &reg, FR_AA_TX_CHKSM_CFG);
509 510 511
	}
}

512
static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
513 514 515 516 517 518
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_flush_descq;

	/* Post a flush command */
	EFX_POPULATE_OWORD_2(tx_flush_descq,
519 520 521
			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
	falcon_write(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
522 523 524 525 526 527 528
}

void falcon_fini_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_desc_ptr;

529 530
	/* The queue should have been flushed */
	WARN_ON(!tx_queue->flushed);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

	/* Remove TX descriptor ring from card */
	EFX_ZERO_OWORD(tx_desc_ptr);
	falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			   tx_queue->queue);

	/* Unpin TX descriptor ring */
	falcon_fini_special_buffer(efx, &tx_queue->txd);
}

/* Free buffers backing TX queue */
void falcon_remove_tx(struct efx_tx_queue *tx_queue)
{
	falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}

/**************************************************************************
 *
 * Falcon RX path
 *
 **************************************************************************/

/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
					       unsigned int index)
{
	return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
}

/* This creates an entry in the RX descriptor queue */
static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
					unsigned index)
{
	struct efx_rx_buffer *rx_buf;
	efx_qword_t *rxd;

	rxd = falcon_rx_desc(rx_queue, index);
	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_POPULATE_QWORD_3(*rxd,
570
			     FSF_AZ_RX_KER_BUF_SIZE,
571 572
			     rx_buf->len -
			     rx_queue->efx->type->rx_buffer_padding,
573 574
			     FSF_AZ_RX_KER_BUF_REGION, 0,
			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
}

/* This writes to the RX_DESC_WPTR register for the specified receive
 * descriptor ring.
 */
void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
	efx_dword_t reg;
	unsigned write_ptr;

	while (rx_queue->notified_count != rx_queue->added_count) {
		falcon_build_rx_desc(rx_queue,
				     rx_queue->notified_count &
				     FALCON_RXD_RING_MASK);
		++rx_queue->notified_count;
	}

	wmb();
	write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
594
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
595
	falcon_writel_page(rx_queue->efx, &reg,
596
			   FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
597 598 599 600 601 602 603 604 605 606
}

int falcon_probe_rx(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
					   FALCON_RXD_RING_SIZE *
					   sizeof(efx_qword_t));
}

607
void falcon_init_rx(struct efx_rx_queue *rx_queue)
608 609 610
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;
611 612
	bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
	bool iscsi_digest_en = is_b0;
613 614 615 616 617

	EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
		rx_queue->queue, rx_queue->rxd.index,
		rx_queue->rxd.index + rx_queue->rxd.entries - 1);

618 619
	rx_queue->flushed = false;

620
	/* Pin RX descriptor ring */
621
	falcon_init_special_buffer(efx, &rx_queue->rxd);
622 623 624

	/* Push RX descriptor ring to card */
	EFX_POPULATE_OWORD_10(rx_desc_ptr,
625 626 627 628 629 630 631 632 633
			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
			      FRF_AZ_RX_DESCQ_EVQ_ID,
			      rx_queue->channel->channel,
			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
			      FRF_AZ_RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
634
			      /* For >=B0 this is scatter so disable */
635 636
			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
			      FRF_AZ_RX_DESCQ_EN, 1);
637 638 639 640
	falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			   rx_queue->queue);
}

641
static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
642 643 644 645 646 647
{
	struct efx_nic *efx = rx_queue->efx;
	efx_oword_t rx_flush_descq;

	/* Post a flush command */
	EFX_POPULATE_OWORD_2(rx_flush_descq,
648 649 650
			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
	falcon_write(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
651 652 653 654 655 656 657
}

void falcon_fini_rx(struct efx_rx_queue *rx_queue)
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;

658 659
	/* The queue should already have been flushed */
	WARN_ON(!rx_queue->flushed);
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

	/* Remove RX descriptor ring from card */
	EFX_ZERO_OWORD(rx_desc_ptr);
	falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			   rx_queue->queue);

	/* Unpin RX descriptor ring */
	falcon_fini_special_buffer(efx, &rx_queue->rxd);
}

/* Free buffers backing RX queue */
void falcon_remove_rx(struct efx_rx_queue *rx_queue)
{
	falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}

/**************************************************************************
 *
 * Falcon event queue processing
 * Event queues are processed by per-channel tasklets.
 *
 **************************************************************************/

/* Update a channel's event queue's read pointer (RPTR) register
 *
 * This writes the EVQ_RPTR_REG register for the specified channel's
 * event queue.
 *
 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
 * whereas channel->eventq_read_ptr contains the index of the "next to
 * read" event.
 */
void falcon_eventq_read_ack(struct efx_channel *channel)
{
	efx_dword_t reg;
	struct efx_nic *efx = channel->efx;

697
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
698
	falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
699
			    channel->channel);
700 701 702 703 704 705 706
}

/* Use HW to insert a SW defined event */
void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
{
	efx_oword_t drv_ev_reg;

707 708 709 710 711 712 713 714
	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
	drv_ev_reg.u32[0] = event->u32[0];
	drv_ev_reg.u32[1] = event->u32[1];
	drv_ev_reg.u32[2] = 0;
	drv_ev_reg.u32[3] = 0;
	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
	falcon_write(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
715 716 717 718 719 720 721
}

/* Handle a transmit completion event
 *
 * Falcon batches TX completion events; the message we receive is of
 * the form "complete all TX events up to this index".
 */
722 723
static void falcon_handle_tx_event(struct efx_channel *channel,
				   efx_qword_t *event)
724 725 726 727 728 729
{
	unsigned int tx_ev_desc_ptr;
	unsigned int tx_ev_q_label;
	struct efx_tx_queue *tx_queue;
	struct efx_nic *efx = channel->efx;

730
	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
731
		/* Transmit completion */
732 733
		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
734
		tx_queue = &efx->tx_queue[tx_ev_q_label];
735 736 737
		channel->irq_mod_score +=
			(tx_ev_desc_ptr - tx_queue->read_count) &
			efx->type->txd_ring_mask;
738
		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
739
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
740
		/* Rewrite the FIFO write pointer */
741
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
742 743
		tx_queue = &efx->tx_queue[tx_ev_q_label];

744
		if (efx_dev_registered(efx))
745 746
			netif_tx_lock(efx->net_dev);
		falcon_notify_tx_desc(tx_queue);
747
		if (efx_dev_registered(efx))
748
			netif_tx_unlock(efx->net_dev);
749
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
750 751 752 753 754 755 756 757 758 759 760 761
		   EFX_WORKAROUND_10727(efx)) {
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
	} else {
		EFX_ERR(efx, "channel %d unexpected TX event "
			EFX_QWORD_FMT"\n", channel->channel,
			EFX_QWORD_VAL(*event));
	}
}

/* Detect errors included in the rx_evt_pkt_ok bit. */
static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
				    const efx_qword_t *event,
762 763
				    bool *rx_ev_pkt_ok,
				    bool *discard)
764 765
{
	struct efx_nic *efx = rx_queue->efx;
766 767 768 769 770 771
	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
	bool rx_ev_other_err, rx_ev_pause_frm;
	bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
	unsigned rx_ev_pkt_type;
772

773 774 775 776
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
777
	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
778 779
						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
	rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
780
	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
781
						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
782
	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
783 784 785
						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
786
	rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
787 788
			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
789 790 791 792 793 794

	/* Every error apart from tobe_disc and pause_frm */
	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);

795 796
	/* Count errors that are not in MAC stats.  Ignore expected
	 * checksum errors during self-test. */
797 798 799 800
	if (rx_ev_frm_trunc)
		++rx_queue->channel->n_rx_frm_trunc;
	else if (rx_ev_tobe_disc)
		++rx_queue->channel->n_rx_tobe_disc;
801 802 803 804 805 806
	else if (!efx->loopback_selftest) {
		if (rx_ev_ip_hdr_chksum_err)
			++rx_queue->channel->n_rx_ip_hdr_chksum_err;
		else if (rx_ev_tcp_udp_chksum_err)
			++rx_queue->channel->n_rx_tcp_udp_chksum_err;
	}
807 808 809 810 811 812 813 814 815 816 817 818 819 820
	if (rx_ev_ip_frag_err)
		++rx_queue->channel->n_rx_ip_frag_err;

	/* The frame must be discarded if any of these are true. */
	*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
		    rx_ev_tobe_disc | rx_ev_pause_frm);

	/* TOBE_DISC is expected on unicast mismatches; don't print out an
	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
	 * to a FIFO overflow.
	 */
#ifdef EFX_ENABLE_DEBUG
	if (rx_ev_other_err) {
		EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
821
			    EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
822 823 824 825 826 827 828 829 830 831
			    rx_queue->queue, EFX_QWORD_VAL(*event),
			    rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
			    rx_ev_ip_hdr_chksum_err ?
			    " [IP_HDR_CHKSUM_ERR]" : "",
			    rx_ev_tcp_udp_chksum_err ?
			    " [TCP_UDP_CHKSUM_ERR]" : "",
			    rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
			    rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
			    rx_ev_drib_nib ? " [DRIB_NIB]" : "",
			    rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
832
			    rx_ev_pause_frm ? " [PAUSE]" : "");
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
	}
#endif
}

/* Handle receive events that are not in-order. */
static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
				       unsigned index)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned expected, dropped;

	expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
	dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
		   FALCON_RXD_RING_MASK);
	EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
		dropped, index, expected);

	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
}

/* Handle a packet received event
 *
 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
 * wrong destination address
 * Also "is multicast" and "matches multicast filter" flags can be used to
 * discard non-matching multicast packets.
 */
B
Ben Hutchings 已提交
861 862
static void falcon_handle_rx_event(struct efx_channel *channel,
				   const efx_qword_t *event)
863
{
B
Ben Hutchings 已提交
864
	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
865
	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
866
	unsigned expected_ptr;
867
	bool rx_ev_pkt_ok, discard = false, checksummed;
868 869 870 871
	struct efx_rx_queue *rx_queue;
	struct efx_nic *efx = channel->efx;

	/* Basic packet information */
872 873 874 875 876 877 878
	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
		channel->channel);
879

B
Ben Hutchings 已提交
880
	rx_queue = &efx->rx_queue[channel->channel];
881

882
	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
883
	expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
B
Ben Hutchings 已提交
884
	if (unlikely(rx_ev_desc_ptr != expected_ptr))
885 886 887 888 889 890
		falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);

	if (likely(rx_ev_pkt_ok)) {
		/* If packet is marked as OK and packet type is TCP/IPv4 or
		 * UDP/IPv4, then we can rely on the hardware checksum.
		 */
891 892 893
		checksummed =
			rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
			rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP;
894 895
	} else {
		falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
896
					&discard);
897
		checksummed = false;
898 899 900
	}

	/* Detect multicast packets that didn't match the filter */
901
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
902 903
	if (rx_ev_mcast_pkt) {
		unsigned int rx_ev_mcast_hash_match =
904
			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
905 906

		if (unlikely(!rx_ev_mcast_hash_match))
907
			discard = true;
908 909
	}

910 911
	channel->irq_mod_score += 2;

912 913 914 915 916 917 918 919 920 921
	/* Handle received packet */
	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
		      checksummed, discard);
}

/* Global events are basically PHY events */
static void falcon_handle_global_event(struct efx_channel *channel,
				       efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
922
	bool handled = false;
923

924 925 926
	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
927 928 929 930
		efx->phy_op->clear_interrupt(efx);
		queue_work(efx->workqueue, &efx->phy_work);
		handled = true;
	}
931

932
	if ((falcon_rev(efx) >= FALCON_REV_B0) &&
933
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
934
		queue_work(efx->workqueue, &efx->mac_work);
935
		handled = true;
936 937
	}

938
	if (falcon_rev(efx) <= FALCON_REV_A1 ?
939 940
	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
941 942 943 944 945 946
		EFX_ERR(efx, "channel %d seen global RX_RESET "
			"event. Resetting.\n", channel->channel);

		atomic_inc(&efx->rx_reset);
		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
947
		handled = true;
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	}

	if (!handled)
		EFX_ERR(efx, "channel %d unknown global event "
			EFX_QWORD_FMT "\n", channel->channel,
			EFX_QWORD_VAL(*event));
}

static void falcon_handle_driver_event(struct efx_channel *channel,
				       efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	unsigned int ev_sub_code;
	unsigned int ev_sub_data;

963 964
	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
965 966

	switch (ev_sub_code) {
967
	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
968 969 970
		EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
971
	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
972 973 974
		EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
975
	case FSE_AZ_EVQ_INIT_DONE_EV:
976 977 978
		EFX_LOG(efx, "channel %d EVQ %d initialised\n",
			channel->channel, ev_sub_data);
		break;
979
	case FSE_AZ_SRM_UPD_DONE_EV:
980 981 982
		EFX_TRACE(efx, "channel %d SRAM update done\n",
			  channel->channel);
		break;
983
	case FSE_AZ_WAKE_UP_EV:
984 985 986
		EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
			  channel->channel, ev_sub_data);
		break;
987
	case FSE_AZ_TIMER_EV:
988 989 990
		EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
			  channel->channel, ev_sub_data);
		break;
991
	case FSE_AA_RX_RECOVER_EV:
992 993
		EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
			"Resetting.\n", channel->channel);
994
		atomic_inc(&efx->rx_reset);
995 996 997 998 999
		efx_schedule_reset(efx,
				   EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY :
				   RESET_TYPE_DISABLE);
		break;
1000
	case FSE_BZ_RX_DSC_ERROR_EV:
1001 1002 1003 1004
		EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
			" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
		break;
1005
	case FSE_BZ_TX_DSC_ERROR_EV:
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
		EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
			" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
		break;
	default:
		EFX_TRACE(efx, "channel %d unknown driver event code %d "
			  "data %04x\n", channel->channel, ev_sub_code,
			  ev_sub_data);
		break;
	}
}

B
Ben Hutchings 已提交
1018
int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
1019 1020 1021 1022
{
	unsigned int read_ptr;
	efx_qword_t event, *p_event;
	int ev_code;
B
Ben Hutchings 已提交
1023
	int rx_packets = 0;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

	read_ptr = channel->eventq_read_ptr;

	do {
		p_event = falcon_event(channel, read_ptr);
		event = *p_event;

		if (!falcon_event_present(&event))
			/* End of events */
			break;

		EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
			  channel->channel, EFX_QWORD_VAL(event));

		/* Clear this event by marking it all ones */
		EFX_SET_QWORD(*p_event);

1041
		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1042 1043

		switch (ev_code) {
1044
		case FSE_AZ_EV_CODE_RX_EV:
B
Ben Hutchings 已提交
1045 1046
			falcon_handle_rx_event(channel, &event);
			++rx_packets;
1047
			break;
1048
		case FSE_AZ_EV_CODE_TX_EV:
1049 1050
			falcon_handle_tx_event(channel, &event);
			break;
1051 1052 1053
		case FSE_AZ_EV_CODE_DRV_GEN_EV:
			channel->eventq_magic = EFX_QWORD_FIELD(
				event, FSF_AZ_DRV_GEN_EV_MAGIC);
1054 1055 1056 1057
			EFX_LOG(channel->efx, "channel %d received generated "
				"event "EFX_QWORD_FMT"\n", channel->channel,
				EFX_QWORD_VAL(event));
			break;
1058
		case FSE_AZ_EV_CODE_GLOBAL_EV:
1059 1060
			falcon_handle_global_event(channel, &event);
			break;
1061
		case FSE_AZ_EV_CODE_DRIVER_EV:
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
			falcon_handle_driver_event(channel, &event);
			break;
		default:
			EFX_ERR(channel->efx, "channel %d unknown event type %d"
				" (data " EFX_QWORD_FMT ")\n", channel->channel,
				ev_code, EFX_QWORD_VAL(event));
		}

		/* Increment read pointer */
		read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;

B
Ben Hutchings 已提交
1073
	} while (rx_packets < rx_quota);
1074 1075

	channel->eventq_read_ptr = read_ptr;
B
Ben Hutchings 已提交
1076
	return rx_packets;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
}

void falcon_set_int_moderation(struct efx_channel *channel)
{
	efx_dword_t timer_cmd;
	struct efx_nic *efx = channel->efx;

	/* Set timer register */
	if (channel->irq_moderation) {
		/* Round to resolution supported by hardware.  The value we
		 * program is based at 0.  So actual interrupt moderation
		 * achieved is ((x + 1) * res).
		 */
1090 1091 1092 1093
		channel->irq_moderation -= (channel->irq_moderation %
					    FALCON_IRQ_MOD_RESOLUTION);
		if (channel->irq_moderation < FALCON_IRQ_MOD_RESOLUTION)
			channel->irq_moderation = FALCON_IRQ_MOD_RESOLUTION;
1094
		EFX_POPULATE_DWORD_2(timer_cmd,
1095 1096 1097
				     FRF_AB_TC_TIMER_MODE,
				     FFE_BB_TIMER_MODE_INT_HLDOFF,
				     FRF_AB_TC_TIMER_VAL,
1098 1099
				     channel->irq_moderation /
				     FALCON_IRQ_MOD_RESOLUTION - 1);
1100 1101
	} else {
		EFX_POPULATE_DWORD_2(timer_cmd,
1102 1103 1104
				     FRF_AB_TC_TIMER_MODE,
				     FFE_BB_TIMER_MODE_DIS,
				     FRF_AB_TC_TIMER_VAL, 0);
1105
	}
1106 1107
	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
	falcon_writel_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
1108
				  channel->channel);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

}

/* Allocate buffer table entries for event queue */
int falcon_probe_eventq(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
	unsigned int evq_size;

	evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
	return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
}

1122
void falcon_init_eventq(struct efx_channel *channel)
1123 1124 1125 1126 1127 1128 1129 1130 1131
{
	efx_oword_t evq_ptr;
	struct efx_nic *efx = channel->efx;

	EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
		channel->channel, channel->eventq.index,
		channel->eventq.index + channel->eventq.entries - 1);

	/* Pin event queue buffer */
1132
	falcon_init_special_buffer(efx, &channel->eventq);
1133 1134 1135 1136 1137 1138

	/* Fill event queue with all ones (i.e. empty events) */
	memset(channel->eventq.addr, 0xff, channel->eventq.len);

	/* Push event queue to card */
	EFX_POPULATE_OWORD_3(evq_ptr,
1139 1140 1141
			     FRF_AZ_EVQ_EN, 1,
			     FRF_AZ_EVQ_SIZE, FALCON_EVQ_ORDER,
			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1142
	falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1143
			   channel->channel);
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

	falcon_set_int_moderation(channel);
}

void falcon_fini_eventq(struct efx_channel *channel)
{
	efx_oword_t eventq_ptr;
	struct efx_nic *efx = channel->efx;

	/* Remove event queue from card */
	EFX_ZERO_OWORD(eventq_ptr);
	falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1156
			   channel->channel);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

	/* Unpin event queue */
	falcon_fini_special_buffer(efx, &channel->eventq);
}

/* Free buffers backing event queue */
void falcon_remove_eventq(struct efx_channel *channel)
{
	falcon_free_special_buffer(channel->efx, &channel->eventq);
}


/* Generates a test event on the event queue.  A subsequent call to
 * process_eventq() should pick up the event and place the value of
 * "magic" into channel->eventq_magic;
 */
void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
{
	efx_qword_t test_event;

1177 1178 1179
	EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_DRV_GEN_EV,
			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1180 1181 1182
	falcon_generate_event(channel, &test_event);
}

1183 1184 1185 1186
void falcon_sim_phy_event(struct efx_nic *efx)
{
	efx_qword_t phy_event;

1187 1188
	EFX_POPULATE_QWORD_1(phy_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_GLOBAL_EV);
1189
	if (EFX_IS10G(efx))
1190
		EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_XG_PHY0_INTR, 1);
1191
	else
1192
		EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_G_PHY0_INTR, 1);
1193 1194 1195 1196

	falcon_generate_event(&efx->channel[0], &phy_event);
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
/**************************************************************************
 *
 * Flush handling
 *
 **************************************************************************/


static void falcon_poll_flush_events(struct efx_nic *efx)
{
	struct efx_channel *channel = &efx->channel[0];
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1209 1210
	unsigned int read_ptr = channel->eventq_read_ptr;
	unsigned int end_ptr = (read_ptr - 1) & FALCON_EVQ_MASK;
1211

1212
	do {
1213 1214 1215
		efx_qword_t *event = falcon_event(channel, read_ptr);
		int ev_code, ev_sub_code, ev_queue;
		bool ev_failed;
1216

1217 1218 1219
		if (!falcon_event_present(event))
			break;

1220 1221 1222 1223 1224
		ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
		ev_sub_code = EFX_QWORD_FIELD(*event,
					      FSF_AZ_DRIVER_EV_SUBCODE);
		if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
		    ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1225
			ev_queue = EFX_QWORD_FIELD(*event,
1226
						   FSF_AZ_DRIVER_EV_SUBDATA);
1227 1228 1229 1230
			if (ev_queue < EFX_TX_QUEUE_COUNT) {
				tx_queue = efx->tx_queue + ev_queue;
				tx_queue->flushed = true;
			}
1231 1232 1233 1234 1235 1236
		} else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
			   ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
			ev_queue = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
			ev_failed = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
			if (ev_queue < efx->n_rx_queues) {
				rx_queue = efx->rx_queue + ev_queue;

				/* retry the rx flush */
				if (ev_failed)
					falcon_flush_rx_queue(rx_queue);
				else
					rx_queue->flushed = true;
			}
		}

		read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1249
	} while (read_ptr != end_ptr);
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
}

/* Handle tx and rx flushes at the same time, since they run in
 * parallel in the hardware and there's no reason for us to
 * serialise them */
int falcon_flush_queues(struct efx_nic *efx)
{
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int i;
	bool outstanding;

	/* Issue flush requests */
	efx_for_each_tx_queue(tx_queue, efx) {
		tx_queue->flushed = false;
		falcon_flush_tx_queue(tx_queue);
	}
	efx_for_each_rx_queue(rx_queue, efx) {
		rx_queue->flushed = false;
		falcon_flush_rx_queue(rx_queue);
	}

	/* Poll the evq looking for flush completions. Since we're not pushing
	 * any more rx or tx descriptors at this point, we're in no danger of
	 * overflowing the evq whilst we wait */
	for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
		msleep(FALCON_FLUSH_INTERVAL);
		falcon_poll_flush_events(efx);

		/* Check if every queue has been succesfully flushed */
		outstanding = false;
		efx_for_each_tx_queue(tx_queue, efx)
			outstanding |= !tx_queue->flushed;
		efx_for_each_rx_queue(rx_queue, efx)
			outstanding |= !rx_queue->flushed;
		if (!outstanding)
			return 0;
	}

	/* Mark the queues as all flushed. We're going to return failure
	 * leading to a reset, or fake up success anyway. "flushed" now
	 * indicates that we tried to flush. */
	efx_for_each_tx_queue(tx_queue, efx) {
		if (!tx_queue->flushed)
			EFX_ERR(efx, "tx queue %d flush command timed out\n",
				tx_queue->queue);
		tx_queue->flushed = true;
	}
	efx_for_each_rx_queue(rx_queue, efx) {
		if (!rx_queue->flushed)
			EFX_ERR(efx, "rx queue %d flush command timed out\n",
				rx_queue->queue);
		rx_queue->flushed = true;
	}

	if (EFX_WORKAROUND_7803(efx))
		return 0;

	return -ETIMEDOUT;
}
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

/**************************************************************************
 *
 * Falcon hardware interrupts
 * The hardware interrupt handler does very little work; all the event
 * queue processing is carried out by per-channel tasklets.
 *
 **************************************************************************/

/* Enable/disable/generate Falcon interrupts */
static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
				     int force)
{
	efx_oword_t int_en_reg_ker;

	EFX_POPULATE_OWORD_2(int_en_reg_ker,
1326 1327 1328
			     FRF_AZ_KER_INT_KER, force,
			     FRF_AZ_DRV_INT_EN_KER, enabled);
	falcon_write(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
}

void falcon_enable_interrupts(struct efx_nic *efx)
{
	efx_oword_t int_adr_reg_ker;
	struct efx_channel *channel;

	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */

	/* Program address */
	EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1341 1342 1343 1344
			     FRF_AZ_NORM_INT_VEC_DIS_KER,
			     EFX_INT_MODE_USE_MSI(efx),
			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
	falcon_write(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
1345 1346 1347 1348 1349 1350

	/* Enable interrupts */
	falcon_interrupts(efx, 1, 0);

	/* Force processing of all the channels to get the EVQ RPTRs up to
	   date */
1351
	efx_for_each_channel(channel, efx)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		efx_schedule_channel(channel);
}

void falcon_disable_interrupts(struct efx_nic *efx)
{
	/* Disable interrupts */
	falcon_interrupts(efx, 0, 0);
}

/* Generate a Falcon test interrupt
 * Interrupt must already have been enabled, otherwise nasty things
 * may happen.
 */
void falcon_generate_interrupt(struct efx_nic *efx)
{
	falcon_interrupts(efx, 1, 1);
}

/* Acknowledge a legacy interrupt from Falcon
 *
 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 *
 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 * BIU. Interrupt acknowledge is read sensitive so must write instead
 * (then read to ensure the BIU collector is flushed)
 *
 * NB most hardware supports MSI interrupts
 */
static inline void falcon_irq_ack_a1(struct efx_nic *efx)
{
	efx_dword_t reg;

1384 1385 1386
	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
	falcon_writel(efx, &reg, FR_AA_INT_ACK_KER);
	falcon_readl(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1387 1388 1389 1390 1391 1392 1393 1394
}

/* Process a fatal interrupt
 * Disable bus mastering ASAP and schedule a reset
 */
static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
1395
	efx_oword_t *int_ker = efx->irq_status.addr;
1396 1397 1398
	efx_oword_t fatal_intr;
	int error, mem_perr;

1399 1400
	falcon_read(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1401 1402 1403 1404 1405 1406 1407 1408 1409

	EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
		EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
		EFX_OWORD_VAL(fatal_intr),
		error ? "disabling bus mastering" : "no recognised error");
	if (error == 0)
		goto out;

	/* If this is a memory parity error dump which blocks are offending */
1410
	mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1411 1412
	if (mem_perr) {
		efx_oword_t reg;
1413
		falcon_read(efx, &reg, FR_AZ_MEM_STAT);
1414 1415 1416 1417
		EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
			EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
	}

1418
	/* Disable both devices */
1419
	pci_clear_master(efx->pci_dev);
1420
	if (FALCON_IS_DUAL_FUNC(efx))
1421
		pci_clear_master(nic_data->pci_dev2);
1422
	falcon_disable_interrupts(efx);
1423

1424 1425 1426 1427 1428 1429 1430 1431
	/* Count errors and reset or disable the NIC accordingly */
	if (nic_data->int_error_count == 0 ||
	    time_after(jiffies, nic_data->int_error_expire)) {
		nic_data->int_error_count = 0;
		nic_data->int_error_expire =
			jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
	}
	if (++nic_data->int_error_count < FALCON_MAX_INT_ERRORS) {
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
		EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
	} else {
		EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
			"NIC will be disabled\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	}
out:
	return IRQ_HANDLED;
}

/* Handle a legacy interrupt from Falcon
 * Acknowledges the interrupt and schedule event queue processing.
 */
static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
{
1448 1449
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
1450
	irqreturn_t result = IRQ_NONE;
1451 1452 1453 1454 1455 1456
	struct efx_channel *channel;
	efx_dword_t reg;
	u32 queues;
	int syserr;

	/* Read the ISR which also ACKs the interrupts */
1457
	falcon_readl(efx, &reg, FR_BZ_INT_ISR0);
1458 1459 1460
	queues = EFX_EXTRACT_DWORD(reg, 0, 31);

	/* Check to see if we have a serious error condition */
1461
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1462 1463 1464 1465
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Schedule processing of any interrupting queues */
1466 1467 1468 1469
	efx_for_each_channel(channel, efx) {
		if ((queues & 1) ||
		    falcon_event_present(
			    falcon_event(channel, channel->eventq_read_ptr))) {
1470
			efx_schedule_channel(channel);
1471 1472
			result = IRQ_HANDLED;
		}
1473 1474 1475
		queues >>= 1;
	}

1476 1477 1478 1479 1480 1481 1482
	if (result == IRQ_HANDLED) {
		efx->last_irq_cpu = raw_smp_processor_id();
		EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
			  irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
	}

	return result;
1483 1484 1485 1486 1487
}


static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
{
1488 1489
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	struct efx_channel *channel;
	int syserr;
	int queues;

	/* Check to see if this is our interrupt.  If it isn't, we
	 * exit without having touched the hardware.
	 */
	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
		EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
			  raw_smp_processor_id());
		return IRQ_NONE;
	}
	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
1507
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Determine interrupting queues, clear interrupt status
	 * register and acknowledge the device interrupt.
	 */
	BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
	queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
	EFX_ZERO_OWORD(*int_ker);
	wmb(); /* Ensure the vector is cleared before interrupt ack */
	falcon_irq_ack_a1(efx);

	/* Schedule processing of any interrupting queues */
	channel = &efx->channel[0];
	while (queues) {
		if (queues & 0x01)
			efx_schedule_channel(channel);
		channel++;
		queues >>= 1;
	}

	return IRQ_HANDLED;
}

/* Handle an MSI interrupt from Falcon
 *
 * Handle an MSI hardware interrupt.  This routine schedules event
 * queue processing.  No interrupt acknowledgement cycle is necessary.
 * Also, we never need to check that the interrupt is for us, since
 * MSI interrupts cannot be shared.
 */
static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
{
1541
	struct efx_channel *channel = dev_id;
1542
	struct efx_nic *efx = channel->efx;
1543
	efx_oword_t *int_ker = efx->irq_status.addr;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	int syserr;

	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
	syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Schedule processing of the channel */
	efx_schedule_channel(channel);

	return IRQ_HANDLED;
}


/* Setup RSS indirection table.
 * This maps from the hash value of the packet to RXQ
 */
static void falcon_setup_rss_indir_table(struct efx_nic *efx)
{
	int i = 0;
	unsigned long offset;
	efx_dword_t dword;

1571
	if (falcon_rev(efx) < FALCON_REV_B0)
1572 1573
		return;

1574 1575
	for (offset = FR_BZ_RX_INDIRECTION_TBL;
	     offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1576
	     offset += 0x10) {
1577
		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1578
				     i % efx->n_rx_queues);
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
		falcon_writel(efx, &dword, offset);
		i++;
	}
}

/* Hook interrupt handler(s)
 * Try MSI and then legacy interrupts.
 */
int falcon_init_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	if (!EFX_INT_MODE_USE_MSI(efx)) {
		irq_handler_t handler;
1594
		if (falcon_rev(efx) >= FALCON_REV_B0)
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
			handler = falcon_legacy_interrupt_b0;
		else
			handler = falcon_legacy_interrupt_a1;

		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
				 efx->name, efx);
		if (rc) {
			EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
				efx->pci_dev->irq);
			goto fail1;
		}
		return 0;
	}

	/* Hook MSI or MSI-X interrupt */
1610
	efx_for_each_channel(channel, efx) {
1611 1612
		rc = request_irq(channel->irq, falcon_msi_interrupt,
				 IRQF_PROBE_SHARED, /* Not shared */
1613
				 channel->name, channel);
1614 1615 1616 1617 1618 1619 1620 1621 1622
		if (rc) {
			EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
			goto fail2;
		}
	}

	return 0;

 fail2:
1623
	efx_for_each_channel(channel, efx)
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		free_irq(channel->irq, channel);
 fail1:
	return rc;
}

void falcon_fini_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	efx_oword_t reg;

	/* Disable MSI/MSI-X interrupts */
1635
	efx_for_each_channel(channel, efx) {
1636 1637
		if (channel->irq)
			free_irq(channel->irq, channel);
1638
	}
1639 1640

	/* ACK legacy interrupt */
1641
	if (falcon_rev(efx) >= FALCON_REV_B0)
1642
		falcon_read(efx, &reg, FR_BZ_INT_ISR0);
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	else
		falcon_irq_ack_a1(efx);

	/* Disable legacy interrupt */
	if (efx->legacy_irq)
		free_irq(efx->legacy_irq, efx);
}

/**************************************************************************
 *
 * EEPROM/flash
 *
 **************************************************************************
 */

1658
#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1659

1660 1661 1662
static int falcon_spi_poll(struct efx_nic *efx)
{
	efx_oword_t reg;
1663 1664
	falcon_read(efx, &reg, FR_AB_EE_SPI_HCMD);
	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1665 1666
}

1667 1668 1669
/* Wait for SPI command completion */
static int falcon_spi_wait(struct efx_nic *efx)
{
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	/* Most commands will finish quickly, so we start polling at
	 * very short intervals.  Sometimes the command may have to
	 * wait for VPD or expansion ROM access outside of our
	 * control, so we allow up to 100 ms. */
	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
	int i;

	for (i = 0; i < 10; i++) {
		if (!falcon_spi_poll(efx))
			return 0;
		udelay(10);
	}
1682

1683
	for (;;) {
1684
		if (!falcon_spi_poll(efx))
1685
			return 0;
1686 1687 1688 1689
		if (time_after_eq(jiffies, timeout)) {
			EFX_ERR(efx, "timed out waiting for SPI\n");
			return -ETIMEDOUT;
		}
1690
		schedule_timeout_uninterruptible(1);
1691
	}
1692 1693
}

1694 1695
int falcon_spi_cmd(const struct efx_spi_device *spi,
		   unsigned int command, int address,
1696
		   const void *in, void *out, size_t len)
1697
{
1698 1699 1700
	struct efx_nic *efx = spi->efx;
	bool addressed = (address >= 0);
	bool reading = (out != NULL);
1701 1702 1703
	efx_oword_t reg;
	int rc;

1704 1705 1706
	/* Input validation */
	if (len > FALCON_SPI_MAX_LEN)
		return -EINVAL;
1707
	BUG_ON(!mutex_is_locked(&efx->spi_lock));
1708

1709 1710
	/* Check that previous command is not still running */
	rc = falcon_spi_poll(efx);
1711 1712 1713
	if (rc)
		return rc;

1714 1715
	/* Program address register, if we have an address */
	if (addressed) {
1716 1717
		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
		falcon_write(efx, &reg, FR_AB_EE_SPI_HADR);
1718 1719 1720 1721 1722
	}

	/* Program data register, if we have data */
	if (in != NULL) {
		memcpy(&reg, in, len);
1723
		falcon_write(efx, &reg, FR_AB_EE_SPI_HDATA);
1724
	}
1725

1726
	/* Issue read/write command */
1727
	EFX_POPULATE_OWORD_7(reg,
1728 1729 1730 1731 1732 1733
			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
			     FRF_AB_EE_SPI_HCMD_READ, reading,
			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
			     FRF_AB_EE_SPI_HCMD_ADBCNT,
1734
			     (addressed ? spi->addr_len : 0),
1735 1736
			     FRF_AB_EE_SPI_HCMD_ENC, command);
	falcon_write(efx, &reg, FR_AB_EE_SPI_HCMD);
1737

1738
	/* Wait for read/write to complete */
1739 1740 1741 1742 1743
	rc = falcon_spi_wait(efx);
	if (rc)
		return rc;

	/* Read data */
1744
	if (out != NULL) {
1745
		falcon_read(efx, &reg, FR_AB_EE_SPI_HDATA);
1746 1747 1748
		memcpy(out, &reg, len);
	}

1749 1750 1751
	return 0;
}

1752 1753
static size_t
falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
{
	return min(FALCON_SPI_MAX_LEN,
		   (spi->block_size - (start & (spi->block_size - 1))));
}

static inline u8
efx_spi_munge_command(const struct efx_spi_device *spi,
		      const u8 command, const unsigned int address)
{
	return command | (((address >> 8) & spi->munge_address) << 3);
}

1766 1767
/* Wait up to 10 ms for buffered write completion */
int falcon_spi_wait_write(const struct efx_spi_device *spi)
1768
{
1769 1770
	struct efx_nic *efx = spi->efx;
	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1771
	u8 status;
1772
	int rc;
1773

1774
	for (;;) {
1775 1776 1777 1778 1779 1780
		rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
				    &status, sizeof(status));
		if (rc)
			return rc;
		if (!(status & SPI_STATUS_NRDY))
			return 0;
1781 1782 1783 1784 1785 1786 1787
		if (time_after_eq(jiffies, timeout)) {
			EFX_ERR(efx, "SPI write timeout on device %d"
				" last status=0x%02x\n",
				spi->device_id, status);
			return -ETIMEDOUT;
		}
		schedule_timeout_uninterruptible(1);
1788 1789 1790 1791 1792 1793
	}
}

int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
		    size_t len, size_t *retlen, u8 *buffer)
{
1794 1795
	size_t block_len, pos = 0;
	unsigned int command;
1796 1797 1798
	int rc = 0;

	while (pos < len) {
1799
		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos, NULL,
				    buffer + pos, block_len);
		if (rc)
			break;
		pos += block_len;

		/* Avoid locking up the system */
		cond_resched();
		if (signal_pending(current)) {
			rc = -EINTR;
			break;
		}
	}

	if (retlen)
		*retlen = pos;
	return rc;
}

int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
		     size_t len, size_t *retlen, const u8 *buffer)
{
	u8 verify_buffer[FALCON_SPI_MAX_LEN];
1825 1826
	size_t block_len, pos = 0;
	unsigned int command;
1827 1828 1829 1830 1831 1832 1833
	int rc = 0;

	while (pos < len) {
		rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
		if (rc)
			break;

1834
		block_len = min(len - pos,
1835 1836 1837 1838 1839 1840 1841
				falcon_spi_write_limit(spi, start + pos));
		command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos,
				    buffer + pos, NULL, block_len);
		if (rc)
			break;

1842
		rc = falcon_spi_wait_write(spi);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
		if (rc)
			break;

		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos,
				    NULL, verify_buffer, block_len);
		if (memcmp(verify_buffer, buffer + pos, block_len)) {
			rc = -EIO;
			break;
		}

		pos += block_len;

		/* Avoid locking up the system */
		cond_resched();
		if (signal_pending(current)) {
			rc = -EINTR;
			break;
		}
	}

	if (retlen)
		*retlen = pos;
	return rc;
}

1869 1870 1871 1872 1873 1874
/**************************************************************************
 *
 * MAC wrapper
 *
 **************************************************************************
 */
1875 1876

static int falcon_reset_macs(struct efx_nic *efx)
1877
{
1878
	efx_oword_t reg;
1879 1880
	int count;

1881 1882 1883 1884 1885
	if (falcon_rev(efx) < FALCON_REV_B0) {
		/* It's not safe to use GLB_CTL_REG to reset the
		 * macs, so instead use the internal MAC resets
		 */
		if (!EFX_IS10G(efx)) {
1886 1887
			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
			falcon_write(efx, &reg, FR_AB_GM_CFG1);
1888 1889
			udelay(1000);

1890 1891
			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
			falcon_write(efx, &reg, FR_AB_GM_CFG1);
1892 1893 1894
			udelay(1000);
			return 0;
		} else {
1895 1896
			EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
			falcon_write(efx, &reg, FR_AB_XM_GLB_CFG);
1897 1898

			for (count = 0; count < 10000; count++) {
1899 1900 1901
				falcon_read(efx, &reg, FR_AB_XM_GLB_CFG);
				if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
				    0)
1902 1903 1904
					return 0;
				udelay(10);
			}
1905

1906 1907 1908 1909
			EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
			return -ETIMEDOUT;
		}
	}
1910 1911 1912

	/* MAC stats will fail whilst the TX fifo is draining. Serialise
	 * the drain sequence with the statistics fetch */
1913
	efx_stats_disable(efx);
1914

1915 1916 1917
	falcon_read(efx, &reg, FR_AB_MAC_CTRL);
	EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
	falcon_write(efx, &reg, FR_AB_MAC_CTRL);
1918

1919 1920 1921 1922 1923
	falcon_read(efx, &reg, FR_AB_GLB_CTL);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
	falcon_write(efx, &reg, FR_AB_GLB_CTL);
1924 1925 1926

	count = 0;
	while (1) {
1927 1928 1929 1930
		falcon_read(efx, &reg, FR_AB_GLB_CTL);
		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
			EFX_LOG(efx, "Completed MAC reset after %d loops\n",
				count);
			break;
		}
		if (count > 20) {
			EFX_ERR(efx, "MAC reset failed\n");
			break;
		}
		count++;
		udelay(10);
	}

1943
	efx_stats_enable(efx);
1944 1945 1946

	/* If we've reset the EM block and the link is up, then
	 * we'll have to kick the XAUI link so the PHY can recover */
1947
	if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1948
		falcon_reset_xaui(efx);
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

	return 0;
}

void falcon_drain_tx_fifo(struct efx_nic *efx)
{
	efx_oword_t reg;

	if ((falcon_rev(efx) < FALCON_REV_B0) ||
	    (efx->loopback_mode != LOOPBACK_NONE))
		return;

1961
	falcon_read(efx, &reg, FR_AB_MAC_CTRL);
1962
	/* There is no point in draining more than once */
1963
	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1964 1965 1966
		return;

	falcon_reset_macs(efx);
1967 1968 1969 1970
}

void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
{
1971
	efx_oword_t reg;
1972

1973
	if (falcon_rev(efx) < FALCON_REV_B0)
1974 1975 1976
		return;

	/* Isolate the MAC -> RX */
1977 1978 1979
	falcon_read(efx, &reg, FR_AZ_RX_CFG);
	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
	falcon_write(efx, &reg, FR_AZ_RX_CFG);
1980 1981 1982 1983 1984 1985 1986 1987 1988

	if (!efx->link_up)
		falcon_drain_tx_fifo(efx);
}

void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
{
	efx_oword_t reg;
	int link_speed;
1989
	bool tx_fc;
1990

B
Ben Hutchings 已提交
1991 1992 1993 1994 1995 1996
	switch (efx->link_speed) {
	case 10000: link_speed = 3; break;
	case 1000:  link_speed = 2; break;
	case 100:   link_speed = 1; break;
	default:    link_speed = 0; break;
	}
1997 1998 1999 2000 2001
	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
	 * as advertised.  Disable to ensure packets are not
	 * indefinitely held and TX queue can be flushed at any point
	 * while the link is down. */
	EFX_POPULATE_OWORD_5(reg,
2002 2003 2004 2005 2006
			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
			     FRF_AB_MAC_BCAD_ACPT, 1,
			     FRF_AB_MAC_UC_PROM, efx->promiscuous,
			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
			     FRF_AB_MAC_SPEED, link_speed);
2007 2008
	/* On B0, MAC backpressure can be disabled and packets get
	 * discarded. */
2009
	if (falcon_rev(efx) >= FALCON_REV_B0) {
2010
		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
2011 2012 2013
				    !efx->link_up);
	}

2014
	falcon_write(efx, &reg, FR_AB_MAC_CTRL);
2015 2016 2017 2018 2019 2020 2021

	/* Restore the multicast hash registers. */
	falcon_set_multicast_hash(efx);

	/* Transmission of pause frames when RX crosses the threshold is
	 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
	 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
B
Ben Hutchings 已提交
2022
	tx_fc = !!(efx->link_fc & EFX_FC_TX);
2023 2024
	falcon_read(efx, &reg, FR_AZ_RX_CFG);
	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
2025 2026

	/* Unisolate the MAC -> RX */
2027
	if (falcon_rev(efx) >= FALCON_REV_B0)
2028 2029
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
	falcon_write(efx, &reg, FR_AZ_RX_CFG);
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
}

int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
{
	efx_oword_t reg;
	u32 *dma_done;
	int i;

	if (disable_dma_stats)
		return 0;

	/* Statistics fetch will fail if the MAC is in TX drain */
2042
	if (falcon_rev(efx) >= FALCON_REV_B0) {
2043
		efx_oword_t temp;
2044 2045
		falcon_read(efx, &temp, FR_AB_MAC_CTRL);
		if (EFX_OWORD_FIELD(temp, FRF_BB_TXFIFO_DRAIN_EN))
2046 2047 2048 2049 2050 2051 2052 2053 2054
			return 0;
	}

	dma_done = (efx->stats_buffer.addr + done_offset);
	*dma_done = FALCON_STATS_NOT_DONE;
	wmb(); /* ensure done flag is clear */

	/* Initiate DMA transfer of stats */
	EFX_POPULATE_OWORD_2(reg,
2055 2056
			     FRF_AB_MAC_STAT_DMA_CMD, 1,
			     FRF_AB_MAC_STAT_DMA_ADR,
2057
			     efx->stats_buffer.dma_addr);
2058
	falcon_write(efx, &reg, FR_AB_MAC_STAT_DMA);
2059 2060 2061

	/* Wait for transfer to complete */
	for (i = 0; i < 400; i++) {
2062 2063
		if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
			rmb(); /* Ensure the stats are valid. */
2064
			return 0;
2065
		}
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
		udelay(10);
	}

	EFX_ERR(efx, "timed out waiting for statistics\n");
	return -ETIMEDOUT;
}

/**************************************************************************
 *
 * PHY access via GMII
 *
 **************************************************************************
 */

/* Wait for GMII access to complete */
static int falcon_gmii_wait(struct efx_nic *efx)
{
	efx_dword_t md_stat;
	int count;

2086 2087
	/* wait upto 50ms - taken max from datasheet */
	for (count = 0; count < 5000; count++) {
2088 2089 2090 2091
		falcon_readl(efx, &md_stat, FR_AB_MD_STAT);
		if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
			if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
			    EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
				EFX_ERR(efx, "error from GMII access "
					EFX_DWORD_FMT"\n",
					EFX_DWORD_VAL(md_stat));
				return -EIO;
			}
			return 0;
		}
		udelay(10);
	}
	EFX_ERR(efx, "timed out waiting for GMII\n");
	return -ETIMEDOUT;
}

2105 2106 2107
/* Write an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_write(struct net_device *net_dev,
			     int prtad, int devad, u16 addr, u16 value)
2108
{
2109
	struct efx_nic *efx = netdev_priv(net_dev);
2110
	efx_oword_t reg;
2111
	int rc;
2112

2113 2114
	EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
		    prtad, devad, addr, value);
2115 2116 2117

	spin_lock_bh(&efx->phy_lock);

2118 2119 2120
	/* Check MDIO not currently being accessed */
	rc = falcon_gmii_wait(efx);
	if (rc)
2121 2122 2123
		goto out;

	/* Write the address/ID register */
2124 2125
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
	falcon_write(efx, &reg, FR_AB_MD_PHY_ADR);
2126

2127 2128 2129
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
			     FRF_AB_MD_DEV_ADR, devad);
	falcon_write(efx, &reg, FR_AB_MD_ID);
2130 2131

	/* Write data */
2132 2133
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
	falcon_write(efx, &reg, FR_AB_MD_TXD);
2134 2135

	EFX_POPULATE_OWORD_2(reg,
2136 2137 2138
			     FRF_AB_MD_WRC, 1,
			     FRF_AB_MD_GC, 0);
	falcon_write(efx, &reg, FR_AB_MD_CS);
2139 2140

	/* Wait for data to be written */
2141 2142
	rc = falcon_gmii_wait(efx);
	if (rc) {
2143 2144
		/* Abort the write operation */
		EFX_POPULATE_OWORD_2(reg,
2145 2146 2147
				     FRF_AB_MD_WRC, 0,
				     FRF_AB_MD_GC, 1);
		falcon_write(efx, &reg, FR_AB_MD_CS);
2148 2149 2150 2151 2152
		udelay(10);
	}

 out:
	spin_unlock_bh(&efx->phy_lock);
2153
	return rc;
2154 2155
}

2156 2157 2158
/* Read an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_read(struct net_device *net_dev,
			    int prtad, int devad, u16 addr)
2159
{
2160
	struct efx_nic *efx = netdev_priv(net_dev);
2161
	efx_oword_t reg;
2162
	int rc;
2163 2164 2165

	spin_lock_bh(&efx->phy_lock);

2166 2167 2168
	/* Check MDIO not currently being accessed */
	rc = falcon_gmii_wait(efx);
	if (rc)
2169 2170
		goto out;

2171 2172
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
	falcon_write(efx, &reg, FR_AB_MD_PHY_ADR);
2173

2174 2175 2176
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
			     FRF_AB_MD_DEV_ADR, devad);
	falcon_write(efx, &reg, FR_AB_MD_ID);
2177 2178

	/* Request data to be read */
2179 2180
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
	falcon_write(efx, &reg, FR_AB_MD_CS);
2181 2182

	/* Wait for data to become available */
2183 2184
	rc = falcon_gmii_wait(efx);
	if (rc == 0) {
2185 2186
		falcon_read(efx, &reg, FR_AB_MD_RXD);
		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2187 2188
		EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
			    prtad, devad, addr, rc);
2189 2190 2191
	} else {
		/* Abort the read operation */
		EFX_POPULATE_OWORD_2(reg,
2192 2193 2194
				     FRF_AB_MD_RIC, 0,
				     FRF_AB_MD_GC, 1);
		falcon_write(efx, &reg, FR_AB_MD_CS);
2195

2196 2197
		EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
			prtad, devad, addr, rc);
2198 2199 2200 2201
	}

 out:
	spin_unlock_bh(&efx->phy_lock);
2202
	return rc;
2203 2204 2205 2206 2207
}

static int falcon_probe_phy(struct efx_nic *efx)
{
	switch (efx->phy_type) {
2208 2209 2210 2211 2212 2213
	case PHY_TYPE_SFX7101:
		efx->phy_op = &falcon_sfx7101_phy_ops;
		break;
	case PHY_TYPE_SFT9001A:
	case PHY_TYPE_SFT9001B:
		efx->phy_op = &falcon_sft9001_phy_ops;
2214
		break;
2215
	case PHY_TYPE_QT2022C2:
B
Ben Hutchings 已提交
2216
	case PHY_TYPE_QT2025C:
2217 2218 2219 2220 2221 2222 2223
		efx->phy_op = &falcon_xfp_phy_ops;
		break;
	default:
		EFX_ERR(efx, "Unknown PHY type %d\n",
			efx->phy_type);
		return -1;
	}
2224

2225 2226 2227 2228 2229 2230 2231 2232
	if (efx->phy_op->macs & EFX_XMAC)
		efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
					(1 << LOOPBACK_XGXS) |
					(1 << LOOPBACK_XAUI));
	if (efx->phy_op->macs & EFX_GMAC)
		efx->loopback_modes |= (1 << LOOPBACK_GMAC);
	efx->loopback_modes |= efx->phy_op->loopbacks;

2233 2234 2235
	return 0;
}

2236 2237 2238 2239 2240
int falcon_switch_mac(struct efx_nic *efx)
{
	struct efx_mac_operations *old_mac_op = efx->mac_op;
	efx_oword_t nic_stat;
	unsigned strap_val;
2241 2242 2243 2244
	int rc = 0;

	/* Don't try to fetch MAC stats while we're switching MACs */
	efx_stats_disable(efx);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254

	/* Internal loopbacks override the phy speed setting */
	if (efx->loopback_mode == LOOPBACK_GMAC) {
		efx->link_speed = 1000;
		efx->link_fd = true;
	} else if (LOOPBACK_INTERNAL(efx)) {
		efx->link_speed = 10000;
		efx->link_fd = true;
	}

2255
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
2256 2257 2258
	efx->mac_op = (EFX_IS10G(efx) ?
		       &falcon_xmac_operations : &falcon_gmac_operations);

2259 2260
	/* Always push the NIC_STAT_REG setting even if the mac hasn't
	 * changed, because this function is run post online reset */
2261
	falcon_read(efx, &nic_stat, FR_AB_NIC_STAT);
2262 2263
	strap_val = EFX_IS10G(efx) ? 5 : 3;
	if (falcon_rev(efx) >= FALCON_REV_B0) {
2264 2265 2266
		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
		falcon_write(efx, &nic_stat, FR_AB_NIC_STAT);
2267 2268 2269
	} else {
		/* Falcon A1 does not support 1G/10G speed switching
		 * and must not be used with a PHY that does. */
2270 2271
		BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
		       strap_val);
2272 2273
	}

2274
	if (old_mac_op == efx->mac_op)
2275
		goto out;
2276 2277

	EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2278 2279 2280
	/* Not all macs support a mac-level link state */
	efx->mac_up = true;

2281 2282 2283 2284
	rc = falcon_reset_macs(efx);
out:
	efx_stats_enable(efx);
	return rc;
2285 2286
}

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
/* This call is responsible for hooking in the MAC and PHY operations */
int falcon_probe_port(struct efx_nic *efx)
{
	int rc;

	/* Hook in PHY operations table */
	rc = falcon_probe_phy(efx);
	if (rc)
		return rc;

2297 2298 2299 2300 2301
	/* Set up MDIO structure for PHY */
	efx->mdio.mmds = efx->phy_op->mmds;
	efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
	efx->mdio.mdio_read = falcon_mdio_read;
	efx->mdio.mdio_write = falcon_mdio_write;
2302 2303

	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2304
	if (falcon_rev(efx) >= FALCON_REV_B0)
B
Ben Hutchings 已提交
2305
		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2306
	else
B
Ben Hutchings 已提交
2307
		efx->wanted_fc = EFX_FC_RX;
2308 2309 2310 2311 2312 2313

	/* Allocate buffer for stats */
	rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
				 FALCON_MAC_STATS_SIZE);
	if (rc)
		return rc;
2314 2315
	EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
		(u64)efx->stats_buffer.dma_addr,
2316
		efx->stats_buffer.addr,
2317
		(u64)virt_to_phys(efx->stats_buffer.addr));
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

	return 0;
}

void falcon_remove_port(struct efx_nic *efx)
{
	falcon_free_buffer(efx, &efx->stats_buffer);
}

/**************************************************************************
 *
 * Multicast filtering
 *
 **************************************************************************
 */

void falcon_set_multicast_hash(struct efx_nic *efx)
{
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;

	/* Broadcast packets go through the multicast hash filter.
	 * ether_crc_le() of the broadcast address is 0xbe2612ff
	 * so we always add bit 0xff to the mask.
	 */
	set_bit_le(0xff, mc_hash->byte);

2344 2345
	falcon_write(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
	falcon_write(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
2346 2347
}

B
Ben Hutchings 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363

/**************************************************************************
 *
 * Falcon test code
 *
 **************************************************************************/

int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
{
	struct falcon_nvconfig *nvconfig;
	struct efx_spi_device *spi;
	void *region;
	int rc, magic_num, struct_ver;
	__le16 *word, *limit;
	u32 csum;

2364 2365 2366 2367
	spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
	if (!spi)
		return -EINVAL;

2368
	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
B
Ben Hutchings 已提交
2369 2370
	if (!region)
		return -ENOMEM;
2371
	nvconfig = region + FALCON_NVCONFIG_OFFSET;
B
Ben Hutchings 已提交
2372

2373
	mutex_lock(&efx->spi_lock);
2374
	rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2375
	mutex_unlock(&efx->spi_lock);
B
Ben Hutchings 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
	if (rc) {
		EFX_ERR(efx, "Failed to read %s\n",
			efx->spi_flash ? "flash" : "EEPROM");
		rc = -EIO;
		goto out;
	}

	magic_num = le16_to_cpu(nvconfig->board_magic_num);
	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);

	rc = -EINVAL;
2387
	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
B
Ben Hutchings 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
		EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
		goto out;
	}
	if (struct_ver < 2) {
		EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
		goto out;
	} else if (struct_ver < 4) {
		word = &nvconfig->board_magic_num;
		limit = (__le16 *) (nvconfig + 1);
	} else {
		word = region;
2399
		limit = region + FALCON_NVCONFIG_END;
B
Ben Hutchings 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	}
	for (csum = 0; word < limit; ++word)
		csum += le16_to_cpu(*word);

	if (~csum & 0xffff) {
		EFX_ERR(efx, "NVRAM has incorrect checksum\n");
		goto out;
	}

	rc = 0;
	if (nvconfig_out)
		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));

 out:
	kfree(region);
	return rc;
}

/* Registers tested in the falcon register test */
static struct {
	unsigned address;
	efx_oword_t mask;
} efx_test_registers[] = {
2423
	{ FR_AZ_ADR_REGION,
B
Ben Hutchings 已提交
2424
	  EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2425
	{ FR_AZ_RX_CFG,
B
Ben Hutchings 已提交
2426
	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2427
	{ FR_AZ_TX_CFG,
B
Ben Hutchings 已提交
2428
	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2429
	{ FR_AZ_TX_RESERVED,
B
Ben Hutchings 已提交
2430
	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2431
	{ FR_AB_MAC_CTRL,
B
Ben Hutchings 已提交
2432
	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2433
	{ FR_AZ_SRM_TX_DC_CFG,
B
Ben Hutchings 已提交
2434
	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2435
	{ FR_AZ_RX_DC_CFG,
B
Ben Hutchings 已提交
2436
	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2437
	{ FR_AZ_RX_DC_PF_WM,
B
Ben Hutchings 已提交
2438
	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2439
	{ FR_BZ_DP_CTRL,
B
Ben Hutchings 已提交
2440
	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2441
	{ FR_AB_GM_CFG2,
2442
	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2443
	{ FR_AB_GMF_CFG0,
2444
	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2445
	{ FR_AB_XM_GLB_CFG,
B
Ben Hutchings 已提交
2446
	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2447
	{ FR_AB_XM_TX_CFG,
B
Ben Hutchings 已提交
2448
	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2449
	{ FR_AB_XM_RX_CFG,
B
Ben Hutchings 已提交
2450
	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2451
	{ FR_AB_XM_RX_PARAM,
B
Ben Hutchings 已提交
2452
	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2453
	{ FR_AB_XM_FC,
B
Ben Hutchings 已提交
2454
	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2455
	{ FR_AB_XM_ADR_LO,
B
Ben Hutchings 已提交
2456
	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2457
	{ FR_AB_XX_SD_CTL,
B
Ben Hutchings 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
};

static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
				     const efx_oword_t *mask)
{
	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}

int falcon_test_registers(struct efx_nic *efx)
{
	unsigned address = 0, i, j;
	efx_oword_t mask, imask, original, reg, buf;

	/* Falcon should be in loopback to isolate the XMAC from the PHY */
	WARN_ON(!LOOPBACK_INTERNAL(efx));

	for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
		address = efx_test_registers[i].address;
		mask = imask = efx_test_registers[i].mask;
		EFX_INVERT_OWORD(imask);

		falcon_read(efx, &original, address);

		/* bit sweep on and off */
		for (j = 0; j < 128; j++) {
			if (!EFX_EXTRACT_OWORD32(mask, j, j))
				continue;

			/* Test this testable bit can be set in isolation */
			EFX_AND_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 1);

			falcon_write(efx, &reg, address);
			falcon_read(efx, &buf, address);

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;

			/* Test this testable bit can be cleared in isolation */
			EFX_OR_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 0);

			falcon_write(efx, &reg, address);
			falcon_read(efx, &buf, address);

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;
		}

		falcon_write(efx, &original, address);
	}

	return 0;

fail:
	EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
		" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
		EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
	return -EIO;
}

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
/**************************************************************************
 *
 * Device reset
 *
 **************************************************************************
 */

/* Resets NIC to known state.  This routine must be called in process
 * context and is allowed to sleep. */
int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
	efx_oword_t glb_ctl_reg_ker;
	int rc;

	EFX_LOG(efx, "performing hardware reset (%d)\n", method);

	/* Initiate device reset */
	if (method == RESET_TYPE_WORLD) {
		rc = pci_save_state(efx->pci_dev);
		if (rc) {
			EFX_ERR(efx, "failed to backup PCI state of primary "
				"function prior to hardware reset\n");
			goto fail1;
		}
		if (FALCON_IS_DUAL_FUNC(efx)) {
			rc = pci_save_state(nic_data->pci_dev2);
			if (rc) {
				EFX_ERR(efx, "failed to backup PCI state of "
					"secondary function prior to "
					"hardware reset\n");
				goto fail2;
			}
		}

		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2557 2558 2559
				     FRF_AB_EXT_PHY_RST_DUR,
				     FFE_AB_EXT_PHY_RST_DUR_10240US,
				     FRF_AB_SWRST, 1);
2560 2561
	} else {
		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
				     /* exclude PHY from "invisible" reset */
				     FRF_AB_EXT_PHY_RST_CTL,
				     method == RESET_TYPE_INVISIBLE,
				     /* exclude EEPROM/flash and PCIe */
				     FRF_AB_PCIE_CORE_RST_CTL, 1,
				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
				     FRF_AB_PCIE_SD_RST_CTL, 1,
				     FRF_AB_EE_RST_CTL, 1,
				     FRF_AB_EXT_PHY_RST_DUR,
				     FFE_AB_EXT_PHY_RST_DUR_10240US,
				     FRF_AB_SWRST, 1);
	}
	falcon_write(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598

	EFX_LOG(efx, "waiting for hardware reset\n");
	schedule_timeout_uninterruptible(HZ / 20);

	/* Restore PCI configuration if needed */
	if (method == RESET_TYPE_WORLD) {
		if (FALCON_IS_DUAL_FUNC(efx)) {
			rc = pci_restore_state(nic_data->pci_dev2);
			if (rc) {
				EFX_ERR(efx, "failed to restore PCI config for "
					"the secondary function\n");
				goto fail3;
			}
		}
		rc = pci_restore_state(efx->pci_dev);
		if (rc) {
			EFX_ERR(efx, "failed to restore PCI config for the "
				"primary function\n");
			goto fail4;
		}
		EFX_LOG(efx, "successfully restored PCI config\n");
	}

	/* Assert that reset complete */
2599 2600
	falcon_read(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
		rc = -ETIMEDOUT;
		EFX_ERR(efx, "timed out waiting for hardware reset\n");
		goto fail5;
	}
	EFX_LOG(efx, "hardware reset complete\n");

	return 0;

	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
fail2:
fail3:
	pci_restore_state(efx->pci_dev);
fail1:
fail4:
fail5:
	return rc;
}

/* Zeroes out the SRAM contents.  This routine must be called in
 * process context and is allowed to sleep.
 */
static int falcon_reset_sram(struct efx_nic *efx)
{
	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
	int count;

	/* Set the SRAM wake/sleep GPIO appropriately. */
2628 2629 2630 2631
	falcon_read(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
	falcon_write(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2632 2633 2634

	/* Initiate SRAM reset */
	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2635 2636 2637
			     FRF_AZ_SRM_INIT_EN, 1,
			     FRF_AZ_SRM_NB_SZ, 0);
	falcon_write(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647

	/* Wait for SRAM reset to complete */
	count = 0;
	do {
		EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);

		/* SRAM reset is slow; expect around 16ms */
		schedule_timeout_uninterruptible(HZ / 50);

		/* Check for reset complete */
2648 2649
		falcon_read(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
			EFX_LOG(efx, "SRAM reset complete\n");

			return 0;
		}
	} while (++count < 20);	/* wait upto 0.4 sec */

	EFX_ERR(efx, "timed out waiting for SRAM reset\n");
	return -ETIMEDOUT;
}

2660 2661 2662 2663 2664 2665 2666
static int falcon_spi_device_init(struct efx_nic *efx,
				  struct efx_spi_device **spi_device_ret,
				  unsigned int device_id, u32 device_type)
{
	struct efx_spi_device *spi_device;

	if (device_type != 0) {
2667
		spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2668 2669 2670 2671 2672 2673 2674 2675 2676
		if (!spi_device)
			return -ENOMEM;
		spi_device->device_id = device_id;
		spi_device->size =
			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
		spi_device->addr_len =
			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
		spi_device->munge_address = (spi_device->size == 1 << 9 &&
					     spi_device->addr_len == 1);
2677 2678 2679 2680 2681
		spi_device->erase_command =
			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
		spi_device->erase_size =
			1 << SPI_DEV_TYPE_FIELD(device_type,
						SPI_DEV_TYPE_ERASE_SIZE);
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
		spi_device->block_size =
			1 << SPI_DEV_TYPE_FIELD(device_type,
						SPI_DEV_TYPE_BLOCK_SIZE);

		spi_device->efx = efx;
	} else {
		spi_device = NULL;
	}

	kfree(*spi_device_ret);
	*spi_device_ret = spi_device;
	return 0;
}


static void falcon_remove_spi_devices(struct efx_nic *efx)
{
	kfree(efx->spi_eeprom);
	efx->spi_eeprom = NULL;
	kfree(efx->spi_flash);
	efx->spi_flash = NULL;
}

2705 2706 2707 2708
/* Extract non-volatile configuration */
static int falcon_probe_nvconfig(struct efx_nic *efx)
{
	struct falcon_nvconfig *nvconfig;
B
Ben Hutchings 已提交
2709
	int board_rev;
2710 2711 2712
	int rc;

	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2713 2714
	if (!nvconfig)
		return -ENOMEM;
2715

B
Ben Hutchings 已提交
2716 2717 2718
	rc = falcon_read_nvram(efx, nvconfig);
	if (rc == -EINVAL) {
		EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2719
		efx->phy_type = PHY_TYPE_NONE;
2720
		efx->mdio.prtad = MDIO_PRTAD_NONE;
2721
		board_rev = 0;
B
Ben Hutchings 已提交
2722 2723 2724
		rc = 0;
	} else if (rc) {
		goto fail1;
2725 2726
	} else {
		struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2727
		struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2728 2729

		efx->phy_type = v2->port0_phy_type;
2730
		efx->mdio.prtad = v2->port0_phy_addr;
2731
		board_rev = le16_to_cpu(v2->board_revision);
2732

B
Ben Hutchings 已提交
2733
		if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2734 2735 2736 2737
			rc = falcon_spi_device_init(
				efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
				le32_to_cpu(v3->spi_device_type
					    [FFE_AB_SPI_DEVICE_FLASH]));
2738 2739
			if (rc)
				goto fail2;
2740 2741 2742 2743
			rc = falcon_spi_device_init(
				efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
				le32_to_cpu(v3->spi_device_type
					    [FFE_AB_SPI_DEVICE_EEPROM]));
2744 2745 2746
			if (rc)
				goto fail2;
		}
2747 2748
	}

B
Ben Hutchings 已提交
2749 2750 2751
	/* Read the MAC addresses */
	memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);

2752
	EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2753

2754
	falcon_probe_board(efx, board_rev);
2755

2756 2757 2758 2759 2760 2761
	kfree(nvconfig);
	return 0;

 fail2:
	falcon_remove_spi_devices(efx);
 fail1:
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
	kfree(nvconfig);
	return rc;
}

/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
 * count, port speed).  Set workaround and feature flags accordingly.
 */
static int falcon_probe_nic_variant(struct efx_nic *efx)
{
	efx_oword_t altera_build;
2772
	efx_oword_t nic_stat;
2773

2774 2775
	falcon_read(efx, &altera_build, FR_AZ_ALTERA_BUILD);
	if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2776 2777 2778 2779
		EFX_ERR(efx, "Falcon FPGA not supported\n");
		return -ENODEV;
	}

2780
	falcon_read(efx, &nic_stat, FR_AB_NIC_STAT);
2781

2782
	switch (falcon_rev(efx)) {
2783 2784 2785 2786 2787
	case FALCON_REV_A0:
	case 0xff:
		EFX_ERR(efx, "Falcon rev A0 not supported\n");
		return -ENODEV;

2788
	case FALCON_REV_A1:
2789
		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2790 2791 2792 2793 2794 2795 2796 2797 2798
			EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
			return -ENODEV;
		}
		break;

	case FALCON_REV_B0:
		break;

	default:
2799
		EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2800 2801 2802
		return -ENODEV;
	}

2803
	/* Initial assumed speed */
2804
	efx->link_speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000;
2805

2806 2807 2808
	return 0;
}

2809 2810 2811 2812
/* Probe all SPI devices on the NIC */
static void falcon_probe_spi_devices(struct efx_nic *efx)
{
	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2813
	int boot_dev;
2814

2815 2816 2817
	falcon_read(efx, &gpio_ctl, FR_AB_GPIO_CTL);
	falcon_read(efx, &nic_stat, FR_AB_NIC_STAT);
	falcon_read(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2818

2819 2820 2821
	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2822
		EFX_LOG(efx, "Booted from %s\n",
2823
			boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2824 2825 2826 2827 2828 2829
	} else {
		/* Disable VPD and set clock dividers to safe
		 * values for initial programming. */
		boot_dev = -1;
		EFX_LOG(efx, "Booted from internal ASIC settings;"
			" setting SPI config\n");
2830
		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2831
				     /* 125 MHz / 7 ~= 20 MHz */
2832
				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2833
				     /* 125 MHz / 63 ~= 2 MHz */
2834 2835
				     FRF_AB_EE_EE_CLOCK_DIV, 63);
		falcon_write(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2836 2837
	}

2838 2839 2840
	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
		falcon_spi_device_init(efx, &efx->spi_flash,
				       FFE_AB_SPI_DEVICE_FLASH,
2841
				       default_flash_type);
2842 2843 2844
	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
		falcon_spi_device_init(efx, &efx->spi_eeprom,
				       FFE_AB_SPI_DEVICE_EEPROM,
2845
				       large_eeprom_type);
2846 2847
}

2848 2849 2850 2851 2852 2853 2854
int falcon_probe_nic(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data;
	int rc;

	/* Allocate storage for hardware specific data */
	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2855 2856
	if (!nic_data)
		return -ENOMEM;
2857
	efx->nic_data = nic_data;
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895

	/* Determine number of ports etc. */
	rc = falcon_probe_nic_variant(efx);
	if (rc)
		goto fail1;

	/* Probe secondary function if expected */
	if (FALCON_IS_DUAL_FUNC(efx)) {
		struct pci_dev *dev = pci_dev_get(efx->pci_dev);

		while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
					     dev))) {
			if (dev->bus == efx->pci_dev->bus &&
			    dev->devfn == efx->pci_dev->devfn + 1) {
				nic_data->pci_dev2 = dev;
				break;
			}
		}
		if (!nic_data->pci_dev2) {
			EFX_ERR(efx, "failed to find secondary function\n");
			rc = -ENODEV;
			goto fail2;
		}
	}

	/* Now we can reset the NIC */
	rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
	if (rc) {
		EFX_ERR(efx, "failed to reset NIC\n");
		goto fail3;
	}

	/* Allocate memory for INT_KER */
	rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
	if (rc)
		goto fail4;
	BUG_ON(efx->irq_status.dma_addr & 0x0f);

2896 2897 2898
	EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
		(u64)efx->irq_status.dma_addr,
		efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2899

2900 2901
	falcon_probe_spi_devices(efx);

2902 2903 2904 2905 2906
	/* Read in the non-volatile configuration */
	rc = falcon_probe_nvconfig(efx);
	if (rc)
		goto fail5;

2907
	/* Initialise I2C adapter */
B
Ben Hutchings 已提交
2908
	efx->i2c_adap.owner = THIS_MODULE;
2909 2910
	nic_data->i2c_data = falcon_i2c_bit_operations;
	nic_data->i2c_data.data = efx;
B
Ben Hutchings 已提交
2911
	efx->i2c_adap.algo_data = &nic_data->i2c_data;
2912
	efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2913
	strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2914 2915 2916 2917
	rc = i2c_bit_add_bus(&efx->i2c_adap);
	if (rc)
		goto fail5;

2918 2919 2920
	return 0;

 fail5:
2921
	falcon_remove_spi_devices(efx);
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	falcon_free_buffer(efx, &efx->irq_status);
 fail4:
 fail3:
	if (nic_data->pci_dev2) {
		pci_dev_put(nic_data->pci_dev2);
		nic_data->pci_dev2 = NULL;
	}
 fail2:
 fail1:
	kfree(efx->nic_data);
	return rc;
}

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
static void falcon_init_rx_cfg(struct efx_nic *efx)
{
	/* Prior to Siena the RX DMA engine will split each frame at
	 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
	 * be so large that that never happens. */
	const unsigned huge_buf_size = (3 * 4096) >> 5;
	/* RX control FIFO thresholds (32 entries) */
	const unsigned ctrl_xon_thr = 20;
	const unsigned ctrl_xoff_thr = 25;
	/* RX data FIFO thresholds (256-byte units; size varies) */
2945 2946
	int data_xon_thr = rx_xon_thresh_bytes >> 8;
	int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2947 2948
	efx_oword_t reg;

2949
	falcon_read(efx, &reg, FR_AZ_RX_CFG);
2950
	if (falcon_rev(efx) <= FALCON_REV_A1) {
2951 2952 2953 2954 2955
		/* Data FIFO size is 5.5K */
		if (data_xon_thr < 0)
			data_xon_thr = 512 >> 8;
		if (data_xoff_thr < 0)
			data_xoff_thr = 2048 >> 8;
2956 2957 2958 2959 2960 2961 2962
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
				    huge_buf_size);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2963
	} else {
2964 2965 2966 2967 2968
		/* Data FIFO size is 80K; register fields moved */
		if (data_xon_thr < 0)
			data_xon_thr = 27648 >> 8; /* ~3*max MTU */
		if (data_xoff_thr < 0)
			data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
2969 2970 2971 2972 2973 2974 2975 2976
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
				    huge_buf_size);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2977
	}
2978
	falcon_write(efx, &reg, FR_AZ_RX_CFG);
2979 2980
}

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
/* This call performs hardware-specific global initialisation, such as
 * defining the descriptor cache sizes and number of RSS channels.
 * It does not set up any buffers, descriptor rings or event queues.
 */
int falcon_init_nic(struct efx_nic *efx)
{
	efx_oword_t temp;
	int rc;

	/* Use on-chip SRAM */
2991 2992 2993
	falcon_read(efx, &temp, FR_AB_NIC_STAT);
	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
	falcon_write(efx, &temp, FR_AB_NIC_STAT);
2994

B
Ben Hutchings 已提交
2995 2996
	/* Set the source of the GMAC clock */
	if (falcon_rev(efx) == FALCON_REV_B0) {
2997 2998 2999
		falcon_read(efx, &temp, FR_AB_GPIO_CTL);
		EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
		falcon_write(efx, &temp, FR_AB_GPIO_CTL);
B
Ben Hutchings 已提交
3000 3001
	}

3002 3003 3004 3005 3006
	rc = falcon_reset_sram(efx);
	if (rc)
		return rc;

	/* Set positions of descriptor caches in SRAM. */
3007 3008 3009 3010
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
	falcon_write(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
	falcon_write(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
3011 3012 3013

	/* Set TX descriptor cache size. */
	BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
3014 3015
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
	falcon_write(efx, &temp, FR_AZ_TX_DC_CFG);
3016 3017 3018 3019 3020

	/* Set RX descriptor cache size.  Set low watermark to size-8, as
	 * this allows most efficient prefetching.
	 */
	BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
3021 3022 3023 3024
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
	falcon_write(efx, &temp, FR_AZ_RX_DC_CFG);
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
	falcon_write(efx, &temp, FR_AZ_RX_DC_PF_WM);
3025 3026 3027 3028 3029

	/* Clear the parity enables on the TX data fifos as
	 * they produce false parity errors because of timing issues
	 */
	if (EFX_WORKAROUND_5129(efx)) {
3030 3031 3032
		falcon_read(efx, &temp, FR_AZ_CSR_SPARE);
		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
		falcon_write(efx, &temp, FR_AZ_CSR_SPARE);
3033 3034 3035 3036 3037 3038 3039 3040 3041
	}

	/* Enable all the genuinely fatal interrupts.  (They are still
	 * masked by the overall interrupt mask, controlled by
	 * falcon_interrupts()).
	 *
	 * Note: All other fatal interrupts are enabled
	 */
	EFX_POPULATE_OWORD_3(temp,
3042 3043 3044
			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3045
	EFX_INVERT_OWORD(temp);
3046
	falcon_write(efx, &temp, FR_AZ_FATAL_INTR_KER);
3047 3048

	if (EFX_WORKAROUND_7244(efx)) {
3049 3050 3051 3052 3053 3054
		falcon_read(efx, &temp, FR_BZ_RX_FILTER_CTL);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
		falcon_write(efx, &temp, FR_BZ_RX_FILTER_CTL);
3055 3056 3057 3058
	}

	falcon_setup_rss_indir_table(efx);

3059
	/* XXX This is documented only for Falcon A0/A1 */
3060 3061 3062
	/* Setup RX.  Wait for descriptor is broken and must
	 * be disabled.  RXDP recovery shouldn't be needed, but is.
	 */
3063 3064 3065
	falcon_read(efx, &temp, FR_AA_RX_SELF_RST);
	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3066
	if (EFX_WORKAROUND_5583(efx))
3067 3068
		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
	falcon_write(efx, &temp, FR_AA_RX_SELF_RST);
3069 3070 3071 3072

	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
	 */
3073 3074 3075 3076 3077 3078
	falcon_read(efx, &temp, FR_AZ_TX_RESERVED);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3079
	/* Enable SW_EV to inherit in char driver - assume harmless here */
3080
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3081
	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
3082
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3083
	/* Squash TX of packets of 16 bytes or less */
3084
	if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3085 3086
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
	falcon_write(efx, &temp, FR_AZ_TX_RESERVED);
3087 3088 3089 3090

	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
	 * descriptors (which is bad).
	 */
3091 3092 3093
	falcon_read(efx, &temp, FR_AZ_TX_CFG);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
	falcon_write(efx, &temp, FR_AZ_TX_CFG);
3094

3095
	falcon_init_rx_cfg(efx);
3096 3097

	/* Set destination of both TX and RX Flush events */
3098
	if (falcon_rev(efx) >= FALCON_REV_B0) {
3099 3100
		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
		falcon_write(efx, &temp, FR_BZ_DP_CTRL);
3101 3102 3103 3104 3105 3106 3107 3108
	}

	return 0;
}

void falcon_remove_nic(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
3109 3110
	int rc;

3111
	/* Remove I2C adapter and clear it in preparation for a retry */
3112 3113
	rc = i2c_del_adapter(&efx->i2c_adap);
	BUG_ON(rc);
3114
	memset(&efx->i2c_adap, 0, sizeof(efx->i2c_adap));
3115

3116
	falcon_remove_spi_devices(efx);
3117 3118
	falcon_free_buffer(efx, &efx->irq_status);

B
Ben Hutchings 已提交
3119
	falcon_reset_hw(efx, RESET_TYPE_ALL);
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

	/* Release the second function after the reset */
	if (nic_data->pci_dev2) {
		pci_dev_put(nic_data->pci_dev2);
		nic_data->pci_dev2 = NULL;
	}

	/* Tear down the private nic state */
	kfree(efx->nic_data);
	efx->nic_data = NULL;
}

void falcon_update_nic_stats(struct efx_nic *efx)
{
	efx_oword_t cnt;

3136 3137 3138
	falcon_read(efx, &cnt, FR_AZ_RX_NODESC_DROP);
	efx->n_rx_nodesc_drop_cnt +=
		EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
}

/**************************************************************************
 *
 * Revision-dependent attributes used by efx.c
 *
 **************************************************************************
 */

struct efx_nic_type falcon_a_nic_type = {
	.mem_bar = 2,
	.mem_map_size = 0x20000,
3151 3152 3153 3154 3155
	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	.txd_ring_mask = FALCON_TXD_RING_MASK,
	.rxd_ring_mask = FALCON_RXD_RING_MASK,
	.evq_size = FALCON_EVQ_SIZE,
	.max_dma_mask = FALCON_DMA_MASK,
	.tx_dma_mask = FALCON_TX_DMA_MASK,
	.bug5391_mask = 0xf,
	.rx_buffer_padding = 0x24,
	.max_interrupt_mode = EFX_INT_MODE_MSI,
	.phys_addr_channels = 4,
};

struct efx_nic_type falcon_b_nic_type = {
	.mem_bar = 2,
	/* Map everything up to and including the RSS indirection
	 * table.  Don't map MSI-X table, MSI-X PBA since Linux
	 * requires that they not be mapped.  */
3172 3173 3174 3175 3176 3177 3178 3179
	.mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
			 FR_BZ_RX_INDIRECTION_TBL_STEP *
			 FR_BZ_RX_INDIRECTION_TBL_ROWS),
	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	.txd_ring_mask = FALCON_TXD_RING_MASK,
	.rxd_ring_mask = FALCON_RXD_RING_MASK,
	.evq_size = FALCON_EVQ_SIZE,
	.max_dma_mask = FALCON_DMA_MASK,
	.tx_dma_mask = FALCON_TX_DMA_MASK,
	.bug5391_mask = 0,
	.rx_buffer_padding = 0,
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
	.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
				   * interrupt handler only supports 32
				   * channels */
};