falcon.c 89.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2006-2008 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
16
#include <linux/i2c.h>
B
Ben Hutchings 已提交
17
#include <linux/mii.h>
18 19 20 21 22 23
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "mac.h"
#include "spi.h"
#include "falcon.h"
24
#include "regs.h"
25
#include "io.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
#include "mdio_10g.h"
#include "phy.h"
#include "workarounds.h"

/* Falcon hardware control.
 * Falcon is the internal codename for the SFC4000 controller that is
 * present in SFE400X evaluation boards
 */

/**************************************************************************
 *
 * Configurable values
 *
 **************************************************************************
 */

static int disable_dma_stats;

/* This is set to 16 for a good reason.  In summary, if larger than
 * 16, the descriptor cache holds more than a default socket
 * buffer's worth of packets (for UDP we can only have at most one
 * socket buffer's worth outstanding).  This combined with the fact
 * that we only get 1 TX event per descriptor cache means the NIC
 * goes idle.
 */
#define TX_DC_ENTRIES 16
#define TX_DC_ENTRIES_ORDER 0
#define TX_DC_BASE 0x130000

#define RX_DC_ENTRIES 64
#define RX_DC_ENTRIES_ORDER 2
#define RX_DC_BASE 0x100000

59 60 61 62 63 64 65 66 67 68 69 70 71 72
static const unsigned int
/* "Large" EEPROM device: Atmel AT25640 or similar
 * 8 KB, 16-bit address, 32 B write block */
large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
/* Default flash device: Atmel AT25F1024
 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/* RX FIFO XOFF watermark
 *
 * When the amount of the RX FIFO increases used increases past this
 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
static int rx_xoff_thresh_bytes = -1;
module_param(rx_xoff_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");

/* RX FIFO XON watermark
 *
 * When the amount of the RX FIFO used decreases below this
 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
static int rx_xon_thresh_bytes = -1;
module_param(rx_xon_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");

93 94 95 96 97 98
/* If FALCON_MAX_INT_ERRORS internal errors occur within
 * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
 * disable it.
 */
#define FALCON_INT_ERROR_EXPIRE 3600
#define FALCON_MAX_INT_ERRORS 5
99

100 101 102 103
/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
 */
#define FALCON_FLUSH_INTERVAL 10
#define FALCON_FLUSH_POLL_COUNT 100
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

/**************************************************************************
 *
 * Falcon constants
 *
 **************************************************************************
 */

/* Size and alignment of special buffers (4KB) */
#define FALCON_BUF_SIZE 4096

/* Dummy SRAM size code */
#define SRM_NB_BSZ_ONCHIP_ONLY (-1)

#define FALCON_IS_DUAL_FUNC(efx)		\
119
	(falcon_rev(efx) < FALCON_REV_B0)
120 121 122 123 124 125 126

/**************************************************************************
 *
 * Falcon hardware access
 *
 **************************************************************************/

127 128 129 130 131 132 133
static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
					unsigned int index)
{
	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
			value, index);
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/* Read the current event from the event queue */
static inline efx_qword_t *falcon_event(struct efx_channel *channel,
					unsigned int index)
{
	return (((efx_qword_t *) (channel->eventq.addr)) + index);
}

/* See if an event is present
 *
 * We check both the high and low dword of the event for all ones.  We
 * wrote all ones when we cleared the event, and no valid event can
 * have all ones in either its high or low dwords.  This approach is
 * robust against reordering.
 *
 * Note that using a single 64-bit comparison is incorrect; even
 * though the CPU read will be atomic, the DMA write may not be.
 */
static inline int falcon_event_present(efx_qword_t *event)
{
	return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
		  EFX_DWORD_IS_ALL_ONES(event->dword[1])));
}

/**************************************************************************
 *
 * I2C bus - this is a bit-bashing interface using GPIO pins
 * Note that it uses the output enables to tristate the outputs
 * SDA is the data pin and SCL is the clock
 *
 **************************************************************************
 */
165
static void falcon_setsda(void *data, int state)
166
{
167
	struct efx_nic *efx = (struct efx_nic *)data;
168 169
	efx_oword_t reg;

170
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
171
	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
172
	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
173 174
}

175
static void falcon_setscl(void *data, int state)
176
{
177
	struct efx_nic *efx = (struct efx_nic *)data;
178 179
	efx_oword_t reg;

180
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
181
	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
182
	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
183 184 185 186 187 188 189
}

static int falcon_getsda(void *data)
{
	struct efx_nic *efx = (struct efx_nic *)data;
	efx_oword_t reg;

190
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
191
	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
192 193
}

194
static int falcon_getscl(void *data)
195
{
196
	struct efx_nic *efx = (struct efx_nic *)data;
197 198
	efx_oword_t reg;

199
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
200
	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
201 202
}

203 204 205
static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
	.setsda		= falcon_setsda,
	.setscl		= falcon_setscl,
206 207
	.getsda		= falcon_getsda,
	.getscl		= falcon_getscl,
208
	.udelay		= 5,
209 210
	/* Wait up to 50 ms for slave to let us pull SCL high */
	.timeout	= DIV_ROUND_UP(HZ, 20),
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
};

/**************************************************************************
 *
 * Falcon special buffer handling
 * Special buffers are used for event queues and the TX and RX
 * descriptor rings.
 *
 *************************************************************************/

/*
 * Initialise a Falcon special buffer
 *
 * This will define a buffer (previously allocated via
 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
 * it to be used for event queues, descriptor rings etc.
 */
228
static void
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
falcon_init_special_buffer(struct efx_nic *efx,
			   struct efx_special_buffer *buffer)
{
	efx_qword_t buf_desc;
	int index;
	dma_addr_t dma_addr;
	int i;

	EFX_BUG_ON_PARANOID(!buffer->addr);

	/* Write buffer descriptors to NIC */
	for (i = 0; i < buffer->entries; i++) {
		index = buffer->index + i;
		dma_addr = buffer->dma_addr + (i * 4096);
		EFX_LOG(efx, "mapping special buffer %d at %llx\n",
			index, (unsigned long long)dma_addr);
245 246 247 248
		EFX_POPULATE_QWORD_3(buf_desc,
				     FRF_AZ_BUF_ADR_REGION, 0,
				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
249
		falcon_write_buf_tbl(efx, &buf_desc, index);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	}
}

/* Unmaps a buffer from Falcon and clears the buffer table entries */
static void
falcon_fini_special_buffer(struct efx_nic *efx,
			   struct efx_special_buffer *buffer)
{
	efx_oword_t buf_tbl_upd;
	unsigned int start = buffer->index;
	unsigned int end = (buffer->index + buffer->entries - 1);

	if (!buffer->entries)
		return;

	EFX_LOG(efx, "unmapping special buffers %d-%d\n",
		buffer->index, buffer->index + buffer->entries - 1);

	EFX_POPULATE_OWORD_4(buf_tbl_upd,
269 270 271 272
			     FRF_AZ_BUF_UPD_CMD, 0,
			     FRF_AZ_BUF_CLR_CMD, 1,
			     FRF_AZ_BUF_CLR_END_ID, end,
			     FRF_AZ_BUF_CLR_START_ID, start);
273
	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
}

/*
 * Allocate a new Falcon special buffer
 *
 * This allocates memory for a new buffer, clears it and allocates a
 * new buffer ID range.  It does not write into Falcon's buffer table.
 *
 * This call will allocate 4KB buffers, since Falcon can't use 8KB
 * buffers for event queues and descriptor rings.
 */
static int falcon_alloc_special_buffer(struct efx_nic *efx,
				       struct efx_special_buffer *buffer,
				       unsigned int len)
{
	len = ALIGN(len, FALCON_BUF_SIZE);

	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	buffer->entries = len / FALCON_BUF_SIZE;
	BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));

	/* All zeros is a potentially valid event so memset to 0xff */
	memset(buffer->addr, 0xff, len);

	/* Select new buffer ID */
303 304
	buffer->index = efx->next_buffer_table;
	efx->next_buffer_table += buffer->entries;
305 306

	EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
307
		"(virt %p phys %llx)\n", buffer->index,
308
		buffer->index + buffer->entries - 1,
309 310
		(u64)buffer->dma_addr, len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));
311 312 313 314 315 316 317 318 319 320 321

	return 0;
}

static void falcon_free_special_buffer(struct efx_nic *efx,
				       struct efx_special_buffer *buffer)
{
	if (!buffer->addr)
		return;

	EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
322
		"(virt %p phys %llx)\n", buffer->index,
323
		buffer->index + buffer->entries - 1,
324 325
		(u64)buffer->dma_addr, buffer->len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

	pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
			    buffer->dma_addr);
	buffer->addr = NULL;
	buffer->entries = 0;
}

/**************************************************************************
 *
 * Falcon generic buffer handling
 * These buffers are used for interrupt status and MAC stats
 *
 **************************************************************************/

static int falcon_alloc_buffer(struct efx_nic *efx,
			       struct efx_buffer *buffer, unsigned int len)
{
	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	memset(buffer->addr, 0, len);
	return 0;
}

static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
	if (buffer->addr) {
		pci_free_consistent(efx->pci_dev, buffer->len,
				    buffer->addr, buffer->dma_addr);
		buffer->addr = NULL;
	}
}

/**************************************************************************
 *
 * Falcon TX path
 *
 **************************************************************************/

/* Returns a pointer to the specified transmit descriptor in the TX
 * descriptor queue belonging to the specified channel.
 */
static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
					       unsigned int index)
{
	return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
}

/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
	unsigned write_ptr;
	efx_dword_t reg;

382
	write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
383
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
384 385
	efx_writed_page(tx_queue->efx, &reg,
			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
}


/* For each entry inserted into the software descriptor ring, create a
 * descriptor in the hardware TX descriptor ring (in host memory), and
 * write a doorbell.
 */
void falcon_push_buffers(struct efx_tx_queue *tx_queue)
{

	struct efx_tx_buffer *buffer;
	efx_qword_t *txd;
	unsigned write_ptr;

	BUG_ON(tx_queue->write_count == tx_queue->insert_count);

	do {
403
		write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
404 405 406 407 408
		buffer = &tx_queue->buffer[write_ptr];
		txd = falcon_tx_desc(tx_queue, write_ptr);
		++tx_queue->write_count;

		/* Create TX descriptor ring entry */
409 410 411 412 413
		EFX_POPULATE_QWORD_4(*txd,
				     FSF_AZ_TX_KER_CONT, buffer->continuation,
				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
				     FSF_AZ_TX_KER_BUF_REGION, 0,
				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
414 415 416 417 418 419 420 421 422 423
	} while (tx_queue->write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */
	falcon_notify_tx_desc(tx_queue);
}

/* Allocate hardware resources for a TX queue */
int falcon_probe_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
424 425
	BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
		     EFX_TXQ_SIZE & EFX_TXQ_MASK);
426
	return falcon_alloc_special_buffer(efx, &tx_queue->txd,
427
					   EFX_TXQ_SIZE * sizeof(efx_qword_t));
428 429
}

430
void falcon_init_tx(struct efx_tx_queue *tx_queue)
431 432 433 434
{
	efx_oword_t tx_desc_ptr;
	struct efx_nic *efx = tx_queue->efx;

435 436
	tx_queue->flushed = false;

437
	/* Pin TX descriptor ring */
438
	falcon_init_special_buffer(efx, &tx_queue->txd);
439 440 441

	/* Push TX descriptor ring to card */
	EFX_POPULATE_OWORD_10(tx_desc_ptr,
442 443 444 445 446 447 448 449
			      FRF_AZ_TX_DESCQ_EN, 1,
			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
			      FRF_AZ_TX_DESCQ_EVQ_ID,
			      tx_queue->channel->channel,
			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
450 451
			      FRF_AZ_TX_DESCQ_SIZE,
			      __ffs(tx_queue->txd.entries),
452 453
			      FRF_AZ_TX_DESCQ_TYPE, 0,
			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
454

455
	if (falcon_rev(efx) >= FALCON_REV_B0) {
456
		int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
457 458 459
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
				    !csum);
460 461
	}

462 463
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);
464

465
	if (falcon_rev(efx) < FALCON_REV_B0) {
466 467
		efx_oword_t reg;

468 469
		/* Only 128 bits in this register */
		BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
470

471
		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
472
		if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
473 474 475
			clear_bit_le(tx_queue->queue, (void *)&reg);
		else
			set_bit_le(tx_queue->queue, (void *)&reg);
476
		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
477 478 479
	}
}

480
static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
481 482 483 484 485 486
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_flush_descq;

	/* Post a flush command */
	EFX_POPULATE_OWORD_2(tx_flush_descq,
487 488
			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
489
	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
490 491 492 493 494 495 496
}

void falcon_fini_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_desc_ptr;

497 498
	/* The queue should have been flushed */
	WARN_ON(!tx_queue->flushed);
499 500 501

	/* Remove TX descriptor ring from card */
	EFX_ZERO_OWORD(tx_desc_ptr);
502 503
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

	/* Unpin TX descriptor ring */
	falcon_fini_special_buffer(efx, &tx_queue->txd);
}

/* Free buffers backing TX queue */
void falcon_remove_tx(struct efx_tx_queue *tx_queue)
{
	falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}

/**************************************************************************
 *
 * Falcon RX path
 *
 **************************************************************************/

/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
					       unsigned int index)
{
	return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
}

/* This creates an entry in the RX descriptor queue */
static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
					unsigned index)
{
	struct efx_rx_buffer *rx_buf;
	efx_qword_t *rxd;

	rxd = falcon_rx_desc(rx_queue, index);
	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_POPULATE_QWORD_3(*rxd,
538
			     FSF_AZ_RX_KER_BUF_SIZE,
539 540
			     rx_buf->len -
			     rx_queue->efx->type->rx_buffer_padding,
541 542
			     FSF_AZ_RX_KER_BUF_REGION, 0,
			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
543 544 545 546 547 548 549 550 551 552 553 554 555
}

/* This writes to the RX_DESC_WPTR register for the specified receive
 * descriptor ring.
 */
void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
	efx_dword_t reg;
	unsigned write_ptr;

	while (rx_queue->notified_count != rx_queue->added_count) {
		falcon_build_rx_desc(rx_queue,
				     rx_queue->notified_count &
556
				     EFX_RXQ_MASK);
557 558 559 560
		++rx_queue->notified_count;
	}

	wmb();
561
	write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
562
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
563 564
	efx_writed_page(rx_queue->efx, &reg,
			FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
565 566 567 568 569
}

int falcon_probe_rx(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
570 571
	BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
		     EFX_RXQ_SIZE & EFX_RXQ_MASK);
572
	return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
573
					   EFX_RXQ_SIZE * sizeof(efx_qword_t));
574 575
}

576
void falcon_init_rx(struct efx_rx_queue *rx_queue)
577 578 579
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;
580 581
	bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
	bool iscsi_digest_en = is_b0;
582 583 584 585 586

	EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
		rx_queue->queue, rx_queue->rxd.index,
		rx_queue->rxd.index + rx_queue->rxd.entries - 1);

587 588
	rx_queue->flushed = false;

589
	/* Pin RX descriptor ring */
590
	falcon_init_special_buffer(efx, &rx_queue->rxd);
591 592 593

	/* Push RX descriptor ring to card */
	EFX_POPULATE_OWORD_10(rx_desc_ptr,
594 595 596 597 598 599 600
			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
			      FRF_AZ_RX_DESCQ_EVQ_ID,
			      rx_queue->channel->channel,
			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
601 602
			      FRF_AZ_RX_DESCQ_SIZE,
			      __ffs(rx_queue->rxd.entries),
603
			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
604
			      /* For >=B0 this is scatter so disable */
605 606
			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
			      FRF_AZ_RX_DESCQ_EN, 1);
607 608
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 rx_queue->queue);
609 610
}

611
static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
612 613 614 615 616 617
{
	struct efx_nic *efx = rx_queue->efx;
	efx_oword_t rx_flush_descq;

	/* Post a flush command */
	EFX_POPULATE_OWORD_2(rx_flush_descq,
618 619
			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
620
	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
621 622 623 624 625 626 627
}

void falcon_fini_rx(struct efx_rx_queue *rx_queue)
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;

628 629
	/* The queue should already have been flushed */
	WARN_ON(!rx_queue->flushed);
630 631 632

	/* Remove RX descriptor ring from card */
	EFX_ZERO_OWORD(rx_desc_ptr);
633 634
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 rx_queue->queue);
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

	/* Unpin RX descriptor ring */
	falcon_fini_special_buffer(efx, &rx_queue->rxd);
}

/* Free buffers backing RX queue */
void falcon_remove_rx(struct efx_rx_queue *rx_queue)
{
	falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}

/**************************************************************************
 *
 * Falcon event queue processing
 * Event queues are processed by per-channel tasklets.
 *
 **************************************************************************/

/* Update a channel's event queue's read pointer (RPTR) register
 *
 * This writes the EVQ_RPTR_REG register for the specified channel's
 * event queue.
 *
 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
 * whereas channel->eventq_read_ptr contains the index of the "next to
 * read" event.
 */
void falcon_eventq_read_ack(struct efx_channel *channel)
{
	efx_dword_t reg;
	struct efx_nic *efx = channel->efx;

667
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
668
	efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
669
			    channel->channel);
670 671 672 673 674 675 676
}

/* Use HW to insert a SW defined event */
void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
{
	efx_oword_t drv_ev_reg;

677 678 679 680 681 682 683
	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
	drv_ev_reg.u32[0] = event->u32[0];
	drv_ev_reg.u32[1] = event->u32[1];
	drv_ev_reg.u32[2] = 0;
	drv_ev_reg.u32[3] = 0;
	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
684
	efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
685 686 687 688 689 690 691
}

/* Handle a transmit completion event
 *
 * Falcon batches TX completion events; the message we receive is of
 * the form "complete all TX events up to this index".
 */
692 693
static void falcon_handle_tx_event(struct efx_channel *channel,
				   efx_qword_t *event)
694 695 696 697 698 699
{
	unsigned int tx_ev_desc_ptr;
	unsigned int tx_ev_q_label;
	struct efx_tx_queue *tx_queue;
	struct efx_nic *efx = channel->efx;

700
	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
701
		/* Transmit completion */
702 703
		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
704
		tx_queue = &efx->tx_queue[tx_ev_q_label];
705 706
		channel->irq_mod_score +=
			(tx_ev_desc_ptr - tx_queue->read_count) &
707
			EFX_TXQ_MASK;
708
		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
709
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
710
		/* Rewrite the FIFO write pointer */
711
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
712 713
		tx_queue = &efx->tx_queue[tx_ev_q_label];

714
		if (efx_dev_registered(efx))
715 716
			netif_tx_lock(efx->net_dev);
		falcon_notify_tx_desc(tx_queue);
717
		if (efx_dev_registered(efx))
718
			netif_tx_unlock(efx->net_dev);
719
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
720 721 722 723 724 725 726 727 728 729 730 731
		   EFX_WORKAROUND_10727(efx)) {
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
	} else {
		EFX_ERR(efx, "channel %d unexpected TX event "
			EFX_QWORD_FMT"\n", channel->channel,
			EFX_QWORD_VAL(*event));
	}
}

/* Detect errors included in the rx_evt_pkt_ok bit. */
static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
				    const efx_qword_t *event,
732 733
				    bool *rx_ev_pkt_ok,
				    bool *discard)
734 735
{
	struct efx_nic *efx = rx_queue->efx;
736 737 738 739 740 741
	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
	bool rx_ev_other_err, rx_ev_pause_frm;
	bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
	unsigned rx_ev_pkt_type;
742

743 744 745 746
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
747
	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
748 749
						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
	rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
750
	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
751
						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
752
	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
753 754 755
						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
756
	rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
757 758
			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
759 760 761 762 763 764

	/* Every error apart from tobe_disc and pause_frm */
	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);

765 766
	/* Count errors that are not in MAC stats.  Ignore expected
	 * checksum errors during self-test. */
767 768 769 770
	if (rx_ev_frm_trunc)
		++rx_queue->channel->n_rx_frm_trunc;
	else if (rx_ev_tobe_disc)
		++rx_queue->channel->n_rx_tobe_disc;
771 772 773 774 775 776
	else if (!efx->loopback_selftest) {
		if (rx_ev_ip_hdr_chksum_err)
			++rx_queue->channel->n_rx_ip_hdr_chksum_err;
		else if (rx_ev_tcp_udp_chksum_err)
			++rx_queue->channel->n_rx_tcp_udp_chksum_err;
	}
777 778 779 780 781 782 783 784 785 786 787 788 789 790
	if (rx_ev_ip_frag_err)
		++rx_queue->channel->n_rx_ip_frag_err;

	/* The frame must be discarded if any of these are true. */
	*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
		    rx_ev_tobe_disc | rx_ev_pause_frm);

	/* TOBE_DISC is expected on unicast mismatches; don't print out an
	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
	 * to a FIFO overflow.
	 */
#ifdef EFX_ENABLE_DEBUG
	if (rx_ev_other_err) {
		EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
791
			    EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
792 793 794 795 796 797 798 799 800 801
			    rx_queue->queue, EFX_QWORD_VAL(*event),
			    rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
			    rx_ev_ip_hdr_chksum_err ?
			    " [IP_HDR_CHKSUM_ERR]" : "",
			    rx_ev_tcp_udp_chksum_err ?
			    " [TCP_UDP_CHKSUM_ERR]" : "",
			    rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
			    rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
			    rx_ev_drib_nib ? " [DRIB_NIB]" : "",
			    rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
802
			    rx_ev_pause_frm ? " [PAUSE]" : "");
803 804 805 806 807 808 809 810 811 812 813
	}
#endif
}

/* Handle receive events that are not in-order. */
static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
				       unsigned index)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned expected, dropped;

814 815
	expected = rx_queue->removed_count & EFX_RXQ_MASK;
	dropped = (index - expected) & EFX_RXQ_MASK;
816 817 818 819 820 821 822 823 824 825 826 827 828 829
	EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
		dropped, index, expected);

	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
}

/* Handle a packet received event
 *
 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
 * wrong destination address
 * Also "is multicast" and "matches multicast filter" flags can be used to
 * discard non-matching multicast packets.
 */
B
Ben Hutchings 已提交
830 831
static void falcon_handle_rx_event(struct efx_channel *channel,
				   const efx_qword_t *event)
832
{
B
Ben Hutchings 已提交
833
	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
834
	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
835
	unsigned expected_ptr;
836
	bool rx_ev_pkt_ok, discard = false, checksummed;
837 838 839 840
	struct efx_rx_queue *rx_queue;
	struct efx_nic *efx = channel->efx;

	/* Basic packet information */
841 842 843 844 845 846 847
	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
		channel->channel);
848

B
Ben Hutchings 已提交
849
	rx_queue = &efx->rx_queue[channel->channel];
850

851
	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
852
	expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
B
Ben Hutchings 已提交
853
	if (unlikely(rx_ev_desc_ptr != expected_ptr))
854 855 856 857 858 859
		falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);

	if (likely(rx_ev_pkt_ok)) {
		/* If packet is marked as OK and packet type is TCP/IPv4 or
		 * UDP/IPv4, then we can rely on the hardware checksum.
		 */
860
		checksummed =
861 862 863
			efx->rx_checksum_enabled &&
			(rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
			 rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP);
864 865
	} else {
		falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
866
					&discard);
867
		checksummed = false;
868 869 870
	}

	/* Detect multicast packets that didn't match the filter */
871
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
872 873
	if (rx_ev_mcast_pkt) {
		unsigned int rx_ev_mcast_hash_match =
874
			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
875 876

		if (unlikely(!rx_ev_mcast_hash_match))
877
			discard = true;
878 879
	}

880 881
	channel->irq_mod_score += 2;

882 883 884 885 886 887 888 889 890 891
	/* Handle received packet */
	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
		      checksummed, discard);
}

/* Global events are basically PHY events */
static void falcon_handle_global_event(struct efx_channel *channel,
				       efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
892
	bool handled = false;
893

894 895 896
	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
897 898 899 900
		efx->phy_op->clear_interrupt(efx);
		queue_work(efx->workqueue, &efx->phy_work);
		handled = true;
	}
901

902
	if ((falcon_rev(efx) >= FALCON_REV_B0) &&
903
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
904
		queue_work(efx->workqueue, &efx->mac_work);
905
		handled = true;
906 907
	}

908
	if (falcon_rev(efx) <= FALCON_REV_A1 ?
909 910
	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
911 912 913 914 915 916
		EFX_ERR(efx, "channel %d seen global RX_RESET "
			"event. Resetting.\n", channel->channel);

		atomic_inc(&efx->rx_reset);
		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
917
		handled = true;
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
	}

	if (!handled)
		EFX_ERR(efx, "channel %d unknown global event "
			EFX_QWORD_FMT "\n", channel->channel,
			EFX_QWORD_VAL(*event));
}

static void falcon_handle_driver_event(struct efx_channel *channel,
				       efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	unsigned int ev_sub_code;
	unsigned int ev_sub_data;

933 934
	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
935 936

	switch (ev_sub_code) {
937
	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
938 939 940
		EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
941
	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
942 943 944
		EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
945
	case FSE_AZ_EVQ_INIT_DONE_EV:
946 947 948
		EFX_LOG(efx, "channel %d EVQ %d initialised\n",
			channel->channel, ev_sub_data);
		break;
949
	case FSE_AZ_SRM_UPD_DONE_EV:
950 951 952
		EFX_TRACE(efx, "channel %d SRAM update done\n",
			  channel->channel);
		break;
953
	case FSE_AZ_WAKE_UP_EV:
954 955 956
		EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
			  channel->channel, ev_sub_data);
		break;
957
	case FSE_AZ_TIMER_EV:
958 959 960
		EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
			  channel->channel, ev_sub_data);
		break;
961
	case FSE_AA_RX_RECOVER_EV:
962 963
		EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
			"Resetting.\n", channel->channel);
964
		atomic_inc(&efx->rx_reset);
965 966 967 968 969
		efx_schedule_reset(efx,
				   EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY :
				   RESET_TYPE_DISABLE);
		break;
970
	case FSE_BZ_RX_DSC_ERROR_EV:
971 972 973 974
		EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
			" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
		break;
975
	case FSE_BZ_TX_DSC_ERROR_EV:
976 977 978 979 980 981 982 983 984 985 986 987
		EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
			" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
		break;
	default:
		EFX_TRACE(efx, "channel %d unknown driver event code %d "
			  "data %04x\n", channel->channel, ev_sub_code,
			  ev_sub_data);
		break;
	}
}

B
Ben Hutchings 已提交
988
int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
989 990 991 992
{
	unsigned int read_ptr;
	efx_qword_t event, *p_event;
	int ev_code;
B
Ben Hutchings 已提交
993
	int rx_packets = 0;
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

	read_ptr = channel->eventq_read_ptr;

	do {
		p_event = falcon_event(channel, read_ptr);
		event = *p_event;

		if (!falcon_event_present(&event))
			/* End of events */
			break;

		EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
			  channel->channel, EFX_QWORD_VAL(event));

		/* Clear this event by marking it all ones */
		EFX_SET_QWORD(*p_event);

1011
		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1012 1013

		switch (ev_code) {
1014
		case FSE_AZ_EV_CODE_RX_EV:
B
Ben Hutchings 已提交
1015 1016
			falcon_handle_rx_event(channel, &event);
			++rx_packets;
1017
			break;
1018
		case FSE_AZ_EV_CODE_TX_EV:
1019 1020
			falcon_handle_tx_event(channel, &event);
			break;
1021 1022 1023
		case FSE_AZ_EV_CODE_DRV_GEN_EV:
			channel->eventq_magic = EFX_QWORD_FIELD(
				event, FSF_AZ_DRV_GEN_EV_MAGIC);
1024 1025 1026 1027
			EFX_LOG(channel->efx, "channel %d received generated "
				"event "EFX_QWORD_FMT"\n", channel->channel,
				EFX_QWORD_VAL(event));
			break;
1028
		case FSE_AZ_EV_CODE_GLOBAL_EV:
1029 1030
			falcon_handle_global_event(channel, &event);
			break;
1031
		case FSE_AZ_EV_CODE_DRIVER_EV:
1032 1033 1034 1035 1036 1037 1038 1039 1040
			falcon_handle_driver_event(channel, &event);
			break;
		default:
			EFX_ERR(channel->efx, "channel %d unknown event type %d"
				" (data " EFX_QWORD_FMT ")\n", channel->channel,
				ev_code, EFX_QWORD_VAL(event));
		}

		/* Increment read pointer */
1041
		read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1042

B
Ben Hutchings 已提交
1043
	} while (rx_packets < rx_quota);
1044 1045

	channel->eventq_read_ptr = read_ptr;
B
Ben Hutchings 已提交
1046
	return rx_packets;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
}

void falcon_set_int_moderation(struct efx_channel *channel)
{
	efx_dword_t timer_cmd;
	struct efx_nic *efx = channel->efx;

	/* Set timer register */
	if (channel->irq_moderation) {
		EFX_POPULATE_DWORD_2(timer_cmd,
1057 1058 1059
				     FRF_AB_TC_TIMER_MODE,
				     FFE_BB_TIMER_MODE_INT_HLDOFF,
				     FRF_AB_TC_TIMER_VAL,
1060
				     channel->irq_moderation - 1);
1061 1062
	} else {
		EFX_POPULATE_DWORD_2(timer_cmd,
1063 1064 1065
				     FRF_AB_TC_TIMER_MODE,
				     FFE_BB_TIMER_MODE_DIS,
				     FRF_AB_TC_TIMER_VAL, 0);
1066
	}
1067
	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1068 1069
	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
			       channel->channel);
1070 1071 1072 1073 1074 1075 1076

}

/* Allocate buffer table entries for event queue */
int falcon_probe_eventq(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
1077 1078 1079 1080
	BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
		     EFX_EVQ_SIZE & EFX_EVQ_MASK);
	return falcon_alloc_special_buffer(efx, &channel->eventq,
					   EFX_EVQ_SIZE * sizeof(efx_qword_t));
1081 1082
}

1083
void falcon_init_eventq(struct efx_channel *channel)
1084 1085 1086 1087 1088 1089 1090 1091 1092
{
	efx_oword_t evq_ptr;
	struct efx_nic *efx = channel->efx;

	EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
		channel->channel, channel->eventq.index,
		channel->eventq.index + channel->eventq.entries - 1);

	/* Pin event queue buffer */
1093
	falcon_init_special_buffer(efx, &channel->eventq);
1094 1095 1096 1097 1098 1099

	/* Fill event queue with all ones (i.e. empty events) */
	memset(channel->eventq.addr, 0xff, channel->eventq.len);

	/* Push event queue to card */
	EFX_POPULATE_OWORD_3(evq_ptr,
1100
			     FRF_AZ_EVQ_EN, 1,
1101
			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1102
			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1103 1104
	efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
			 channel->channel);
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

	falcon_set_int_moderation(channel);
}

void falcon_fini_eventq(struct efx_channel *channel)
{
	efx_oword_t eventq_ptr;
	struct efx_nic *efx = channel->efx;

	/* Remove event queue from card */
	EFX_ZERO_OWORD(eventq_ptr);
1116 1117
	efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
			 channel->channel);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

	/* Unpin event queue */
	falcon_fini_special_buffer(efx, &channel->eventq);
}

/* Free buffers backing event queue */
void falcon_remove_eventq(struct efx_channel *channel)
{
	falcon_free_special_buffer(channel->efx, &channel->eventq);
}


/* Generates a test event on the event queue.  A subsequent call to
 * process_eventq() should pick up the event and place the value of
 * "magic" into channel->eventq_magic;
 */
void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
{
	efx_qword_t test_event;

1138 1139 1140
	EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_DRV_GEN_EV,
			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1141 1142 1143
	falcon_generate_event(channel, &test_event);
}

1144 1145 1146 1147
void falcon_sim_phy_event(struct efx_nic *efx)
{
	efx_qword_t phy_event;

1148 1149
	EFX_POPULATE_QWORD_1(phy_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_GLOBAL_EV);
1150
	if (EFX_IS10G(efx))
1151
		EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_XG_PHY0_INTR, 1);
1152
	else
1153
		EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_G_PHY0_INTR, 1);
1154 1155 1156 1157

	falcon_generate_event(&efx->channel[0], &phy_event);
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
/**************************************************************************
 *
 * Flush handling
 *
 **************************************************************************/


static void falcon_poll_flush_events(struct efx_nic *efx)
{
	struct efx_channel *channel = &efx->channel[0];
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1170
	unsigned int read_ptr = channel->eventq_read_ptr;
1171
	unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1172

1173
	do {
1174 1175 1176
		efx_qword_t *event = falcon_event(channel, read_ptr);
		int ev_code, ev_sub_code, ev_queue;
		bool ev_failed;
1177

1178 1179 1180
		if (!falcon_event_present(event))
			break;

1181 1182 1183 1184 1185
		ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
		ev_sub_code = EFX_QWORD_FIELD(*event,
					      FSF_AZ_DRIVER_EV_SUBCODE);
		if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
		    ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1186
			ev_queue = EFX_QWORD_FIELD(*event,
1187
						   FSF_AZ_DRIVER_EV_SUBDATA);
1188 1189 1190 1191
			if (ev_queue < EFX_TX_QUEUE_COUNT) {
				tx_queue = efx->tx_queue + ev_queue;
				tx_queue->flushed = true;
			}
1192 1193 1194 1195 1196 1197
		} else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
			   ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
			ev_queue = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
			ev_failed = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
			if (ev_queue < efx->n_rx_queues) {
				rx_queue = efx->rx_queue + ev_queue;

				/* retry the rx flush */
				if (ev_failed)
					falcon_flush_rx_queue(rx_queue);
				else
					rx_queue->flushed = true;
			}
		}

1209
		read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1210
	} while (read_ptr != end_ptr);
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
}

/* Handle tx and rx flushes at the same time, since they run in
 * parallel in the hardware and there's no reason for us to
 * serialise them */
int falcon_flush_queues(struct efx_nic *efx)
{
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int i;
	bool outstanding;

	/* Issue flush requests */
	efx_for_each_tx_queue(tx_queue, efx) {
		tx_queue->flushed = false;
		falcon_flush_tx_queue(tx_queue);
	}
	efx_for_each_rx_queue(rx_queue, efx) {
		rx_queue->flushed = false;
		falcon_flush_rx_queue(rx_queue);
	}

	/* Poll the evq looking for flush completions. Since we're not pushing
	 * any more rx or tx descriptors at this point, we're in no danger of
	 * overflowing the evq whilst we wait */
	for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
		msleep(FALCON_FLUSH_INTERVAL);
		falcon_poll_flush_events(efx);

		/* Check if every queue has been succesfully flushed */
		outstanding = false;
		efx_for_each_tx_queue(tx_queue, efx)
			outstanding |= !tx_queue->flushed;
		efx_for_each_rx_queue(rx_queue, efx)
			outstanding |= !rx_queue->flushed;
		if (!outstanding)
			return 0;
	}

	/* Mark the queues as all flushed. We're going to return failure
	 * leading to a reset, or fake up success anyway. "flushed" now
	 * indicates that we tried to flush. */
	efx_for_each_tx_queue(tx_queue, efx) {
		if (!tx_queue->flushed)
			EFX_ERR(efx, "tx queue %d flush command timed out\n",
				tx_queue->queue);
		tx_queue->flushed = true;
	}
	efx_for_each_rx_queue(rx_queue, efx) {
		if (!rx_queue->flushed)
			EFX_ERR(efx, "rx queue %d flush command timed out\n",
				rx_queue->queue);
		rx_queue->flushed = true;
	}

	if (EFX_WORKAROUND_7803(efx))
		return 0;

	return -ETIMEDOUT;
}
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

/**************************************************************************
 *
 * Falcon hardware interrupts
 * The hardware interrupt handler does very little work; all the event
 * queue processing is carried out by per-channel tasklets.
 *
 **************************************************************************/

/* Enable/disable/generate Falcon interrupts */
static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
				     int force)
{
	efx_oword_t int_en_reg_ker;

	EFX_POPULATE_OWORD_2(int_en_reg_ker,
1287 1288
			     FRF_AZ_KER_INT_KER, force,
			     FRF_AZ_DRV_INT_EN_KER, enabled);
1289
	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
}

void falcon_enable_interrupts(struct efx_nic *efx)
{
	efx_oword_t int_adr_reg_ker;
	struct efx_channel *channel;

	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */

	/* Program address */
	EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1302 1303 1304
			     FRF_AZ_NORM_INT_VEC_DIS_KER,
			     EFX_INT_MODE_USE_MSI(efx),
			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1305
	efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
1306 1307 1308 1309 1310 1311

	/* Enable interrupts */
	falcon_interrupts(efx, 1, 0);

	/* Force processing of all the channels to get the EVQ RPTRs up to
	   date */
1312
	efx_for_each_channel(channel, efx)
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		efx_schedule_channel(channel);
}

void falcon_disable_interrupts(struct efx_nic *efx)
{
	/* Disable interrupts */
	falcon_interrupts(efx, 0, 0);
}

/* Generate a Falcon test interrupt
 * Interrupt must already have been enabled, otherwise nasty things
 * may happen.
 */
void falcon_generate_interrupt(struct efx_nic *efx)
{
	falcon_interrupts(efx, 1, 1);
}

/* Acknowledge a legacy interrupt from Falcon
 *
 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 *
 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 * BIU. Interrupt acknowledge is read sensitive so must write instead
 * (then read to ensure the BIU collector is flushed)
 *
 * NB most hardware supports MSI interrupts
 */
static inline void falcon_irq_ack_a1(struct efx_nic *efx)
{
	efx_dword_t reg;

1345
	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1346 1347
	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1348 1349 1350 1351 1352 1353 1354 1355
}

/* Process a fatal interrupt
 * Disable bus mastering ASAP and schedule a reset
 */
static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
1356
	efx_oword_t *int_ker = efx->irq_status.addr;
1357 1358 1359
	efx_oword_t fatal_intr;
	int error, mem_perr;

1360
	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1361
	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1362 1363 1364 1365 1366 1367 1368 1369 1370

	EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
		EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
		EFX_OWORD_VAL(fatal_intr),
		error ? "disabling bus mastering" : "no recognised error");
	if (error == 0)
		goto out;

	/* If this is a memory parity error dump which blocks are offending */
1371
	mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1372 1373
	if (mem_perr) {
		efx_oword_t reg;
1374
		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1375 1376 1377 1378
		EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
			EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
	}

1379
	/* Disable both devices */
1380
	pci_clear_master(efx->pci_dev);
1381
	if (FALCON_IS_DUAL_FUNC(efx))
1382
		pci_clear_master(nic_data->pci_dev2);
1383
	falcon_disable_interrupts(efx);
1384

1385
	/* Count errors and reset or disable the NIC accordingly */
1386 1387 1388 1389
	if (efx->int_error_count == 0 ||
	    time_after(jiffies, efx->int_error_expire)) {
		efx->int_error_count = 0;
		efx->int_error_expire =
1390 1391
			jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
	}
1392
	if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
	} else {
		EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
			"NIC will be disabled\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	}
out:
	return IRQ_HANDLED;
}

/* Handle a legacy interrupt from Falcon
 * Acknowledges the interrupt and schedule event queue processing.
 */
static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
{
1409 1410
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
1411
	irqreturn_t result = IRQ_NONE;
1412 1413 1414 1415 1416 1417
	struct efx_channel *channel;
	efx_dword_t reg;
	u32 queues;
	int syserr;

	/* Read the ISR which also ACKs the interrupts */
1418
	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1419 1420 1421
	queues = EFX_EXTRACT_DWORD(reg, 0, 31);

	/* Check to see if we have a serious error condition */
1422
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1423 1424 1425 1426
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Schedule processing of any interrupting queues */
1427 1428 1429 1430
	efx_for_each_channel(channel, efx) {
		if ((queues & 1) ||
		    falcon_event_present(
			    falcon_event(channel, channel->eventq_read_ptr))) {
1431
			efx_schedule_channel(channel);
1432 1433
			result = IRQ_HANDLED;
		}
1434 1435 1436
		queues >>= 1;
	}

1437 1438 1439 1440 1441 1442 1443
	if (result == IRQ_HANDLED) {
		efx->last_irq_cpu = raw_smp_processor_id();
		EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
			  irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
	}

	return result;
1444 1445 1446 1447 1448
}


static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
{
1449 1450
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	struct efx_channel *channel;
	int syserr;
	int queues;

	/* Check to see if this is our interrupt.  If it isn't, we
	 * exit without having touched the hardware.
	 */
	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
		EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
			  raw_smp_processor_id());
		return IRQ_NONE;
	}
	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
1468
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Determine interrupting queues, clear interrupt status
	 * register and acknowledge the device interrupt.
	 */
	BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
	queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
	EFX_ZERO_OWORD(*int_ker);
	wmb(); /* Ensure the vector is cleared before interrupt ack */
	falcon_irq_ack_a1(efx);

	/* Schedule processing of any interrupting queues */
	channel = &efx->channel[0];
	while (queues) {
		if (queues & 0x01)
			efx_schedule_channel(channel);
		channel++;
		queues >>= 1;
	}

	return IRQ_HANDLED;
}

/* Handle an MSI interrupt from Falcon
 *
 * Handle an MSI hardware interrupt.  This routine schedules event
 * queue processing.  No interrupt acknowledgement cycle is necessary.
 * Also, we never need to check that the interrupt is for us, since
 * MSI interrupts cannot be shared.
 */
static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
{
1502
	struct efx_channel *channel = dev_id;
1503
	struct efx_nic *efx = channel->efx;
1504
	efx_oword_t *int_ker = efx->irq_status.addr;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	int syserr;

	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
	syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Schedule processing of the channel */
	efx_schedule_channel(channel);

	return IRQ_HANDLED;
}


/* Setup RSS indirection table.
 * This maps from the hash value of the packet to RXQ
 */
static void falcon_setup_rss_indir_table(struct efx_nic *efx)
{
	int i = 0;
	unsigned long offset;
	efx_dword_t dword;

1532
	if (falcon_rev(efx) < FALCON_REV_B0)
1533 1534
		return;

1535 1536
	for (offset = FR_BZ_RX_INDIRECTION_TBL;
	     offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1537
	     offset += 0x10) {
1538
		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1539
				     i % efx->n_rx_queues);
1540
		efx_writed(efx, &dword, offset);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		i++;
	}
}

/* Hook interrupt handler(s)
 * Try MSI and then legacy interrupts.
 */
int falcon_init_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	if (!EFX_INT_MODE_USE_MSI(efx)) {
		irq_handler_t handler;
1555
		if (falcon_rev(efx) >= FALCON_REV_B0)
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
			handler = falcon_legacy_interrupt_b0;
		else
			handler = falcon_legacy_interrupt_a1;

		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
				 efx->name, efx);
		if (rc) {
			EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
				efx->pci_dev->irq);
			goto fail1;
		}
		return 0;
	}

	/* Hook MSI or MSI-X interrupt */
1571
	efx_for_each_channel(channel, efx) {
1572 1573
		rc = request_irq(channel->irq, falcon_msi_interrupt,
				 IRQF_PROBE_SHARED, /* Not shared */
1574
				 channel->name, channel);
1575 1576 1577 1578 1579 1580 1581 1582 1583
		if (rc) {
			EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
			goto fail2;
		}
	}

	return 0;

 fail2:
1584
	efx_for_each_channel(channel, efx)
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
		free_irq(channel->irq, channel);
 fail1:
	return rc;
}

void falcon_fini_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	efx_oword_t reg;

	/* Disable MSI/MSI-X interrupts */
1596
	efx_for_each_channel(channel, efx) {
1597 1598
		if (channel->irq)
			free_irq(channel->irq, channel);
1599
	}
1600 1601

	/* ACK legacy interrupt */
1602
	if (falcon_rev(efx) >= FALCON_REV_B0)
1603
		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	else
		falcon_irq_ack_a1(efx);

	/* Disable legacy interrupt */
	if (efx->legacy_irq)
		free_irq(efx->legacy_irq, efx);
}

/**************************************************************************
 *
 * EEPROM/flash
 *
 **************************************************************************
 */

1619
#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1620

1621 1622 1623
static int falcon_spi_poll(struct efx_nic *efx)
{
	efx_oword_t reg;
1624
	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1625
	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1626 1627
}

1628 1629 1630
/* Wait for SPI command completion */
static int falcon_spi_wait(struct efx_nic *efx)
{
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	/* Most commands will finish quickly, so we start polling at
	 * very short intervals.  Sometimes the command may have to
	 * wait for VPD or expansion ROM access outside of our
	 * control, so we allow up to 100 ms. */
	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
	int i;

	for (i = 0; i < 10; i++) {
		if (!falcon_spi_poll(efx))
			return 0;
		udelay(10);
	}
1643

1644
	for (;;) {
1645
		if (!falcon_spi_poll(efx))
1646
			return 0;
1647 1648 1649 1650
		if (time_after_eq(jiffies, timeout)) {
			EFX_ERR(efx, "timed out waiting for SPI\n");
			return -ETIMEDOUT;
		}
1651
		schedule_timeout_uninterruptible(1);
1652
	}
1653 1654
}

1655 1656
int falcon_spi_cmd(const struct efx_spi_device *spi,
		   unsigned int command, int address,
1657
		   const void *in, void *out, size_t len)
1658
{
1659 1660 1661
	struct efx_nic *efx = spi->efx;
	bool addressed = (address >= 0);
	bool reading = (out != NULL);
1662 1663 1664
	efx_oword_t reg;
	int rc;

1665 1666 1667
	/* Input validation */
	if (len > FALCON_SPI_MAX_LEN)
		return -EINVAL;
1668
	BUG_ON(!mutex_is_locked(&efx->spi_lock));
1669

1670 1671
	/* Check that previous command is not still running */
	rc = falcon_spi_poll(efx);
1672 1673 1674
	if (rc)
		return rc;

1675 1676
	/* Program address register, if we have an address */
	if (addressed) {
1677
		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1678
		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1679 1680 1681 1682 1683
	}

	/* Program data register, if we have data */
	if (in != NULL) {
		memcpy(&reg, in, len);
1684
		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1685
	}
1686

1687
	/* Issue read/write command */
1688
	EFX_POPULATE_OWORD_7(reg,
1689 1690 1691 1692 1693 1694
			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
			     FRF_AB_EE_SPI_HCMD_READ, reading,
			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
			     FRF_AB_EE_SPI_HCMD_ADBCNT,
1695
			     (addressed ? spi->addr_len : 0),
1696
			     FRF_AB_EE_SPI_HCMD_ENC, command);
1697
	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1698

1699
	/* Wait for read/write to complete */
1700 1701 1702 1703 1704
	rc = falcon_spi_wait(efx);
	if (rc)
		return rc;

	/* Read data */
1705
	if (out != NULL) {
1706
		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1707 1708 1709
		memcpy(out, &reg, len);
	}

1710 1711 1712
	return 0;
}

1713 1714
static size_t
falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
{
	return min(FALCON_SPI_MAX_LEN,
		   (spi->block_size - (start & (spi->block_size - 1))));
}

static inline u8
efx_spi_munge_command(const struct efx_spi_device *spi,
		      const u8 command, const unsigned int address)
{
	return command | (((address >> 8) & spi->munge_address) << 3);
}

1727 1728
/* Wait up to 10 ms for buffered write completion */
int falcon_spi_wait_write(const struct efx_spi_device *spi)
1729
{
1730 1731
	struct efx_nic *efx = spi->efx;
	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1732
	u8 status;
1733
	int rc;
1734

1735
	for (;;) {
1736 1737 1738 1739 1740 1741
		rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
				    &status, sizeof(status));
		if (rc)
			return rc;
		if (!(status & SPI_STATUS_NRDY))
			return 0;
1742 1743 1744 1745 1746 1747 1748
		if (time_after_eq(jiffies, timeout)) {
			EFX_ERR(efx, "SPI write timeout on device %d"
				" last status=0x%02x\n",
				spi->device_id, status);
			return -ETIMEDOUT;
		}
		schedule_timeout_uninterruptible(1);
1749 1750 1751 1752 1753 1754
	}
}

int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
		    size_t len, size_t *retlen, u8 *buffer)
{
1755 1756
	size_t block_len, pos = 0;
	unsigned int command;
1757 1758 1759
	int rc = 0;

	while (pos < len) {
1760
		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos, NULL,
				    buffer + pos, block_len);
		if (rc)
			break;
		pos += block_len;

		/* Avoid locking up the system */
		cond_resched();
		if (signal_pending(current)) {
			rc = -EINTR;
			break;
		}
	}

	if (retlen)
		*retlen = pos;
	return rc;
}

int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
		     size_t len, size_t *retlen, const u8 *buffer)
{
	u8 verify_buffer[FALCON_SPI_MAX_LEN];
1786 1787
	size_t block_len, pos = 0;
	unsigned int command;
1788 1789 1790 1791 1792 1793 1794
	int rc = 0;

	while (pos < len) {
		rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
		if (rc)
			break;

1795
		block_len = min(len - pos,
1796 1797 1798 1799 1800 1801 1802
				falcon_spi_write_limit(spi, start + pos));
		command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos,
				    buffer + pos, NULL, block_len);
		if (rc)
			break;

1803
		rc = falcon_spi_wait_write(spi);
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
		if (rc)
			break;

		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos,
				    NULL, verify_buffer, block_len);
		if (memcmp(verify_buffer, buffer + pos, block_len)) {
			rc = -EIO;
			break;
		}

		pos += block_len;

		/* Avoid locking up the system */
		cond_resched();
		if (signal_pending(current)) {
			rc = -EINTR;
			break;
		}
	}

	if (retlen)
		*retlen = pos;
	return rc;
}

1830 1831 1832 1833 1834 1835
/**************************************************************************
 *
 * MAC wrapper
 *
 **************************************************************************
 */
1836 1837

static int falcon_reset_macs(struct efx_nic *efx)
1838
{
1839
	efx_oword_t reg;
1840 1841
	int count;

1842 1843 1844 1845 1846
	if (falcon_rev(efx) < FALCON_REV_B0) {
		/* It's not safe to use GLB_CTL_REG to reset the
		 * macs, so instead use the internal MAC resets
		 */
		if (!EFX_IS10G(efx)) {
1847
			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1848
			efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1849 1850
			udelay(1000);

1851
			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1852
			efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1853 1854 1855
			udelay(1000);
			return 0;
		} else {
1856
			EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1857
			efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1858 1859

			for (count = 0; count < 10000; count++) {
1860
				efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1861 1862
				if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
				    0)
1863 1864 1865
					return 0;
				udelay(10);
			}
1866

1867 1868 1869 1870
			EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
			return -ETIMEDOUT;
		}
	}
1871 1872 1873

	/* MAC stats will fail whilst the TX fifo is draining. Serialise
	 * the drain sequence with the statistics fetch */
1874
	efx_stats_disable(efx);
1875

1876
	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1877
	EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
1878
	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1879

1880
	efx_reado(efx, &reg, FR_AB_GLB_CTL);
1881 1882 1883
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1884
	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1885 1886 1887

	count = 0;
	while (1) {
1888
		efx_reado(efx, &reg, FR_AB_GLB_CTL);
1889 1890 1891
		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
			EFX_LOG(efx, "Completed MAC reset after %d loops\n",
				count);
			break;
		}
		if (count > 20) {
			EFX_ERR(efx, "MAC reset failed\n");
			break;
		}
		count++;
		udelay(10);
	}

1904
	efx_stats_enable(efx);
1905 1906 1907

	/* If we've reset the EM block and the link is up, then
	 * we'll have to kick the XAUI link so the PHY can recover */
1908
	if (efx->link_state.up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1909
		falcon_reset_xaui(efx);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

	return 0;
}

void falcon_drain_tx_fifo(struct efx_nic *efx)
{
	efx_oword_t reg;

	if ((falcon_rev(efx) < FALCON_REV_B0) ||
	    (efx->loopback_mode != LOOPBACK_NONE))
		return;

1922
	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1923
	/* There is no point in draining more than once */
1924
	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1925 1926 1927
		return;

	falcon_reset_macs(efx);
1928 1929 1930 1931
}

void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
{
1932
	efx_oword_t reg;
1933

1934
	if (falcon_rev(efx) < FALCON_REV_B0)
1935 1936 1937
		return;

	/* Isolate the MAC -> RX */
1938
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1939
	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1940
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1941

1942
	if (!efx->link_state.up)
1943 1944 1945 1946 1947
		falcon_drain_tx_fifo(efx);
}

void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
{
1948
	struct efx_link_state *link_state = &efx->link_state;
1949 1950
	efx_oword_t reg;
	int link_speed;
1951
	bool tx_fc;
1952

1953
	switch (link_state->speed) {
B
Ben Hutchings 已提交
1954 1955 1956 1957 1958
	case 10000: link_speed = 3; break;
	case 1000:  link_speed = 2; break;
	case 100:   link_speed = 1; break;
	default:    link_speed = 0; break;
	}
1959 1960 1961 1962 1963
	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
	 * as advertised.  Disable to ensure packets are not
	 * indefinitely held and TX queue can be flushed at any point
	 * while the link is down. */
	EFX_POPULATE_OWORD_5(reg,
1964 1965 1966 1967 1968
			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
			     FRF_AB_MAC_BCAD_ACPT, 1,
			     FRF_AB_MAC_UC_PROM, efx->promiscuous,
			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
			     FRF_AB_MAC_SPEED, link_speed);
1969 1970
	/* On B0, MAC backpressure can be disabled and packets get
	 * discarded. */
1971
	if (falcon_rev(efx) >= FALCON_REV_B0) {
1972
		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1973
				    !link_state->up);
1974 1975
	}

1976
	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1977 1978 1979 1980 1981 1982 1983

	/* Restore the multicast hash registers. */
	falcon_set_multicast_hash(efx);

	/* Transmission of pause frames when RX crosses the threshold is
	 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
	 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1984
	tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1985
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1986
	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
1987 1988

	/* Unisolate the MAC -> RX */
1989
	if (falcon_rev(efx) >= FALCON_REV_B0)
1990
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1991
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
}

int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
{
	efx_oword_t reg;
	u32 *dma_done;
	int i;

	if (disable_dma_stats)
		return 0;

	/* Statistics fetch will fail if the MAC is in TX drain */
2004
	if (falcon_rev(efx) >= FALCON_REV_B0) {
2005
		efx_oword_t temp;
2006
		efx_reado(efx, &temp, FR_AB_MAC_CTRL);
2007
		if (EFX_OWORD_FIELD(temp, FRF_BB_TXFIFO_DRAIN_EN))
2008 2009 2010 2011 2012 2013 2014 2015 2016
			return 0;
	}

	dma_done = (efx->stats_buffer.addr + done_offset);
	*dma_done = FALCON_STATS_NOT_DONE;
	wmb(); /* ensure done flag is clear */

	/* Initiate DMA transfer of stats */
	EFX_POPULATE_OWORD_2(reg,
2017 2018
			     FRF_AB_MAC_STAT_DMA_CMD, 1,
			     FRF_AB_MAC_STAT_DMA_ADR,
2019
			     efx->stats_buffer.dma_addr);
2020
	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2021 2022 2023

	/* Wait for transfer to complete */
	for (i = 0; i < 400; i++) {
2024 2025
		if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
			rmb(); /* Ensure the stats are valid. */
2026
			return 0;
2027
		}
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
		udelay(10);
	}

	EFX_ERR(efx, "timed out waiting for statistics\n");
	return -ETIMEDOUT;
}

/**************************************************************************
 *
 * PHY access via GMII
 *
 **************************************************************************
 */

/* Wait for GMII access to complete */
static int falcon_gmii_wait(struct efx_nic *efx)
{
	efx_dword_t md_stat;
	int count;

2048 2049
	/* wait upto 50ms - taken max from datasheet */
	for (count = 0; count < 5000; count++) {
2050
		efx_readd(efx, &md_stat, FR_AB_MD_STAT);
2051 2052 2053
		if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
			if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
			    EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
				EFX_ERR(efx, "error from GMII access "
					EFX_DWORD_FMT"\n",
					EFX_DWORD_VAL(md_stat));
				return -EIO;
			}
			return 0;
		}
		udelay(10);
	}
	EFX_ERR(efx, "timed out waiting for GMII\n");
	return -ETIMEDOUT;
}

2067 2068 2069
/* Write an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_write(struct net_device *net_dev,
			     int prtad, int devad, u16 addr, u16 value)
2070
{
2071
	struct efx_nic *efx = netdev_priv(net_dev);
2072
	efx_oword_t reg;
2073
	int rc;
2074

2075 2076
	EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
		    prtad, devad, addr, value);
2077 2078 2079

	spin_lock_bh(&efx->phy_lock);

2080 2081 2082
	/* Check MDIO not currently being accessed */
	rc = falcon_gmii_wait(efx);
	if (rc)
2083 2084 2085
		goto out;

	/* Write the address/ID register */
2086
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2087
	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2088

2089 2090
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
			     FRF_AB_MD_DEV_ADR, devad);
2091
	efx_writeo(efx, &reg, FR_AB_MD_ID);
2092 2093

	/* Write data */
2094
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2095
	efx_writeo(efx, &reg, FR_AB_MD_TXD);
2096 2097

	EFX_POPULATE_OWORD_2(reg,
2098 2099
			     FRF_AB_MD_WRC, 1,
			     FRF_AB_MD_GC, 0);
2100
	efx_writeo(efx, &reg, FR_AB_MD_CS);
2101 2102

	/* Wait for data to be written */
2103 2104
	rc = falcon_gmii_wait(efx);
	if (rc) {
2105 2106
		/* Abort the write operation */
		EFX_POPULATE_OWORD_2(reg,
2107 2108
				     FRF_AB_MD_WRC, 0,
				     FRF_AB_MD_GC, 1);
2109
		efx_writeo(efx, &reg, FR_AB_MD_CS);
2110 2111 2112 2113 2114
		udelay(10);
	}

 out:
	spin_unlock_bh(&efx->phy_lock);
2115
	return rc;
2116 2117
}

2118 2119 2120
/* Read an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_read(struct net_device *net_dev,
			    int prtad, int devad, u16 addr)
2121
{
2122
	struct efx_nic *efx = netdev_priv(net_dev);
2123
	efx_oword_t reg;
2124
	int rc;
2125 2126 2127

	spin_lock_bh(&efx->phy_lock);

2128 2129 2130
	/* Check MDIO not currently being accessed */
	rc = falcon_gmii_wait(efx);
	if (rc)
2131 2132
		goto out;

2133
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2134
	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2135

2136 2137
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
			     FRF_AB_MD_DEV_ADR, devad);
2138
	efx_writeo(efx, &reg, FR_AB_MD_ID);
2139 2140

	/* Request data to be read */
2141
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2142
	efx_writeo(efx, &reg, FR_AB_MD_CS);
2143 2144

	/* Wait for data to become available */
2145 2146
	rc = falcon_gmii_wait(efx);
	if (rc == 0) {
2147
		efx_reado(efx, &reg, FR_AB_MD_RXD);
2148
		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2149 2150
		EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
			    prtad, devad, addr, rc);
2151 2152 2153
	} else {
		/* Abort the read operation */
		EFX_POPULATE_OWORD_2(reg,
2154 2155
				     FRF_AB_MD_RIC, 0,
				     FRF_AB_MD_GC, 1);
2156
		efx_writeo(efx, &reg, FR_AB_MD_CS);
2157

2158 2159
		EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
			prtad, devad, addr, rc);
2160 2161 2162 2163
	}

 out:
	spin_unlock_bh(&efx->phy_lock);
2164
	return rc;
2165 2166
}

2167 2168 2169 2170 2171
int falcon_switch_mac(struct efx_nic *efx)
{
	struct efx_mac_operations *old_mac_op = efx->mac_op;
	efx_oword_t nic_stat;
	unsigned strap_val;
2172 2173 2174 2175
	int rc = 0;

	/* Don't try to fetch MAC stats while we're switching MACs */
	efx_stats_disable(efx);
2176 2177 2178

	/* Internal loopbacks override the phy speed setting */
	if (efx->loopback_mode == LOOPBACK_GMAC) {
2179 2180
		efx->link_state.speed = 1000;
		efx->link_state.fd = true;
2181
	} else if (LOOPBACK_INTERNAL(efx)) {
2182 2183
		efx->link_state.speed = 10000;
		efx->link_state.fd = true;
2184 2185
	}

2186
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
2187 2188 2189
	efx->mac_op = (EFX_IS10G(efx) ?
		       &falcon_xmac_operations : &falcon_gmac_operations);

2190 2191
	/* Always push the NIC_STAT_REG setting even if the mac hasn't
	 * changed, because this function is run post online reset */
2192
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2193 2194
	strap_val = EFX_IS10G(efx) ? 5 : 3;
	if (falcon_rev(efx) >= FALCON_REV_B0) {
2195 2196
		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
2197
		efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
2198 2199 2200
	} else {
		/* Falcon A1 does not support 1G/10G speed switching
		 * and must not be used with a PHY that does. */
2201 2202
		BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
		       strap_val);
2203 2204
	}

2205
	if (old_mac_op == efx->mac_op)
2206
		goto out;
2207 2208

	EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2209 2210 2211
	/* Not all macs support a mac-level link state */
	efx->mac_up = true;

2212 2213 2214 2215
	rc = falcon_reset_macs(efx);
out:
	efx_stats_enable(efx);
	return rc;
2216 2217
}

2218 2219 2220 2221 2222
/* This call is responsible for hooking in the MAC and PHY operations */
int falcon_probe_port(struct efx_nic *efx)
{
	int rc;

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
	switch (efx->phy_type) {
	case PHY_TYPE_SFX7101:
		efx->phy_op = &falcon_sfx7101_phy_ops;
		break;
	case PHY_TYPE_SFT9001A:
	case PHY_TYPE_SFT9001B:
		efx->phy_op = &falcon_sft9001_phy_ops;
		break;
	case PHY_TYPE_QT2022C2:
	case PHY_TYPE_QT2025C:
2233
		efx->phy_op = &falcon_qt202x_phy_ops;
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
		break;
	default:
		EFX_ERR(efx, "Unknown PHY type %d\n",
			efx->phy_type);
		return -ENODEV;
	}

	if (efx->phy_op->macs & EFX_XMAC)
		efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
					(1 << LOOPBACK_XGXS) |
					(1 << LOOPBACK_XAUI));
	if (efx->phy_op->macs & EFX_GMAC)
		efx->loopback_modes |= (1 << LOOPBACK_GMAC);
	efx->loopback_modes |= efx->phy_op->loopbacks;
2248

2249 2250 2251 2252 2253
	/* Set up MDIO structure for PHY */
	efx->mdio.mmds = efx->phy_op->mmds;
	efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
	efx->mdio.mdio_read = falcon_mdio_read;
	efx->mdio.mdio_write = falcon_mdio_write;
2254 2255

	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2256
	if (falcon_rev(efx) >= FALCON_REV_B0)
B
Ben Hutchings 已提交
2257
		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2258
	else
B
Ben Hutchings 已提交
2259
		efx->wanted_fc = EFX_FC_RX;
2260 2261 2262 2263 2264 2265

	/* Allocate buffer for stats */
	rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
				 FALCON_MAC_STATS_SIZE);
	if (rc)
		return rc;
2266 2267
	EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
		(u64)efx->stats_buffer.dma_addr,
2268
		efx->stats_buffer.addr,
2269
		(u64)virt_to_phys(efx->stats_buffer.addr));
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

	return 0;
}

void falcon_remove_port(struct efx_nic *efx)
{
	falcon_free_buffer(efx, &efx->stats_buffer);
}

/**************************************************************************
 *
 * Multicast filtering
 *
 **************************************************************************
 */

void falcon_set_multicast_hash(struct efx_nic *efx)
{
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;

	/* Broadcast packets go through the multicast hash filter.
	 * ether_crc_le() of the broadcast address is 0xbe2612ff
	 * so we always add bit 0xff to the mask.
	 */
	set_bit_le(0xff, mc_hash->byte);

2296 2297
	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
2298 2299
}

B
Ben Hutchings 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

/**************************************************************************
 *
 * Falcon test code
 *
 **************************************************************************/

int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
{
	struct falcon_nvconfig *nvconfig;
	struct efx_spi_device *spi;
	void *region;
	int rc, magic_num, struct_ver;
	__le16 *word, *limit;
	u32 csum;

2316 2317 2318 2319
	spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
	if (!spi)
		return -EINVAL;

2320
	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
B
Ben Hutchings 已提交
2321 2322
	if (!region)
		return -ENOMEM;
2323
	nvconfig = region + FALCON_NVCONFIG_OFFSET;
B
Ben Hutchings 已提交
2324

2325
	mutex_lock(&efx->spi_lock);
2326
	rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2327
	mutex_unlock(&efx->spi_lock);
B
Ben Hutchings 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	if (rc) {
		EFX_ERR(efx, "Failed to read %s\n",
			efx->spi_flash ? "flash" : "EEPROM");
		rc = -EIO;
		goto out;
	}

	magic_num = le16_to_cpu(nvconfig->board_magic_num);
	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);

	rc = -EINVAL;
2339
	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
B
Ben Hutchings 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
		EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
		goto out;
	}
	if (struct_ver < 2) {
		EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
		goto out;
	} else if (struct_ver < 4) {
		word = &nvconfig->board_magic_num;
		limit = (__le16 *) (nvconfig + 1);
	} else {
		word = region;
2351
		limit = region + FALCON_NVCONFIG_END;
B
Ben Hutchings 已提交
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
	}
	for (csum = 0; word < limit; ++word)
		csum += le16_to_cpu(*word);

	if (~csum & 0xffff) {
		EFX_ERR(efx, "NVRAM has incorrect checksum\n");
		goto out;
	}

	rc = 0;
	if (nvconfig_out)
		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));

 out:
	kfree(region);
	return rc;
}

/* Registers tested in the falcon register test */
static struct {
	unsigned address;
	efx_oword_t mask;
} efx_test_registers[] = {
2375
	{ FR_AZ_ADR_REGION,
B
Ben Hutchings 已提交
2376
	  EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2377
	{ FR_AZ_RX_CFG,
B
Ben Hutchings 已提交
2378
	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2379
	{ FR_AZ_TX_CFG,
B
Ben Hutchings 已提交
2380
	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2381
	{ FR_AZ_TX_RESERVED,
B
Ben Hutchings 已提交
2382
	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2383
	{ FR_AB_MAC_CTRL,
B
Ben Hutchings 已提交
2384
	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2385
	{ FR_AZ_SRM_TX_DC_CFG,
B
Ben Hutchings 已提交
2386
	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2387
	{ FR_AZ_RX_DC_CFG,
B
Ben Hutchings 已提交
2388
	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2389
	{ FR_AZ_RX_DC_PF_WM,
B
Ben Hutchings 已提交
2390
	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2391
	{ FR_BZ_DP_CTRL,
B
Ben Hutchings 已提交
2392
	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2393
	{ FR_AB_GM_CFG2,
2394
	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2395
	{ FR_AB_GMF_CFG0,
2396
	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2397
	{ FR_AB_XM_GLB_CFG,
B
Ben Hutchings 已提交
2398
	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2399
	{ FR_AB_XM_TX_CFG,
B
Ben Hutchings 已提交
2400
	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2401
	{ FR_AB_XM_RX_CFG,
B
Ben Hutchings 已提交
2402
	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2403
	{ FR_AB_XM_RX_PARAM,
B
Ben Hutchings 已提交
2404
	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2405
	{ FR_AB_XM_FC,
B
Ben Hutchings 已提交
2406
	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2407
	{ FR_AB_XM_ADR_LO,
B
Ben Hutchings 已提交
2408
	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2409
	{ FR_AB_XX_SD_CTL,
B
Ben Hutchings 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
};

static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
				     const efx_oword_t *mask)
{
	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}

int falcon_test_registers(struct efx_nic *efx)
{
	unsigned address = 0, i, j;
	efx_oword_t mask, imask, original, reg, buf;

	/* Falcon should be in loopback to isolate the XMAC from the PHY */
	WARN_ON(!LOOPBACK_INTERNAL(efx));

	for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
		address = efx_test_registers[i].address;
		mask = imask = efx_test_registers[i].mask;
		EFX_INVERT_OWORD(imask);

2433
		efx_reado(efx, &original, address);
B
Ben Hutchings 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

		/* bit sweep on and off */
		for (j = 0; j < 128; j++) {
			if (!EFX_EXTRACT_OWORD32(mask, j, j))
				continue;

			/* Test this testable bit can be set in isolation */
			EFX_AND_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 1);

2444 2445
			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);
B
Ben Hutchings 已提交
2446 2447 2448 2449 2450 2451 2452 2453

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;

			/* Test this testable bit can be cleared in isolation */
			EFX_OR_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 0);

2454 2455
			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);
B
Ben Hutchings 已提交
2456 2457 2458 2459 2460

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;
		}

2461
		efx_writeo(efx, &original, address);
B
Ben Hutchings 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	}

	return 0;

fail:
	EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
		" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
		EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
	return -EIO;
}

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
/**************************************************************************
 *
 * Device reset
 *
 **************************************************************************
 */

/* Resets NIC to known state.  This routine must be called in process
 * context and is allowed to sleep. */
int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
	efx_oword_t glb_ctl_reg_ker;
	int rc;

2488
	EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

	/* Initiate device reset */
	if (method == RESET_TYPE_WORLD) {
		rc = pci_save_state(efx->pci_dev);
		if (rc) {
			EFX_ERR(efx, "failed to backup PCI state of primary "
				"function prior to hardware reset\n");
			goto fail1;
		}
		if (FALCON_IS_DUAL_FUNC(efx)) {
			rc = pci_save_state(nic_data->pci_dev2);
			if (rc) {
				EFX_ERR(efx, "failed to backup PCI state of "
					"secondary function prior to "
					"hardware reset\n");
				goto fail2;
			}
		}

		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2509 2510 2511
				     FRF_AB_EXT_PHY_RST_DUR,
				     FFE_AB_EXT_PHY_RST_DUR_10240US,
				     FRF_AB_SWRST, 1);
2512 2513
	} else {
		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
				     /* exclude PHY from "invisible" reset */
				     FRF_AB_EXT_PHY_RST_CTL,
				     method == RESET_TYPE_INVISIBLE,
				     /* exclude EEPROM/flash and PCIe */
				     FRF_AB_PCIE_CORE_RST_CTL, 1,
				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
				     FRF_AB_PCIE_SD_RST_CTL, 1,
				     FRF_AB_EE_RST_CTL, 1,
				     FRF_AB_EXT_PHY_RST_DUR,
				     FFE_AB_EXT_PHY_RST_DUR_10240US,
				     FRF_AB_SWRST, 1);
	}
2526
	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

	EFX_LOG(efx, "waiting for hardware reset\n");
	schedule_timeout_uninterruptible(HZ / 20);

	/* Restore PCI configuration if needed */
	if (method == RESET_TYPE_WORLD) {
		if (FALCON_IS_DUAL_FUNC(efx)) {
			rc = pci_restore_state(nic_data->pci_dev2);
			if (rc) {
				EFX_ERR(efx, "failed to restore PCI config for "
					"the secondary function\n");
				goto fail3;
			}
		}
		rc = pci_restore_state(efx->pci_dev);
		if (rc) {
			EFX_ERR(efx, "failed to restore PCI config for the "
				"primary function\n");
			goto fail4;
		}
		EFX_LOG(efx, "successfully restored PCI config\n");
	}

	/* Assert that reset complete */
2551
	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2552
	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
		rc = -ETIMEDOUT;
		EFX_ERR(efx, "timed out waiting for hardware reset\n");
		goto fail5;
	}
	EFX_LOG(efx, "hardware reset complete\n");

	return 0;

	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
fail2:
fail3:
	pci_restore_state(efx->pci_dev);
fail1:
fail4:
fail5:
	return rc;
}

/* Zeroes out the SRAM contents.  This routine must be called in
 * process context and is allowed to sleep.
 */
static int falcon_reset_sram(struct efx_nic *efx)
{
	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
	int count;

	/* Set the SRAM wake/sleep GPIO appropriately. */
2580
	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2581 2582
	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2583
	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2584 2585 2586

	/* Initiate SRAM reset */
	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2587 2588
			     FRF_AZ_SRM_INIT_EN, 1,
			     FRF_AZ_SRM_NB_SZ, 0);
2589
	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599

	/* Wait for SRAM reset to complete */
	count = 0;
	do {
		EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);

		/* SRAM reset is slow; expect around 16ms */
		schedule_timeout_uninterruptible(HZ / 50);

		/* Check for reset complete */
2600
		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2601
		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
			EFX_LOG(efx, "SRAM reset complete\n");

			return 0;
		}
	} while (++count < 20);	/* wait upto 0.4 sec */

	EFX_ERR(efx, "timed out waiting for SRAM reset\n");
	return -ETIMEDOUT;
}

2612 2613 2614 2615 2616 2617 2618
static int falcon_spi_device_init(struct efx_nic *efx,
				  struct efx_spi_device **spi_device_ret,
				  unsigned int device_id, u32 device_type)
{
	struct efx_spi_device *spi_device;

	if (device_type != 0) {
2619
		spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2620 2621 2622 2623 2624 2625 2626 2627 2628
		if (!spi_device)
			return -ENOMEM;
		spi_device->device_id = device_id;
		spi_device->size =
			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
		spi_device->addr_len =
			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
		spi_device->munge_address = (spi_device->size == 1 << 9 &&
					     spi_device->addr_len == 1);
2629 2630 2631 2632 2633
		spi_device->erase_command =
			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
		spi_device->erase_size =
			1 << SPI_DEV_TYPE_FIELD(device_type,
						SPI_DEV_TYPE_ERASE_SIZE);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
		spi_device->block_size =
			1 << SPI_DEV_TYPE_FIELD(device_type,
						SPI_DEV_TYPE_BLOCK_SIZE);

		spi_device->efx = efx;
	} else {
		spi_device = NULL;
	}

	kfree(*spi_device_ret);
	*spi_device_ret = spi_device;
	return 0;
}


static void falcon_remove_spi_devices(struct efx_nic *efx)
{
	kfree(efx->spi_eeprom);
	efx->spi_eeprom = NULL;
	kfree(efx->spi_flash);
	efx->spi_flash = NULL;
}

2657 2658 2659 2660
/* Extract non-volatile configuration */
static int falcon_probe_nvconfig(struct efx_nic *efx)
{
	struct falcon_nvconfig *nvconfig;
B
Ben Hutchings 已提交
2661
	int board_rev;
2662 2663 2664
	int rc;

	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2665 2666
	if (!nvconfig)
		return -ENOMEM;
2667

B
Ben Hutchings 已提交
2668 2669 2670
	rc = falcon_read_nvram(efx, nvconfig);
	if (rc == -EINVAL) {
		EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2671
		efx->phy_type = PHY_TYPE_NONE;
2672
		efx->mdio.prtad = MDIO_PRTAD_NONE;
2673
		board_rev = 0;
B
Ben Hutchings 已提交
2674 2675 2676
		rc = 0;
	} else if (rc) {
		goto fail1;
2677 2678
	} else {
		struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2679
		struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2680 2681

		efx->phy_type = v2->port0_phy_type;
2682
		efx->mdio.prtad = v2->port0_phy_addr;
2683
		board_rev = le16_to_cpu(v2->board_revision);
2684

B
Ben Hutchings 已提交
2685
		if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2686 2687 2688 2689
			rc = falcon_spi_device_init(
				efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
				le32_to_cpu(v3->spi_device_type
					    [FFE_AB_SPI_DEVICE_FLASH]));
2690 2691
			if (rc)
				goto fail2;
2692 2693 2694 2695
			rc = falcon_spi_device_init(
				efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
				le32_to_cpu(v3->spi_device_type
					    [FFE_AB_SPI_DEVICE_EEPROM]));
2696 2697 2698
			if (rc)
				goto fail2;
		}
2699 2700
	}

B
Ben Hutchings 已提交
2701 2702 2703
	/* Read the MAC addresses */
	memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);

2704
	EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2705

2706
	falcon_probe_board(efx, board_rev);
2707

2708 2709 2710 2711 2712 2713
	kfree(nvconfig);
	return 0;

 fail2:
	falcon_remove_spi_devices(efx);
 fail1:
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
	kfree(nvconfig);
	return rc;
}

/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
 * count, port speed).  Set workaround and feature flags accordingly.
 */
static int falcon_probe_nic_variant(struct efx_nic *efx)
{
	efx_oword_t altera_build;
2724
	efx_oword_t nic_stat;
2725

2726
	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2727
	if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2728 2729 2730 2731
		EFX_ERR(efx, "Falcon FPGA not supported\n");
		return -ENODEV;
	}

2732
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2733

2734
	switch (falcon_rev(efx)) {
2735 2736 2737 2738 2739
	case FALCON_REV_A0:
	case 0xff:
		EFX_ERR(efx, "Falcon rev A0 not supported\n");
		return -ENODEV;

2740
	case FALCON_REV_A1:
2741
		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2742 2743 2744 2745 2746 2747 2748 2749 2750
			EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
			return -ENODEV;
		}
		break;

	case FALCON_REV_B0:
		break;

	default:
2751
		EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2752 2753 2754
		return -ENODEV;
	}

2755
	/* Initial assumed speed */
2756
	efx->link_state.speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000;
2757

2758 2759 2760
	return 0;
}

2761 2762 2763 2764
/* Probe all SPI devices on the NIC */
static void falcon_probe_spi_devices(struct efx_nic *efx)
{
	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2765
	int boot_dev;
2766

2767 2768 2769
	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2770

2771 2772 2773
	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2774
		EFX_LOG(efx, "Booted from %s\n",
2775
			boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2776 2777 2778 2779 2780 2781
	} else {
		/* Disable VPD and set clock dividers to safe
		 * values for initial programming. */
		boot_dev = -1;
		EFX_LOG(efx, "Booted from internal ASIC settings;"
			" setting SPI config\n");
2782
		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2783
				     /* 125 MHz / 7 ~= 20 MHz */
2784
				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2785
				     /* 125 MHz / 63 ~= 2 MHz */
2786
				     FRF_AB_EE_EE_CLOCK_DIV, 63);
2787
		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2788 2789
	}

2790 2791 2792
	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
		falcon_spi_device_init(efx, &efx->spi_flash,
				       FFE_AB_SPI_DEVICE_FLASH,
2793
				       default_flash_type);
2794 2795 2796
	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
		falcon_spi_device_init(efx, &efx->spi_eeprom,
				       FFE_AB_SPI_DEVICE_EEPROM,
2797
				       large_eeprom_type);
2798 2799
}

2800 2801 2802
int falcon_probe_nic(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data;
2803
	struct falcon_board *board;
2804 2805 2806 2807
	int rc;

	/* Allocate storage for hardware specific data */
	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2808 2809
	if (!nic_data)
		return -ENOMEM;
2810
	efx->nic_data = nic_data;
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848

	/* Determine number of ports etc. */
	rc = falcon_probe_nic_variant(efx);
	if (rc)
		goto fail1;

	/* Probe secondary function if expected */
	if (FALCON_IS_DUAL_FUNC(efx)) {
		struct pci_dev *dev = pci_dev_get(efx->pci_dev);

		while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
					     dev))) {
			if (dev->bus == efx->pci_dev->bus &&
			    dev->devfn == efx->pci_dev->devfn + 1) {
				nic_data->pci_dev2 = dev;
				break;
			}
		}
		if (!nic_data->pci_dev2) {
			EFX_ERR(efx, "failed to find secondary function\n");
			rc = -ENODEV;
			goto fail2;
		}
	}

	/* Now we can reset the NIC */
	rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
	if (rc) {
		EFX_ERR(efx, "failed to reset NIC\n");
		goto fail3;
	}

	/* Allocate memory for INT_KER */
	rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
	if (rc)
		goto fail4;
	BUG_ON(efx->irq_status.dma_addr & 0x0f);

2849 2850 2851
	EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
		(u64)efx->irq_status.dma_addr,
		efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2852

2853 2854
	falcon_probe_spi_devices(efx);

2855 2856 2857 2858 2859
	/* Read in the non-volatile configuration */
	rc = falcon_probe_nvconfig(efx);
	if (rc)
		goto fail5;

2860
	/* Initialise I2C adapter */
2861 2862 2863 2864 2865 2866 2867 2868 2869
	board = falcon_board(efx);
	board->i2c_adap.owner = THIS_MODULE;
	board->i2c_data = falcon_i2c_bit_operations;
	board->i2c_data.data = efx;
	board->i2c_adap.algo_data = &board->i2c_data;
	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
		sizeof(board->i2c_adap.name));
	rc = i2c_bit_add_bus(&board->i2c_adap);
2870 2871 2872
	if (rc)
		goto fail5;

2873 2874 2875 2876 2877 2878
	rc = falcon_board(efx)->init(efx);
	if (rc) {
		EFX_ERR(efx, "failed to initialise board\n");
		goto fail6;
	}

2879 2880
	return 0;

2881
 fail6:
2882 2883
	BUG_ON(i2c_del_adapter(&board->i2c_adap));
	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2884
 fail5:
2885
	falcon_remove_spi_devices(efx);
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	falcon_free_buffer(efx, &efx->irq_status);
 fail4:
 fail3:
	if (nic_data->pci_dev2) {
		pci_dev_put(nic_data->pci_dev2);
		nic_data->pci_dev2 = NULL;
	}
 fail2:
 fail1:
	kfree(efx->nic_data);
	return rc;
}

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
static void falcon_init_rx_cfg(struct efx_nic *efx)
{
	/* Prior to Siena the RX DMA engine will split each frame at
	 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
	 * be so large that that never happens. */
	const unsigned huge_buf_size = (3 * 4096) >> 5;
	/* RX control FIFO thresholds (32 entries) */
	const unsigned ctrl_xon_thr = 20;
	const unsigned ctrl_xoff_thr = 25;
	/* RX data FIFO thresholds (256-byte units; size varies) */
2909 2910
	int data_xon_thr = rx_xon_thresh_bytes >> 8;
	int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2911 2912
	efx_oword_t reg;

2913
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
2914
	if (falcon_rev(efx) <= FALCON_REV_A1) {
2915 2916 2917 2918 2919
		/* Data FIFO size is 5.5K */
		if (data_xon_thr < 0)
			data_xon_thr = 512 >> 8;
		if (data_xoff_thr < 0)
			data_xoff_thr = 2048 >> 8;
2920 2921 2922 2923 2924 2925 2926
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
				    huge_buf_size);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2927
	} else {
2928 2929 2930 2931 2932
		/* Data FIFO size is 80K; register fields moved */
		if (data_xon_thr < 0)
			data_xon_thr = 27648 >> 8; /* ~3*max MTU */
		if (data_xoff_thr < 0)
			data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
2933 2934 2935 2936 2937 2938 2939 2940
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
				    huge_buf_size);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2941
	}
2942
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2943 2944
}

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
/* This call performs hardware-specific global initialisation, such as
 * defining the descriptor cache sizes and number of RSS channels.
 * It does not set up any buffers, descriptor rings or event queues.
 */
int falcon_init_nic(struct efx_nic *efx)
{
	efx_oword_t temp;
	int rc;

	/* Use on-chip SRAM */
2955
	efx_reado(efx, &temp, FR_AB_NIC_STAT);
2956
	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2957
	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2958

B
Ben Hutchings 已提交
2959 2960
	/* Set the source of the GMAC clock */
	if (falcon_rev(efx) == FALCON_REV_B0) {
2961
		efx_reado(efx, &temp, FR_AB_GPIO_CTL);
2962
		EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
2963
		efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
B
Ben Hutchings 已提交
2964 2965
	}

2966 2967 2968 2969 2970
	rc = falcon_reset_sram(efx);
	if (rc)
		return rc;

	/* Set positions of descriptor caches in SRAM. */
2971
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2972
	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
2973
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2974
	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
2975 2976 2977

	/* Set TX descriptor cache size. */
	BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
2978
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2979
	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
2980 2981 2982 2983 2984

	/* Set RX descriptor cache size.  Set low watermark to size-8, as
	 * this allows most efficient prefetching.
	 */
	BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
2985
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2986
	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
2987
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2988
	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
2989 2990 2991 2992 2993

	/* Clear the parity enables on the TX data fifos as
	 * they produce false parity errors because of timing issues
	 */
	if (EFX_WORKAROUND_5129(efx)) {
2994
		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2995
		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2996
		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2997 2998 2999 3000 3001 3002 3003 3004 3005
	}

	/* Enable all the genuinely fatal interrupts.  (They are still
	 * masked by the overall interrupt mask, controlled by
	 * falcon_interrupts()).
	 *
	 * Note: All other fatal interrupts are enabled
	 */
	EFX_POPULATE_OWORD_3(temp,
3006 3007 3008
			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3009
	EFX_INVERT_OWORD(temp);
3010
	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3011 3012

	if (EFX_WORKAROUND_7244(efx)) {
3013
		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3014 3015 3016 3017
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3018
		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3019 3020 3021 3022
	}

	falcon_setup_rss_indir_table(efx);

3023
	/* XXX This is documented only for Falcon A0/A1 */
3024 3025 3026
	/* Setup RX.  Wait for descriptor is broken and must
	 * be disabled.  RXDP recovery shouldn't be needed, but is.
	 */
3027
	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3028 3029
	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3030
	if (EFX_WORKAROUND_5583(efx))
3031
		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3032
	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3033 3034 3035 3036

	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
	 */
3037
	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3038 3039 3040 3041 3042
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3043
	/* Enable SW_EV to inherit in char driver - assume harmless here */
3044
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3045
	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
3046
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3047
	/* Squash TX of packets of 16 bytes or less */
3048
	if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3049
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3050
	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3051 3052 3053 3054

	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
	 * descriptors (which is bad).
	 */
3055
	efx_reado(efx, &temp, FR_AZ_TX_CFG);
3056
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3057
	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3058

3059
	falcon_init_rx_cfg(efx);
3060 3061

	/* Set destination of both TX and RX Flush events */
3062
	if (falcon_rev(efx) >= FALCON_REV_B0) {
3063
		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3064
		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3065 3066 3067 3068 3069 3070 3071 3072
	}

	return 0;
}

void falcon_remove_nic(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
3073
	struct falcon_board *board = falcon_board(efx);
3074 3075
	int rc;

3076 3077
	falcon_board(efx)->fini(efx);

3078
	/* Remove I2C adapter and clear it in preparation for a retry */
3079
	rc = i2c_del_adapter(&board->i2c_adap);
3080
	BUG_ON(rc);
3081
	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
3082

3083
	falcon_remove_spi_devices(efx);
3084 3085
	falcon_free_buffer(efx, &efx->irq_status);

B
Ben Hutchings 已提交
3086
	falcon_reset_hw(efx, RESET_TYPE_ALL);
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102

	/* Release the second function after the reset */
	if (nic_data->pci_dev2) {
		pci_dev_put(nic_data->pci_dev2);
		nic_data->pci_dev2 = NULL;
	}

	/* Tear down the private nic state */
	kfree(efx->nic_data);
	efx->nic_data = NULL;
}

void falcon_update_nic_stats(struct efx_nic *efx)
{
	efx_oword_t cnt;

3103
	efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3104 3105
	efx->n_rx_nodesc_drop_cnt +=
		EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
}

/**************************************************************************
 *
 * Revision-dependent attributes used by efx.c
 *
 **************************************************************************
 */

struct efx_nic_type falcon_a_nic_type = {
	.mem_map_size = 0x20000,
3117 3118 3119 3120 3121
	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3122
	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3123 3124 3125 3126 3127 3128 3129 3130 3131
	.rx_buffer_padding = 0x24,
	.max_interrupt_mode = EFX_INT_MODE_MSI,
	.phys_addr_channels = 4,
};

struct efx_nic_type falcon_b_nic_type = {
	/* Map everything up to and including the RSS indirection
	 * table.  Don't map MSI-X table, MSI-X PBA since Linux
	 * requires that they not be mapped.  */
3132 3133 3134 3135 3136 3137 3138 3139
	.mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
			 FR_BZ_RX_INDIRECTION_TBL_STEP *
			 FR_BZ_RX_INDIRECTION_TBL_ROWS),
	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3140
	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3141 3142 3143 3144 3145 3146 3147
	.rx_buffer_padding = 0,
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
	.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
				   * interrupt handler only supports 32
				   * channels */
};