falcon.c 92.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2006-2008 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
16
#include <linux/i2c.h>
B
Ben Hutchings 已提交
17
#include <linux/mii.h>
18 19 20 21 22 23
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "mac.h"
#include "spi.h"
#include "falcon.h"
24
#include "regs.h"
25
#include "io.h"
26 27 28 29
#include "mdio_10g.h"
#include "phy.h"
#include "workarounds.h"

B
Ben Hutchings 已提交
30
/* Hardware control for SFC4000 (aka Falcon). */
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

/**************************************************************************
 *
 * Configurable values
 *
 **************************************************************************
 */

/* This is set to 16 for a good reason.  In summary, if larger than
 * 16, the descriptor cache holds more than a default socket
 * buffer's worth of packets (for UDP we can only have at most one
 * socket buffer's worth outstanding).  This combined with the fact
 * that we only get 1 TX event per descriptor cache means the NIC
 * goes idle.
 */
#define TX_DC_ENTRIES 16
B
Ben Hutchings 已提交
47
#define TX_DC_ENTRIES_ORDER 1
48 49

#define RX_DC_ENTRIES 64
B
Ben Hutchings 已提交
50
#define RX_DC_ENTRIES_ORDER 3
51

52 53 54 55 56 57 58 59 60 61 62 63 64 65
static const unsigned int
/* "Large" EEPROM device: Atmel AT25640 or similar
 * 8 KB, 16-bit address, 32 B write block */
large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
/* Default flash device: Atmel AT25F1024
 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/* RX FIFO XOFF watermark
 *
 * When the amount of the RX FIFO increases used increases past this
 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
static int rx_xoff_thresh_bytes = -1;
module_param(rx_xoff_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");

/* RX FIFO XON watermark
 *
 * When the amount of the RX FIFO used decreases below this
 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
static int rx_xon_thresh_bytes = -1;
module_param(rx_xon_thresh_bytes, int, 0644);
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");

86 87 88 89 90 91
/* If FALCON_MAX_INT_ERRORS internal errors occur within
 * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
 * disable it.
 */
#define FALCON_INT_ERROR_EXPIRE 3600
#define FALCON_MAX_INT_ERRORS 5
92

93 94 95 96
/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
 */
#define FALCON_FLUSH_INTERVAL 10
#define FALCON_FLUSH_POLL_COUNT 100
97 98 99 100 101 102 103 104 105 106 107

/**************************************************************************
 *
 * Falcon constants
 *
 **************************************************************************
 */

/* Size and alignment of special buffers (4KB) */
#define FALCON_BUF_SIZE 4096

B
Ben Hutchings 已提交
108 109 110
/* Depth of RX flush request fifo */
#define FALCON_RX_FLUSH_COUNT 4

111
#define FALCON_IS_DUAL_FUNC(efx)		\
112
	(efx_nic_rev(efx) < EFX_REV_FALCON_B0)
113 114 115 116 117 118 119

/**************************************************************************
 *
 * Falcon hardware access
 *
 **************************************************************************/

120 121 122 123 124 125 126
static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
					unsigned int index)
{
	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
			value, index);
}

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* Read the current event from the event queue */
static inline efx_qword_t *falcon_event(struct efx_channel *channel,
					unsigned int index)
{
	return (((efx_qword_t *) (channel->eventq.addr)) + index);
}

/* See if an event is present
 *
 * We check both the high and low dword of the event for all ones.  We
 * wrote all ones when we cleared the event, and no valid event can
 * have all ones in either its high or low dwords.  This approach is
 * robust against reordering.
 *
 * Note that using a single 64-bit comparison is incorrect; even
 * though the CPU read will be atomic, the DMA write may not be.
 */
static inline int falcon_event_present(efx_qword_t *event)
{
	return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
		  EFX_DWORD_IS_ALL_ONES(event->dword[1])));
}

/**************************************************************************
 *
 * I2C bus - this is a bit-bashing interface using GPIO pins
 * Note that it uses the output enables to tristate the outputs
 * SDA is the data pin and SCL is the clock
 *
 **************************************************************************
 */
158
static void falcon_setsda(void *data, int state)
159
{
160
	struct efx_nic *efx = (struct efx_nic *)data;
161 162
	efx_oword_t reg;

163
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
164
	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
165
	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
166 167
}

168
static void falcon_setscl(void *data, int state)
169
{
170
	struct efx_nic *efx = (struct efx_nic *)data;
171 172
	efx_oword_t reg;

173
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
174
	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
175
	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
176 177 178 179 180 181 182
}

static int falcon_getsda(void *data)
{
	struct efx_nic *efx = (struct efx_nic *)data;
	efx_oword_t reg;

183
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
184
	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
185 186
}

187
static int falcon_getscl(void *data)
188
{
189
	struct efx_nic *efx = (struct efx_nic *)data;
190 191
	efx_oword_t reg;

192
	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
193
	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
194 195
}

196 197 198
static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
	.setsda		= falcon_setsda,
	.setscl		= falcon_setscl,
199 200
	.getsda		= falcon_getsda,
	.getscl		= falcon_getscl,
201
	.udelay		= 5,
202 203
	/* Wait up to 50 ms for slave to let us pull SCL high */
	.timeout	= DIV_ROUND_UP(HZ, 20),
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
};

/**************************************************************************
 *
 * Falcon special buffer handling
 * Special buffers are used for event queues and the TX and RX
 * descriptor rings.
 *
 *************************************************************************/

/*
 * Initialise a Falcon special buffer
 *
 * This will define a buffer (previously allocated via
 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
 * it to be used for event queues, descriptor rings etc.
 */
221
static void
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
falcon_init_special_buffer(struct efx_nic *efx,
			   struct efx_special_buffer *buffer)
{
	efx_qword_t buf_desc;
	int index;
	dma_addr_t dma_addr;
	int i;

	EFX_BUG_ON_PARANOID(!buffer->addr);

	/* Write buffer descriptors to NIC */
	for (i = 0; i < buffer->entries; i++) {
		index = buffer->index + i;
		dma_addr = buffer->dma_addr + (i * 4096);
		EFX_LOG(efx, "mapping special buffer %d at %llx\n",
			index, (unsigned long long)dma_addr);
238 239 240 241
		EFX_POPULATE_QWORD_3(buf_desc,
				     FRF_AZ_BUF_ADR_REGION, 0,
				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
242
		falcon_write_buf_tbl(efx, &buf_desc, index);
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	}
}

/* Unmaps a buffer from Falcon and clears the buffer table entries */
static void
falcon_fini_special_buffer(struct efx_nic *efx,
			   struct efx_special_buffer *buffer)
{
	efx_oword_t buf_tbl_upd;
	unsigned int start = buffer->index;
	unsigned int end = (buffer->index + buffer->entries - 1);

	if (!buffer->entries)
		return;

	EFX_LOG(efx, "unmapping special buffers %d-%d\n",
		buffer->index, buffer->index + buffer->entries - 1);

	EFX_POPULATE_OWORD_4(buf_tbl_upd,
262 263 264 265
			     FRF_AZ_BUF_UPD_CMD, 0,
			     FRF_AZ_BUF_CLR_CMD, 1,
			     FRF_AZ_BUF_CLR_END_ID, end,
			     FRF_AZ_BUF_CLR_START_ID, start);
266
	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
}

/*
 * Allocate a new Falcon special buffer
 *
 * This allocates memory for a new buffer, clears it and allocates a
 * new buffer ID range.  It does not write into Falcon's buffer table.
 *
 * This call will allocate 4KB buffers, since Falcon can't use 8KB
 * buffers for event queues and descriptor rings.
 */
static int falcon_alloc_special_buffer(struct efx_nic *efx,
				       struct efx_special_buffer *buffer,
				       unsigned int len)
{
	len = ALIGN(len, FALCON_BUF_SIZE);

	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	buffer->entries = len / FALCON_BUF_SIZE;
	BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));

	/* All zeros is a potentially valid event so memset to 0xff */
	memset(buffer->addr, 0xff, len);

	/* Select new buffer ID */
296 297
	buffer->index = efx->next_buffer_table;
	efx->next_buffer_table += buffer->entries;
298 299

	EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
300
		"(virt %p phys %llx)\n", buffer->index,
301
		buffer->index + buffer->entries - 1,
302 303
		(u64)buffer->dma_addr, len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));
304 305 306 307 308 309 310 311 312 313 314

	return 0;
}

static void falcon_free_special_buffer(struct efx_nic *efx,
				       struct efx_special_buffer *buffer)
{
	if (!buffer->addr)
		return;

	EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
315
		"(virt %p phys %llx)\n", buffer->index,
316
		buffer->index + buffer->entries - 1,
317 318
		(u64)buffer->dma_addr, buffer->len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

	pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
			    buffer->dma_addr);
	buffer->addr = NULL;
	buffer->entries = 0;
}

/**************************************************************************
 *
 * Falcon generic buffer handling
 * These buffers are used for interrupt status and MAC stats
 *
 **************************************************************************/

static int falcon_alloc_buffer(struct efx_nic *efx,
			       struct efx_buffer *buffer, unsigned int len)
{
	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	memset(buffer->addr, 0, len);
	return 0;
}

static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
	if (buffer->addr) {
		pci_free_consistent(efx->pci_dev, buffer->len,
				    buffer->addr, buffer->dma_addr);
		buffer->addr = NULL;
	}
}

/**************************************************************************
 *
 * Falcon TX path
 *
 **************************************************************************/

/* Returns a pointer to the specified transmit descriptor in the TX
 * descriptor queue belonging to the specified channel.
 */
static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
					       unsigned int index)
{
	return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
}

/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
	unsigned write_ptr;
	efx_dword_t reg;

375
	write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
376
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
377 378
	efx_writed_page(tx_queue->efx, &reg,
			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
}


/* For each entry inserted into the software descriptor ring, create a
 * descriptor in the hardware TX descriptor ring (in host memory), and
 * write a doorbell.
 */
void falcon_push_buffers(struct efx_tx_queue *tx_queue)
{

	struct efx_tx_buffer *buffer;
	efx_qword_t *txd;
	unsigned write_ptr;

	BUG_ON(tx_queue->write_count == tx_queue->insert_count);

	do {
396
		write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
397 398 399 400 401
		buffer = &tx_queue->buffer[write_ptr];
		txd = falcon_tx_desc(tx_queue, write_ptr);
		++tx_queue->write_count;

		/* Create TX descriptor ring entry */
402 403 404 405 406
		EFX_POPULATE_QWORD_4(*txd,
				     FSF_AZ_TX_KER_CONT, buffer->continuation,
				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
				     FSF_AZ_TX_KER_BUF_REGION, 0,
				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
407 408 409 410 411 412 413 414 415 416
	} while (tx_queue->write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */
	falcon_notify_tx_desc(tx_queue);
}

/* Allocate hardware resources for a TX queue */
int falcon_probe_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
417 418
	BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
		     EFX_TXQ_SIZE & EFX_TXQ_MASK);
419
	return falcon_alloc_special_buffer(efx, &tx_queue->txd,
420
					   EFX_TXQ_SIZE * sizeof(efx_qword_t));
421 422
}

423
void falcon_init_tx(struct efx_tx_queue *tx_queue)
424 425 426 427
{
	efx_oword_t tx_desc_ptr;
	struct efx_nic *efx = tx_queue->efx;

B
Ben Hutchings 已提交
428
	tx_queue->flushed = FLUSH_NONE;
429

430
	/* Pin TX descriptor ring */
431
	falcon_init_special_buffer(efx, &tx_queue->txd);
432 433 434

	/* Push TX descriptor ring to card */
	EFX_POPULATE_OWORD_10(tx_desc_ptr,
435 436 437 438 439 440 441 442
			      FRF_AZ_TX_DESCQ_EN, 1,
			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
			      FRF_AZ_TX_DESCQ_EVQ_ID,
			      tx_queue->channel->channel,
			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
443 444
			      FRF_AZ_TX_DESCQ_SIZE,
			      __ffs(tx_queue->txd.entries),
445 446
			      FRF_AZ_TX_DESCQ_TYPE, 0,
			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
447

448
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
449
		int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
450 451 452
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
				    !csum);
453 454
	}

455 456
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);
457

458
	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
459 460
		efx_oword_t reg;

461 462
		/* Only 128 bits in this register */
		BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
463

464
		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
465
		if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
466 467 468
			clear_bit_le(tx_queue->queue, (void *)&reg);
		else
			set_bit_le(tx_queue->queue, (void *)&reg);
469
		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
470 471 472
	}
}

473
static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
474 475 476 477
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_flush_descq;

B
Ben Hutchings 已提交
478 479
	tx_queue->flushed = FLUSH_PENDING;

480 481
	/* Post a flush command */
	EFX_POPULATE_OWORD_2(tx_flush_descq,
482 483
			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
484
	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
485 486 487 488 489 490 491
}

void falcon_fini_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_desc_ptr;

492
	/* The queue should have been flushed */
B
Ben Hutchings 已提交
493
	WARN_ON(tx_queue->flushed != FLUSH_DONE);
494 495 496

	/* Remove TX descriptor ring from card */
	EFX_ZERO_OWORD(tx_desc_ptr);
497 498
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

	/* Unpin TX descriptor ring */
	falcon_fini_special_buffer(efx, &tx_queue->txd);
}

/* Free buffers backing TX queue */
void falcon_remove_tx(struct efx_tx_queue *tx_queue)
{
	falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}

/**************************************************************************
 *
 * Falcon RX path
 *
 **************************************************************************/

/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
					       unsigned int index)
{
	return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
}

/* This creates an entry in the RX descriptor queue */
static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
					unsigned index)
{
	struct efx_rx_buffer *rx_buf;
	efx_qword_t *rxd;

	rxd = falcon_rx_desc(rx_queue, index);
	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_POPULATE_QWORD_3(*rxd,
533
			     FSF_AZ_RX_KER_BUF_SIZE,
534 535
			     rx_buf->len -
			     rx_queue->efx->type->rx_buffer_padding,
536 537
			     FSF_AZ_RX_KER_BUF_REGION, 0,
			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
538 539 540 541 542 543 544 545 546 547 548 549 550
}

/* This writes to the RX_DESC_WPTR register for the specified receive
 * descriptor ring.
 */
void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
	efx_dword_t reg;
	unsigned write_ptr;

	while (rx_queue->notified_count != rx_queue->added_count) {
		falcon_build_rx_desc(rx_queue,
				     rx_queue->notified_count &
551
				     EFX_RXQ_MASK);
552 553 554 555
		++rx_queue->notified_count;
	}

	wmb();
556
	write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
557
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
558 559
	efx_writed_page(rx_queue->efx, &reg,
			FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
560 561 562 563 564
}

int falcon_probe_rx(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
565 566
	BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
		     EFX_RXQ_SIZE & EFX_RXQ_MASK);
567
	return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
568
					   EFX_RXQ_SIZE * sizeof(efx_qword_t));
569 570
}

571
void falcon_init_rx(struct efx_rx_queue *rx_queue)
572 573 574
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;
575
	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
576
	bool iscsi_digest_en = is_b0;
577 578 579 580 581

	EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
		rx_queue->queue, rx_queue->rxd.index,
		rx_queue->rxd.index + rx_queue->rxd.entries - 1);

B
Ben Hutchings 已提交
582
	rx_queue->flushed = FLUSH_NONE;
583

584
	/* Pin RX descriptor ring */
585
	falcon_init_special_buffer(efx, &rx_queue->rxd);
586 587 588

	/* Push RX descriptor ring to card */
	EFX_POPULATE_OWORD_10(rx_desc_ptr,
589 590 591 592 593 594 595
			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
			      FRF_AZ_RX_DESCQ_EVQ_ID,
			      rx_queue->channel->channel,
			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
596 597
			      FRF_AZ_RX_DESCQ_SIZE,
			      __ffs(rx_queue->rxd.entries),
598
			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
599
			      /* For >=B0 this is scatter so disable */
600 601
			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
			      FRF_AZ_RX_DESCQ_EN, 1);
602 603
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 rx_queue->queue);
604 605
}

606
static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
607 608 609 610
{
	struct efx_nic *efx = rx_queue->efx;
	efx_oword_t rx_flush_descq;

B
Ben Hutchings 已提交
611 612
	rx_queue->flushed = FLUSH_PENDING;

613 614
	/* Post a flush command */
	EFX_POPULATE_OWORD_2(rx_flush_descq,
615 616
			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
617
	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
618 619 620 621 622 623 624
}

void falcon_fini_rx(struct efx_rx_queue *rx_queue)
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;

625
	/* The queue should already have been flushed */
B
Ben Hutchings 已提交
626
	WARN_ON(rx_queue->flushed != FLUSH_DONE);
627 628 629

	/* Remove RX descriptor ring from card */
	EFX_ZERO_OWORD(rx_desc_ptr);
630 631
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 rx_queue->queue);
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

	/* Unpin RX descriptor ring */
	falcon_fini_special_buffer(efx, &rx_queue->rxd);
}

/* Free buffers backing RX queue */
void falcon_remove_rx(struct efx_rx_queue *rx_queue)
{
	falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}

/**************************************************************************
 *
 * Falcon event queue processing
 * Event queues are processed by per-channel tasklets.
 *
 **************************************************************************/

/* Update a channel's event queue's read pointer (RPTR) register
 *
 * This writes the EVQ_RPTR_REG register for the specified channel's
 * event queue.
 *
 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
 * whereas channel->eventq_read_ptr contains the index of the "next to
 * read" event.
 */
void falcon_eventq_read_ack(struct efx_channel *channel)
{
	efx_dword_t reg;
	struct efx_nic *efx = channel->efx;

664
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
665
	efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
666
			    channel->channel);
667 668 669 670 671 672 673
}

/* Use HW to insert a SW defined event */
void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
{
	efx_oword_t drv_ev_reg;

674 675 676 677 678 679 680
	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
	drv_ev_reg.u32[0] = event->u32[0];
	drv_ev_reg.u32[1] = event->u32[1];
	drv_ev_reg.u32[2] = 0;
	drv_ev_reg.u32[3] = 0;
	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
681
	efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
682 683 684 685 686 687 688
}

/* Handle a transmit completion event
 *
 * Falcon batches TX completion events; the message we receive is of
 * the form "complete all TX events up to this index".
 */
689 690
static void falcon_handle_tx_event(struct efx_channel *channel,
				   efx_qword_t *event)
691 692 693 694 695 696
{
	unsigned int tx_ev_desc_ptr;
	unsigned int tx_ev_q_label;
	struct efx_tx_queue *tx_queue;
	struct efx_nic *efx = channel->efx;

697
	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
698
		/* Transmit completion */
699 700
		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
701
		tx_queue = &efx->tx_queue[tx_ev_q_label];
702 703
		channel->irq_mod_score +=
			(tx_ev_desc_ptr - tx_queue->read_count) &
704
			EFX_TXQ_MASK;
705
		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
706
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
707
		/* Rewrite the FIFO write pointer */
708
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
709 710
		tx_queue = &efx->tx_queue[tx_ev_q_label];

711
		if (efx_dev_registered(efx))
712 713
			netif_tx_lock(efx->net_dev);
		falcon_notify_tx_desc(tx_queue);
714
		if (efx_dev_registered(efx))
715
			netif_tx_unlock(efx->net_dev);
716
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
717 718 719 720 721 722 723 724 725 726 727 728
		   EFX_WORKAROUND_10727(efx)) {
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
	} else {
		EFX_ERR(efx, "channel %d unexpected TX event "
			EFX_QWORD_FMT"\n", channel->channel,
			EFX_QWORD_VAL(*event));
	}
}

/* Detect errors included in the rx_evt_pkt_ok bit. */
static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
				    const efx_qword_t *event,
729 730
				    bool *rx_ev_pkt_ok,
				    bool *discard)
731 732
{
	struct efx_nic *efx = rx_queue->efx;
733 734 735 736 737 738
	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
	bool rx_ev_other_err, rx_ev_pause_frm;
	bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
	unsigned rx_ev_pkt_type;
739

740 741 742 743
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
744
	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
745 746
						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
	rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
747
	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
748
						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
749
	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
750 751 752
						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
753
	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
754 755
			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
756 757 758 759 760 761

	/* Every error apart from tobe_disc and pause_frm */
	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);

762 763
	/* Count errors that are not in MAC stats.  Ignore expected
	 * checksum errors during self-test. */
764 765 766 767
	if (rx_ev_frm_trunc)
		++rx_queue->channel->n_rx_frm_trunc;
	else if (rx_ev_tobe_disc)
		++rx_queue->channel->n_rx_tobe_disc;
768 769 770 771 772 773
	else if (!efx->loopback_selftest) {
		if (rx_ev_ip_hdr_chksum_err)
			++rx_queue->channel->n_rx_ip_hdr_chksum_err;
		else if (rx_ev_tcp_udp_chksum_err)
			++rx_queue->channel->n_rx_tcp_udp_chksum_err;
	}
774 775 776 777 778 779 780 781 782 783 784 785 786 787
	if (rx_ev_ip_frag_err)
		++rx_queue->channel->n_rx_ip_frag_err;

	/* The frame must be discarded if any of these are true. */
	*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
		    rx_ev_tobe_disc | rx_ev_pause_frm);

	/* TOBE_DISC is expected on unicast mismatches; don't print out an
	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
	 * to a FIFO overflow.
	 */
#ifdef EFX_ENABLE_DEBUG
	if (rx_ev_other_err) {
		EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
788
			    EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
789 790 791 792 793 794 795 796 797 798
			    rx_queue->queue, EFX_QWORD_VAL(*event),
			    rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
			    rx_ev_ip_hdr_chksum_err ?
			    " [IP_HDR_CHKSUM_ERR]" : "",
			    rx_ev_tcp_udp_chksum_err ?
			    " [TCP_UDP_CHKSUM_ERR]" : "",
			    rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
			    rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
			    rx_ev_drib_nib ? " [DRIB_NIB]" : "",
			    rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
799
			    rx_ev_pause_frm ? " [PAUSE]" : "");
800 801 802 803 804 805 806 807 808 809 810
	}
#endif
}

/* Handle receive events that are not in-order. */
static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
				       unsigned index)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned expected, dropped;

811 812
	expected = rx_queue->removed_count & EFX_RXQ_MASK;
	dropped = (index - expected) & EFX_RXQ_MASK;
813 814 815 816 817 818 819 820 821 822 823 824 825 826
	EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
		dropped, index, expected);

	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
}

/* Handle a packet received event
 *
 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
 * wrong destination address
 * Also "is multicast" and "matches multicast filter" flags can be used to
 * discard non-matching multicast packets.
 */
B
Ben Hutchings 已提交
827 828
static void falcon_handle_rx_event(struct efx_channel *channel,
				   const efx_qword_t *event)
829
{
B
Ben Hutchings 已提交
830
	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
831
	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
832
	unsigned expected_ptr;
833
	bool rx_ev_pkt_ok, discard = false, checksummed;
834 835 836 837
	struct efx_rx_queue *rx_queue;
	struct efx_nic *efx = channel->efx;

	/* Basic packet information */
838 839 840 841 842 843 844
	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
		channel->channel);
845

B
Ben Hutchings 已提交
846
	rx_queue = &efx->rx_queue[channel->channel];
847

848
	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
849
	expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
B
Ben Hutchings 已提交
850
	if (unlikely(rx_ev_desc_ptr != expected_ptr))
851 852 853 854 855 856
		falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);

	if (likely(rx_ev_pkt_ok)) {
		/* If packet is marked as OK and packet type is TCP/IPv4 or
		 * UDP/IPv4, then we can rely on the hardware checksum.
		 */
857
		checksummed =
858 859 860
			efx->rx_checksum_enabled &&
			(rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
			 rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP);
861 862
	} else {
		falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
863
					&discard);
864
		checksummed = false;
865 866 867
	}

	/* Detect multicast packets that didn't match the filter */
868
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
869 870
	if (rx_ev_mcast_pkt) {
		unsigned int rx_ev_mcast_hash_match =
871
			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
872 873

		if (unlikely(!rx_ev_mcast_hash_match))
874
			discard = true;
875 876
	}

877 878
	channel->irq_mod_score += 2;

879 880 881 882 883 884 885 886 887 888
	/* Handle received packet */
	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
		      checksummed, discard);
}

/* Global events are basically PHY events */
static void falcon_handle_global_event(struct efx_channel *channel,
				       efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
889
	bool handled = false;
890

891 892 893
	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
S
Steve Hodgson 已提交
894
		/* Ignored */
895 896
		handled = true;
	}
897

898
	if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) &&
899
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
B
Ben Hutchings 已提交
900
		efx->xmac_poll_required = true;
901
		handled = true;
902 903
	}

904
	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
905 906
	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
907 908 909 910 911 912
		EFX_ERR(efx, "channel %d seen global RX_RESET "
			"event. Resetting.\n", channel->channel);

		atomic_inc(&efx->rx_reset);
		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
913
		handled = true;
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	}

	if (!handled)
		EFX_ERR(efx, "channel %d unknown global event "
			EFX_QWORD_FMT "\n", channel->channel,
			EFX_QWORD_VAL(*event));
}

static void falcon_handle_driver_event(struct efx_channel *channel,
				       efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	unsigned int ev_sub_code;
	unsigned int ev_sub_data;

929 930
	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
931 932

	switch (ev_sub_code) {
933
	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
934 935 936
		EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
937
	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
938 939 940
		EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
941
	case FSE_AZ_EVQ_INIT_DONE_EV:
942 943 944
		EFX_LOG(efx, "channel %d EVQ %d initialised\n",
			channel->channel, ev_sub_data);
		break;
945
	case FSE_AZ_SRM_UPD_DONE_EV:
946 947 948
		EFX_TRACE(efx, "channel %d SRAM update done\n",
			  channel->channel);
		break;
949
	case FSE_AZ_WAKE_UP_EV:
950 951 952
		EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
			  channel->channel, ev_sub_data);
		break;
953
	case FSE_AZ_TIMER_EV:
954 955 956
		EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
			  channel->channel, ev_sub_data);
		break;
957
	case FSE_AA_RX_RECOVER_EV:
958 959
		EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
			"Resetting.\n", channel->channel);
960
		atomic_inc(&efx->rx_reset);
961 962 963 964 965
		efx_schedule_reset(efx,
				   EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY :
				   RESET_TYPE_DISABLE);
		break;
966
	case FSE_BZ_RX_DSC_ERROR_EV:
967 968 969 970
		EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
			" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
		break;
971
	case FSE_BZ_TX_DSC_ERROR_EV:
972 973 974 975 976 977 978 979 980 981 982 983
		EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
			" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
		break;
	default:
		EFX_TRACE(efx, "channel %d unknown driver event code %d "
			  "data %04x\n", channel->channel, ev_sub_code,
			  ev_sub_data);
		break;
	}
}

B
Ben Hutchings 已提交
984
int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
985 986 987 988
{
	unsigned int read_ptr;
	efx_qword_t event, *p_event;
	int ev_code;
B
Ben Hutchings 已提交
989
	int rx_packets = 0;
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

	read_ptr = channel->eventq_read_ptr;

	do {
		p_event = falcon_event(channel, read_ptr);
		event = *p_event;

		if (!falcon_event_present(&event))
			/* End of events */
			break;

		EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
			  channel->channel, EFX_QWORD_VAL(event));

		/* Clear this event by marking it all ones */
		EFX_SET_QWORD(*p_event);

1007
		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1008 1009

		switch (ev_code) {
1010
		case FSE_AZ_EV_CODE_RX_EV:
B
Ben Hutchings 已提交
1011 1012
			falcon_handle_rx_event(channel, &event);
			++rx_packets;
1013
			break;
1014
		case FSE_AZ_EV_CODE_TX_EV:
1015 1016
			falcon_handle_tx_event(channel, &event);
			break;
1017 1018 1019
		case FSE_AZ_EV_CODE_DRV_GEN_EV:
			channel->eventq_magic = EFX_QWORD_FIELD(
				event, FSF_AZ_DRV_GEN_EV_MAGIC);
1020 1021 1022 1023
			EFX_LOG(channel->efx, "channel %d received generated "
				"event "EFX_QWORD_FMT"\n", channel->channel,
				EFX_QWORD_VAL(event));
			break;
1024
		case FSE_AZ_EV_CODE_GLOBAL_EV:
1025 1026
			falcon_handle_global_event(channel, &event);
			break;
1027
		case FSE_AZ_EV_CODE_DRIVER_EV:
1028 1029 1030 1031 1032 1033 1034 1035 1036
			falcon_handle_driver_event(channel, &event);
			break;
		default:
			EFX_ERR(channel->efx, "channel %d unknown event type %d"
				" (data " EFX_QWORD_FMT ")\n", channel->channel,
				ev_code, EFX_QWORD_VAL(event));
		}

		/* Increment read pointer */
1037
		read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1038

B
Ben Hutchings 已提交
1039
	} while (rx_packets < rx_quota);
1040 1041

	channel->eventq_read_ptr = read_ptr;
B
Ben Hutchings 已提交
1042
	return rx_packets;
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
}

void falcon_set_int_moderation(struct efx_channel *channel)
{
	efx_dword_t timer_cmd;
	struct efx_nic *efx = channel->efx;

	/* Set timer register */
	if (channel->irq_moderation) {
		EFX_POPULATE_DWORD_2(timer_cmd,
1053 1054 1055
				     FRF_AB_TC_TIMER_MODE,
				     FFE_BB_TIMER_MODE_INT_HLDOFF,
				     FRF_AB_TC_TIMER_VAL,
1056
				     channel->irq_moderation - 1);
1057 1058
	} else {
		EFX_POPULATE_DWORD_2(timer_cmd,
1059 1060 1061
				     FRF_AB_TC_TIMER_MODE,
				     FFE_BB_TIMER_MODE_DIS,
				     FRF_AB_TC_TIMER_VAL, 0);
1062
	}
1063
	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1064 1065
	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
			       channel->channel);
1066 1067 1068 1069 1070 1071 1072

}

/* Allocate buffer table entries for event queue */
int falcon_probe_eventq(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
1073 1074 1075 1076
	BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
		     EFX_EVQ_SIZE & EFX_EVQ_MASK);
	return falcon_alloc_special_buffer(efx, &channel->eventq,
					   EFX_EVQ_SIZE * sizeof(efx_qword_t));
1077 1078
}

1079
void falcon_init_eventq(struct efx_channel *channel)
1080 1081 1082 1083 1084 1085 1086 1087 1088
{
	efx_oword_t evq_ptr;
	struct efx_nic *efx = channel->efx;

	EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
		channel->channel, channel->eventq.index,
		channel->eventq.index + channel->eventq.entries - 1);

	/* Pin event queue buffer */
1089
	falcon_init_special_buffer(efx, &channel->eventq);
1090 1091 1092 1093 1094 1095

	/* Fill event queue with all ones (i.e. empty events) */
	memset(channel->eventq.addr, 0xff, channel->eventq.len);

	/* Push event queue to card */
	EFX_POPULATE_OWORD_3(evq_ptr,
1096
			     FRF_AZ_EVQ_EN, 1,
1097
			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1098
			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1099 1100
	efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
			 channel->channel);
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

	falcon_set_int_moderation(channel);
}

void falcon_fini_eventq(struct efx_channel *channel)
{
	efx_oword_t eventq_ptr;
	struct efx_nic *efx = channel->efx;

	/* Remove event queue from card */
	EFX_ZERO_OWORD(eventq_ptr);
1112 1113
	efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
			 channel->channel);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

	/* Unpin event queue */
	falcon_fini_special_buffer(efx, &channel->eventq);
}

/* Free buffers backing event queue */
void falcon_remove_eventq(struct efx_channel *channel)
{
	falcon_free_special_buffer(channel->efx, &channel->eventq);
}


/* Generates a test event on the event queue.  A subsequent call to
 * process_eventq() should pick up the event and place the value of
 * "magic" into channel->eventq_magic;
 */
void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
{
	efx_qword_t test_event;

1134 1135 1136
	EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_DRV_GEN_EV,
			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1137 1138 1139
	falcon_generate_event(channel, &test_event);
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/**************************************************************************
 *
 * Flush handling
 *
 **************************************************************************/


static void falcon_poll_flush_events(struct efx_nic *efx)
{
	struct efx_channel *channel = &efx->channel[0];
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1152
	unsigned int read_ptr = channel->eventq_read_ptr;
1153
	unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1154

1155
	do {
1156 1157 1158
		efx_qword_t *event = falcon_event(channel, read_ptr);
		int ev_code, ev_sub_code, ev_queue;
		bool ev_failed;
1159

1160 1161 1162
		if (!falcon_event_present(event))
			break;

1163 1164 1165 1166 1167
		ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
		ev_sub_code = EFX_QWORD_FIELD(*event,
					      FSF_AZ_DRIVER_EV_SUBCODE);
		if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
		    ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1168
			ev_queue = EFX_QWORD_FIELD(*event,
1169
						   FSF_AZ_DRIVER_EV_SUBDATA);
1170 1171
			if (ev_queue < EFX_TX_QUEUE_COUNT) {
				tx_queue = efx->tx_queue + ev_queue;
B
Ben Hutchings 已提交
1172
				tx_queue->flushed = FLUSH_DONE;
1173
			}
1174 1175 1176 1177 1178 1179
		} else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
			   ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
			ev_queue = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
			ev_failed = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1180 1181
			if (ev_queue < efx->n_rx_queues) {
				rx_queue = efx->rx_queue + ev_queue;
B
Ben Hutchings 已提交
1182 1183
				rx_queue->flushed =
					ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1184 1185 1186
			}
		}

B
Ben Hutchings 已提交
1187 1188 1189 1190
		/* We're about to destroy the queue anyway, so
		 * it's ok to throw away every non-flush event */
		EFX_SET_QWORD(*event);

1191
		read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1192
	} while (read_ptr != end_ptr);
B
Ben Hutchings 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

	channel->eventq_read_ptr = read_ptr;
}

static void falcon_prepare_flush(struct efx_nic *efx)
{
	falcon_deconfigure_mac_wrapper(efx);

	/* Wait for the tx and rx fifo's to get to the next packet boundary
	 * (~1ms without back-pressure), then to drain the remainder of the
	 * fifo's at data path speeds (negligible), with a healthy margin. */
	msleep(10);
1205 1206 1207 1208 1209 1210 1211 1212 1213
}

/* Handle tx and rx flushes at the same time, since they run in
 * parallel in the hardware and there's no reason for us to
 * serialise them */
int falcon_flush_queues(struct efx_nic *efx)
{
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
B
Ben Hutchings 已提交
1214
	int i, tx_pending, rx_pending;
1215

B
Ben Hutchings 已提交
1216 1217 1218 1219
	falcon_prepare_flush(efx);

	/* Flush all tx queues in parallel */
	efx_for_each_tx_queue(tx_queue, efx)
1220 1221
		falcon_flush_tx_queue(tx_queue);

B
Ben Hutchings 已提交
1222 1223
	/* The hardware supports four concurrent rx flushes, each of which may
	 * need to be retried if there is an outstanding descriptor fetch */
1224
	for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
B
Ben Hutchings 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		rx_pending = tx_pending = 0;
		efx_for_each_rx_queue(rx_queue, efx) {
			if (rx_queue->flushed == FLUSH_PENDING)
				++rx_pending;
		}
		efx_for_each_rx_queue(rx_queue, efx) {
			if (rx_pending == FALCON_RX_FLUSH_COUNT)
				break;
			if (rx_queue->flushed == FLUSH_FAILED ||
			    rx_queue->flushed == FLUSH_NONE) {
				falcon_flush_rx_queue(rx_queue);
				++rx_pending;
			}
		}
		efx_for_each_tx_queue(tx_queue, efx) {
			if (tx_queue->flushed != FLUSH_DONE)
				++tx_pending;
		}
1243

B
Ben Hutchings 已提交
1244
		if (rx_pending == 0 && tx_pending == 0)
1245
			return 0;
B
Ben Hutchings 已提交
1246 1247 1248

		msleep(FALCON_FLUSH_INTERVAL);
		falcon_poll_flush_events(efx);
1249 1250 1251
	}

	/* Mark the queues as all flushed. We're going to return failure
B
Ben Hutchings 已提交
1252
	 * leading to a reset, or fake up success anyway */
1253
	efx_for_each_tx_queue(tx_queue, efx) {
B
Ben Hutchings 已提交
1254
		if (tx_queue->flushed != FLUSH_DONE)
1255 1256
			EFX_ERR(efx, "tx queue %d flush command timed out\n",
				tx_queue->queue);
B
Ben Hutchings 已提交
1257
		tx_queue->flushed = FLUSH_DONE;
1258 1259
	}
	efx_for_each_rx_queue(rx_queue, efx) {
B
Ben Hutchings 已提交
1260
		if (rx_queue->flushed != FLUSH_DONE)
1261 1262
			EFX_ERR(efx, "rx queue %d flush command timed out\n",
				rx_queue->queue);
B
Ben Hutchings 已提交
1263
		rx_queue->flushed = FLUSH_DONE;
1264 1265 1266 1267 1268 1269 1270
	}

	if (EFX_WORKAROUND_7803(efx))
		return 0;

	return -ETIMEDOUT;
}
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

/**************************************************************************
 *
 * Falcon hardware interrupts
 * The hardware interrupt handler does very little work; all the event
 * queue processing is carried out by per-channel tasklets.
 *
 **************************************************************************/

/* Enable/disable/generate Falcon interrupts */
static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
				     int force)
{
	efx_oword_t int_en_reg_ker;

	EFX_POPULATE_OWORD_2(int_en_reg_ker,
1287 1288
			     FRF_AZ_KER_INT_KER, force,
			     FRF_AZ_DRV_INT_EN_KER, enabled);
1289
	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
}

void falcon_enable_interrupts(struct efx_nic *efx)
{
	efx_oword_t int_adr_reg_ker;
	struct efx_channel *channel;

	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */

	/* Program address */
	EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1302 1303 1304
			     FRF_AZ_NORM_INT_VEC_DIS_KER,
			     EFX_INT_MODE_USE_MSI(efx),
			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1305
	efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
1306 1307 1308 1309 1310 1311

	/* Enable interrupts */
	falcon_interrupts(efx, 1, 0);

	/* Force processing of all the channels to get the EVQ RPTRs up to
	   date */
1312
	efx_for_each_channel(channel, efx)
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		efx_schedule_channel(channel);
}

void falcon_disable_interrupts(struct efx_nic *efx)
{
	/* Disable interrupts */
	falcon_interrupts(efx, 0, 0);
}

/* Generate a Falcon test interrupt
 * Interrupt must already have been enabled, otherwise nasty things
 * may happen.
 */
void falcon_generate_interrupt(struct efx_nic *efx)
{
	falcon_interrupts(efx, 1, 1);
}

/* Acknowledge a legacy interrupt from Falcon
 *
 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 *
 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 * BIU. Interrupt acknowledge is read sensitive so must write instead
 * (then read to ensure the BIU collector is flushed)
 *
 * NB most hardware supports MSI interrupts
 */
static inline void falcon_irq_ack_a1(struct efx_nic *efx)
{
	efx_dword_t reg;

1345
	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1346 1347
	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1348 1349 1350 1351 1352 1353 1354 1355
}

/* Process a fatal interrupt
 * Disable bus mastering ASAP and schedule a reset
 */
static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
1356
	efx_oword_t *int_ker = efx->irq_status.addr;
1357 1358 1359
	efx_oword_t fatal_intr;
	int error, mem_perr;

1360
	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1361
	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1362 1363 1364 1365 1366 1367 1368 1369 1370

	EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
		EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
		EFX_OWORD_VAL(fatal_intr),
		error ? "disabling bus mastering" : "no recognised error");
	if (error == 0)
		goto out;

	/* If this is a memory parity error dump which blocks are offending */
1371
	mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1372 1373
	if (mem_perr) {
		efx_oword_t reg;
1374
		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1375 1376 1377 1378
		EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
			EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
	}

1379
	/* Disable both devices */
1380
	pci_clear_master(efx->pci_dev);
1381
	if (FALCON_IS_DUAL_FUNC(efx))
1382
		pci_clear_master(nic_data->pci_dev2);
1383
	falcon_disable_interrupts(efx);
1384

1385
	/* Count errors and reset or disable the NIC accordingly */
1386 1387 1388 1389
	if (efx->int_error_count == 0 ||
	    time_after(jiffies, efx->int_error_expire)) {
		efx->int_error_count = 0;
		efx->int_error_expire =
1390 1391
			jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
	}
1392
	if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
	} else {
		EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
			"NIC will be disabled\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	}
out:
	return IRQ_HANDLED;
}

/* Handle a legacy interrupt from Falcon
 * Acknowledges the interrupt and schedule event queue processing.
 */
static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
{
1409 1410
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
1411
	irqreturn_t result = IRQ_NONE;
1412 1413 1414 1415 1416 1417
	struct efx_channel *channel;
	efx_dword_t reg;
	u32 queues;
	int syserr;

	/* Read the ISR which also ACKs the interrupts */
1418
	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1419 1420 1421
	queues = EFX_EXTRACT_DWORD(reg, 0, 31);

	/* Check to see if we have a serious error condition */
1422
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1423 1424 1425 1426
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Schedule processing of any interrupting queues */
1427 1428 1429 1430
	efx_for_each_channel(channel, efx) {
		if ((queues & 1) ||
		    falcon_event_present(
			    falcon_event(channel, channel->eventq_read_ptr))) {
1431
			efx_schedule_channel(channel);
1432 1433
			result = IRQ_HANDLED;
		}
1434 1435 1436
		queues >>= 1;
	}

1437 1438 1439 1440 1441 1442 1443
	if (result == IRQ_HANDLED) {
		efx->last_irq_cpu = raw_smp_processor_id();
		EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
			  irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
	}

	return result;
1444 1445 1446 1447 1448
}


static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
{
1449 1450
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	struct efx_channel *channel;
	int syserr;
	int queues;

	/* Check to see if this is our interrupt.  If it isn't, we
	 * exit without having touched the hardware.
	 */
	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
		EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
			  raw_smp_processor_id());
		return IRQ_NONE;
	}
	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
1468
	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Determine interrupting queues, clear interrupt status
	 * register and acknowledge the device interrupt.
	 */
	BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
	queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
	EFX_ZERO_OWORD(*int_ker);
	wmb(); /* Ensure the vector is cleared before interrupt ack */
	falcon_irq_ack_a1(efx);

	/* Schedule processing of any interrupting queues */
	channel = &efx->channel[0];
	while (queues) {
		if (queues & 0x01)
			efx_schedule_channel(channel);
		channel++;
		queues >>= 1;
	}

	return IRQ_HANDLED;
}

/* Handle an MSI interrupt from Falcon
 *
 * Handle an MSI hardware interrupt.  This routine schedules event
 * queue processing.  No interrupt acknowledgement cycle is necessary.
 * Also, we never need to check that the interrupt is for us, since
 * MSI interrupts cannot be shared.
 */
static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
{
1502
	struct efx_channel *channel = dev_id;
1503
	struct efx_nic *efx = channel->efx;
1504
	efx_oword_t *int_ker = efx->irq_status.addr;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	int syserr;

	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
	syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
	if (unlikely(syserr))
		return falcon_fatal_interrupt(efx);

	/* Schedule processing of the channel */
	efx_schedule_channel(channel);

	return IRQ_HANDLED;
}


/* Setup RSS indirection table.
 * This maps from the hash value of the packet to RXQ
 */
static void falcon_setup_rss_indir_table(struct efx_nic *efx)
{
	int i = 0;
	unsigned long offset;
	efx_dword_t dword;

1532
	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1533 1534
		return;

1535 1536
	for (offset = FR_BZ_RX_INDIRECTION_TBL;
	     offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1537
	     offset += 0x10) {
1538
		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1539
				     i % efx->n_rx_queues);
1540
		efx_writed(efx, &dword, offset);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		i++;
	}
}

/* Hook interrupt handler(s)
 * Try MSI and then legacy interrupts.
 */
int falcon_init_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	if (!EFX_INT_MODE_USE_MSI(efx)) {
		irq_handler_t handler;
1555
		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
			handler = falcon_legacy_interrupt_b0;
		else
			handler = falcon_legacy_interrupt_a1;

		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
				 efx->name, efx);
		if (rc) {
			EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
				efx->pci_dev->irq);
			goto fail1;
		}
		return 0;
	}

	/* Hook MSI or MSI-X interrupt */
1571
	efx_for_each_channel(channel, efx) {
1572 1573
		rc = request_irq(channel->irq, falcon_msi_interrupt,
				 IRQF_PROBE_SHARED, /* Not shared */
1574
				 channel->name, channel);
1575 1576 1577 1578 1579 1580 1581 1582 1583
		if (rc) {
			EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
			goto fail2;
		}
	}

	return 0;

 fail2:
1584
	efx_for_each_channel(channel, efx)
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
		free_irq(channel->irq, channel);
 fail1:
	return rc;
}

void falcon_fini_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	efx_oword_t reg;

	/* Disable MSI/MSI-X interrupts */
1596
	efx_for_each_channel(channel, efx) {
1597 1598
		if (channel->irq)
			free_irq(channel->irq, channel);
1599
	}
1600 1601

	/* ACK legacy interrupt */
1602
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1603
		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	else
		falcon_irq_ack_a1(efx);

	/* Disable legacy interrupt */
	if (efx->legacy_irq)
		free_irq(efx->legacy_irq, efx);
}

/**************************************************************************
 *
 * EEPROM/flash
 *
 **************************************************************************
 */

1619
#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1620

1621 1622 1623
static int falcon_spi_poll(struct efx_nic *efx)
{
	efx_oword_t reg;
1624
	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1625
	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1626 1627
}

1628 1629 1630
/* Wait for SPI command completion */
static int falcon_spi_wait(struct efx_nic *efx)
{
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	/* Most commands will finish quickly, so we start polling at
	 * very short intervals.  Sometimes the command may have to
	 * wait for VPD or expansion ROM access outside of our
	 * control, so we allow up to 100 ms. */
	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
	int i;

	for (i = 0; i < 10; i++) {
		if (!falcon_spi_poll(efx))
			return 0;
		udelay(10);
	}
1643

1644
	for (;;) {
1645
		if (!falcon_spi_poll(efx))
1646
			return 0;
1647 1648 1649 1650
		if (time_after_eq(jiffies, timeout)) {
			EFX_ERR(efx, "timed out waiting for SPI\n");
			return -ETIMEDOUT;
		}
1651
		schedule_timeout_uninterruptible(1);
1652
	}
1653 1654
}

1655 1656
int falcon_spi_cmd(const struct efx_spi_device *spi,
		   unsigned int command, int address,
1657
		   const void *in, void *out, size_t len)
1658
{
1659 1660 1661
	struct efx_nic *efx = spi->efx;
	bool addressed = (address >= 0);
	bool reading = (out != NULL);
1662 1663 1664
	efx_oword_t reg;
	int rc;

1665 1666 1667
	/* Input validation */
	if (len > FALCON_SPI_MAX_LEN)
		return -EINVAL;
1668
	BUG_ON(!mutex_is_locked(&efx->spi_lock));
1669

1670 1671
	/* Check that previous command is not still running */
	rc = falcon_spi_poll(efx);
1672 1673 1674
	if (rc)
		return rc;

1675 1676
	/* Program address register, if we have an address */
	if (addressed) {
1677
		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1678
		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1679 1680 1681 1682 1683
	}

	/* Program data register, if we have data */
	if (in != NULL) {
		memcpy(&reg, in, len);
1684
		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1685
	}
1686

1687
	/* Issue read/write command */
1688
	EFX_POPULATE_OWORD_7(reg,
1689 1690 1691 1692 1693 1694
			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
			     FRF_AB_EE_SPI_HCMD_READ, reading,
			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
			     FRF_AB_EE_SPI_HCMD_ADBCNT,
1695
			     (addressed ? spi->addr_len : 0),
1696
			     FRF_AB_EE_SPI_HCMD_ENC, command);
1697
	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1698

1699
	/* Wait for read/write to complete */
1700 1701 1702 1703 1704
	rc = falcon_spi_wait(efx);
	if (rc)
		return rc;

	/* Read data */
1705
	if (out != NULL) {
1706
		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1707 1708 1709
		memcpy(out, &reg, len);
	}

1710 1711 1712
	return 0;
}

1713 1714
static size_t
falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
{
	return min(FALCON_SPI_MAX_LEN,
		   (spi->block_size - (start & (spi->block_size - 1))));
}

static inline u8
efx_spi_munge_command(const struct efx_spi_device *spi,
		      const u8 command, const unsigned int address)
{
	return command | (((address >> 8) & spi->munge_address) << 3);
}

1727 1728
/* Wait up to 10 ms for buffered write completion */
int falcon_spi_wait_write(const struct efx_spi_device *spi)
1729
{
1730 1731
	struct efx_nic *efx = spi->efx;
	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1732
	u8 status;
1733
	int rc;
1734

1735
	for (;;) {
1736 1737 1738 1739 1740 1741
		rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
				    &status, sizeof(status));
		if (rc)
			return rc;
		if (!(status & SPI_STATUS_NRDY))
			return 0;
1742 1743 1744 1745 1746 1747 1748
		if (time_after_eq(jiffies, timeout)) {
			EFX_ERR(efx, "SPI write timeout on device %d"
				" last status=0x%02x\n",
				spi->device_id, status);
			return -ETIMEDOUT;
		}
		schedule_timeout_uninterruptible(1);
1749 1750 1751 1752 1753 1754
	}
}

int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
		    size_t len, size_t *retlen, u8 *buffer)
{
1755 1756
	size_t block_len, pos = 0;
	unsigned int command;
1757 1758 1759
	int rc = 0;

	while (pos < len) {
1760
		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos, NULL,
				    buffer + pos, block_len);
		if (rc)
			break;
		pos += block_len;

		/* Avoid locking up the system */
		cond_resched();
		if (signal_pending(current)) {
			rc = -EINTR;
			break;
		}
	}

	if (retlen)
		*retlen = pos;
	return rc;
}

int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
		     size_t len, size_t *retlen, const u8 *buffer)
{
	u8 verify_buffer[FALCON_SPI_MAX_LEN];
1786 1787
	size_t block_len, pos = 0;
	unsigned int command;
1788 1789 1790 1791 1792 1793 1794
	int rc = 0;

	while (pos < len) {
		rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
		if (rc)
			break;

1795
		block_len = min(len - pos,
1796 1797 1798 1799 1800 1801 1802
				falcon_spi_write_limit(spi, start + pos));
		command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos,
				    buffer + pos, NULL, block_len);
		if (rc)
			break;

1803
		rc = falcon_spi_wait_write(spi);
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
		if (rc)
			break;

		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
		rc = falcon_spi_cmd(spi, command, start + pos,
				    NULL, verify_buffer, block_len);
		if (memcmp(verify_buffer, buffer + pos, block_len)) {
			rc = -EIO;
			break;
		}

		pos += block_len;

		/* Avoid locking up the system */
		cond_resched();
		if (signal_pending(current)) {
			rc = -EINTR;
			break;
		}
	}

	if (retlen)
		*retlen = pos;
	return rc;
}

1830 1831 1832 1833 1834 1835
/**************************************************************************
 *
 * MAC wrapper
 *
 **************************************************************************
 */
1836 1837

static int falcon_reset_macs(struct efx_nic *efx)
1838
{
1839
	efx_oword_t reg;
1840 1841
	int count;

1842
	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1843 1844 1845 1846
		/* It's not safe to use GLB_CTL_REG to reset the
		 * macs, so instead use the internal MAC resets
		 */
		if (!EFX_IS10G(efx)) {
1847
			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1848
			efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1849 1850
			udelay(1000);

1851
			EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1852
			efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1853 1854 1855
			udelay(1000);
			return 0;
		} else {
1856
			EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1857
			efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1858 1859

			for (count = 0; count < 10000; count++) {
1860
				efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1861 1862
				if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
				    0)
1863 1864 1865
					return 0;
				udelay(10);
			}
1866

1867 1868 1869 1870
			EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
			return -ETIMEDOUT;
		}
	}
1871 1872 1873

	/* MAC stats will fail whilst the TX fifo is draining. Serialise
	 * the drain sequence with the statistics fetch */
1874
	falcon_stop_nic_stats(efx);
1875

1876
	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1877
	EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
1878
	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1879

1880
	efx_reado(efx, &reg, FR_AB_GLB_CTL);
1881 1882 1883
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1884
	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1885 1886 1887

	count = 0;
	while (1) {
1888
		efx_reado(efx, &reg, FR_AB_GLB_CTL);
1889 1890 1891
		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
			EFX_LOG(efx, "Completed MAC reset after %d loops\n",
				count);
			break;
		}
		if (count > 20) {
			EFX_ERR(efx, "MAC reset failed\n");
			break;
		}
		count++;
		udelay(10);
	}

	/* If we've reset the EM block and the link is up, then
	 * we'll have to kick the XAUI link so the PHY can recover */
1906
	if (efx->link_state.up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1907
		falcon_reset_xaui(efx);
1908

1909 1910
	falcon_start_nic_stats(efx);

1911 1912 1913 1914 1915 1916 1917
	return 0;
}

void falcon_drain_tx_fifo(struct efx_nic *efx)
{
	efx_oword_t reg;

1918
	if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1919 1920 1921
	    (efx->loopback_mode != LOOPBACK_NONE))
		return;

1922
	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1923
	/* There is no point in draining more than once */
1924
	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1925 1926 1927
		return;

	falcon_reset_macs(efx);
1928 1929 1930 1931
}

void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
{
1932
	efx_oword_t reg;
1933

1934
	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1935 1936 1937
		return;

	/* Isolate the MAC -> RX */
1938
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1939
	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1940
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1941

1942
	if (!efx->link_state.up)
1943 1944 1945 1946 1947
		falcon_drain_tx_fifo(efx);
}

void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
{
1948
	struct efx_link_state *link_state = &efx->link_state;
1949 1950
	efx_oword_t reg;
	int link_speed;
1951
	bool tx_fc;
1952

1953
	switch (link_state->speed) {
B
Ben Hutchings 已提交
1954 1955 1956 1957 1958
	case 10000: link_speed = 3; break;
	case 1000:  link_speed = 2; break;
	case 100:   link_speed = 1; break;
	default:    link_speed = 0; break;
	}
1959 1960 1961 1962 1963
	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
	 * as advertised.  Disable to ensure packets are not
	 * indefinitely held and TX queue can be flushed at any point
	 * while the link is down. */
	EFX_POPULATE_OWORD_5(reg,
1964 1965 1966 1967 1968
			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
			     FRF_AB_MAC_BCAD_ACPT, 1,
			     FRF_AB_MAC_UC_PROM, efx->promiscuous,
			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
			     FRF_AB_MAC_SPEED, link_speed);
1969 1970
	/* On B0, MAC backpressure can be disabled and packets get
	 * discarded. */
1971
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1972
		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1973
				    !link_state->up);
1974 1975
	}

1976
	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1977 1978

	/* Restore the multicast hash registers. */
1979
	falcon_push_multicast_hash(efx);
1980 1981 1982 1983

	/* Transmission of pause frames when RX crosses the threshold is
	 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
	 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1984
	tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1985
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1986
	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
1987 1988

	/* Unisolate the MAC -> RX */
1989
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1990
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1991
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1992 1993
}

1994
static void falcon_stats_request(struct efx_nic *efx)
1995
{
1996
	struct falcon_nic_data *nic_data = efx->nic_data;
1997 1998
	efx_oword_t reg;

1999 2000
	WARN_ON(nic_data->stats_pending);
	WARN_ON(nic_data->stats_disable_count);
2001

2002 2003
	if (nic_data->stats_dma_done == NULL)
		return;	/* no mac selected */
2004

2005 2006
	*nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
	nic_data->stats_pending = true;
2007 2008 2009 2010
	wmb(); /* ensure done flag is clear */

	/* Initiate DMA transfer of stats */
	EFX_POPULATE_OWORD_2(reg,
2011 2012
			     FRF_AB_MAC_STAT_DMA_CMD, 1,
			     FRF_AB_MAC_STAT_DMA_ADR,
2013
			     efx->stats_buffer.dma_addr);
2014
	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
}

static void falcon_stats_complete(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;

	if (!nic_data->stats_pending)
		return;

	nic_data->stats_pending = 0;
	if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
		rmb(); /* read the done flag before the stats */
		efx->mac_op->update_stats(efx);
	} else {
		EFX_ERR(efx, "timed out waiting for statistics\n");
2032
	}
2033
}
2034

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
static void falcon_stats_timer_func(unsigned long context)
{
	struct efx_nic *efx = (struct efx_nic *)context;
	struct falcon_nic_data *nic_data = efx->nic_data;

	spin_lock(&efx->stats_lock);

	falcon_stats_complete(efx);
	if (nic_data->stats_disable_count == 0)
		falcon_stats_request(efx);

	spin_unlock(&efx->stats_lock);
2047 2048
}

S
Steve Hodgson 已提交
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
static bool falcon_loopback_link_poll(struct efx_nic *efx)
{
	struct efx_link_state old_state = efx->link_state;

	WARN_ON(!mutex_is_locked(&efx->mac_lock));
	WARN_ON(!LOOPBACK_INTERNAL(efx));

	efx->link_state.fd = true;
	efx->link_state.fc = efx->wanted_fc;
	efx->link_state.up = true;

	if (efx->loopback_mode == LOOPBACK_GMAC)
		efx->link_state.speed = 1000;
	else
		efx->link_state.speed = 10000;

	return !efx_link_state_equal(&efx->link_state, &old_state);
}

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
/**************************************************************************
 *
 * PHY access via GMII
 *
 **************************************************************************
 */

/* Wait for GMII access to complete */
static int falcon_gmii_wait(struct efx_nic *efx)
{
2078
	efx_oword_t md_stat;
2079 2080
	int count;

2081 2082
	/* wait upto 50ms - taken max from datasheet */
	for (count = 0; count < 5000; count++) {
2083 2084 2085 2086
		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2087
				EFX_ERR(efx, "error from GMII access "
2088 2089
					EFX_OWORD_FMT"\n",
					EFX_OWORD_VAL(md_stat));
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
				return -EIO;
			}
			return 0;
		}
		udelay(10);
	}
	EFX_ERR(efx, "timed out waiting for GMII\n");
	return -ETIMEDOUT;
}

2100 2101 2102
/* Write an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_write(struct net_device *net_dev,
			     int prtad, int devad, u16 addr, u16 value)
2103
{
2104
	struct efx_nic *efx = netdev_priv(net_dev);
2105
	efx_oword_t reg;
2106
	int rc;
2107

2108 2109
	EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
		    prtad, devad, addr, value);
2110

2111
	mutex_lock(&efx->mdio_lock);
2112

2113 2114 2115
	/* Check MDIO not currently being accessed */
	rc = falcon_gmii_wait(efx);
	if (rc)
2116 2117 2118
		goto out;

	/* Write the address/ID register */
2119
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2120
	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2121

2122 2123
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
			     FRF_AB_MD_DEV_ADR, devad);
2124
	efx_writeo(efx, &reg, FR_AB_MD_ID);
2125 2126

	/* Write data */
2127
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2128
	efx_writeo(efx, &reg, FR_AB_MD_TXD);
2129 2130

	EFX_POPULATE_OWORD_2(reg,
2131 2132
			     FRF_AB_MD_WRC, 1,
			     FRF_AB_MD_GC, 0);
2133
	efx_writeo(efx, &reg, FR_AB_MD_CS);
2134 2135

	/* Wait for data to be written */
2136 2137
	rc = falcon_gmii_wait(efx);
	if (rc) {
2138 2139
		/* Abort the write operation */
		EFX_POPULATE_OWORD_2(reg,
2140 2141
				     FRF_AB_MD_WRC, 0,
				     FRF_AB_MD_GC, 1);
2142
		efx_writeo(efx, &reg, FR_AB_MD_CS);
2143 2144 2145
		udelay(10);
	}

2146 2147
out:
	mutex_unlock(&efx->mdio_lock);
2148
	return rc;
2149 2150
}

2151 2152 2153
/* Read an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_read(struct net_device *net_dev,
			    int prtad, int devad, u16 addr)
2154
{
2155
	struct efx_nic *efx = netdev_priv(net_dev);
2156
	efx_oword_t reg;
2157
	int rc;
2158

2159
	mutex_lock(&efx->mdio_lock);
2160

2161 2162 2163
	/* Check MDIO not currently being accessed */
	rc = falcon_gmii_wait(efx);
	if (rc)
2164 2165
		goto out;

2166
	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2167
	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2168

2169 2170
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
			     FRF_AB_MD_DEV_ADR, devad);
2171
	efx_writeo(efx, &reg, FR_AB_MD_ID);
2172 2173

	/* Request data to be read */
2174
	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2175
	efx_writeo(efx, &reg, FR_AB_MD_CS);
2176 2177

	/* Wait for data to become available */
2178 2179
	rc = falcon_gmii_wait(efx);
	if (rc == 0) {
2180
		efx_reado(efx, &reg, FR_AB_MD_RXD);
2181
		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2182 2183
		EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
			    prtad, devad, addr, rc);
2184 2185 2186
	} else {
		/* Abort the read operation */
		EFX_POPULATE_OWORD_2(reg,
2187 2188
				     FRF_AB_MD_RIC, 0,
				     FRF_AB_MD_GC, 1);
2189
		efx_writeo(efx, &reg, FR_AB_MD_CS);
2190

2191 2192
		EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
			prtad, devad, addr, rc);
2193 2194
	}

2195 2196
out:
	mutex_unlock(&efx->mdio_lock);
2197
	return rc;
2198 2199
}

2200 2201 2202 2203 2204 2205 2206 2207
static void falcon_clock_mac(struct efx_nic *efx)
{
	unsigned strap_val;
	efx_oword_t nic_stat;

	/* Configure the NIC generated MAC clock correctly */
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
	strap_val = EFX_IS10G(efx) ? 5 : 3;
2208
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
		EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
		efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
	} else {
		/* Falcon A1 does not support 1G/10G speed switching
		 * and must not be used with a PHY that does. */
		BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
		       strap_val);
	}
}

2220 2221 2222
int falcon_switch_mac(struct efx_nic *efx)
{
	struct efx_mac_operations *old_mac_op = efx->mac_op;
2223 2224
	struct falcon_nic_data *nic_data = efx->nic_data;
	unsigned int stats_done_offset;
2225 2226 2227
	int rc = 0;

	/* Don't try to fetch MAC stats while we're switching MACs */
2228
	falcon_stop_nic_stats(efx);
2229

2230
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
2231 2232 2233
	efx->mac_op = (EFX_IS10G(efx) ?
		       &falcon_xmac_operations : &falcon_gmac_operations);

2234 2235 2236 2237 2238 2239
	if (EFX_IS10G(efx))
		stats_done_offset = XgDmaDone_offset;
	else
		stats_done_offset = GDmaDone_offset;
	nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;

2240
	if (old_mac_op == efx->mac_op)
2241
		goto out;
2242

2243 2244
	falcon_clock_mac(efx);

2245
	EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2246
	/* Not all macs support a mac-level link state */
B
Ben Hutchings 已提交
2247
	efx->xmac_poll_required = false;
2248

2249 2250
	rc = falcon_reset_macs(efx);
out:
2251
	falcon_start_nic_stats(efx);
2252
	return rc;
2253 2254
}

2255 2256 2257 2258 2259
/* This call is responsible for hooking in the MAC and PHY operations */
int falcon_probe_port(struct efx_nic *efx)
{
	int rc;

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	switch (efx->phy_type) {
	case PHY_TYPE_SFX7101:
		efx->phy_op = &falcon_sfx7101_phy_ops;
		break;
	case PHY_TYPE_SFT9001A:
	case PHY_TYPE_SFT9001B:
		efx->phy_op = &falcon_sft9001_phy_ops;
		break;
	case PHY_TYPE_QT2022C2:
	case PHY_TYPE_QT2025C:
2270
		efx->phy_op = &falcon_qt202x_phy_ops;
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
		break;
	default:
		EFX_ERR(efx, "Unknown PHY type %d\n",
			efx->phy_type);
		return -ENODEV;
	}

	if (efx->phy_op->macs & EFX_XMAC)
		efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
					(1 << LOOPBACK_XGXS) |
					(1 << LOOPBACK_XAUI));
	if (efx->phy_op->macs & EFX_GMAC)
		efx->loopback_modes |= (1 << LOOPBACK_GMAC);
	efx->loopback_modes |= efx->phy_op->loopbacks;
2285

2286 2287 2288 2289 2290
	/* Set up MDIO structure for PHY */
	efx->mdio.mmds = efx->phy_op->mmds;
	efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
	efx->mdio.mdio_read = falcon_mdio_read;
	efx->mdio.mdio_write = falcon_mdio_write;
2291

2292 2293 2294 2295
	/* Initial assumption */
	efx->link_state.speed = 10000;
	efx->link_state.fd = true;

2296
	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2297
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
B
Ben Hutchings 已提交
2298
		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2299
	else
B
Ben Hutchings 已提交
2300
		efx->wanted_fc = EFX_FC_RX;
2301 2302 2303 2304 2305 2306

	/* Allocate buffer for stats */
	rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
				 FALCON_MAC_STATS_SIZE);
	if (rc)
		return rc;
2307 2308
	EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
		(u64)efx->stats_buffer.dma_addr,
2309
		efx->stats_buffer.addr,
2310
		(u64)virt_to_phys(efx->stats_buffer.addr));
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326

	return 0;
}

void falcon_remove_port(struct efx_nic *efx)
{
	falcon_free_buffer(efx, &efx->stats_buffer);
}

/**************************************************************************
 *
 * Multicast filtering
 *
 **************************************************************************
 */

2327
void falcon_push_multicast_hash(struct efx_nic *efx)
2328 2329 2330
{
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;

2331
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
2332

2333 2334
	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
2335 2336
}

B
Ben Hutchings 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352

/**************************************************************************
 *
 * Falcon test code
 *
 **************************************************************************/

int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
{
	struct falcon_nvconfig *nvconfig;
	struct efx_spi_device *spi;
	void *region;
	int rc, magic_num, struct_ver;
	__le16 *word, *limit;
	u32 csum;

2353 2354 2355 2356
	spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
	if (!spi)
		return -EINVAL;

2357
	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
B
Ben Hutchings 已提交
2358 2359
	if (!region)
		return -ENOMEM;
2360
	nvconfig = region + FALCON_NVCONFIG_OFFSET;
B
Ben Hutchings 已提交
2361

2362
	mutex_lock(&efx->spi_lock);
2363
	rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2364
	mutex_unlock(&efx->spi_lock);
B
Ben Hutchings 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	if (rc) {
		EFX_ERR(efx, "Failed to read %s\n",
			efx->spi_flash ? "flash" : "EEPROM");
		rc = -EIO;
		goto out;
	}

	magic_num = le16_to_cpu(nvconfig->board_magic_num);
	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);

	rc = -EINVAL;
2376
	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
B
Ben Hutchings 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
		EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
		goto out;
	}
	if (struct_ver < 2) {
		EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
		goto out;
	} else if (struct_ver < 4) {
		word = &nvconfig->board_magic_num;
		limit = (__le16 *) (nvconfig + 1);
	} else {
		word = region;
2388
		limit = region + FALCON_NVCONFIG_END;
B
Ben Hutchings 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	}
	for (csum = 0; word < limit; ++word)
		csum += le16_to_cpu(*word);

	if (~csum & 0xffff) {
		EFX_ERR(efx, "NVRAM has incorrect checksum\n");
		goto out;
	}

	rc = 0;
	if (nvconfig_out)
		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));

 out:
	kfree(region);
	return rc;
}

/* Registers tested in the falcon register test */
static struct {
	unsigned address;
	efx_oword_t mask;
} efx_test_registers[] = {
2412
	{ FR_AZ_ADR_REGION,
B
Ben Hutchings 已提交
2413
	  EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2414
	{ FR_AZ_RX_CFG,
B
Ben Hutchings 已提交
2415
	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2416
	{ FR_AZ_TX_CFG,
B
Ben Hutchings 已提交
2417
	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2418
	{ FR_AZ_TX_RESERVED,
B
Ben Hutchings 已提交
2419
	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2420
	{ FR_AB_MAC_CTRL,
B
Ben Hutchings 已提交
2421
	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2422
	{ FR_AZ_SRM_TX_DC_CFG,
B
Ben Hutchings 已提交
2423
	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2424
	{ FR_AZ_RX_DC_CFG,
B
Ben Hutchings 已提交
2425
	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2426
	{ FR_AZ_RX_DC_PF_WM,
B
Ben Hutchings 已提交
2427
	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2428
	{ FR_BZ_DP_CTRL,
B
Ben Hutchings 已提交
2429
	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2430
	{ FR_AB_GM_CFG2,
2431
	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2432
	{ FR_AB_GMF_CFG0,
2433
	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2434
	{ FR_AB_XM_GLB_CFG,
B
Ben Hutchings 已提交
2435
	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2436
	{ FR_AB_XM_TX_CFG,
B
Ben Hutchings 已提交
2437
	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2438
	{ FR_AB_XM_RX_CFG,
B
Ben Hutchings 已提交
2439
	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2440
	{ FR_AB_XM_RX_PARAM,
B
Ben Hutchings 已提交
2441
	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2442
	{ FR_AB_XM_FC,
B
Ben Hutchings 已提交
2443
	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2444
	{ FR_AB_XM_ADR_LO,
B
Ben Hutchings 已提交
2445
	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2446
	{ FR_AB_XX_SD_CTL,
B
Ben Hutchings 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
};

static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
				     const efx_oword_t *mask)
{
	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}

int falcon_test_registers(struct efx_nic *efx)
{
	unsigned address = 0, i, j;
	efx_oword_t mask, imask, original, reg, buf;

	/* Falcon should be in loopback to isolate the XMAC from the PHY */
	WARN_ON(!LOOPBACK_INTERNAL(efx));

	for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
		address = efx_test_registers[i].address;
		mask = imask = efx_test_registers[i].mask;
		EFX_INVERT_OWORD(imask);

2470
		efx_reado(efx, &original, address);
B
Ben Hutchings 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480

		/* bit sweep on and off */
		for (j = 0; j < 128; j++) {
			if (!EFX_EXTRACT_OWORD32(mask, j, j))
				continue;

			/* Test this testable bit can be set in isolation */
			EFX_AND_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 1);

2481 2482
			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);
B
Ben Hutchings 已提交
2483 2484 2485 2486 2487 2488 2489 2490

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;

			/* Test this testable bit can be cleared in isolation */
			EFX_OR_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 0);

2491 2492
			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);
B
Ben Hutchings 已提交
2493 2494 2495 2496 2497

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;
		}

2498
		efx_writeo(efx, &original, address);
B
Ben Hutchings 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	}

	return 0;

fail:
	EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
		" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
		EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
	return -EIO;
}

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
/**************************************************************************
 *
 * Device reset
 *
 **************************************************************************
 */

/* Resets NIC to known state.  This routine must be called in process
 * context and is allowed to sleep. */
int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
	efx_oword_t glb_ctl_reg_ker;
	int rc;

2525
	EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

	/* Initiate device reset */
	if (method == RESET_TYPE_WORLD) {
		rc = pci_save_state(efx->pci_dev);
		if (rc) {
			EFX_ERR(efx, "failed to backup PCI state of primary "
				"function prior to hardware reset\n");
			goto fail1;
		}
		if (FALCON_IS_DUAL_FUNC(efx)) {
			rc = pci_save_state(nic_data->pci_dev2);
			if (rc) {
				EFX_ERR(efx, "failed to backup PCI state of "
					"secondary function prior to "
					"hardware reset\n");
				goto fail2;
			}
		}

		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2546 2547 2548
				     FRF_AB_EXT_PHY_RST_DUR,
				     FFE_AB_EXT_PHY_RST_DUR_10240US,
				     FRF_AB_SWRST, 1);
2549 2550
	} else {
		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
				     /* exclude PHY from "invisible" reset */
				     FRF_AB_EXT_PHY_RST_CTL,
				     method == RESET_TYPE_INVISIBLE,
				     /* exclude EEPROM/flash and PCIe */
				     FRF_AB_PCIE_CORE_RST_CTL, 1,
				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
				     FRF_AB_PCIE_SD_RST_CTL, 1,
				     FRF_AB_EE_RST_CTL, 1,
				     FRF_AB_EXT_PHY_RST_DUR,
				     FFE_AB_EXT_PHY_RST_DUR_10240US,
				     FRF_AB_SWRST, 1);
	}
2563
	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587

	EFX_LOG(efx, "waiting for hardware reset\n");
	schedule_timeout_uninterruptible(HZ / 20);

	/* Restore PCI configuration if needed */
	if (method == RESET_TYPE_WORLD) {
		if (FALCON_IS_DUAL_FUNC(efx)) {
			rc = pci_restore_state(nic_data->pci_dev2);
			if (rc) {
				EFX_ERR(efx, "failed to restore PCI config for "
					"the secondary function\n");
				goto fail3;
			}
		}
		rc = pci_restore_state(efx->pci_dev);
		if (rc) {
			EFX_ERR(efx, "failed to restore PCI config for the "
				"primary function\n");
			goto fail4;
		}
		EFX_LOG(efx, "successfully restored PCI config\n");
	}

	/* Assert that reset complete */
2588
	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2589
	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
		rc = -ETIMEDOUT;
		EFX_ERR(efx, "timed out waiting for hardware reset\n");
		goto fail5;
	}
	EFX_LOG(efx, "hardware reset complete\n");

	return 0;

	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
fail2:
fail3:
	pci_restore_state(efx->pci_dev);
fail1:
fail4:
fail5:
	return rc;
}

2608 2609
void falcon_monitor(struct efx_nic *efx)
{
S
Steve Hodgson 已提交
2610
	bool link_changed;
2611 2612
	int rc;

S
Steve Hodgson 已提交
2613 2614
	BUG_ON(!mutex_is_locked(&efx->mac_lock));

2615 2616 2617 2618 2619
	rc = falcon_board(efx)->type->monitor(efx);
	if (rc) {
		EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
			(rc == -ERANGE) ? "reported fault" : "failed");
		efx->phy_mode |= PHY_MODE_LOW_POWER;
S
Steve Hodgson 已提交
2620
		__efx_reconfigure_port(efx);
2621
	}
S
Steve Hodgson 已提交
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639

	if (LOOPBACK_INTERNAL(efx))
		link_changed = falcon_loopback_link_poll(efx);
	else
		link_changed = efx->phy_op->poll(efx);

	if (link_changed) {
		falcon_stop_nic_stats(efx);
		falcon_deconfigure_mac_wrapper(efx);

		falcon_switch_mac(efx);
		efx->mac_op->reconfigure(efx);

		falcon_start_nic_stats(efx);

		efx_link_status_changed(efx);
	}

B
Ben Hutchings 已提交
2640 2641
	if (EFX_IS10G(efx))
		falcon_poll_xmac(efx);
2642 2643
}

2644 2645 2646 2647 2648 2649 2650 2651 2652
/* Zeroes out the SRAM contents.  This routine must be called in
 * process context and is allowed to sleep.
 */
static int falcon_reset_sram(struct efx_nic *efx)
{
	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
	int count;

	/* Set the SRAM wake/sleep GPIO appropriately. */
2653
	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2654 2655
	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2656
	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2657 2658 2659

	/* Initiate SRAM reset */
	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2660 2661
			     FRF_AZ_SRM_INIT_EN, 1,
			     FRF_AZ_SRM_NB_SZ, 0);
2662
	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672

	/* Wait for SRAM reset to complete */
	count = 0;
	do {
		EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);

		/* SRAM reset is slow; expect around 16ms */
		schedule_timeout_uninterruptible(HZ / 50);

		/* Check for reset complete */
2673
		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2674
		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
			EFX_LOG(efx, "SRAM reset complete\n");

			return 0;
		}
	} while (++count < 20);	/* wait upto 0.4 sec */

	EFX_ERR(efx, "timed out waiting for SRAM reset\n");
	return -ETIMEDOUT;
}

2685 2686 2687 2688 2689 2690 2691
static int falcon_spi_device_init(struct efx_nic *efx,
				  struct efx_spi_device **spi_device_ret,
				  unsigned int device_id, u32 device_type)
{
	struct efx_spi_device *spi_device;

	if (device_type != 0) {
2692
		spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2693 2694 2695 2696 2697 2698 2699 2700 2701
		if (!spi_device)
			return -ENOMEM;
		spi_device->device_id = device_id;
		spi_device->size =
			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
		spi_device->addr_len =
			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
		spi_device->munge_address = (spi_device->size == 1 << 9 &&
					     spi_device->addr_len == 1);
2702 2703 2704 2705 2706
		spi_device->erase_command =
			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
		spi_device->erase_size =
			1 << SPI_DEV_TYPE_FIELD(device_type,
						SPI_DEV_TYPE_ERASE_SIZE);
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
		spi_device->block_size =
			1 << SPI_DEV_TYPE_FIELD(device_type,
						SPI_DEV_TYPE_BLOCK_SIZE);

		spi_device->efx = efx;
	} else {
		spi_device = NULL;
	}

	kfree(*spi_device_ret);
	*spi_device_ret = spi_device;
	return 0;
}


static void falcon_remove_spi_devices(struct efx_nic *efx)
{
	kfree(efx->spi_eeprom);
	efx->spi_eeprom = NULL;
	kfree(efx->spi_flash);
	efx->spi_flash = NULL;
}

2730 2731 2732 2733
/* Extract non-volatile configuration */
static int falcon_probe_nvconfig(struct efx_nic *efx)
{
	struct falcon_nvconfig *nvconfig;
B
Ben Hutchings 已提交
2734
	int board_rev;
2735 2736 2737
	int rc;

	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2738 2739
	if (!nvconfig)
		return -ENOMEM;
2740

B
Ben Hutchings 已提交
2741 2742 2743
	rc = falcon_read_nvram(efx, nvconfig);
	if (rc == -EINVAL) {
		EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2744
		efx->phy_type = PHY_TYPE_NONE;
2745
		efx->mdio.prtad = MDIO_PRTAD_NONE;
2746
		board_rev = 0;
B
Ben Hutchings 已提交
2747 2748 2749
		rc = 0;
	} else if (rc) {
		goto fail1;
2750 2751
	} else {
		struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2752
		struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2753 2754

		efx->phy_type = v2->port0_phy_type;
2755
		efx->mdio.prtad = v2->port0_phy_addr;
2756
		board_rev = le16_to_cpu(v2->board_revision);
2757

B
Ben Hutchings 已提交
2758
		if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2759 2760 2761 2762
			rc = falcon_spi_device_init(
				efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
				le32_to_cpu(v3->spi_device_type
					    [FFE_AB_SPI_DEVICE_FLASH]));
2763 2764
			if (rc)
				goto fail2;
2765 2766 2767 2768
			rc = falcon_spi_device_init(
				efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
				le32_to_cpu(v3->spi_device_type
					    [FFE_AB_SPI_DEVICE_EEPROM]));
2769 2770 2771
			if (rc)
				goto fail2;
		}
2772 2773
	}

B
Ben Hutchings 已提交
2774 2775 2776
	/* Read the MAC addresses */
	memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);

2777
	EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2778

2779
	falcon_probe_board(efx, board_rev);
2780

2781 2782 2783 2784 2785 2786
	kfree(nvconfig);
	return 0;

 fail2:
	falcon_remove_spi_devices(efx);
 fail1:
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	kfree(nvconfig);
	return rc;
}

/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
 * count, port speed).  Set workaround and feature flags accordingly.
 */
static int falcon_probe_nic_variant(struct efx_nic *efx)
{
	efx_oword_t altera_build;
2797
	efx_oword_t nic_stat;
2798

2799
	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2800
	if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2801 2802 2803 2804
		EFX_ERR(efx, "Falcon FPGA not supported\n");
		return -ENODEV;
	}

2805
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2806

2807 2808
	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
		u8 pci_rev = efx->pci_dev->revision;
2809

2810 2811 2812 2813
		if ((pci_rev == 0xff) || (pci_rev == 0)) {
			EFX_ERR(efx, "Falcon rev A0 not supported\n");
			return -ENODEV;
		}
2814 2815 2816 2817
		if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
			EFX_ERR(efx, "Falcon rev A1 1G not supported\n");
			return -ENODEV;
		}
2818
		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2819 2820 2821 2822 2823 2824 2825 2826
			EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
			return -ENODEV;
		}
	}

	return 0;
}

2827 2828 2829 2830
/* Probe all SPI devices on the NIC */
static void falcon_probe_spi_devices(struct efx_nic *efx)
{
	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2831
	int boot_dev;
2832

2833 2834 2835
	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2836

2837 2838 2839
	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2840
		EFX_LOG(efx, "Booted from %s\n",
2841
			boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2842 2843 2844 2845 2846 2847
	} else {
		/* Disable VPD and set clock dividers to safe
		 * values for initial programming. */
		boot_dev = -1;
		EFX_LOG(efx, "Booted from internal ASIC settings;"
			" setting SPI config\n");
2848
		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2849
				     /* 125 MHz / 7 ~= 20 MHz */
2850
				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2851
				     /* 125 MHz / 63 ~= 2 MHz */
2852
				     FRF_AB_EE_EE_CLOCK_DIV, 63);
2853
		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2854 2855
	}

2856 2857 2858
	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
		falcon_spi_device_init(efx, &efx->spi_flash,
				       FFE_AB_SPI_DEVICE_FLASH,
2859
				       default_flash_type);
2860 2861 2862
	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
		falcon_spi_device_init(efx, &efx->spi_eeprom,
				       FFE_AB_SPI_DEVICE_EEPROM,
2863
				       large_eeprom_type);
2864 2865
}

2866 2867 2868
int falcon_probe_nic(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data;
2869
	struct falcon_board *board;
2870 2871 2872 2873
	int rc;

	/* Allocate storage for hardware specific data */
	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2874 2875
	if (!nic_data)
		return -ENOMEM;
2876
	efx->nic_data = nic_data;
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914

	/* Determine number of ports etc. */
	rc = falcon_probe_nic_variant(efx);
	if (rc)
		goto fail1;

	/* Probe secondary function if expected */
	if (FALCON_IS_DUAL_FUNC(efx)) {
		struct pci_dev *dev = pci_dev_get(efx->pci_dev);

		while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
					     dev))) {
			if (dev->bus == efx->pci_dev->bus &&
			    dev->devfn == efx->pci_dev->devfn + 1) {
				nic_data->pci_dev2 = dev;
				break;
			}
		}
		if (!nic_data->pci_dev2) {
			EFX_ERR(efx, "failed to find secondary function\n");
			rc = -ENODEV;
			goto fail2;
		}
	}

	/* Now we can reset the NIC */
	rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
	if (rc) {
		EFX_ERR(efx, "failed to reset NIC\n");
		goto fail3;
	}

	/* Allocate memory for INT_KER */
	rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
	if (rc)
		goto fail4;
	BUG_ON(efx->irq_status.dma_addr & 0x0f);

2915 2916 2917
	EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
		(u64)efx->irq_status.dma_addr,
		efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2918

2919 2920
	falcon_probe_spi_devices(efx);

2921 2922 2923 2924 2925
	/* Read in the non-volatile configuration */
	rc = falcon_probe_nvconfig(efx);
	if (rc)
		goto fail5;

2926
	/* Initialise I2C adapter */
2927 2928 2929 2930 2931 2932 2933 2934 2935
	board = falcon_board(efx);
	board->i2c_adap.owner = THIS_MODULE;
	board->i2c_data = falcon_i2c_bit_operations;
	board->i2c_data.data = efx;
	board->i2c_adap.algo_data = &board->i2c_data;
	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
		sizeof(board->i2c_adap.name));
	rc = i2c_bit_add_bus(&board->i2c_adap);
2936 2937 2938
	if (rc)
		goto fail5;

2939
	rc = falcon_board(efx)->type->init(efx);
2940 2941 2942 2943 2944
	if (rc) {
		EFX_ERR(efx, "failed to initialise board\n");
		goto fail6;
	}

2945 2946 2947 2948
	nic_data->stats_disable_count = 1;
	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
		    (unsigned long)efx);

2949 2950
	return 0;

2951
 fail6:
2952 2953
	BUG_ON(i2c_del_adapter(&board->i2c_adap));
	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2954
 fail5:
2955
	falcon_remove_spi_devices(efx);
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
	falcon_free_buffer(efx, &efx->irq_status);
 fail4:
 fail3:
	if (nic_data->pci_dev2) {
		pci_dev_put(nic_data->pci_dev2);
		nic_data->pci_dev2 = NULL;
	}
 fail2:
 fail1:
	kfree(efx->nic_data);
	return rc;
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
static void falcon_init_rx_cfg(struct efx_nic *efx)
{
	/* Prior to Siena the RX DMA engine will split each frame at
	 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
	 * be so large that that never happens. */
	const unsigned huge_buf_size = (3 * 4096) >> 5;
	/* RX control FIFO thresholds (32 entries) */
	const unsigned ctrl_xon_thr = 20;
	const unsigned ctrl_xoff_thr = 25;
	/* RX data FIFO thresholds (256-byte units; size varies) */
2979 2980
	int data_xon_thr = rx_xon_thresh_bytes >> 8;
	int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2981 2982
	efx_oword_t reg;

2983
	efx_reado(efx, &reg, FR_AZ_RX_CFG);
2984
	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2985 2986 2987 2988 2989
		/* Data FIFO size is 5.5K */
		if (data_xon_thr < 0)
			data_xon_thr = 512 >> 8;
		if (data_xoff_thr < 0)
			data_xoff_thr = 2048 >> 8;
2990 2991 2992 2993 2994 2995 2996
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
				    huge_buf_size);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2997
	} else {
2998 2999 3000 3001 3002
		/* Data FIFO size is 80K; register fields moved */
		if (data_xon_thr < 0)
			data_xon_thr = 27648 >> 8; /* ~3*max MTU */
		if (data_xoff_thr < 0)
			data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
3003 3004 3005 3006 3007 3008 3009 3010
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
				    huge_buf_size);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
3011
	}
3012
	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
3013 3014
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
/* This call performs hardware-specific global initialisation, such as
 * defining the descriptor cache sizes and number of RSS channels.
 * It does not set up any buffers, descriptor rings or event queues.
 */
int falcon_init_nic(struct efx_nic *efx)
{
	efx_oword_t temp;
	int rc;

	/* Use on-chip SRAM */
3025
	efx_reado(efx, &temp, FR_AB_NIC_STAT);
3026
	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
3027
	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
3028

B
Ben Hutchings 已提交
3029
	/* Set the source of the GMAC clock */
3030
	if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
3031
		efx_reado(efx, &temp, FR_AB_GPIO_CTL);
3032
		EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
3033
		efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
B
Ben Hutchings 已提交
3034 3035
	}

3036 3037 3038
	/* Select the correct MAC */
	falcon_clock_mac(efx);

3039 3040 3041 3042 3043
	rc = falcon_reset_sram(efx);
	if (rc)
		return rc;

	/* Set positions of descriptor caches in SRAM. */
3044 3045
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
			     efx->type->tx_dc_base / 8);
3046
	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
3047 3048
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
			     efx->type->rx_dc_base / 8);
3049
	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
3050 3051

	/* Set TX descriptor cache size. */
B
Ben Hutchings 已提交
3052
	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
3053
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3054
	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
3055 3056 3057 3058

	/* Set RX descriptor cache size.  Set low watermark to size-8, as
	 * this allows most efficient prefetching.
	 */
B
Ben Hutchings 已提交
3059
	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
3060
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3061
	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
3062
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3063
	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
3064 3065 3066 3067 3068

	/* Clear the parity enables on the TX data fifos as
	 * they produce false parity errors because of timing issues
	 */
	if (EFX_WORKAROUND_5129(efx)) {
3069
		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
3070
		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
3071
		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
3072 3073 3074 3075 3076 3077 3078 3079 3080
	}

	/* Enable all the genuinely fatal interrupts.  (They are still
	 * masked by the overall interrupt mask, controlled by
	 * falcon_interrupts()).
	 *
	 * Note: All other fatal interrupts are enabled
	 */
	EFX_POPULATE_OWORD_3(temp,
3081 3082 3083
			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3084
	EFX_INVERT_OWORD(temp);
3085
	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3086 3087

	if (EFX_WORKAROUND_7244(efx)) {
3088
		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3089 3090 3091 3092
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3093
		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3094 3095 3096 3097
	}

	falcon_setup_rss_indir_table(efx);

3098
	/* XXX This is documented only for Falcon A0/A1 */
3099 3100 3101
	/* Setup RX.  Wait for descriptor is broken and must
	 * be disabled.  RXDP recovery shouldn't be needed, but is.
	 */
3102
	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3103 3104
	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3105
	if (EFX_WORKAROUND_5583(efx))
3106
		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3107
	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3108 3109 3110 3111

	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
	 */
3112
	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3113 3114 3115 3116 3117
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3118
	/* Enable SW_EV to inherit in char driver - assume harmless here */
3119
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3120
	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
3121
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3122
	/* Squash TX of packets of 16 bytes or less */
3123
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
3124
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3125
	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3126 3127 3128 3129

	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
	 * descriptors (which is bad).
	 */
3130
	efx_reado(efx, &temp, FR_AZ_TX_CFG);
3131
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3132
	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3133

3134
	falcon_init_rx_cfg(efx);
3135 3136

	/* Set destination of both TX and RX Flush events */
3137
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
3138
		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3139
		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3140 3141 3142 3143 3144 3145 3146 3147
	}

	return 0;
}

void falcon_remove_nic(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
3148
	struct falcon_board *board = falcon_board(efx);
3149 3150
	int rc;

3151
	board->type->fini(efx);
3152

3153
	/* Remove I2C adapter and clear it in preparation for a retry */
3154
	rc = i2c_del_adapter(&board->i2c_adap);
3155
	BUG_ON(rc);
3156
	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
3157

3158
	falcon_remove_spi_devices(efx);
3159 3160
	falcon_free_buffer(efx, &efx->irq_status);

B
Ben Hutchings 已提交
3161
	falcon_reset_hw(efx, RESET_TYPE_ALL);
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175

	/* Release the second function after the reset */
	if (nic_data->pci_dev2) {
		pci_dev_put(nic_data->pci_dev2);
		nic_data->pci_dev2 = NULL;
	}

	/* Tear down the private nic state */
	kfree(efx->nic_data);
	efx->nic_data = NULL;
}

void falcon_update_nic_stats(struct efx_nic *efx)
{
3176
	struct falcon_nic_data *nic_data = efx->nic_data;
3177 3178
	efx_oword_t cnt;

3179 3180 3181
	if (nic_data->stats_disable_count)
		return;

3182
	efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3183 3184
	efx->n_rx_nodesc_drop_cnt +=
		EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227

	if (nic_data->stats_pending &&
	    *nic_data->stats_dma_done == FALCON_STATS_DONE) {
		nic_data->stats_pending = false;
		rmb(); /* read the done flag before the stats */
		efx->mac_op->update_stats(efx);
	}
}

void falcon_start_nic_stats(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;

	spin_lock_bh(&efx->stats_lock);
	if (--nic_data->stats_disable_count == 0)
		falcon_stats_request(efx);
	spin_unlock_bh(&efx->stats_lock);
}

void falcon_stop_nic_stats(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
	int i;

	might_sleep();

	spin_lock_bh(&efx->stats_lock);
	++nic_data->stats_disable_count;
	spin_unlock_bh(&efx->stats_lock);

	del_timer_sync(&nic_data->stats_timer);

	/* Wait enough time for the most recent transfer to
	 * complete. */
	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
		if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
			break;
		msleep(1);
	}

	spin_lock_bh(&efx->stats_lock);
	falcon_stats_complete(efx);
	spin_unlock_bh(&efx->stats_lock);
3228 3229 3230 3231 3232 3233 3234 3235 3236
}

/**************************************************************************
 *
 * Revision-dependent attributes used by efx.c
 *
 **************************************************************************
 */

3237
struct efx_nic_type falcon_a1_nic_type = {
3238 3239
	.default_mac_ops = &falcon_xmac_operations,

3240
	.revision = EFX_REV_FALCON_A1,
3241
	.mem_map_size = 0x20000,
3242 3243 3244 3245 3246
	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3247
	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3248 3249 3250
	.rx_buffer_padding = 0x24,
	.max_interrupt_mode = EFX_INT_MODE_MSI,
	.phys_addr_channels = 4,
3251 3252
	.tx_dc_base = 0x130000,
	.rx_dc_base = 0x100000,
3253 3254
};

3255
struct efx_nic_type falcon_b0_nic_type = {
3256 3257
	.default_mac_ops = &falcon_xmac_operations,

3258
	.revision = EFX_REV_FALCON_B0,
3259 3260 3261
	/* Map everything up to and including the RSS indirection
	 * table.  Don't map MSI-X table, MSI-X PBA since Linux
	 * requires that they not be mapped.  */
3262 3263 3264 3265 3266 3267 3268 3269
	.mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
			 FR_BZ_RX_INDIRECTION_TBL_STEP *
			 FR_BZ_RX_INDIRECTION_TBL_ROWS),
	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3270
	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3271 3272 3273 3274 3275
	.rx_buffer_padding = 0,
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
	.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
				   * interrupt handler only supports 32
				   * channels */
3276 3277
	.tx_dc_base = 0x130000,
	.rx_dc_base = 0x100000,
3278 3279
};