process.c 47.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
30
#include <linux/export.h>
31 32 33
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
34
#include <linux/utsname.h>
35
#include <linux/ftrace.h>
36
#include <linux/kernel_stat.h>
37 38
#include <linux/personality.h>
#include <linux/random.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/uaccess.h>
41 42 43 44 45 46

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
47
#include <asm/machdep.h>
48
#include <asm/time.h>
49
#include <asm/runlatch.h>
50
#include <asm/syscalls.h>
51
#include <asm/switch_to.h>
52
#include <asm/tm.h>
53
#include <asm/debug.h>
54 55 56
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
57
#include <asm/code-patching.h>
58 59
#include <linux/kprobes.h>
#include <linux/kdebug.h>
60

61 62 63 64 65 66 67
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

68 69
extern unsigned long _get_SP(void);

70
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
71
static void check_if_tm_restore_required(struct task_struct *tsk)
72 73 74 75 76 77 78 79 80 81
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
82
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
83 84 85 86
		set_thread_flag(TIF_RESTORE_TM);
	}
}
#else
87
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
88 89
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

90 91 92 93 94 95 96 97 98 99 100 101 102
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

void msr_check_and_set(unsigned long bits)
103
{
104 105
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
106

107
	newmsr = oldmsr | bits;
108 109

#ifdef CONFIG_VSX
110
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
111 112
		newmsr |= MSR_VSX;
#endif
113

114 115
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
116
}
117

118
void __msr_check_and_clear(unsigned long bits)
119 120 121 122 123 124 125 126 127 128 129 130 131 132
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
133
EXPORT_SYMBOL(__msr_check_and_clear);
134 135

#ifdef CONFIG_PPC_FPU
136 137 138 139 140 141 142 143 144 145
void __giveup_fpu(struct task_struct *tsk)
{
	save_fpu(tsk);
	tsk->thread.regs->msr &= ~MSR_FP;
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		tsk->thread.regs->msr &= ~MSR_VSX;
#endif
}

146 147 148 149 150
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
151
	__giveup_fpu(tsk);
152
	msr_check_and_clear(MSR_FP);
153 154 155
}
EXPORT_SYMBOL(giveup_fpu);

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
176
			 * the FP register state on context switch,
177 178 179 180
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
181
			giveup_fpu(tsk);
182 183 184 185
		}
		preempt_enable();
	}
}
186
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
187 188 189 190 191

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

192
	msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
193

194 195
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
196
		__giveup_fpu(current);
197
	}
198 199
}
EXPORT_SYMBOL(enable_kernel_fp);
200 201 202 203 204 205 206 207 208 209 210

static int restore_fp(struct task_struct *tsk) {
	if (tsk->thread.load_fp) {
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
211
#endif /* CONFIG_PPC_FPU */
212 213

#ifdef CONFIG_ALTIVEC
214 215
#define loadvec(thr) ((thr).load_vec)

216 217 218 219 220 221 222 223 224 225
static void __giveup_altivec(struct task_struct *tsk)
{
	save_altivec(tsk);
	tsk->thread.regs->msr &= ~MSR_VEC;
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		tsk->thread.regs->msr &= ~MSR_VSX;
#endif
}

226 227 228 229
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

230
	msr_check_and_set(MSR_VEC);
231
	__giveup_altivec(tsk);
232
	msr_check_and_clear(MSR_VEC);
233 234 235
}
EXPORT_SYMBOL(giveup_altivec);

236 237 238 239
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

240
	msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
241

242 243
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
244
		__giveup_altivec(current);
245
	}
246 247 248 249 250 251 252 253 254 255 256 257 258
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
259
			giveup_altivec(tsk);
260 261 262 263
		}
		preempt_enable();
	}
}
264
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

static int restore_altivec(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
280 281
#endif /* CONFIG_ALTIVEC */

282
#ifdef CONFIG_VSX
283
static void __giveup_vsx(struct task_struct *tsk)
284 285 286 287 288
{
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
289 290 291 292 293 294 295 296
	tsk->thread.regs->msr &= ~MSR_VSX;
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
297
	__giveup_vsx(tsk);
298
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
299
}
300 301 302 303 304 305 306 307

static void save_vsx(struct task_struct *tsk)
{
	if (tsk->thread.regs->msr & MSR_FP)
		save_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		save_altivec(tsk);
}
308

309 310 311 312
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

313
	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
314

315
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
316
		check_if_tm_restore_required(current);
317 318 319 320 321
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
322
	}
323 324 325 326 327 328 329 330 331 332 333 334 335 336
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
337
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
338 339 340 341 342 343 344 345 346 347 348 349

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
350
static inline void save_vsx(struct task_struct *tsk) { }
351 352
#endif /* CONFIG_VSX */

353
#ifdef CONFIG_SPE
354 355 356 357
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

358
	msr_check_and_set(MSR_SPE);
359
	__giveup_spe(tsk);
360
	msr_check_and_clear(MSR_SPE);
361 362
}
EXPORT_SYMBOL(giveup_spe);
363 364 365 366 367

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

368
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
369

370 371
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
372
		__giveup_spe(current);
373
	}
374 375 376 377 378 379 380 381 382
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
383
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
384
			giveup_spe(tsk);
385 386 387 388 389 390
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

	if (!current->thread.load_fp && !loadvec(current->thread))
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

494 495 496 497 498 499 500 501 502 503 504 505 506
	/*
	 * Saving the way the register space is in hardware, save_vsx boils
	 * down to a save_fpu() and save_altivec()
	 */
	if (usermsr & MSR_VSX) {
		save_vsx(tsk);
	} else {
		if (usermsr & MSR_FP)
			save_fpu(tsk);

		if (usermsr & MSR_VEC)
			save_altivec(tsk);
	}
507 508 509 510 511 512 513

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

514 515 516 517 518
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
519
		save_all(tsk);
520 521 522 523 524 525 526 527 528 529 530

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

531 532 533 534 535 536
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

537
	current->thread.trap_nr = signal_code;
538 539 540 541 542 543 544 545 546 547 548 549
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
550
void do_break (struct pt_regs *regs, unsigned long address,
551 552 553 554
		    unsigned long error_code)
{
	siginfo_t info;

555
	current->thread.trap_nr = TRAP_HWBKPT;
556 557 558 559
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

560
	if (debugger_break_match(regs))
561 562
		return;

563 564
	/* Clear the breakpoint */
	hw_breakpoint_disable();
565 566 567 568 569 570 571 572

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
573
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
574

575
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
576

577 578 579 580 581 582
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
583
	thread->debug.iac1 = thread->debug.iac2 = 0;
584
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
585
	thread->debug.iac3 = thread->debug.iac4 = 0;
586
#endif
587
	thread->debug.dac1 = thread->debug.dac2 = 0;
588
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
589
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
590
#endif
591
	thread->debug.dbcr0 = 0;
592 593 594 595
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
596
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
597 598 599 600 601
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
602
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
603
#else
604
	thread->debug.dbcr1 = 0;
605 606 607
#endif
}

608
static void prime_debug_regs(struct debug_reg *debug)
609
{
610 611 612 613 614 615 616
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

617 618
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
619
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
620 621
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
622
#endif
623 624
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
625
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
626 627
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
628
#endif
629 630
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
631
#ifdef CONFIG_BOOKE
632
	mtspr(SPRN_DBCR2, debug->dbcr2);
633 634 635 636 637 638 639
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
640
void switch_booke_debug_regs(struct debug_reg *new_debug)
641
{
642
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
643 644
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
645
}
646
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
647
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
648
#ifndef CONFIG_HAVE_HW_BREAKPOINT
649 650
static void set_debug_reg_defaults(struct thread_struct *thread)
{
651 652
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
653
	set_breakpoint(&thread->hw_brk);
654
}
655
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
656 657
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

658
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
659 660
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
661
	mtspr(SPRN_DAC1, dabr);
662 663 664
#ifdef CONFIG_PPC_47x
	isync();
#endif
665 666
	return 0;
}
667
#elif defined(CONFIG_PPC_BOOK3S)
668 669
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
670
	mtspr(SPRN_DABR, dabr);
671 672
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
673
	return 0;
674
}
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

695 696
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
697
	unsigned long dawr, dawrx, mrd;
698 699 700 701 702 703 704 705 706

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
707 708 709 710 711 712 713 714
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
715 716 717 718 719 720 721 722

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

723
void __set_breakpoint(struct arch_hw_breakpoint *brk)
724
{
725
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
726

727
	if (cpu_has_feature(CPU_FTR_DAWR))
728 729 730
		set_dawr(brk);
	else
		set_dabr(brk);
731
}
732

733 734 735 736 737 738 739
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

740 741 742
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
743

744 745 746 747 748 749 750 751 752 753 754
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
755

756
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
757 758 759 760 761 762 763 764 765 766 767 768
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
	unsigned long msr_diff = 0;

	/*
	 * If FP/VSX registers have been already saved to the
	 * thread_struct, move them to the transact_fp array.
	 * We clear the TIF_RESTORE_TM bit since after the reclaim
	 * the thread will no longer be transactional.
	 */
	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
769
		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
770 771 772 773 774 775 776 777 778 779
		if (msr_diff & MSR_FP)
			memcpy(&thr->transact_fp, &thr->fp_state,
			       sizeof(struct thread_fp_state));
		if (msr_diff & MSR_VEC)
			memcpy(&thr->transact_vr, &thr->vr_state,
			       sizeof(struct thread_vr_state));
		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
	}

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
	 * benifit of checking for a potential TM bad thing exception.
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	tm_reclaim(thr, thr->regs->msr, cause);

	/* Having done the reclaim, we now have the checkpointed
	 * FP/VSX values in the registers.  These might be valid
	 * even if we have previously called enable_kernel_fp() or
	 * flush_fp_to_thread(), so update thr->regs->msr to
	 * indicate their current validity.
	 */
	thr->regs->msr |= msr_diff;
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
	 * (current) FPRs into oldtask->thread.transact_fpr[].
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	/* Stash the original thread MSR, as giveup_fpu et al will
	 * modify it.  We hold onto it to see whether the task used
837
	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
838
	 * ckpt_regs.msr is already set.
839
	 */
840
	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
841
		thr->ckpt_regs.msr = thr->regs->msr;
842 843 844 845 846 847 848

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

849
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
850 851 852 853 854 855 856 857 858 859 860 861 862

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

888
static inline void tm_recheckpoint_new_task(struct task_struct *new)
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavoidable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!new->thread.regs)
		return;

906 907
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
908
		return;
909
	}
910
	msr = new->thread.ckpt_regs.msr;
911 912 913 914 915 916 917 918 919 920 921 922 923 924
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	/* This loads the checkpointed FP/VEC state, if used */
	tm_recheckpoint(&new->thread, msr);

	/* This loads the speculative FP/VEC state, if used */
	if (msr & MSR_FP) {
		do_load_up_transact_fpu(&new->thread);
		new->thread.regs->msr |=
			(MSR_FP | new->thread.fpexc_mode);
	}
925
#ifdef CONFIG_ALTIVEC
926 927 928 929
	if (msr & MSR_VEC) {
		do_load_up_transact_altivec(&new->thread);
		new->thread.regs->msr |= MSR_VEC;
	}
930
#endif
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
	/* We may as well turn on VSX too since all the state is restored now */
	if (msr & MSR_VSX)
		new->thread.regs->msr |= MSR_VSX;

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		tm_enable();
		tm_reclaim_task(prev);
	}
}
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

970
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
971
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
972 973 974

	restore_math(regs);

975 976 977
	regs->msr |= msr_diff;
}

978 979 980 981
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
		u64 fscr = old_thread->fscr & ~FSCR_DSCR;

		if (new_thread->dscr_inherit) {
			dscr = new_thread->dscr;
			fscr |= FSCR_DSCR;
		}

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);

		if (old_thread->fscr != fscr)
			mtspr(SPRN_FSCR, fscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

1050 1051 1052 1053 1054
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1055 1056 1057
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1058

1059 1060 1061
	new_thread = &new->thread;
	old_thread = &current->thread;

1062 1063
	WARN_ON(!irqs_disabled());

1064 1065 1066 1067 1068
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1069
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1070 1071 1072 1073 1074 1075
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1076 1077 1078
#endif /* CONFIG_PPC64 */

#ifdef CONFIG_PPC_BOOK3S_64
1079
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1080 1081 1082 1083 1084 1085 1086
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */
1087

A
Anton Blanchard 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	__switch_to_tm(prev);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1112 1113 1114 1115 1116 1117
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
1118 1119 1120

	tm_recheckpoint_new_task(new);

1121 1122 1123 1124 1125 1126 1127
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1128 1129
	restore_sprs(old_thread, new_thread);

1130 1131
	last = _switch(old_thread, new_thread);

P
Peter Zijlstra 已提交
1132 1133 1134
#ifdef CONFIG_PPC_BOOK3S_64
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1135
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1136 1137
		batch->active = 1;
	}
1138 1139 1140 1141

	if (current_thread_info()->task->thread.regs)
		restore_math(current_thread_info()->task->thread.regs);

P
Peter Zijlstra 已提交
1142 1143
#endif /* CONFIG_PPC_BOOK3S_64 */

1144 1145 1146
	return last;
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

1163 1164 1165 1166 1167 1168 1169 1170
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1171
		if (!__kernel_text_address(pc) ||
1172
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1173
			printk(KERN_CONT "XXXXXXXX ");
1174 1175
		} else {
			if (regs->nip == pc)
1176
				printk(KERN_CONT "<%08x> ", instr);
1177
			else
1178
				printk(KERN_CONT "%08x ", instr);
1179 1180 1181 1182 1183 1184 1185 1186
		}

		pc += sizeof(int);
	}

	printk("\n");
}

1187
struct regbit {
1188 1189
	unsigned long bit;
	const char *name;
1190 1191 1192
};

static struct regbit msr_bits[] = {
1193 1194 1195 1196 1197 1198 1199 1200 1201
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1202 1203 1204 1205
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1206
#ifdef CONFIG_BOOKE
1207
	{MSR_DE,	"DE"},
1208 1209 1210 1211
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1212 1213
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1214 1215 1216 1217 1218
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1219 1220 1221
	{0,		NULL}
};

1222
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1223
{
1224
	const char *s = "";
1225 1226 1227

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1228 1229
			printk("%s%s", s, bits->name);
			s = sep;
1230
		}
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
		printk(",TM[");
		print_bits(val, msr_tm_bits, "");
		printk("]");
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
	printk("<");
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1265 1266 1267 1268
	printk(">");
}

#ifdef CONFIG_PPC64
1269
#define REG		"%016lx"
1270 1271 1272
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1273
#define REG		"%08lx"
1274 1275 1276 1277
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1278 1279 1280 1281
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1282 1283
	show_regs_print_info(KERN_DEFAULT);

1284 1285 1286
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1287
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1288
	printk("MSR: "REG" ", regs->msr);
1289
	print_msr_bits(regs->msr);
1290
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1291
	trap = TRAP(regs);
1292
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1293
		printk("CFAR: "REG" ", regs->orig_gpr3);
1294
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1295
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1296
		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1297
#else
1298 1299 1300 1301 1302 1303
		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1304 1305
	if (MSR_TM_ACTIVE(regs->msr))
		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1306
#endif
1307 1308

	for (i = 0;  i < 32;  i++) {
1309
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
1310
			printk("\nGPR%02d: ", i);
1311 1312
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1313 1314 1315 1316 1317 1318 1319 1320
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1321 1322
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1323
#endif
1324
	show_stack(current, (unsigned long *) regs->gpr[1]);
1325 1326
	if (!user_mode(regs))
		show_instructions(regs);
1327 1328 1329 1330 1331 1332 1333 1334
}

void exit_thread(void)
{
}

void flush_thread(void)
{
1335
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1336
	flush_ptrace_hw_breakpoint(current);
1337
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1338
	set_debug_reg_defaults(&current->thread);
1339
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1340 1341 1342 1343 1344 1345 1346 1347
}

void
release_thread(struct task_struct *t)
{
}

/*
1348 1349
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1350
 */
1351
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1352
{
1353
	flush_all_to_thread(src);
1354 1355 1356 1357 1358 1359 1360 1361 1362
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
	 */
	__switch_to_tm(src);
	tm_recheckpoint_new_task(src);
1363

1364
	*dst = *src;
1365 1366 1367

	clear_task_ebb(dst);

1368
	return 0;
1369 1370
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1388 1389 1390
/*
 * Copy a thread..
 */
1391

1392 1393 1394
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1395
int copy_thread(unsigned long clone_flags, unsigned long usp,
1396
		unsigned long kthread_arg, struct task_struct *p)
1397 1398 1399
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1400 1401
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1402
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1403 1404 1405 1406

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1407
	if (unlikely(p->flags & PF_KTHREAD)) {
1408
		/* kernel thread */
1409
		struct thread_info *ti = (void *)task_stack_page(p);
A
Al Viro 已提交
1410
		memset(childregs, 0, sizeof(struct pt_regs));
1411
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1412 1413 1414
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1415
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1416
		clear_tsk_thread_flag(p, TIF_32BIT);
1417
		childregs->softe = 1;
1418
#endif
1419
		childregs->gpr[15] = kthread_arg;
1420
		p->thread.regs = NULL;	/* no user register state */
1421
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1422
		f = ret_from_kernel_thread;
1423
	} else {
1424
		/* user thread */
1425
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1426 1427
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1428 1429
		if (usp)
			childregs->gpr[1] = usp;
1430
		p->thread.regs = childregs;
A
Al Viro 已提交
1431
		childregs->gpr[3] = 0;  /* Result from fork() */
1432 1433
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1434
			if (!is_32bit_task())
1435 1436 1437 1438 1439
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1440 1441

		f = ret_from_fork;
1442
	}
1443
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1454
	((unsigned long *)sp)[0] = 0;
1455 1456 1457 1458
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1459
#ifdef CONFIG_PPC32
1460 1461
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1462
#endif
1463 1464 1465 1466
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1467 1468 1469 1470 1471
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1472 1473
	setup_ksp_vsid(p, sp);

1474 1475
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1476
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1477
		p->thread.dscr = mfspr(SPRN_DSCR);
1478
	}
1479 1480
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1481
#endif
1482
	kregs->nip = ppc_function_entry(f);
1483 1484 1485 1486 1487 1488
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1489
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1490
{
1491 1492 1493 1494
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1495 1496 1497 1498 1499
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1500 1501
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1502 1503
	}

1504 1505 1506 1507 1508 1509
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1510

1511 1512 1513 1514 1515 1516 1517
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1518 1519 1520
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1521
	regs->msr = MSR_USER;
1522
#else
1523
	if (!is_32bit_task()) {
1524
		unsigned long entry;
1525

1526 1527 1528
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1529

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1561 1562 1563
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1564 1565 1566 1567
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1568 1569
	}
#endif
1570 1571 1572
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1573
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1574
	current->thread.fp_save_area = NULL;
1575
#ifdef CONFIG_ALTIVEC
1576 1577
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1578
	current->thread.vr_save_area = NULL;
1579 1580 1581 1582 1583 1584 1585 1586 1587
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1588 1589 1590 1591 1592 1593 1594
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM))
		regs->msr |= MSR_TM;
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1595
}
1596
EXPORT_SYMBOL(start_thread);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1611
		if (cpu_has_feature(CPU_FTR_SPE)) {
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1625 1626 1627 1628 1629 1630
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1631 1632 1633 1634
#else
		return -EINVAL;
#endif
	}
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1647 1648 1649 1650 1651 1652 1653 1654 1655
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1670
			val = tsk->thread.fpexc_mode;
1671
		} else
1672
			return -EINVAL;
1673 1674 1675 1676 1677 1678 1679 1680
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1760
int validate_sp(unsigned long sp, struct task_struct *p,
1761 1762
		       unsigned long nbytes)
{
A
Al Viro 已提交
1763
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1764 1765 1766 1767 1768

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1769
	return valid_irq_stack(sp, p, nbytes);
1770 1771
}

1772 1773
EXPORT_SYMBOL(validate_sp);

1774 1775 1776 1777 1778 1779 1780 1781 1782
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1783
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1784 1785 1786 1787
		return 0;

	do {
		sp = *(unsigned long *)sp;
1788
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1789 1790
			return 0;
		if (count > 0) {
1791
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1792 1793 1794 1795 1796 1797
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1798

1799
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1800 1801 1802 1803 1804 1805

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1806 1807 1808
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1809
	unsigned long rth = (unsigned long)return_to_handler;
1810
#endif
1811 1812 1813 1814 1815 1816

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1817
			sp = current_stack_pointer();
1818 1819 1820 1821 1822 1823 1824
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1825
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1826 1827 1828 1829
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1830
		ip = stack[STACK_FRAME_LR_SAVE];
1831
		if (!firstframe || ip != lr) {
1832
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1833
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1834
			if ((ip == rth) && curr_frame >= 0) {
1835 1836 1837 1838 1839
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1850 1851
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1852 1853 1854
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1855
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1856
			       regs->trap, (void *)regs->nip, (void *)lr);
1857 1858 1859 1860 1861 1862 1863
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1864
#ifdef CONFIG_PPC64
1865
/* Called with hard IRQs off */
1866
void notrace __ppc64_runlatch_on(void)
1867
{
1868
	struct thread_info *ti = current_thread_info();
1869 1870
	unsigned long ctrl;

1871 1872 1873
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1874

1875
	ti->local_flags |= _TLF_RUNLATCH;
1876 1877
}

1878
/* Called with hard IRQs off */
1879
void notrace __ppc64_runlatch_off(void)
1880
{
1881
	struct thread_info *ti = current_thread_info();
1882 1883
	unsigned long ctrl;

1884
	ti->local_flags &= ~_TLF_RUNLATCH;
1885

1886 1887 1888
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1889
}
1890
#endif /* CONFIG_PPC64 */
1891

1892 1893 1894 1895 1896 1897
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
	else
		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1914 1915 1916
	unsigned long base = mm->brk;
	unsigned long ret;

1917
#ifdef CONFIG_PPC_STD_MMU_64
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
	 * performance penalty.
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1930 1931 1932 1933 1934 1935

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1936