process.c 48.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
30
#include <linux/export.h>
31 32 33
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
34
#include <linux/utsname.h>
35
#include <linux/ftrace.h>
36
#include <linux/kernel_stat.h>
37 38
#include <linux/personality.h>
#include <linux/random.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/uaccess.h>
41
#include <linux/elf-randomize.h>
42 43 44 45 46 47

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
48
#include <asm/machdep.h>
49
#include <asm/time.h>
50
#include <asm/runlatch.h>
51
#include <asm/syscalls.h>
52
#include <asm/switch_to.h>
53
#include <asm/tm.h>
54
#include <asm/debug.h>
55 56 57
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
58
#include <asm/code-patching.h>
59
#include <asm/exec.h>
60 61
#include <asm/livepatch.h>

62 63
#include <linux/kprobes.h>
#include <linux/kdebug.h>
64

65 66 67 68 69 70 71
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

72 73
extern unsigned long _get_SP(void);

74
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
75
static void check_if_tm_restore_required(struct task_struct *tsk)
76 77 78 79 80 81 82 83 84 85
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
86
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
87 88 89 90
		set_thread_flag(TIF_RESTORE_TM);
	}
}
#else
91
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
92 93
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

94 95 96 97 98 99 100 101 102 103 104 105 106
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

void msr_check_and_set(unsigned long bits)
107
{
108 109
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
110

111
	newmsr = oldmsr | bits;
112 113

#ifdef CONFIG_VSX
114
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
115 116
		newmsr |= MSR_VSX;
#endif
117

118 119
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
120
}
121

122
void __msr_check_and_clear(unsigned long bits)
123 124 125 126 127 128 129 130 131 132 133 134 135 136
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
137
EXPORT_SYMBOL(__msr_check_and_clear);
138 139

#ifdef CONFIG_PPC_FPU
140 141
void __giveup_fpu(struct task_struct *tsk)
{
142 143
	unsigned long msr;

144
	save_fpu(tsk);
145 146
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
147 148
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
149
		msr &= ~MSR_VSX;
150
#endif
151
	tsk->thread.regs->msr = msr;
152 153
}

154 155 156 157 158
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
159
	__giveup_fpu(tsk);
160
	msr_check_and_clear(MSR_FP);
161 162 163
}
EXPORT_SYMBOL(giveup_fpu);

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
184
			 * the FP register state on context switch,
185 186 187 188
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
189
			giveup_fpu(tsk);
190 191 192 193
		}
		preempt_enable();
	}
}
194
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
195 196 197 198 199

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

200
	msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
201

202 203
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
204
		__giveup_fpu(current);
205
	}
206 207
}
EXPORT_SYMBOL(enable_kernel_fp);
208 209 210 211 212 213 214 215 216 217 218

static int restore_fp(struct task_struct *tsk) {
	if (tsk->thread.load_fp) {
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
219
#endif /* CONFIG_PPC_FPU */
220 221

#ifdef CONFIG_ALTIVEC
222 223
#define loadvec(thr) ((thr).load_vec)

224 225
static void __giveup_altivec(struct task_struct *tsk)
{
226 227
	unsigned long msr;

228
	save_altivec(tsk);
229 230
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
231 232
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
233
		msr &= ~MSR_VSX;
234
#endif
235
	tsk->thread.regs->msr = msr;
236 237
}

238 239 240 241
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

242
	msr_check_and_set(MSR_VEC);
243
	__giveup_altivec(tsk);
244
	msr_check_and_clear(MSR_VEC);
245 246 247
}
EXPORT_SYMBOL(giveup_altivec);

248 249 250 251
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

252
	msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
253

254 255
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
256
		__giveup_altivec(current);
257
	}
258 259 260 261 262 263 264 265 266 267 268 269 270
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
271
			giveup_altivec(tsk);
272 273 274 275
		}
		preempt_enable();
	}
}
276
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

static int restore_altivec(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
292 293
#endif /* CONFIG_ALTIVEC */

294
#ifdef CONFIG_VSX
295
static void __giveup_vsx(struct task_struct *tsk)
296 297 298 299 300
{
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
301 302 303 304 305 306 307 308
	tsk->thread.regs->msr &= ~MSR_VSX;
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
309
	__giveup_vsx(tsk);
310
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
311
}
312 313 314 315 316 317 318 319

static void save_vsx(struct task_struct *tsk)
{
	if (tsk->thread.regs->msr & MSR_FP)
		save_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		save_altivec(tsk);
}
320

321 322 323 324
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

325
	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
326

327
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
328
		check_if_tm_restore_required(current);
329 330 331 332 333
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
334
	}
335 336 337 338 339 340 341 342 343 344 345 346 347 348
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
349
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
350 351 352 353 354 355 356 357 358 359 360 361

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
362
static inline void save_vsx(struct task_struct *tsk) { }
363 364
#endif /* CONFIG_VSX */

365
#ifdef CONFIG_SPE
366 367 368 369
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

370
	msr_check_and_set(MSR_SPE);
371
	__giveup_spe(tsk);
372
	msr_check_and_clear(MSR_SPE);
373 374
}
EXPORT_SYMBOL(giveup_spe);
375 376 377 378 379

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

380
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
381

382 383
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
384
		__giveup_spe(current);
385
	}
386 387 388 389 390 391 392 393 394
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
395
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
396
			giveup_spe(tsk);
397 398 399 400 401 402
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

	if (!current->thread.load_fp && !loadvec(current->thread))
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

506 507 508 509 510 511 512 513 514 515 516 517 518
	/*
	 * Saving the way the register space is in hardware, save_vsx boils
	 * down to a save_fpu() and save_altivec()
	 */
	if (usermsr & MSR_VSX) {
		save_vsx(tsk);
	} else {
		if (usermsr & MSR_FP)
			save_fpu(tsk);

		if (usermsr & MSR_VEC)
			save_altivec(tsk);
	}
519 520 521 522 523 524 525

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

526 527 528 529 530
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
531
		save_all(tsk);
532 533 534 535 536 537 538 539 540 541 542

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

543 544 545 546 547 548
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

549
	current->thread.trap_nr = signal_code;
550 551 552 553 554 555 556 557 558 559 560 561
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
562
void do_break (struct pt_regs *regs, unsigned long address,
563 564 565 566
		    unsigned long error_code)
{
	siginfo_t info;

567
	current->thread.trap_nr = TRAP_HWBKPT;
568 569 570 571
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

572
	if (debugger_break_match(regs))
573 574
		return;

575 576
	/* Clear the breakpoint */
	hw_breakpoint_disable();
577 578 579 580 581 582 583 584

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
585
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
586

587
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
588

589 590 591 592 593 594
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
595
	thread->debug.iac1 = thread->debug.iac2 = 0;
596
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
597
	thread->debug.iac3 = thread->debug.iac4 = 0;
598
#endif
599
	thread->debug.dac1 = thread->debug.dac2 = 0;
600
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
601
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
602
#endif
603
	thread->debug.dbcr0 = 0;
604 605 606 607
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
608
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
609 610 611 612 613
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
614
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
615
#else
616
	thread->debug.dbcr1 = 0;
617 618 619
#endif
}

620
static void prime_debug_regs(struct debug_reg *debug)
621
{
622 623 624 625 626 627 628
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

629 630
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
631
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
632 633
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
634
#endif
635 636
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
637
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
638 639
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
640
#endif
641 642
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
643
#ifdef CONFIG_BOOKE
644
	mtspr(SPRN_DBCR2, debug->dbcr2);
645 646 647 648 649 650 651
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
652
void switch_booke_debug_regs(struct debug_reg *new_debug)
653
{
654
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
655 656
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
657
}
658
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
659
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
660
#ifndef CONFIG_HAVE_HW_BREAKPOINT
661 662
static void set_debug_reg_defaults(struct thread_struct *thread)
{
663 664
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
665
	set_breakpoint(&thread->hw_brk);
666
}
667
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
668 669
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

670
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
671 672
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
673
	mtspr(SPRN_DAC1, dabr);
674 675 676
#ifdef CONFIG_PPC_47x
	isync();
#endif
677 678
	return 0;
}
679
#elif defined(CONFIG_PPC_BOOK3S)
680 681
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
682
	mtspr(SPRN_DABR, dabr);
683 684
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
685
	return 0;
686
}
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

707 708
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
709
	unsigned long dawr, dawrx, mrd;
710 711 712 713 714 715 716 717 718

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
719 720 721 722 723 724 725 726
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
727 728 729 730 731 732 733 734

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

735
void __set_breakpoint(struct arch_hw_breakpoint *brk)
736
{
737
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
738

739
	if (cpu_has_feature(CPU_FTR_DAWR))
740 741 742
		set_dawr(brk);
	else
		set_dabr(brk);
743
}
744

745 746 747 748 749 750 751
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

752 753 754
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
755

756 757 758 759 760 761 762 763 764 765 766
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
767

768
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
769 770 771 772 773 774 775 776 777 778 779 780
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
	unsigned long msr_diff = 0;

	/*
	 * If FP/VSX registers have been already saved to the
	 * thread_struct, move them to the transact_fp array.
	 * We clear the TIF_RESTORE_TM bit since after the reclaim
	 * the thread will no longer be transactional.
	 */
	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
781
		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
782 783 784 785 786 787 788 789 790 791
		if (msr_diff & MSR_FP)
			memcpy(&thr->transact_fp, &thr->fp_state,
			       sizeof(struct thread_fp_state));
		if (msr_diff & MSR_VEC)
			memcpy(&thr->transact_vr, &thr->vr_state,
			       sizeof(struct thread_vr_state));
		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
	}

792 793 794 795 796 797 798 799 800 801 802 803 804
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
805
	 * benefit of checking for a potential TM bad thing exception.
806 807 808 809
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	tm_reclaim(thr, thr->regs->msr, cause);

	/* Having done the reclaim, we now have the checkpointed
	 * FP/VSX values in the registers.  These might be valid
	 * even if we have previously called enable_kernel_fp() or
	 * flush_fp_to_thread(), so update thr->regs->msr to
	 * indicate their current validity.
	 */
	thr->regs->msr |= msr_diff;
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
	 * (current) FPRs into oldtask->thread.transact_fpr[].
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	/* Stash the original thread MSR, as giveup_fpu et al will
	 * modify it.  We hold onto it to see whether the task used
849
	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
850
	 * ckpt_regs.msr is already set.
851
	 */
852
	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
853
		thr->ckpt_regs.msr = thr->regs->msr;
854 855 856 857 858 859 860

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

861
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
862 863 864 865 866 867 868 869 870 871 872 873 874

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

900
static inline void tm_recheckpoint_new_task(struct task_struct *new)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavoidable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!new->thread.regs)
		return;

918 919
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
920
		return;
921
	}
922
	msr = new->thread.ckpt_regs.msr;
923 924 925 926 927 928 929 930 931 932 933 934 935 936
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	/* This loads the checkpointed FP/VEC state, if used */
	tm_recheckpoint(&new->thread, msr);

	/* This loads the speculative FP/VEC state, if used */
	if (msr & MSR_FP) {
		do_load_up_transact_fpu(&new->thread);
		new->thread.regs->msr |=
			(MSR_FP | new->thread.fpexc_mode);
	}
937
#ifdef CONFIG_ALTIVEC
938 939 940 941
	if (msr & MSR_VEC) {
		do_load_up_transact_altivec(&new->thread);
		new->thread.regs->msr |= MSR_VEC;
	}
942
#endif
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
	/* We may as well turn on VSX too since all the state is restored now */
	if (msr & MSR_VSX)
		new->thread.regs->msr |= MSR_VSX;

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		tm_enable();
		tm_reclaim_task(prev);
	}
}
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

982
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
983
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
984 985 986

	restore_math(regs);

987 988 989
	regs->msr |= msr_diff;
}

990 991 992 993
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
994

995 996 997
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
998
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
1020 1021 1022 1023 1024 1025 1026 1027

	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* Conditionally save Load Monitor registers, if enabled */
		if (t->fscr & FSCR_LM) {
			t->lmrr = mfspr(SPRN_LMRR);
			t->lmser = mfspr(SPRN_LMSER);
		}
	}
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1042
		if (new_thread->dscr_inherit)
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1057 1058 1059
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1060 1061 1062
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* Conditionally restore Load Monitor registers, if enabled */
		if (new_thread->fscr & FSCR_LM) {
			if (old_thread->lmrr != new_thread->lmrr)
				mtspr(SPRN_LMRR, new_thread->lmrr);
			if (old_thread->lmser != new_thread->lmser)
				mtspr(SPRN_LMSER, new_thread->lmser);
		}
	}
1073 1074 1075
#endif
}

1076 1077 1078 1079 1080
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1081 1082 1083
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1084

1085 1086 1087
	new_thread = &new->thread;
	old_thread = &current->thread;

1088 1089
	WARN_ON(!irqs_disabled());

1090 1091 1092 1093 1094
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1095
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1096 1097 1098 1099 1100 1101
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1102 1103
#endif /* CONFIG_PPC64 */

1104
#ifdef CONFIG_PPC_STD_MMU_64
1105
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1106 1107 1108 1109 1110 1111
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1112
#endif /* CONFIG_PPC_STD_MMU_64 */
1113

A
Anton Blanchard 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	__switch_to_tm(prev);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1138 1139 1140 1141 1142 1143
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
1144 1145 1146

	tm_recheckpoint_new_task(new);

1147 1148 1149 1150 1151 1152 1153
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1154 1155
	restore_sprs(old_thread, new_thread);

1156 1157
	last = _switch(old_thread, new_thread);

1158
#ifdef CONFIG_PPC_STD_MMU_64
P
Peter Zijlstra 已提交
1159 1160
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1161
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1162 1163
		batch->active = 1;
	}
1164 1165 1166

	if (current_thread_info()->task->thread.regs)
		restore_math(current_thread_info()->task->thread.regs);
1167
#endif /* CONFIG_PPC_STD_MMU_64 */
P
Peter Zijlstra 已提交
1168

1169 1170 1171
	return last;
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

1188 1189 1190 1191 1192 1193 1194 1195
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1196
		if (!__kernel_text_address(pc) ||
1197
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1198
			printk(KERN_CONT "XXXXXXXX ");
1199 1200
		} else {
			if (regs->nip == pc)
1201
				printk(KERN_CONT "<%08x> ", instr);
1202
			else
1203
				printk(KERN_CONT "%08x ", instr);
1204 1205 1206 1207 1208 1209 1210 1211
		}

		pc += sizeof(int);
	}

	printk("\n");
}

1212
struct regbit {
1213 1214
	unsigned long bit;
	const char *name;
1215 1216 1217
};

static struct regbit msr_bits[] = {
1218 1219 1220 1221 1222 1223 1224 1225 1226
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1227 1228 1229 1230
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1231
#ifdef CONFIG_BOOKE
1232
	{MSR_DE,	"DE"},
1233 1234 1235 1236
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1237 1238
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1239 1240 1241 1242 1243
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1244 1245 1246
	{0,		NULL}
};

1247
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1248
{
1249
	const char *s = "";
1250 1251 1252

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1253 1254
			printk("%s%s", s, bits->name);
			s = sep;
1255
		}
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
		printk(",TM[");
		print_bits(val, msr_tm_bits, "");
		printk("]");
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
	printk("<");
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1290 1291 1292 1293
	printk(">");
}

#ifdef CONFIG_PPC64
1294
#define REG		"%016lx"
1295 1296 1297
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1298
#define REG		"%08lx"
1299 1300 1301 1302
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1303 1304 1305 1306
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1307 1308
	show_regs_print_info(KERN_DEFAULT);

1309 1310 1311
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1312
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1313
	printk("MSR: "REG" ", regs->msr);
1314
	print_msr_bits(regs->msr);
1315
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1316
	trap = TRAP(regs);
1317
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1318
		printk("CFAR: "REG" ", regs->orig_gpr3);
1319
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1320
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1321
		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1322
#else
1323 1324 1325 1326 1327 1328
		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1329 1330
	if (MSR_TM_ACTIVE(regs->msr))
		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1331
#endif
1332 1333

	for (i = 0;  i < 32;  i++) {
1334
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
1335
			printk("\nGPR%02d: ", i);
1336 1337
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1338 1339 1340 1341 1342 1343 1344 1345
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1346 1347
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1348
#endif
1349
	show_stack(current, (unsigned long *) regs->gpr[1]);
1350 1351
	if (!user_mode(regs))
		show_instructions(regs);
1352 1353 1354 1355
}

void flush_thread(void)
{
1356
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1357
	flush_ptrace_hw_breakpoint(current);
1358
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1359
	set_debug_reg_defaults(&current->thread);
1360
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1361 1362 1363 1364 1365 1366 1367 1368
}

void
release_thread(struct task_struct *t)
{
}

/*
1369 1370
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1371
 */
1372
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1373
{
1374
	flush_all_to_thread(src);
1375 1376 1377 1378 1379 1380 1381 1382 1383
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
	 */
	__switch_to_tm(src);
	tm_recheckpoint_new_task(src);
1384

1385
	*dst = *src;
1386 1387 1388

	clear_task_ebb(dst);

1389
	return 0;
1390 1391
}

1392 1393 1394 1395 1396 1397
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1398 1399 1400
	if (radix_enabled())
		return;

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1412 1413 1414
/*
 * Copy a thread..
 */
1415

1416 1417 1418
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1419
int copy_thread(unsigned long clone_flags, unsigned long usp,
1420
		unsigned long kthread_arg, struct task_struct *p)
1421 1422 1423
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1424 1425
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1426
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1427 1428 1429
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1430 1431 1432 1433

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1434
	if (unlikely(p->flags & PF_KTHREAD)) {
1435
		/* kernel thread */
A
Al Viro 已提交
1436
		memset(childregs, 0, sizeof(struct pt_regs));
1437
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1438 1439 1440
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1441
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1442
		clear_tsk_thread_flag(p, TIF_32BIT);
1443
		childregs->softe = 1;
1444
#endif
1445
		childregs->gpr[15] = kthread_arg;
1446
		p->thread.regs = NULL;	/* no user register state */
1447
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1448
		f = ret_from_kernel_thread;
1449
	} else {
1450
		/* user thread */
1451
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1452 1453
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1454 1455
		if (usp)
			childregs->gpr[1] = usp;
1456
		p->thread.regs = childregs;
A
Al Viro 已提交
1457
		childregs->gpr[3] = 0;  /* Result from fork() */
1458 1459
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1460
			if (!is_32bit_task())
1461 1462 1463 1464 1465
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1466 1467

		f = ret_from_fork;
1468
	}
1469
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1480
	((unsigned long *)sp)[0] = 0;
1481 1482 1483 1484
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1485
#ifdef CONFIG_PPC32
1486 1487
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1488
#endif
1489 1490 1491 1492
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1493 1494 1495 1496 1497
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1498 1499
	setup_ksp_vsid(p, sp);

1500 1501
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1502
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1503
		p->thread.dscr = mfspr(SPRN_DSCR);
1504
	}
1505 1506
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1507
#endif
1508
	kregs->nip = ppc_function_entry(f);
1509 1510 1511 1512 1513 1514
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1515
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1516
{
1517 1518 1519 1520
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1521 1522 1523 1524 1525
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1526 1527
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1528 1529
	}

1530 1531 1532 1533 1534 1535
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1536

1537 1538 1539 1540 1541 1542 1543
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1544 1545 1546
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1547
	regs->msr = MSR_USER;
1548
#else
1549
	if (!is_32bit_task()) {
1550
		unsigned long entry;
1551

1552 1553 1554
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1587 1588 1589
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1590 1591 1592 1593
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1594 1595
	}
#endif
1596 1597 1598
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1599
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1600
	current->thread.fp_save_area = NULL;
1601
#ifdef CONFIG_ALTIVEC
1602 1603
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1604
	current->thread.vr_save_area = NULL;
1605 1606 1607 1608 1609 1610 1611 1612 1613
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1614 1615 1616 1617 1618 1619 1620
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM))
		regs->msr |= MSR_TM;
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1621
}
1622
EXPORT_SYMBOL(start_thread);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1637
		if (cpu_has_feature(CPU_FTR_SPE)) {
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1651 1652 1653 1654 1655 1656
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1657 1658 1659 1660
#else
		return -EINVAL;
#endif
	}
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1673 1674 1675 1676 1677 1678 1679 1680 1681
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1696
			val = tsk->thread.fpexc_mode;
1697
		} else
1698
			return -EINVAL;
1699 1700 1701 1702 1703 1704 1705 1706
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1786
int validate_sp(unsigned long sp, struct task_struct *p,
1787 1788
		       unsigned long nbytes)
{
A
Al Viro 已提交
1789
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1790 1791 1792 1793 1794

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1795
	return valid_irq_stack(sp, p, nbytes);
1796 1797
}

1798 1799
EXPORT_SYMBOL(validate_sp);

1800 1801 1802 1803 1804 1805 1806 1807 1808
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1809
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1810 1811 1812 1813
		return 0;

	do {
		sp = *(unsigned long *)sp;
1814
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1815 1816
			return 0;
		if (count > 0) {
1817
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1818 1819 1820 1821 1822 1823
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1824

1825
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1826 1827 1828 1829 1830 1831

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1832 1833 1834
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1835
	unsigned long rth = (unsigned long)return_to_handler;
1836
#endif
1837 1838 1839 1840 1841 1842

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1843
			sp = current_stack_pointer();
1844 1845 1846 1847 1848 1849 1850
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1851
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1852 1853 1854 1855
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1856
		ip = stack[STACK_FRAME_LR_SAVE];
1857
		if (!firstframe || ip != lr) {
1858
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1859
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1860
			if ((ip == rth) && curr_frame >= 0) {
1861 1862 1863 1864 1865
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1876 1877
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1878 1879 1880
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1881
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1882
			       regs->trap, (void *)regs->nip, (void *)lr);
1883 1884 1885 1886 1887 1888 1889
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1890
#ifdef CONFIG_PPC64
1891
/* Called with hard IRQs off */
1892
void notrace __ppc64_runlatch_on(void)
1893
{
1894
	struct thread_info *ti = current_thread_info();
1895 1896
	unsigned long ctrl;

1897 1898 1899
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1900

1901
	ti->local_flags |= _TLF_RUNLATCH;
1902 1903
}

1904
/* Called with hard IRQs off */
1905
void notrace __ppc64_runlatch_off(void)
1906
{
1907
	struct thread_info *ti = current_thread_info();
1908 1909
	unsigned long ctrl;

1910
	ti->local_flags &= ~_TLF_RUNLATCH;
1911

1912 1913 1914
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1915
}
1916
#endif /* CONFIG_PPC64 */
1917

1918 1919 1920 1921 1922 1923
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1924 1925 1926 1927 1928 1929 1930

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
1931
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1932
	else
D
Daniel Cashman 已提交
1933
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1934 1935 1936 1937 1938 1939

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1940 1941 1942
	unsigned long base = mm->brk;
	unsigned long ret;

1943
#ifdef CONFIG_PPC_STD_MMU_64
1944 1945 1946 1947 1948
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
1949 1950
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1951 1952 1953 1954 1955 1956
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1957 1958 1959 1960 1961 1962

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1963