slub.c 141.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2 3 4 5
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
6 7
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
8
 *
C
Christoph Lameter 已提交
9
 * (C) 2007 SGI, Christoph Lameter
10
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
11 12 13
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
14
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
15 16 17 18 19
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
20
#include "slab.h"
21
#include <linux/proc_fs.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
36
#include <linux/random.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
54
 *   have the ability to do a cmpxchg_double. It only protects:
55
 *	A. page->freelist	-> List of object free in a page
56 57 58
 *	B. page->inuse		-> Number of objects in use
 *	C. page->objects	-> Number of objects in page
 *	D. page->frozen		-> frozen state
59 60 61 62 63 64
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
85 86
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
87
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
88 89
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
90 91 92 93 94 95 96
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
97 98 99 100 101 102 103 104 105 106 107 108
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
109
 * 			freelist that allows lockless access to
110 111
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
112 113 114
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
115
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
116 117
 */

118 119
static inline int kmem_cache_debug(struct kmem_cache *s)
{
120
#ifdef CONFIG_SLUB_DEBUG
121
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122
#else
123
	return 0;
124
#endif
125
}
126

127
void *fixup_red_left(struct kmem_cache *s, void *p)
J
Joonsoo Kim 已提交
128 129 130 131 132 133 134
{
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
		p += s->red_left_pad;

	return p;
}

135 136 137 138 139 140 141 142 143
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
144 145 146 147 148 149 150 151 152 153 154
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

155 156 157
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

158 159 160 161
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
162
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
163

164 165 166
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
167
 * sort the partial list by the number of objects in use.
168 169 170
 */
#define MAX_PARTIAL 10

171
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
C
Christoph Lameter 已提交
172
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
173

174 175 176 177 178 179 180 181
/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


182
/*
183 184 185
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
186
 */
187
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188

189 190
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
191
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
192

C
Christoph Lameter 已提交
193
/* Internal SLUB flags */
194
/* Poison object */
195
#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
196
/* Use cmpxchg_double */
197
#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
C
Christoph Lameter 已提交
198

199 200 201
/*
 * Tracking user of a slab.
 */
202
#define TRACK_ADDRS_COUNT 16
203
struct track {
204
	unsigned long addr;	/* Called from address */
205 206 207
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
208 209 210 211 212 213 214
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

215
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
216 217
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
218
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
219
static void sysfs_slab_remove(struct kmem_cache *s);
C
Christoph Lameter 已提交
220
#else
221 222 223
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
224
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
225
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
226 227
#endif

228
static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 230
{
#ifdef CONFIG_SLUB_STATS
231 232 233 234 235
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
236 237 238
#endif
}

C
Christoph Lameter 已提交
239 240 241 242
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
/*
 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 * with an XOR of the address where the pointer is held and a per-cache
 * random number.
 */
static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
				 unsigned long ptr_addr)
{
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
#else
	return ptr;
#endif
}

/* Returns the freelist pointer recorded at location ptr_addr. */
static inline void *freelist_dereference(const struct kmem_cache *s,
					 void *ptr_addr)
{
	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
			    (unsigned long)ptr_addr);
}

266 267
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
268
	return freelist_dereference(s, object + s->offset);
269 270
}

271 272
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
273
	prefetch(object + s->offset);
274 275
}

276 277
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
278
	unsigned long freepointer_addr;
279 280
	void *p;

281 282 283
	if (!debug_pagealloc_enabled())
		return get_freepointer(s, object);

284 285 286
	freepointer_addr = (unsigned long)object + s->offset;
	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
	return freelist_ptr(s, p, freepointer_addr);
287 288
}

289 290
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
291 292
	unsigned long freeptr_addr = (unsigned long)object + s->offset;

293 294 295 296
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	BUG_ON(object == fp); /* naive detection of double free or corruption */
#endif

297
	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
298 299 300
}

/* Loop over all objects in a slab */
301
#define for_each_object(__p, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
302 303 304
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)
305

306
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
307 308 309
	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
		__idx <= __objects; \
		__p += (__s)->size, __idx++)
310

311
/* Determine object index from a given position */
312
static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
313 314 315 316
{
	return (p - addr) / s->size;
}

317
static inline unsigned int order_objects(unsigned int order, unsigned int size)
318
{
319
	return ((unsigned int)PAGE_SIZE << order) / size;
320 321
}

322
static inline struct kmem_cache_order_objects oo_make(unsigned int order,
323
		unsigned int size)
324 325
{
	struct kmem_cache_order_objects x = {
326
		(order << OO_SHIFT) + order_objects(order, size)
327 328 329 330 331
	};

	return x;
}

332
static inline unsigned int oo_order(struct kmem_cache_order_objects x)
333
{
334
	return x.x >> OO_SHIFT;
335 336
}

337
static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
338
{
339
	return x.x & OO_MASK;
340 341
}

342 343 344 345 346
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
347
	VM_BUG_ON_PAGE(PageTail(page), page);
348 349 350 351 352
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
353
	VM_BUG_ON_PAGE(PageTail(page), page);
354 355 356
	__bit_spin_unlock(PG_locked, &page->flags);
}

357 358 359 360 361 362 363
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
364 365
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
366
	if (s->flags & __CMPXCHG_DOUBLE) {
367
		if (cmpxchg_double(&page->freelist, &page->counters,
368 369
				   freelist_old, counters_old,
				   freelist_new, counters_new))
370
			return true;
371 372 373 374
	} else
#endif
	{
		slab_lock(page);
375 376
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
377
			page->freelist = freelist_new;
378
			page->counters = counters_new;
379
			slab_unlock(page);
380
			return true;
381 382 383 384 385 386 387 388
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
389
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
390 391
#endif

392
	return false;
393 394
}

395 396 397 398 399
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
400 401
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
402
	if (s->flags & __CMPXCHG_DOUBLE) {
403
		if (cmpxchg_double(&page->freelist, &page->counters,
404 405
				   freelist_old, counters_old,
				   freelist_new, counters_new))
406
			return true;
407 408 409
	} else
#endif
	{
410 411 412
		unsigned long flags;

		local_irq_save(flags);
413
		slab_lock(page);
414 415
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
416
			page->freelist = freelist_new;
417
			page->counters = counters_new;
418
			slab_unlock(page);
419
			local_irq_restore(flags);
420
			return true;
421
		}
422
		slab_unlock(page);
423
		local_irq_restore(flags);
424 425 426 427 428 429
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
430
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
431 432
#endif

433
	return false;
434 435
}

C
Christoph Lameter 已提交
436
#ifdef CONFIG_SLUB_DEBUG
437 438 439
/*
 * Determine a map of object in use on a page.
 *
440
 * Node listlock must be held to guarantee that the page does
441 442 443 444 445 446 447 448 449 450 451
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

452
static inline unsigned int size_from_object(struct kmem_cache *s)
J
Joonsoo Kim 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

C
Christoph Lameter 已提交
468 469 470
/*
 * Debug settings:
 */
471
#if defined(CONFIG_SLUB_DEBUG_ON)
472
static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
473
#else
474
static slab_flags_t slub_debug;
475
#endif
C
Christoph Lameter 已提交
476 477

static char *slub_debug_slabs;
478
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
496 497 498
/*
 * Object debugging
 */
J
Joonsoo Kim 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

519 520
static void print_section(char *level, char *text, u8 *addr,
			  unsigned int length)
C
Christoph Lameter 已提交
521
{
522
	metadata_access_enable();
523
	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
524
			length, 1);
525
	metadata_access_disable();
C
Christoph Lameter 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
542
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
543
{
A
Akinobu Mita 已提交
544
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
545 546

	if (addr) {
547 548 549 550 551 552 553 554
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
555
		metadata_access_enable();
556
		save_stack_trace(&trace);
557
		metadata_access_disable();
558 559 560 561 562 563 564 565 566

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
567 568
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
569
		p->pid = current->pid;
C
Christoph Lameter 已提交
570 571 572 573 574 575 576
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
577 578 579
	if (!(s->flags & SLAB_STORE_USER))
		return;

580 581
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
582 583
}

584
static void print_track(const char *s, struct track *t, unsigned long pr_time)
C
Christoph Lameter 已提交
585 586 587 588
{
	if (!t->addr)
		return;

589
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
590
	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
591 592 593 594 595
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
596
				pr_err("\t%pS\n", (void *)t->addrs[i]);
597 598 599 600
			else
				break;
	}
#endif
601 602 603 604
}

static void print_tracking(struct kmem_cache *s, void *object)
{
605
	unsigned long pr_time = jiffies;
606 607 608
	if (!(s->flags & SLAB_STORE_USER))
		return;

609 610
	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
611 612 613 614
}

static void print_page_info(struct page *page)
{
615
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
616
	       page, page->objects, page->inuse, page->freelist, page->flags);
617 618 619 620 621

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
622
	struct va_format vaf;
623 624 625
	va_list args;

	va_start(args, fmt);
626 627
	vaf.fmt = fmt;
	vaf.va = &args;
628
	pr_err("=============================================================================\n");
629
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
630
	pr_err("-----------------------------------------------------------------------------\n\n");
631

632
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
633
	va_end(args);
C
Christoph Lameter 已提交
634 635
}

636 637
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
638
	struct va_format vaf;
639 640 641
	va_list args;

	va_start(args, fmt);
642 643 644
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
645 646 647 648
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
649 650
{
	unsigned int off;	/* Offset of last byte */
651
	u8 *addr = page_address(page);
652 653 654 655 656

	print_tracking(s, p);

	print_page_info(page);

657 658
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
659

J
Joonsoo Kim 已提交
660
	if (s->flags & SLAB_RED_ZONE)
661 662
		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
			      s->red_left_pad);
J
Joonsoo Kim 已提交
663
	else if (p > addr + 16)
664
		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
665

666
	print_section(KERN_ERR, "Object ", p,
667
		      min_t(unsigned int, s->object_size, PAGE_SIZE));
C
Christoph Lameter 已提交
668
	if (s->flags & SLAB_RED_ZONE)
669
		print_section(KERN_ERR, "Redzone ", p + s->object_size,
670
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
671 672 673 674 675 676

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

677
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
678 679
		off += 2 * sizeof(struct track);

680 681
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
682
	if (off != size_from_object(s))
C
Christoph Lameter 已提交
683
		/* Beginning of the filler is the free pointer */
684 685
		print_section(KERN_ERR, "Padding ", p + off,
			      size_from_object(s) - off);
686 687

	dump_stack();
C
Christoph Lameter 已提交
688 689
}

690
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
691 692
			u8 *object, char *reason)
{
693
	slab_bug(s, "%s", reason);
694
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
695 696
}

697
static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
698
			const char *fmt, ...)
C
Christoph Lameter 已提交
699 700 701 702
{
	va_list args;
	char buf[100];

703 704
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
705
	va_end(args);
706
	slab_bug(s, "%s", buf);
707
	print_page_info(page);
C
Christoph Lameter 已提交
708 709 710
	dump_stack();
}

711
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
712 713 714
{
	u8 *p = object;

J
Joonsoo Kim 已提交
715 716 717
	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

C
Christoph Lameter 已提交
718
	if (s->flags & __OBJECT_POISON) {
719 720
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
721 722 723
	}

	if (s->flags & SLAB_RED_ZONE)
724
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
725 726
}

727 728 729 730 731 732 733 734 735
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
736
			u8 *start, unsigned int value, unsigned int bytes)
737 738 739 740
{
	u8 *fault;
	u8 *end;

741
	metadata_access_enable();
742
	fault = memchr_inv(start, value, bytes);
743
	metadata_access_disable();
744 745 746 747 748 749 750 751
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
752
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
753 754 755 756 757
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
758 759 760 761 762 763 764 765 766
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
767
 *
C
Christoph Lameter 已提交
768 769 770
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
771
 * object + s->object_size
C
Christoph Lameter 已提交
772
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
773
 * 	Padding is extended by another word if Redzoning is enabled and
774
 * 	object_size == inuse.
C
Christoph Lameter 已提交
775
 *
C
Christoph Lameter 已提交
776 777 778 779
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
780 781
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
782 783
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
784
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
785
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
786 787 788
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
789 790
 *
 * object + s->size
C
Christoph Lameter 已提交
791
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
792
 *
793
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
794
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

810 811
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
812
	if (size_from_object(s) == off)
C
Christoph Lameter 已提交
813 814
		return 1;

815
	return check_bytes_and_report(s, page, p, "Object padding",
J
Joonsoo Kim 已提交
816
			p + off, POISON_INUSE, size_from_object(s) - off);
C
Christoph Lameter 已提交
817 818
}

819
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
820 821
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
822 823 824
	u8 *start;
	u8 *fault;
	u8 *end;
825
	u8 *pad;
826 827
	int length;
	int remainder;
C
Christoph Lameter 已提交
828 829 830 831

	if (!(s->flags & SLAB_POISON))
		return 1;

832
	start = page_address(page);
833
	length = PAGE_SIZE << compound_order(page);
834 835
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
836 837 838
	if (!remainder)
		return 1;

839
	pad = end - remainder;
840
	metadata_access_enable();
841
	fault = memchr_inv(pad, POISON_INUSE, remainder);
842
	metadata_access_disable();
843 844 845 846 847 848
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
849
	print_section(KERN_ERR, "Padding ", pad, remainder);
850

851
	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
852
	return 0;
C
Christoph Lameter 已提交
853 854 855
}

static int check_object(struct kmem_cache *s, struct page *page,
856
					void *object, u8 val)
C
Christoph Lameter 已提交
857 858
{
	u8 *p = object;
859
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
860 861

	if (s->flags & SLAB_RED_ZONE) {
J
Joonsoo Kim 已提交
862 863 864 865
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

866
		if (!check_bytes_and_report(s, page, object, "Redzone",
867
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
868 869
			return 0;
	} else {
870
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
871
			check_bytes_and_report(s, page, p, "Alignment padding",
872 873
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
874
		}
C
Christoph Lameter 已提交
875 876 877
	}

	if (s->flags & SLAB_POISON) {
878
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
879
			(!check_bytes_and_report(s, page, p, "Poison", p,
880
					POISON_FREE, s->object_size - 1) ||
881
			 !check_bytes_and_report(s, page, p, "Poison",
882
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
883 884 885 886 887 888 889
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

890
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
891 892 893 894 895 896 897 898 899 900
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
901
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
902
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
903
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
904
		 */
905
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
906 907 908 909 910 911 912
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
913 914
	int maxobj;

C
Christoph Lameter 已提交
915 916 917
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
918
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
919 920
		return 0;
	}
921

922
	maxobj = order_objects(compound_order(page), s->size);
923 924
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
925
			page->objects, maxobj);
926 927 928
		return 0;
	}
	if (page->inuse > page->objects) {
929
		slab_err(s, page, "inuse %u > max %u",
930
			page->inuse, page->objects);
C
Christoph Lameter 已提交
931 932 933 934 935 936 937 938
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
939 940
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
941 942 943 944
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
945
	void *fp;
C
Christoph Lameter 已提交
946
	void *object = NULL;
947
	int max_objects;
C
Christoph Lameter 已提交
948

949
	fp = page->freelist;
950
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
951 952 953 954 955 956
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
957
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
958
			} else {
959
				slab_err(s, page, "Freepointer corrupt");
960
				page->freelist = NULL;
961
				page->inuse = page->objects;
962
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
963 964 965 966 967 968 969 970 971
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

972
	max_objects = order_objects(compound_order(page), s->size);
973 974
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
975 976

	if (page->objects != max_objects) {
J
Joe Perches 已提交
977 978
		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
			 page->objects, max_objects);
979 980 981
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
982
	if (page->inuse != page->objects - nr) {
J
Joe Perches 已提交
983 984
		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
			 page->inuse, page->objects - nr);
985
		page->inuse = page->objects - nr;
986
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
987 988 989 990
	}
	return search == NULL;
}

991 992
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
993 994
{
	if (s->flags & SLAB_TRACE) {
995
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
996 997 998 999 1000 1001
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
1002
			print_section(KERN_INFO, "Object ", (void *)object,
1003
					s->object_size);
C
Christoph Lameter 已提交
1004 1005 1006 1007 1008

		dump_stack();
	}
}

1009
/*
C
Christoph Lameter 已提交
1010
 * Tracking of fully allocated slabs for debugging purposes.
1011
 */
1012 1013
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1014
{
1015 1016 1017
	if (!(s->flags & SLAB_STORE_USER))
		return;

1018
	lockdep_assert_held(&n->list_lock);
1019 1020 1021
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
1022
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1023 1024 1025 1026
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1027
	lockdep_assert_held(&n->list_lock);
1028 1029 1030
	list_del(&page->lru);
}

1031 1032 1033 1034 1035 1036 1037 1038
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1039 1040 1041 1042 1043
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1044
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1045 1046 1047 1048 1049 1050 1051 1052 1053
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1054
	if (likely(n)) {
1055
		atomic_long_inc(&n->nr_slabs);
1056 1057
		atomic_long_add(objects, &n->total_objects);
	}
1058
}
1059
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1060 1061 1062 1063
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1064
	atomic_long_sub(objects, &n->total_objects);
1065 1066 1067
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1068 1069 1070 1071 1072 1073
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1074
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1075 1076 1077
	init_tracking(s, object);
}

1078
static inline int alloc_consistency_checks(struct kmem_cache *s,
1079
					struct page *page,
1080
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1081 1082
{
	if (!check_slab(s, page))
1083
		return 0;
C
Christoph Lameter 已提交
1084 1085 1086

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1087
		return 0;
C
Christoph Lameter 已提交
1088 1089
	}

1090
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!alloc_consistency_checks(s, page, object, addr))
			goto bad;
	}
C
Christoph Lameter 已提交
1104

C
Christoph Lameter 已提交
1105 1106 1107 1108
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1109
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1110
	return 1;
C
Christoph Lameter 已提交
1111

C
Christoph Lameter 已提交
1112 1113 1114 1115 1116
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1117
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1118
		 */
1119
		slab_fix(s, "Marking all objects used");
1120
		page->inuse = page->objects;
1121
		page->freelist = NULL;
C
Christoph Lameter 已提交
1122 1123 1124 1125
	}
	return 0;
}

1126 1127
static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
C
Christoph Lameter 已提交
1128 1129
{
	if (!check_valid_pointer(s, page, object)) {
1130
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1131
		return 0;
C
Christoph Lameter 已提交
1132 1133 1134
	}

	if (on_freelist(s, page, object)) {
1135
		object_err(s, page, object, "Object already free");
1136
		return 0;
C
Christoph Lameter 已提交
1137 1138
	}

1139
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1140
		return 0;
C
Christoph Lameter 已提交
1141

1142
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1143
		if (!PageSlab(page)) {
J
Joe Perches 已提交
1144 1145
			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
				 object);
1146
		} else if (!page->slab_cache) {
1147 1148
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1149
			dump_stack();
P
Pekka Enberg 已提交
1150
		} else
1151 1152
			object_err(s, page, object,
					"page slab pointer corrupt.");
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
	unsigned long uninitialized_var(flags);
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
C
Christoph Lameter 已提交
1184
	}
C
Christoph Lameter 已提交
1185 1186 1187 1188

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1189
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1190
	init_object(s, object, SLUB_RED_INACTIVE);
1191 1192 1193 1194 1195 1196

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1197 1198
	ret = 1;

1199
out:
1200 1201 1202 1203
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1204
	slab_unlock(page);
1205
	spin_unlock_irqrestore(&n->list_lock, flags);
1206 1207 1208
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1209 1210
}

C
Christoph Lameter 已提交
1211 1212
static int __init setup_slub_debug(char *str)
{
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1237
	for (; *str && *str != ','; str++) {
1238 1239
		switch (tolower(*str)) {
		case 'f':
1240
			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1254 1255 1256
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1257 1258 1259 1260 1261 1262 1263
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1264
		default:
1265 1266
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1267
		}
C
Christoph Lameter 已提交
1268 1269
	}

1270
check_slabs:
C
Christoph Lameter 已提交
1271 1272
	if (*str == ',')
		slub_debug_slabs = str + 1;
1273
out:
C
Christoph Lameter 已提交
1274 1275 1276 1277 1278
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1279
slab_flags_t kmem_cache_flags(unsigned int object_size,
1280
	slab_flags_t flags, const char *name,
1281
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1282 1283
{
	/*
1284
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1285
	 */
1286 1287
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1288
		flags |= slub_debug;
1289 1290

	return flags;
C
Christoph Lameter 已提交
1291
}
1292
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1293 1294
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1295

C
Christoph Lameter 已提交
1296
static inline int alloc_debug_processing(struct kmem_cache *s,
1297
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1298

1299
static inline int free_debug_processing(
1300 1301
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1302
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1303 1304 1305 1306

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1307
			void *object, u8 val) { return 1; }
1308 1309
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1310 1311
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1312
slab_flags_t kmem_cache_flags(unsigned int object_size,
1313
	slab_flags_t flags, const char *name,
1314
	void (*ctor)(void *))
1315 1316 1317
{
	return flags;
}
C
Christoph Lameter 已提交
1318
#define slub_debug 0
1319

1320 1321
#define disable_higher_order_debug 0

1322 1323
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1324 1325
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1326 1327 1328 1329
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1330

1331 1332 1333 1334 1335 1336
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1337 1338 1339
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
1340
	kasan_kmalloc_large(ptr, size, flags);
1341 1342
}

1343
static __always_inline void kfree_hook(void *x)
1344 1345
{
	kmemleak_free(x);
1346
	kasan_kfree_large(x, _RET_IP_);
1347 1348
}

1349
static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1350 1351
{
	kmemleak_free_recursive(x, s->flags);
1352

1353 1354 1355 1356 1357
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
1358
#ifdef CONFIG_LOCKDEP
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	{
		unsigned long flags;

		local_irq_save(flags);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1369

1370 1371
	/* KASAN might put x into memory quarantine, delaying its reuse */
	return kasan_slab_free(s, x, _RET_IP_);
1372
}
1373

1374 1375
static inline bool slab_free_freelist_hook(struct kmem_cache *s,
					   void **head, void **tail)
1376 1377 1378 1379 1380
{
/*
 * Compiler cannot detect this function can be removed if slab_free_hook()
 * evaluates to nothing.  Thus, catch all relevant config debug options here.
 */
1381
#if defined(CONFIG_LOCKDEP)	||		\
1382 1383 1384 1385
	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
	defined(CONFIG_KASAN)

1386 1387 1388 1389 1390 1391 1392
	void *object;
	void *next = *head;
	void *old_tail = *tail ? *tail : *head;

	/* Head and tail of the reconstructed freelist */
	*head = NULL;
	*tail = NULL;
1393 1394

	do {
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		object = next;
		next = get_freepointer(s, object);
		/* If object's reuse doesn't have to be delayed */
		if (!slab_free_hook(s, object)) {
			/* Move object to the new freelist */
			set_freepointer(s, object, *head);
			*head = object;
			if (!*tail)
				*tail = object;
		}
	} while (object != old_tail);

	if (*head == *tail)
		*tail = NULL;

	return *head != NULL;
#else
	return true;
1413 1414 1415
#endif
}

1416 1417 1418 1419
static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
	setup_object_debug(s, page, object);
1420
	kasan_init_slab_obj(s, object);
1421 1422 1423 1424 1425 1426 1427
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
}

C
Christoph Lameter 已提交
1428 1429 1430
/*
 * Slab allocation and freeing
 */
1431 1432
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1433
{
1434
	struct page *page;
1435
	unsigned int order = oo_order(oo);
1436

1437
	if (node == NUMA_NO_NODE)
1438
		page = alloc_pages(flags, order);
1439
	else
1440
		page = __alloc_pages_node(node, flags, order);
1441

1442 1443 1444 1445
	if (page && memcg_charge_slab(page, flags, order, s)) {
		__free_pages(page, order);
		page = NULL;
	}
1446 1447

	return page;
1448 1449
}

T
Thomas Garnier 已提交
1450 1451 1452 1453
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
1454
	unsigned int count = oo_objects(s->oo);
T
Thomas Garnier 已提交
1455 1456
	int err;

1457 1458 1459 1460
	/* Bailout if already initialised */
	if (s->random_seq)
		return 0;

T
Thomas Garnier 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469
	err = cache_random_seq_create(s, count, GFP_KERNEL);
	if (err) {
		pr_err("SLUB: Unable to initialize free list for %s\n",
			s->name);
		return err;
	}

	/* Transform to an offset on the set of pages */
	if (s->random_seq) {
1470 1471
		unsigned int i;

T
Thomas Garnier 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		for (i = 0; i < count; i++)
			s->random_seq[i] *= s->size;
	}
	return 0;
}

/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
	struct kmem_cache *s;

	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list)
		init_cache_random_seq(s);

	mutex_unlock(&slab_mutex);
}

/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
				unsigned long *pos, void *start,
				unsigned long page_limit,
				unsigned long freelist_count)
{
	unsigned int idx;

	/*
	 * If the target page allocation failed, the number of objects on the
	 * page might be smaller than the usual size defined by the cache.
	 */
	do {
		idx = s->random_seq[*pos];
		*pos += 1;
		if (*pos >= freelist_count)
			*pos = 0;
	} while (unlikely(idx >= page_limit));

	return (char *)start + idx;
}

/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	void *start;
	void *cur;
	void *next;
	unsigned long idx, pos, page_limit, freelist_count;

	if (page->objects < 2 || !s->random_seq)
		return false;

	freelist_count = oo_objects(s->oo);
	pos = get_random_int() % freelist_count;

	page_limit = page->objects * s->size;
	start = fixup_red_left(s, page_address(page));

	/* First entry is used as the base of the freelist */
	cur = next_freelist_entry(s, page, &pos, start, page_limit,
				freelist_count);
	page->freelist = cur;

	for (idx = 1; idx < page->objects; idx++) {
		setup_object(s, page, cur);
		next = next_freelist_entry(s, page, &pos, start, page_limit,
			freelist_count);
		set_freepointer(s, cur, next);
		cur = next;
	}
	setup_object(s, page, cur);
	set_freepointer(s, cur, NULL);

	return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
	return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

C
Christoph Lameter 已提交
1559 1560
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1561
	struct page *page;
1562
	struct kmem_cache_order_objects oo = s->oo;
1563
	gfp_t alloc_gfp;
1564 1565
	void *start, *p;
	int idx, order;
T
Thomas Garnier 已提交
1566
	bool shuffle;
C
Christoph Lameter 已提交
1567

1568 1569
	flags &= gfp_allowed_mask;

1570
	if (gfpflags_allow_blocking(flags))
1571 1572
		local_irq_enable();

1573
	flags |= s->allocflags;
1574

1575 1576 1577 1578 1579
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1580
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1581
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1582

1583
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1584 1585
	if (unlikely(!page)) {
		oo = s->min;
1586
		alloc_gfp = flags;
1587 1588 1589 1590
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1591
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1592 1593 1594
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1595
	}
V
Vegard Nossum 已提交
1596

1597
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1598

G
Glauber Costa 已提交
1599
	order = compound_order(page);
1600
	page->slab_cache = s;
1601
	__SetPageSlab(page);
1602
	if (page_is_pfmemalloc(page))
1603
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1604 1605 1606 1607

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1608
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1609

1610 1611
	kasan_poison_slab(page);

T
Thomas Garnier 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	shuffle = shuffle_freelist(s, page);

	if (!shuffle) {
		for_each_object_idx(p, idx, s, start, page->objects) {
			setup_object(s, page, p);
			if (likely(idx < page->objects))
				set_freepointer(s, p, p + s->size);
			else
				set_freepointer(s, p, NULL);
		}
		page->freelist = fixup_red_left(s, start);
C
Christoph Lameter 已提交
1623 1624
	}

1625
	page->inuse = page->objects;
1626
	page->frozen = 1;
1627

C
Christoph Lameter 已提交
1628
out:
1629
	if (gfpflags_allow_blocking(flags))
1630 1631 1632 1633
		local_irq_disable();
	if (!page)
		return NULL;

1634
	mod_lruvec_page_state(page,
1635 1636 1637 1638 1639 1640
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		1 << oo_order(oo));

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1641 1642 1643
	return page;
}

1644 1645 1646
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1647
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1648 1649 1650
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
1651
		dump_stack();
1652 1653 1654 1655 1656 1657
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1658 1659
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1660 1661
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1662

1663
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
C
Christoph Lameter 已提交
1664 1665 1666
		void *p;

		slab_pad_check(s, page);
1667 1668
		for_each_object(p, s, page_address(page),
						page->objects)
1669
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1670 1671
	}

1672
	mod_lruvec_page_state(page,
C
Christoph Lameter 已提交
1673 1674
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1675
		-pages);
C
Christoph Lameter 已提交
1676

1677
	__ClearPageSlabPfmemalloc(page);
1678
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1679

1680
	page->mapping = NULL;
N
Nick Piggin 已提交
1681 1682
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1683 1684
	memcg_uncharge_slab(page, order, s);
	__free_pages(page, order);
C
Christoph Lameter 已提交
1685 1686 1687 1688
}

static void rcu_free_slab(struct rcu_head *h)
{
1689
	struct page *page = container_of(h, struct page, rcu_head);
1690

1691
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1692 1693 1694 1695
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
1696
	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1697
		call_rcu(&page->rcu_head, rcu_free_slab);
C
Christoph Lameter 已提交
1698 1699 1700 1701 1702 1703
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1704
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1705 1706 1707 1708
	free_slab(s, page);
}

/*
1709
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1710
 */
1711 1712
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1713
{
C
Christoph Lameter 已提交
1714
	n->nr_partial++;
1715
	if (tail == DEACTIVATE_TO_TAIL)
1716 1717 1718
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1719 1720
}

1721 1722
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1723
{
P
Peter Zijlstra 已提交
1724
	lockdep_assert_held(&n->list_lock);
1725 1726
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1727

1728 1729 1730 1731
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1732 1733
	list_del(&page->lru);
	n->nr_partial--;
1734 1735
}

C
Christoph Lameter 已提交
1736
/*
1737 1738
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1739
 *
1740
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1741
 */
1742
static inline void *acquire_slab(struct kmem_cache *s,
1743
		struct kmem_cache_node *n, struct page *page,
1744
		int mode, int *objects)
C
Christoph Lameter 已提交
1745
{
1746 1747 1748 1749
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1750 1751
	lockdep_assert_held(&n->list_lock);

1752 1753 1754 1755 1756
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1757 1758 1759
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1760
	*objects = new.objects - new.inuse;
1761
	if (mode) {
1762
		new.inuse = page->objects;
1763 1764 1765 1766
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1767

1768
	VM_BUG_ON(new.frozen);
1769
	new.frozen = 1;
1770

1771
	if (!__cmpxchg_double_slab(s, page,
1772
			freelist, counters,
1773
			new.freelist, new.counters,
1774 1775
			"acquire_slab"))
		return NULL;
1776 1777

	remove_partial(n, page);
1778
	WARN_ON(!freelist);
1779
	return freelist;
C
Christoph Lameter 已提交
1780 1781
}

1782
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1783
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1784

C
Christoph Lameter 已提交
1785
/*
C
Christoph Lameter 已提交
1786
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1787
 */
1788 1789
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1790
{
1791 1792
	struct page *page, *page2;
	void *object = NULL;
1793
	unsigned int available = 0;
1794
	int objects;
C
Christoph Lameter 已提交
1795 1796 1797 1798

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1799 1800
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1801 1802 1803 1804 1805
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1806
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1807
		void *t;
1808

1809 1810 1811
		if (!pfmemalloc_match(page, flags))
			continue;

1812
		t = acquire_slab(s, n, page, object == NULL, &objects);
1813 1814 1815
		if (!t)
			break;

1816
		available += objects;
1817
		if (!object) {
1818 1819 1820 1821
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1822
			put_cpu_partial(s, page, 0);
1823
			stat(s, CPU_PARTIAL_NODE);
1824
		}
1825
		if (!kmem_cache_has_cpu_partial(s)
1826
			|| available > slub_cpu_partial(s) / 2)
1827 1828
			break;

1829
	}
C
Christoph Lameter 已提交
1830
	spin_unlock(&n->list_lock);
1831
	return object;
C
Christoph Lameter 已提交
1832 1833 1834
}

/*
C
Christoph Lameter 已提交
1835
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1836
 */
1837
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1838
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1839 1840 1841
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1842
	struct zoneref *z;
1843 1844
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1845
	void *object;
1846
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1847 1848

	/*
C
Christoph Lameter 已提交
1849 1850 1851 1852
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1853
	 *
C
Christoph Lameter 已提交
1854 1855 1856 1857
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1858
	 *
1859 1860 1861 1862 1863
	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
	 * (which makes defrag_ratio = 1000) then every (well almost)
	 * allocation will first attempt to defrag slab caches on other nodes.
	 * This means scanning over all nodes to look for partial slabs which
	 * may be expensive if we do it every time we are trying to find a slab
C
Christoph Lameter 已提交
1864
	 * with available objects.
C
Christoph Lameter 已提交
1865
	 */
1866 1867
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1868 1869
		return NULL;

1870
	do {
1871
		cpuset_mems_cookie = read_mems_allowed_begin();
1872
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1873 1874 1875 1876 1877
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1878
			if (n && cpuset_zone_allowed(zone, flags) &&
1879
					n->nr_partial > s->min_partial) {
1880
				object = get_partial_node(s, n, c, flags);
1881 1882
				if (object) {
					/*
1883 1884 1885 1886 1887
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1888 1889 1890
					 */
					return object;
				}
1891
			}
C
Christoph Lameter 已提交
1892
		}
1893
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1894 1895 1896 1897 1898 1899 1900
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1901
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1902
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1903
{
1904
	void *object;
1905 1906 1907 1908 1909 1910
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1911

1912
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1913 1914
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1915

1916
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1917 1918
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1960
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1961 1962 1963

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1964
		pr_warn("due to cpu change %d -> %d\n",
1965 1966 1967 1968
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1969
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1970 1971
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1972
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1973 1974
			actual_tid, tid, next_tid(tid));
#endif
1975
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1976 1977
}

1978
static void init_kmem_cache_cpus(struct kmem_cache *s)
1979 1980 1981 1982 1983 1984
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1985

C
Christoph Lameter 已提交
1986 1987 1988
/*
 * Remove the cpu slab
 */
1989
static void deactivate_slab(struct kmem_cache *s, struct page *page,
1990
				void *freelist, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1991
{
1992 1993 1994 1995 1996
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1997
	int tail = DEACTIVATE_TO_HEAD;
1998 1999 2000 2001
	struct page new;
	struct page old;

	if (page->freelist) {
2002
		stat(s, DEACTIVATE_REMOTE_FREES);
2003
		tail = DEACTIVATE_TO_TAIL;
2004 2005
	}

2006
	/*
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
2024
			VM_BUG_ON(!new.frozen);
2025

2026
		} while (!__cmpxchg_double_slab(s, page,
2027 2028 2029 2030 2031 2032 2033
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

2034
	/*
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
2047
	 */
2048
redo:
2049

2050 2051
	old.freelist = page->freelist;
	old.counters = page->counters;
2052
	VM_BUG_ON(!old.frozen);
2053

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

2065
	if (!new.inuse && n->nr_partial >= s->min_partial)
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
2098

P
Peter Zijlstra 已提交
2099
			remove_full(s, n, page);
2100 2101 2102 2103

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
2104
			stat(s, tail);
2105 2106

		} else if (m == M_FULL) {
2107

2108 2109 2110 2111 2112 2113 2114
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
2115
	if (!__cmpxchg_double_slab(s, page,
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2128
	}
2129 2130 2131

	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2132 2133
}

2134 2135 2136
/*
 * Unfreeze all the cpu partial slabs.
 *
2137 2138 2139
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2140
 */
2141 2142
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2143
{
2144
#ifdef CONFIG_SLUB_CPU_PARTIAL
2145
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2146
	struct page *page, *discard_page = NULL;
2147 2148 2149 2150 2151 2152

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
2153 2154 2155 2156 2157 2158 2159 2160 2161

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2162 2163 2164 2165 2166

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2167
			VM_BUG_ON(!old.frozen);
2168 2169 2170 2171 2172 2173

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2174
		} while (!__cmpxchg_double_slab(s, page,
2175 2176 2177 2178
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2179
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2180 2181
			page->next = discard_page;
			discard_page = page;
2182 2183 2184
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2185 2186 2187 2188 2189
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2190 2191 2192 2193 2194 2195 2196 2197 2198

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2199
#endif
2200 2201 2202 2203
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
2204
 * slot if available.
2205 2206 2207 2208
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2209
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2210
{
2211
#ifdef CONFIG_SLUB_CPU_PARTIAL
2212 2213 2214 2215
	struct page *oldpage;
	int pages;
	int pobjects;

2216
	preempt_disable();
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2232
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2233
				local_irq_restore(flags);
2234
				oldpage = NULL;
2235 2236
				pobjects = 0;
				pages = 0;
2237
				stat(s, CPU_PARTIAL_DRAIN);
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2248 2249
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2250 2251 2252 2253 2254 2255 2256 2257
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2258
#endif
2259 2260
}

2261
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2262
{
2263
	stat(s, CPUSLAB_FLUSH);
2264
	deactivate_slab(s, c->page, c->freelist, c);
2265 2266

	c->tid = next_tid(c->tid);
C
Christoph Lameter 已提交
2267 2268 2269 2270
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2271
 *
C
Christoph Lameter 已提交
2272 2273
 * Called from IPI handler with interrupts disabled.
 */
2274
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2275
{
2276
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2277

2278 2279 2280 2281
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2282
		unfreeze_partials(s, c);
2283
	}
C
Christoph Lameter 已提交
2284 2285 2286 2287 2288 2289
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2290
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2291 2292
}

2293 2294 2295 2296 2297
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2298
	return c->page || slub_percpu_partial(c);
2299 2300
}

C
Christoph Lameter 已提交
2301 2302
static void flush_all(struct kmem_cache *s)
{
2303
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2304 2305
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
/*
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
 */
static int slub_cpu_dead(unsigned int cpu)
{
	struct kmem_cache *s;
	unsigned long flags;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		local_irq_save(flags);
		__flush_cpu_slab(s, cpu);
		local_irq_restore(flags);
	}
	mutex_unlock(&slab_mutex);
	return 0;
}

2325 2326 2327 2328
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2329
static inline int node_match(struct page *page, int node)
2330 2331
{
#ifdef CONFIG_NUMA
2332
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2333 2334 2335 2336 2337
		return 0;
#endif
	return 1;
}

2338
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2339 2340 2341 2342 2343
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2344 2345 2346 2347 2348 2349 2350
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2364
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2365

P
Pekka Enberg 已提交
2366 2367 2368
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2369 2370 2371
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2372
	int node;
C
Christoph Lameter 已提交
2373
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2374

2375 2376 2377
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2378 2379
	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
2380
	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2381 2382
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2383

2384
	if (oo_order(s->min) > get_order(s->object_size))
2385 2386
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2387

C
Christoph Lameter 已提交
2388
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2389 2390 2391 2392
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2393 2394 2395
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2396

2397
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2398 2399
			node, nr_slabs, nr_objs, nr_free);
	}
2400
#endif
P
Pekka Enberg 已提交
2401 2402
}

2403 2404 2405
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2406
	void *freelist;
2407 2408
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2409

2410 2411
	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));

2412
	freelist = get_partial(s, flags, node, c);
2413

2414 2415 2416 2417
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2418
	if (page) {
2419
		c = raw_cpu_ptr(s->cpu_slab);
2420 2421 2422 2423 2424 2425 2426
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2427
		freelist = page->freelist;
2428 2429 2430 2431 2432 2433
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2434
		freelist = NULL;
2435

2436
	return freelist;
2437 2438
}

2439 2440 2441 2442 2443 2444 2445 2446
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2447
/*
2448 2449
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2450 2451 2452 2453
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2454 2455
 *
 * This function must be called with interrupt disabled.
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2466

2467
		new.counters = counters;
2468
		VM_BUG_ON(!new.frozen);
2469 2470 2471 2472

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2473
	} while (!__cmpxchg_double_slab(s, page,
2474 2475 2476 2477 2478 2479 2480
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2481
/*
2482 2483 2484 2485 2486 2487
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2488
 *
2489 2490 2491
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2492
 *
2493
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2494 2495
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2496 2497 2498
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2499
 */
2500
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2501
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2502
{
2503
	void *freelist;
2504
	struct page *page;
C
Christoph Lameter 已提交
2505

2506 2507
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2508
		goto new_slab;
2509
redo:
2510

2511
	if (unlikely(!node_match(page, node))) {
2512 2513 2514 2515 2516 2517 2518
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
2519
			deactivate_slab(s, page, c->freelist, c);
2520 2521
			goto new_slab;
		}
2522
	}
C
Christoph Lameter 已提交
2523

2524 2525 2526 2527 2528 2529
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2530
		deactivate_slab(s, page, c->freelist, c);
2531 2532 2533
		goto new_slab;
	}

2534
	/* must check again c->freelist in case of cpu migration or IRQ */
2535 2536
	freelist = c->freelist;
	if (freelist)
2537
		goto load_freelist;
2538

2539
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2540

2541
	if (!freelist) {
2542 2543
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2544
		goto new_slab;
2545
	}
C
Christoph Lameter 已提交
2546

2547
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2548

2549
load_freelist:
2550 2551 2552 2553 2554
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2555
	VM_BUG_ON(!c->page->frozen);
2556
	c->freelist = get_freepointer(s, freelist);
2557
	c->tid = next_tid(c->tid);
2558
	return freelist;
C
Christoph Lameter 已提交
2559 2560

new_slab:
2561

2562 2563 2564
	if (slub_percpu_partial(c)) {
		page = c->page = slub_percpu_partial(c);
		slub_set_percpu_partial(c, page);
2565 2566
		stat(s, CPU_PARTIAL_ALLOC);
		goto redo;
C
Christoph Lameter 已提交
2567 2568
	}

2569
	freelist = new_slab_objects(s, gfpflags, node, &c);
2570

2571
	if (unlikely(!freelist)) {
2572
		slab_out_of_memory(s, gfpflags, node);
2573
		return NULL;
C
Christoph Lameter 已提交
2574
	}
2575

2576
	page = c->page;
2577
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2578
		goto load_freelist;
2579

2580
	/* Only entered in the debug case */
2581 2582
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2583
		goto new_slab;	/* Slab failed checks. Next slab needed */
2584

2585
	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2586
	return freelist;
2587 2588
}

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2624
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2625
		gfp_t gfpflags, int node, unsigned long addr)
2626
{
2627
	void *object;
2628
	struct kmem_cache_cpu *c;
2629
	struct page *page;
2630
	unsigned long tid;
2631

2632 2633
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2634
		return NULL;
2635 2636 2637 2638 2639 2640
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2641
	 *
2642 2643 2644
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2645
	 */
2646 2647 2648
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2649 2650
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2661 2662 2663 2664 2665 2666 2667 2668

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2669
	object = c->freelist;
2670
	page = c->page;
D
Dave Hansen 已提交
2671
	if (unlikely(!object || !node_match(page, node))) {
2672
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2673 2674
		stat(s, ALLOC_SLOWPATH);
	} else {
2675 2676
		void *next_object = get_freepointer_safe(s, object);

2677
		/*
L
Lucas De Marchi 已提交
2678
		 * The cmpxchg will only match if there was no additional
2679 2680
		 * operation and if we are on the right processor.
		 *
2681 2682
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2683 2684 2685 2686
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2687 2688 2689
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2690
		 */
2691
		if (unlikely(!this_cpu_cmpxchg_double(
2692 2693
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2694
				next_object, next_tid(tid)))) {
2695 2696 2697 2698

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2699
		prefetch_freepointer(s, next_object);
2700
		stat(s, ALLOC_FASTPATH);
2701
	}
2702

2703
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2704
		memset(object, 0, s->object_size);
2705

2706
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2707

2708
	return object;
C
Christoph Lameter 已提交
2709 2710
}

2711 2712 2713 2714 2715 2716
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2717 2718
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2719
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2720

2721 2722
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2723 2724

	return ret;
C
Christoph Lameter 已提交
2725 2726 2727
}
EXPORT_SYMBOL(kmem_cache_alloc);

2728
#ifdef CONFIG_TRACING
2729 2730
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2731
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2732
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2733
	kasan_kmalloc(s, ret, size, gfpflags);
2734 2735 2736
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2737 2738
#endif

C
Christoph Lameter 已提交
2739 2740 2741
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2742
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2743

2744
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2745
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2746 2747

	return ret;
C
Christoph Lameter 已提交
2748 2749 2750
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2751
#ifdef CONFIG_TRACING
2752
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2753
				    gfp_t gfpflags,
2754
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2755
{
2756
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2757 2758 2759

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2760

2761
	kasan_kmalloc(s, ret, size, gfpflags);
2762
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2763
}
2764
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2765
#endif
2766
#endif
E
Eduard - Gabriel Munteanu 已提交
2767

C
Christoph Lameter 已提交
2768
/*
K
Kim Phillips 已提交
2769
 * Slow path handling. This may still be called frequently since objects
2770
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2771
 *
2772 2773 2774
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2775
 */
2776
static void __slab_free(struct kmem_cache *s, struct page *page,
2777 2778 2779
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2780 2781
{
	void *prior;
2782 2783 2784 2785
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2786
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2787

2788
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2789

2790
	if (kmem_cache_debug(s) &&
2791
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2792
		return;
C
Christoph Lameter 已提交
2793

2794
	do {
2795 2796 2797 2798
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2799 2800
		prior = page->freelist;
		counters = page->counters;
2801
		set_freepointer(s, tail, prior);
2802 2803
		new.counters = counters;
		was_frozen = new.frozen;
2804
		new.inuse -= cnt;
2805
		if ((!new.inuse || !prior) && !was_frozen) {
2806

P
Peter Zijlstra 已提交
2807
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2808 2809

				/*
2810 2811 2812 2813
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2814 2815 2816
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2817
			} else { /* Needs to be taken off a list */
2818

2819
				n = get_node(s, page_to_nid(page));
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2831
		}
C
Christoph Lameter 已提交
2832

2833 2834
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
2835
		head, new.counters,
2836
		"__slab_free"));
C
Christoph Lameter 已提交
2837

2838
	if (likely(!n)) {
2839 2840 2841 2842 2843

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2844
		if (new.frozen && !was_frozen) {
2845
			put_cpu_partial(s, page, 1);
2846 2847
			stat(s, CPU_PARTIAL_FREE);
		}
2848
		/*
2849 2850 2851
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2852 2853 2854 2855
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2856

2857
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2858 2859
		goto slab_empty;

C
Christoph Lameter 已提交
2860
	/*
2861 2862
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2863
	 */
2864 2865
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2866
			remove_full(s, n, page);
2867 2868
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2869
	}
2870
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2871 2872 2873
	return;

slab_empty:
2874
	if (prior) {
C
Christoph Lameter 已提交
2875
		/*
2876
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2877
		 */
2878
		remove_partial(n, page);
2879
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2880
	} else {
2881
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2882 2883
		remove_full(s, n, page);
	}
2884

2885
	spin_unlock_irqrestore(&n->list_lock, flags);
2886
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2887 2888 2889
	discard_slab(s, page);
}

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
2900 2901 2902 2903
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
2904
 */
2905 2906 2907
static __always_inline void do_slab_free(struct kmem_cache *s,
				struct page *page, void *head, void *tail,
				int cnt, unsigned long addr)
2908
{
2909
	void *tail_obj = tail ? : head;
2910
	struct kmem_cache_cpu *c;
2911 2912 2913 2914 2915 2916
	unsigned long tid;
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2917
	 * during the cmpxchg then the free will succeed.
2918
	 */
2919 2920 2921
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2922 2923
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2924

2925 2926
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2927

2928
	if (likely(page == c->page)) {
2929
		set_freepointer(s, tail_obj, c->freelist);
2930

2931
		if (unlikely(!this_cpu_cmpxchg_double(
2932 2933
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
2934
				head, next_tid(tid)))) {
2935 2936 2937 2938

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2939
		stat(s, FREE_FASTPATH);
2940
	} else
2941
		__slab_free(s, page, head, tail_obj, cnt, addr);
2942 2943 2944

}

2945 2946 2947 2948 2949
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
{
	/*
2950 2951
	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
	 * to remove objects, whose reuse must be delayed.
2952
	 */
2953 2954
	if (slab_free_freelist_hook(s, &head, &tail))
		do_slab_free(s, page, head, tail, cnt, addr);
2955 2956 2957 2958 2959 2960 2961 2962 2963
}

#ifdef CONFIG_KASAN
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
}
#endif

C
Christoph Lameter 已提交
2964 2965
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2966 2967
	s = cache_from_obj(s, x);
	if (!s)
2968
		return;
2969
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2970
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2971 2972 2973
}
EXPORT_SYMBOL(kmem_cache_free);

2974
struct detached_freelist {
2975
	struct page *page;
2976 2977 2978
	void *tail;
	void *freelist;
	int cnt;
2979
	struct kmem_cache *s;
2980
};
2981

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
2994 2995 2996
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
2997 2998 2999 3000
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
3001
	struct page *page;
3002

3003 3004
	/* Always re-init detached_freelist */
	df->page = NULL;
3005

3006 3007
	do {
		object = p[--size];
3008
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3009
	} while (!object && size);
3010

3011 3012
	if (!object)
		return 0;
3013

3014 3015 3016 3017 3018 3019
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
3020
			__free_pages(page, compound_order(page));
3021 3022 3023 3024 3025 3026 3027 3028
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
3029

3030
	/* Start new detached freelist */
3031
	df->page = page;
3032
	set_freepointer(df->s, object, NULL);
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
3046
			set_freepointer(df->s, object, df->freelist);
3047 3048 3049 3050 3051
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
3052
		}
3053 3054 3055 3056 3057 3058 3059

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
3060
	}
3061 3062 3063 3064 3065

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
3066
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3067 3068 3069 3070 3071 3072 3073 3074
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
A
Arnd Bergmann 已提交
3075
		if (!df.page)
3076 3077
			continue;

3078
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3079
	} while (likely(size));
3080 3081 3082
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

3083
/* Note that interrupts must be enabled when calling this function. */
3084 3085
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
3086
{
3087 3088 3089
	struct kmem_cache_cpu *c;
	int i;

3090 3091 3092 3093
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

3105 3106 3107 3108 3109
		if (unlikely(!object)) {
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
3110
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3111
					    _RET_IP_, c);
3112 3113 3114
			if (unlikely(!p[i]))
				goto error;

3115 3116 3117
			c = this_cpu_ptr(s->cpu_slab);
			continue; /* goto for-loop */
		}
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
		c->freelist = get_freepointer(s, object);
		p[i] = object;
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
	if (unlikely(flags & __GFP_ZERO)) {
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

3132 3133
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
3134
	return i;
3135 3136
error:
	local_irq_enable();
3137 3138
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
3139
	return 0;
3140 3141 3142 3143
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
3144
/*
C
Christoph Lameter 已提交
3145 3146 3147 3148
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
3149 3150 3151 3152
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
3153
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
3154 3155 3156 3157 3158 3159 3160 3161 3162
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
3163 3164 3165
static unsigned int slub_min_order;
static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
static unsigned int slub_min_objects;
C
Christoph Lameter 已提交
3166 3167 3168 3169

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3170 3171 3172 3173
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3174
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3175 3176 3177 3178 3179 3180
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3181
 *
C
Christoph Lameter 已提交
3182 3183 3184 3185
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3186
 *
C
Christoph Lameter 已提交
3187 3188 3189 3190
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3191
 */
3192 3193
static inline unsigned int slab_order(unsigned int size,
		unsigned int min_objects, unsigned int max_order,
3194
		unsigned int fract_leftover)
C
Christoph Lameter 已提交
3195
{
3196 3197
	unsigned int min_order = slub_min_order;
	unsigned int order;
C
Christoph Lameter 已提交
3198

3199
	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3200
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3201

3202
	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3203
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3204

3205 3206
		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
		unsigned int rem;
C
Christoph Lameter 已提交
3207

3208
		rem = slab_size % size;
C
Christoph Lameter 已提交
3209

3210
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3211 3212
			break;
	}
C
Christoph Lameter 已提交
3213

C
Christoph Lameter 已提交
3214 3215 3216
	return order;
}

3217
static inline int calculate_order(unsigned int size)
3218
{
3219 3220 3221
	unsigned int order;
	unsigned int min_objects;
	unsigned int max_objects;
3222 3223 3224 3225 3226 3227

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3228
	 * First we increase the acceptable waste in a slab. Then
3229 3230 3231
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3232 3233
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3234
	max_objects = order_objects(slub_max_order, size);
3235 3236
	min_objects = min(min_objects, max_objects);

3237
	while (min_objects > 1) {
3238 3239
		unsigned int fraction;

C
Christoph Lameter 已提交
3240
		fraction = 16;
3241 3242
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3243
					slub_max_order, fraction);
3244 3245 3246 3247
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3248
		min_objects--;
3249 3250 3251 3252 3253 3254
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3255
	order = slab_order(size, 1, slub_max_order, 1);
3256 3257 3258 3259 3260 3261
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3262
	order = slab_order(size, 1, MAX_ORDER, 1);
D
David Rientjes 已提交
3263
	if (order < MAX_ORDER)
3264 3265 3266 3267
		return order;
	return -ENOSYS;
}

3268
static void
3269
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3270 3271 3272 3273
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3274
#ifdef CONFIG_SLUB_DEBUG
3275
	atomic_long_set(&n->nr_slabs, 0);
3276
	atomic_long_set(&n->total_objects, 0);
3277
	INIT_LIST_HEAD(&n->full);
3278
#endif
C
Christoph Lameter 已提交
3279 3280
}

3281
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3282
{
3283
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3284
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3285

3286
	/*
3287 3288
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3289
	 */
3290 3291
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3292 3293 3294 3295 3296

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3297

3298
	return 1;
3299 3300
}

3301 3302
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3303 3304 3305 3306 3307
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3308 3309
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3310
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3311
 */
3312
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3313 3314 3315 3316
{
	struct page *page;
	struct kmem_cache_node *n;

3317
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3318

3319
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3320 3321

	BUG_ON(!page);
3322
	if (page_to_nid(page) != node) {
3323 3324
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3325 3326
	}

C
Christoph Lameter 已提交
3327 3328
	n = page->freelist;
	BUG_ON(!n);
3329
	page->freelist = get_freepointer(kmem_cache_node, n);
3330
	page->inuse = 1;
3331
	page->frozen = 0;
3332
	kmem_cache_node->node[node] = n;
3333
#ifdef CONFIG_SLUB_DEBUG
3334
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3335
	init_tracking(kmem_cache_node, n);
3336
#endif
3337 3338
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
		      GFP_KERNEL);
3339
	init_kmem_cache_node(n);
3340
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3341

3342
	/*
3343 3344
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3345
	 */
3346
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3347 3348 3349 3350 3351
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3352
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3353

C
Christoph Lameter 已提交
3354
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3355
		s->node[node] = NULL;
3356
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3357 3358 3359
	}
}

3360 3361
void __kmem_cache_release(struct kmem_cache *s)
{
T
Thomas Garnier 已提交
3362
	cache_random_seq_destroy(s);
3363 3364 3365 3366
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3367
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3368 3369 3370
{
	int node;

C
Christoph Lameter 已提交
3371
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3372 3373
		struct kmem_cache_node *n;

3374
		if (slab_state == DOWN) {
3375
			early_kmem_cache_node_alloc(node);
3376 3377
			continue;
		}
3378
		n = kmem_cache_alloc_node(kmem_cache_node,
3379
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3380

3381 3382 3383
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3384
		}
3385

3386
		init_kmem_cache_node(n);
3387
		s->node[node] = n;
C
Christoph Lameter 已提交
3388 3389 3390 3391
	}
	return 1;
}

3392
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3393 3394 3395 3396 3397 3398 3399 3400
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
static void set_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
	 * B) The number of objects in cpu partial slabs to extract from the
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
	 */
	if (!kmem_cache_has_cpu_partial(s))
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;
#endif
}

C
Christoph Lameter 已提交
3434 3435 3436 3437
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3438
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3439
{
3440
	slab_flags_t flags = s->flags;
3441
	unsigned int size = s->object_size;
3442
	unsigned int order;
C
Christoph Lameter 已提交
3443

3444 3445 3446 3447 3448 3449 3450 3451
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3452 3453 3454 3455 3456
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
3457
	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3458
			!s->ctor)
C
Christoph Lameter 已提交
3459 3460 3461 3462 3463 3464
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3465
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3466
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3467
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3468
	 */
3469
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3470
		size += sizeof(void *);
C
Christoph Lameter 已提交
3471
#endif
C
Christoph Lameter 已提交
3472 3473

	/*
C
Christoph Lameter 已提交
3474 3475
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3476 3477 3478
	 */
	s->inuse = size;

3479
	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3480
		s->ctor)) {
C
Christoph Lameter 已提交
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3493
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3494 3495 3496 3497 3498 3499
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);
3500
#endif
C
Christoph Lameter 已提交
3501

3502 3503
	kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
J
Joonsoo Kim 已提交
3504
	if (flags & SLAB_RED_ZONE) {
C
Christoph Lameter 已提交
3505 3506 3507 3508
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3509
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3510 3511 3512
		 * of the object.
		 */
		size += sizeof(void *);
J
Joonsoo Kim 已提交
3513 3514 3515 3516 3517

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
C
Christoph Lameter 已提交
3518
#endif
C
Christoph Lameter 已提交
3519

C
Christoph Lameter 已提交
3520 3521 3522 3523 3524
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3525
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3526
	s->size = size;
3527 3528 3529
	if (forced_order >= 0)
		order = forced_order;
	else
3530
		order = calculate_order(size);
C
Christoph Lameter 已提交
3531

3532
	if ((int)order < 0)
C
Christoph Lameter 已提交
3533 3534
		return 0;

3535
	s->allocflags = 0;
3536
	if (order)
3537 3538 3539
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3540
		s->allocflags |= GFP_DMA;
3541

3542 3543 3544
	if (s->flags & SLAB_CACHE_DMA32)
		s->allocflags |= GFP_DMA32;

3545 3546 3547
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3548 3549 3550
	/*
	 * Determine the number of objects per slab
	 */
3551 3552
	s->oo = oo_make(order, size);
	s->min = oo_make(get_order(size), size);
3553 3554
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3555

3556
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3557 3558
}

3559
static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
C
Christoph Lameter 已提交
3560
{
3561
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3562 3563 3564
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	s->random = get_random_long();
#endif
C
Christoph Lameter 已提交
3565

3566
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3567
		goto error;
3568 3569 3570 3571 3572
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3573
		if (get_order(s->size) > get_order(s->object_size)) {
3574 3575 3576 3577 3578 3579
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3580

3581 3582
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3583
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3584 3585 3586 3587
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3588 3589 3590 3591
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3592 3593
	set_min_partial(s, ilog2(s->size) / 2);

3594
	set_cpu_partial(s);
3595

C
Christoph Lameter 已提交
3596
#ifdef CONFIG_NUMA
3597
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3598
#endif
T
Thomas Garnier 已提交
3599 3600 3601 3602 3603 3604 3605

	/* Initialize the pre-computed randomized freelist if slab is up */
	if (slab_state >= UP) {
		if (init_cache_random_seq(s))
			goto error;
	}

3606
	if (!init_kmem_cache_nodes(s))
3607
		goto error;
C
Christoph Lameter 已提交
3608

3609
	if (alloc_kmem_cache_cpus(s))
3610
		return 0;
3611

3612
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3613 3614
error:
	if (flags & SLAB_PANIC)
A
Alexey Dobriyan 已提交
3615 3616
		panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
		      s->name, s->size, s->size,
3617
		      oo_order(s->oo), s->offset, (unsigned long)flags);
3618
	return -EINVAL;
C
Christoph Lameter 已提交
3619 3620
}

3621 3622 3623 3624 3625 3626
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
K
Kees Cook 已提交
3627 3628 3629
	unsigned long *map = kcalloc(BITS_TO_LONGS(page->objects),
				     sizeof(long),
				     GFP_ATOMIC);
E
Eric Dumazet 已提交
3630 3631
	if (!map)
		return;
3632
	slab_err(s, page, text, s->name);
3633 3634
	slab_lock(page);

3635
	get_map(s, page, map);
3636 3637 3638
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3639
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3640 3641 3642 3643
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3644
	kfree(map);
3645 3646 3647
#endif
}

C
Christoph Lameter 已提交
3648
/*
C
Christoph Lameter 已提交
3649
 * Attempt to free all partial slabs on a node.
3650 3651
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3652
 */
C
Christoph Lameter 已提交
3653
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3654
{
3655
	LIST_HEAD(discard);
C
Christoph Lameter 已提交
3656 3657
	struct page *page, *h;

3658 3659
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3660
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3661
		if (!page->inuse) {
3662
			remove_partial(n, page);
3663
			list_add(&page->lru, &discard);
3664 3665
		} else {
			list_slab_objects(s, page,
3666
			"Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3667
		}
3668
	}
3669
	spin_unlock_irq(&n->list_lock);
3670 3671 3672

	list_for_each_entry_safe(page, h, &discard, lru)
		discard_slab(s, page);
C
Christoph Lameter 已提交
3673 3674
}

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (n->nr_partial || slabs_node(s, node))
			return false;
	return true;
}

C
Christoph Lameter 已提交
3686
/*
C
Christoph Lameter 已提交
3687
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3688
 */
3689
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3690 3691
{
	int node;
C
Christoph Lameter 已提交
3692
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3693 3694 3695

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3696
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3697 3698
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3699 3700
			return 1;
	}
3701
	sysfs_slab_remove(s);
C
Christoph Lameter 已提交
3702 3703 3704 3705 3706 3707 3708 3709 3710
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
3711
	get_option(&str, (int *)&slub_min_order);
C
Christoph Lameter 已提交
3712 3713 3714 3715 3716 3717 3718 3719

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
3720 3721
	get_option(&str, (int *)&slub_max_order);
	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
C
Christoph Lameter 已提交
3722 3723 3724 3725 3726 3727 3728 3729

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
3730
	get_option(&str, (int *)&slub_min_objects);
C
Christoph Lameter 已提交
3731 3732 3733 3734 3735 3736 3737 3738

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3739
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3740
	void *ret;
C
Christoph Lameter 已提交
3741

3742
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3743
		return kmalloc_large(size, flags);
3744

3745
	s = kmalloc_slab(size, flags);
3746 3747

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3748 3749
		return s;

3750
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3751

3752
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3753

3754
	kasan_kmalloc(s, ret, size, flags);
3755

E
Eduard - Gabriel Munteanu 已提交
3756
	return ret;
C
Christoph Lameter 已提交
3757 3758 3759
}
EXPORT_SYMBOL(__kmalloc);

3760
#ifdef CONFIG_NUMA
3761 3762
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3763
	struct page *page;
3764
	void *ptr = NULL;
3765

3766
	flags |= __GFP_COMP;
3767
	page = alloc_pages_node(node, flags, get_order(size));
3768
	if (page)
3769 3770
		ptr = page_address(page);

3771
	kmalloc_large_node_hook(ptr, size, flags);
3772
	return ptr;
3773 3774
}

C
Christoph Lameter 已提交
3775 3776
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3777
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3778
	void *ret;
C
Christoph Lameter 已提交
3779

3780
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3781 3782
		ret = kmalloc_large_node(size, flags, node);

3783 3784 3785
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3786 3787 3788

		return ret;
	}
3789

3790
	s = kmalloc_slab(size, flags);
3791 3792

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3793 3794
		return s;

3795
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3796

3797
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3798

3799
	kasan_kmalloc(s, ret, size, flags);
3800

E
Eduard - Gabriel Munteanu 已提交
3801
	return ret;
C
Christoph Lameter 已提交
3802 3803 3804 3805
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

K
Kees Cook 已提交
3806 3807
#ifdef CONFIG_HARDENED_USERCOPY
/*
3808 3809 3810
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
3811 3812 3813 3814
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
3815 3816
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
3817 3818
{
	struct kmem_cache *s;
A
Alexey Dobriyan 已提交
3819
	unsigned int offset;
K
Kees Cook 已提交
3820 3821 3822 3823 3824 3825 3826
	size_t object_size;

	/* Find object and usable object size. */
	s = page->slab_cache;

	/* Reject impossible pointers. */
	if (ptr < page_address(page))
3827 3828
		usercopy_abort("SLUB object not in SLUB page?!", NULL,
			       to_user, 0, n);
K
Kees Cook 已提交
3829 3830 3831 3832 3833 3834 3835

	/* Find offset within object. */
	offset = (ptr - page_address(page)) % s->size;

	/* Adjust for redzone and reject if within the redzone. */
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
		if (offset < s->red_left_pad)
3836 3837
			usercopy_abort("SLUB object in left red zone",
				       s->name, to_user, offset, n);
K
Kees Cook 已提交
3838 3839 3840
		offset -= s->red_left_pad;
	}

3841 3842 3843 3844
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= s->useroffset &&
	    offset - s->useroffset <= s->usersize &&
	    n <= s->useroffset - offset + s->usersize)
3845
		return;
K
Kees Cook 已提交
3846

3847 3848 3849 3850 3851 3852 3853
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
	object_size = slab_ksize(s);
3854 3855
	if (usercopy_fallback &&
	    offset <= object_size && n <= object_size - offset) {
3856 3857 3858
		usercopy_warn("SLUB object", s->name, to_user, offset, n);
		return;
	}
K
Kees Cook 已提交
3859

3860
	usercopy_abort("SLUB object", s->name, to_user, offset, n);
K
Kees Cook 已提交
3861 3862 3863
}
#endif /* CONFIG_HARDENED_USERCOPY */

3864
static size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3865
{
3866
	struct page *page;
C
Christoph Lameter 已提交
3867

3868
	if (unlikely(object == ZERO_SIZE_PTR))
3869 3870
		return 0;

3871 3872
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3873 3874
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3875
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3876
	}
C
Christoph Lameter 已提交
3877

3878
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3879
}
3880 3881 3882 3883 3884

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
3885 3886 3887
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(object, size);
3888 3889
	return size;
}
K
Kirill A. Shutemov 已提交
3890
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3891 3892 3893 3894

void kfree(const void *x)
{
	struct page *page;
3895
	void *object = (void *)x;
C
Christoph Lameter 已提交
3896

3897 3898
	trace_kfree(_RET_IP_, x);

3899
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3900 3901
		return;

3902
	page = virt_to_head_page(x);
3903
	if (unlikely(!PageSlab(page))) {
3904
		BUG_ON(!PageCompound(page));
3905
		kfree_hook(object);
3906
		__free_pages(page, compound_order(page));
3907 3908
		return;
	}
3909
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
3910 3911 3912
}
EXPORT_SYMBOL(kfree);

3913 3914
#define SHRINK_PROMOTE_MAX 32

3915
/*
3916 3917 3918
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3919 3920 3921 3922
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3923
 */
3924
int __kmem_cache_shrink(struct kmem_cache *s)
3925 3926 3927 3928 3929 3930
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3931 3932
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3933
	unsigned long flags;
3934
	int ret = 0;
3935 3936

	flush_all(s);
C
Christoph Lameter 已提交
3937
	for_each_kmem_cache_node(s, node, n) {
3938 3939 3940
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3941 3942 3943 3944

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3945
		 * Build lists of slabs to discard or promote.
3946
		 *
C
Christoph Lameter 已提交
3947 3948
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3949 3950
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3961
				n->nr_partial--;
3962 3963
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3964 3965 3966
		}

		/*
3967 3968
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3969
		 */
3970 3971
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3972 3973

		spin_unlock_irqrestore(&n->list_lock, flags);
3974 3975

		/* Release empty slabs */
3976
		list_for_each_entry_safe(page, t, &discard, lru)
3977
			discard_slab(s, page);
3978 3979 3980

		if (slabs_node(s, node))
			ret = 1;
3981 3982
	}

3983
	return ret;
3984 3985
}

3986
#ifdef CONFIG_MEMCG
3987 3988
static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
{
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	/*
	 * Called with all the locks held after a sched RCU grace period.
	 * Even if @s becomes empty after shrinking, we can't know that @s
	 * doesn't have allocations already in-flight and thus can't
	 * destroy @s until the associated memcg is released.
	 *
	 * However, let's remove the sysfs files for empty caches here.
	 * Each cache has a lot of interface files which aren't
	 * particularly useful for empty draining caches; otherwise, we can
	 * easily end up with millions of unnecessary sysfs files on
	 * systems which have a lot of memory and transient cgroups.
	 */
	if (!__kmem_cache_shrink(s))
		sysfs_slab_remove(s);
4003 4004
}

4005 4006 4007 4008 4009 4010
void __kmemcg_cache_deactivate(struct kmem_cache *s)
{
	/*
	 * Disable empty slabs caching. Used to avoid pinning offline
	 * memory cgroups by kmem pages that can be freed.
	 */
4011
	slub_set_cpu_partial(s, 0);
4012 4013 4014 4015
	s->min_partial = 0;

	/*
	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4016
	 * we have to make sure the change is visible before shrinking.
4017
	 */
4018
	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4019 4020 4021
}
#endif

4022 4023 4024 4025
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

4026
	mutex_lock(&slab_mutex);
4027
	list_for_each_entry(s, &slab_caches, list)
4028
		__kmem_cache_shrink(s);
4029
	mutex_unlock(&slab_mutex);
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

4041
	offline_node = marg->status_change_nid_normal;
4042 4043 4044 4045 4046 4047 4048 4049

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

4050
	mutex_lock(&slab_mutex);
4051 4052 4053 4054 4055 4056
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
4057
			 * and offline_pages() function shouldn't call this
4058 4059
			 * callback. So, we must fail.
			 */
4060
			BUG_ON(slabs_node(s, offline_node));
4061 4062

			s->node[offline_node] = NULL;
4063
			kmem_cache_free(kmem_cache_node, n);
4064 4065
		}
	}
4066
	mutex_unlock(&slab_mutex);
4067 4068 4069 4070 4071 4072 4073
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
4074
	int nid = marg->status_change_nid_normal;
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
4085
	 * We are bringing a node online. No memory is available yet. We must
4086 4087 4088
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
4089
	mutex_lock(&slab_mutex);
4090 4091 4092 4093 4094 4095
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
4096
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4097 4098 4099 4100
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
4101
		init_kmem_cache_node(n);
4102 4103 4104
		s->node[nid] = n;
	}
out:
4105
	mutex_unlock(&slab_mutex);
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
4129 4130 4131 4132
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
4133 4134 4135
	return ret;
}

4136 4137 4138 4139
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
4140

C
Christoph Lameter 已提交
4141 4142 4143 4144
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

4145 4146
/*
 * Used for early kmem_cache structures that were allocated using
4147 4148
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
4149 4150
 */

4151
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4152 4153
{
	int node;
4154
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
4155
	struct kmem_cache_node *n;
4156

4157
	memcpy(s, static_cache, kmem_cache->object_size);
4158

4159 4160 4161 4162 4163 4164
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
4165
	for_each_kmem_cache_node(s, node, n) {
4166 4167
		struct page *p;

C
Christoph Lameter 已提交
4168 4169
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
4170

L
Li Zefan 已提交
4171
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4172 4173
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
4174 4175
#endif
	}
4176
	slab_init_memcg_params(s);
4177
	list_add(&s->list, &slab_caches);
4178
	memcg_link_cache(s);
4179
	return s;
4180 4181
}

C
Christoph Lameter 已提交
4182 4183
void __init kmem_cache_init(void)
{
4184 4185
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
4186

4187 4188 4189
	if (debug_guardpage_minorder())
		slub_max_order = 0;

4190 4191
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
4192

4193
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4194
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4195

4196
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
4197 4198 4199 4200

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

4201 4202 4203
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
4204
		       SLAB_HWCACHE_ALIGN, 0, 0);
4205

4206 4207
	kmem_cache = bootstrap(&boot_kmem_cache);
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4208 4209

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4210
	setup_kmalloc_cache_index_table();
4211
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
4212

T
Thomas Garnier 已提交
4213 4214 4215
	/* Setup random freelists for each cache */
	init_freelist_randomization();

4216 4217
	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
				  slub_cpu_dead);
C
Christoph Lameter 已提交
4218

4219
	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4220
		cache_line_size(),
C
Christoph Lameter 已提交
4221 4222 4223 4224
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

4225 4226 4227 4228
void __init kmem_cache_init_late(void)
{
}

4229
struct kmem_cache *
4230
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4231
		   slab_flags_t flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
4232
{
4233
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
4234

4235
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
4236 4237
	if (s) {
		s->refcount++;
4238

C
Christoph Lameter 已提交
4239 4240 4241 4242
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
4243
		s->object_size = max(s->object_size, size);
4244
		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
4245

4246
		for_each_memcg_cache(c, s) {
4247
			c->object_size = s->object_size;
4248
			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4249 4250
		}

4251 4252
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
4253
			s = NULL;
4254
		}
4255
	}
C
Christoph Lameter 已提交
4256

4257 4258
	return s;
}
P
Pekka Enberg 已提交
4259

4260
int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4261
{
4262 4263 4264 4265 4266
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
4267

4268 4269 4270 4271
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

4272
	memcg_propagate_slab_attrs(s);
4273 4274
	err = sysfs_slab_add(s);
	if (err)
4275
		__kmem_cache_release(s);
4276

4277
	return err;
C
Christoph Lameter 已提交
4278 4279
}

4280
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4281
{
4282
	struct kmem_cache *s;
4283
	void *ret;
4284

4285
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4286 4287
		return kmalloc_large(size, gfpflags);

4288
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4289

4290
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4291
		return s;
C
Christoph Lameter 已提交
4292

4293
	ret = slab_alloc(s, gfpflags, caller);
4294

L
Lucas De Marchi 已提交
4295
	/* Honor the call site pointer we received. */
4296
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4297 4298

	return ret;
C
Christoph Lameter 已提交
4299 4300
}

4301
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4302
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4303
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4304
{
4305
	struct kmem_cache *s;
4306
	void *ret;
4307

4308
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4309 4310 4311 4312 4313 4314 4315 4316
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4317

4318
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4319

4320
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4321
		return s;
C
Christoph Lameter 已提交
4322

4323
	ret = slab_alloc_node(s, gfpflags, node, caller);
4324

L
Lucas De Marchi 已提交
4325
	/* Honor the call site pointer we received. */
4326
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4327 4328

	return ret;
C
Christoph Lameter 已提交
4329
}
4330
#endif
C
Christoph Lameter 已提交
4331

4332
#ifdef CONFIG_SYSFS
4333 4334 4335 4336 4337 4338 4339 4340 4341
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4342
#endif
4343

4344
#ifdef CONFIG_SLUB_DEBUG
4345 4346
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4347 4348
{
	void *p;
4349
	void *addr = page_address(page);
4350 4351 4352 4353 4354 4355

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
4356
	bitmap_zero(map, page->objects);
4357

4358 4359 4360 4361 4362
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
4363 4364
	}

4365
	for_each_object(p, s, addr, page->objects)
4366
		if (!test_bit(slab_index(p, s, addr), map))
4367
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4368 4369 4370 4371
				return 0;
	return 1;
}

4372 4373
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4374
{
4375 4376 4377
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4378 4379
}

4380 4381
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4382 4383 4384 4385 4386 4387 4388 4389
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
4390
		validate_slab_slab(s, page, map);
4391 4392 4393
		count++;
	}
	if (count != n->nr_partial)
4394 4395
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4396 4397 4398 4399 4400

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
4401
		validate_slab_slab(s, page, map);
4402 4403 4404
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4405 4406
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4407 4408 4409 4410 4411 4412

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4413
static long validate_slab_cache(struct kmem_cache *s)
4414 4415 4416
{
	int node;
	unsigned long count = 0;
4417 4418 4419
	unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
					   sizeof(unsigned long),
					   GFP_KERNEL);
C
Christoph Lameter 已提交
4420
	struct kmem_cache_node *n;
4421 4422 4423

	if (!map)
		return -ENOMEM;
4424 4425

	flush_all(s);
C
Christoph Lameter 已提交
4426
	for_each_kmem_cache_node(s, node, n)
4427 4428
		count += validate_slab_node(s, n, map);
	kfree(map);
4429 4430
	return count;
}
4431
/*
C
Christoph Lameter 已提交
4432
 * Generate lists of code addresses where slabcache objects are allocated
4433 4434 4435 4436 4437
 * and freed.
 */

struct location {
	unsigned long count;
4438
	unsigned long addr;
4439 4440 4441 4442 4443
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4444
	DECLARE_BITMAP(cpus, NR_CPUS);
4445
	nodemask_t nodes;
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4461
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4462 4463 4464 4465 4466 4467
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4468
	l = (void *)__get_free_pages(flags, order);
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4482
				const struct track *track)
4483 4484 4485
{
	long start, end, pos;
	struct location *l;
4486
	unsigned long caddr;
4487
	unsigned long age = jiffies - track->when;
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4519 4520
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4521 4522
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4523 4524 4525
			return 1;
		}

4526
		if (track->addr < caddr)
4527 4528 4529 4530 4531 4532
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4533
	 * Not found. Insert new tracking element.
4534
	 */
4535
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4536 4537 4538 4539 4540 4541 4542 4543
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4544 4545 4546 4547 4548 4549
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4550 4551
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4552 4553
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4554 4555 4556 4557
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4558
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4559
		unsigned long *map)
4560
{
4561
	void *addr = page_address(page);
4562 4563
	void *p;

4564
	bitmap_zero(map, page->objects);
4565
	get_map(s, page, map);
4566

4567
	for_each_object(p, s, addr, page->objects)
4568 4569
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4570 4571 4572 4573 4574
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4575
	int len = 0;
4576
	unsigned long i;
4577
	struct loc_track t = { 0, 0, NULL };
4578
	int node;
4579 4580 4581
	unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
					   sizeof(unsigned long),
					   GFP_KERNEL);
C
Christoph Lameter 已提交
4582
	struct kmem_cache_node *n;
4583

E
Eric Dumazet 已提交
4584
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4585
				     GFP_KERNEL)) {
E
Eric Dumazet 已提交
4586
		kfree(map);
4587
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4588
	}
4589 4590 4591
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4592
	for_each_kmem_cache_node(s, node, n) {
4593 4594 4595
		unsigned long flags;
		struct page *page;

4596
		if (!atomic_long_read(&n->nr_slabs))
4597 4598 4599 4600
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4601
			process_slab(&t, s, page, alloc, map);
4602
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4603
			process_slab(&t, s, page, alloc, map);
4604 4605 4606 4607
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4608
		struct location *l = &t.loc[i];
4609

H
Hugh Dickins 已提交
4610
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4611
			break;
4612
		len += sprintf(buf + len, "%7ld ", l->count);
4613 4614

		if (l->addr)
J
Joe Perches 已提交
4615
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4616
		else
4617
			len += sprintf(buf + len, "<not-available>");
4618 4619

		if (l->sum_time != l->min_time) {
4620
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4621 4622 4623
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4624
		} else
4625
			len += sprintf(buf + len, " age=%ld",
4626 4627 4628
				l->min_time);

		if (l->min_pid != l->max_pid)
4629
			len += sprintf(buf + len, " pid=%ld-%ld",
4630 4631
				l->min_pid, l->max_pid);
		else
4632
			len += sprintf(buf + len, " pid=%ld",
4633 4634
				l->min_pid);

R
Rusty Russell 已提交
4635 4636
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4637 4638 4639 4640
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4641

4642
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4643 4644 4645 4646
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4647

4648
		len += sprintf(buf + len, "\n");
4649 4650 4651
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4652
	kfree(map);
4653
	if (!t.count)
4654 4655
		len += sprintf(buf, "No data\n");
	return len;
4656
}
4657
#endif
4658

4659
#ifdef SLUB_RESILIENCY_TEST
4660
static void __init resiliency_test(void)
4661 4662 4663
{
	u8 *p;

4664
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4665

4666 4667 4668
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4669 4670 4671

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4672 4673
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4674 4675 4676 4677 4678 4679

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4680 4681 4682
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4683 4684 4685 4686 4687

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4688 4689 4690
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4691 4692
	validate_slab_cache(kmalloc_caches[6]);

4693
	pr_err("\nB. Corruption after free\n");
4694 4695 4696
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4697
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4698 4699 4700 4701 4702
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4703
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4704 4705 4706 4707 4708
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4709
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4710 4711 4712 4713 4714 4715 4716 4717
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4718
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4719
enum slab_stat_type {
4720 4721 4722 4723 4724
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4725 4726
};

4727
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4728 4729 4730
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4731
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4732

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
#ifdef CONFIG_MEMCG
static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);

static int __init setup_slub_memcg_sysfs(char *str)
{
	int v;

	if (get_option(&str, &v) > 0)
		memcg_sysfs_enabled = v;

	return 1;
}

__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
#endif

4749 4750
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4751 4752 4753 4754 4755 4756
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

K
Kees Cook 已提交
4757
	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4758 4759
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4760

4761 4762
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4763

4764
		for_each_possible_cpu(cpu) {
4765 4766
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4767
			int node;
4768
			struct page *page;
4769

4770
			page = READ_ONCE(c->page);
4771 4772
			if (!page)
				continue;
4773

4774 4775 4776 4777 4778 4779 4780
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4781

4782 4783 4784
			total += x;
			nodes[node] += x;

4785
			page = slub_percpu_partial_read_once(c);
4786
			if (page) {
L
Li Zefan 已提交
4787 4788 4789 4790 4791 4792 4793
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4794 4795
				total += x;
				nodes[node] += x;
4796
			}
C
Christoph Lameter 已提交
4797 4798 4799
		}
	}

4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
	/*
	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
	 * already held which will conflict with an existing lock order:
	 *
	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
	 *
	 * We don't really need mem_hotplug_lock (to hold off
	 * slab_mem_going_offline_callback) here because slab's memory hot
	 * unplug code doesn't destroy the kmem_cache->node[] data.
	 */

4811
#ifdef CONFIG_SLUB_DEBUG
4812
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4813 4814 4815
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4816

4817 4818 4819 4820 4821
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4822
			else
4823
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4824 4825 4826 4827
			total += x;
			nodes[node] += x;
		}

4828 4829 4830
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4831
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4832

C
Christoph Lameter 已提交
4833
		for_each_kmem_cache_node(s, node, n) {
4834 4835 4836 4837
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4838
			else
4839
				x = n->nr_partial;
C
Christoph Lameter 已提交
4840 4841 4842 4843 4844 4845
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4846
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4847 4848 4849 4850 4851 4852 4853 4854
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4855
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4856 4857 4858
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4859
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4860

C
Christoph Lameter 已提交
4861
	for_each_kmem_cache_node(s, node, n)
4862
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4863
			return 1;
C
Christoph Lameter 已提交
4864

C
Christoph Lameter 已提交
4865 4866
	return 0;
}
4867
#endif
C
Christoph Lameter 已提交
4868 4869

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4870
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4871 4872 4873 4874 4875 4876 4877 4878

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4879 4880
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4881 4882 4883

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4884
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4885 4886 4887

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
A
Alexey Dobriyan 已提交
4888
	return sprintf(buf, "%u\n", s->size);
C
Christoph Lameter 已提交
4889 4890 4891 4892 4893
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
4894
	return sprintf(buf, "%u\n", s->align);
C
Christoph Lameter 已提交
4895 4896 4897 4898 4899
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4900
	return sprintf(buf, "%u\n", s->object_size);
C
Christoph Lameter 已提交
4901 4902 4903 4904 4905
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4906
	return sprintf(buf, "%u\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4907 4908 4909
}
SLAB_ATTR_RO(objs_per_slab);

4910 4911 4912
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4913
	unsigned int order;
4914 4915
	int err;

4916
	err = kstrtouint(buf, 10, &order);
4917 4918
	if (err)
		return err;
4919 4920 4921 4922 4923 4924 4925 4926

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4927 4928
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4929
	return sprintf(buf, "%u\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4930
}
4931
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4932

4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4944
	err = kstrtoul(buf, 10, &min);
4945 4946 4947
	if (err)
		return err;

4948
	set_min_partial(s, min);
4949 4950 4951 4952
	return length;
}
SLAB_ATTR(min_partial);

4953 4954
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
4955
	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4956 4957 4958 4959 4960
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
4961
	unsigned int objects;
4962 4963
	int err;

4964
	err = kstrtouint(buf, 10, &objects);
4965 4966
	if (err)
		return err;
4967
	if (objects && !kmem_cache_has_cpu_partial(s))
4968
		return -EINVAL;
4969

4970
	slub_set_cpu_partial(s, objects);
4971 4972 4973 4974 4975
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4976 4977
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4978 4979 4980
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4981 4982 4983 4984 4985
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4986
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4987 4988 4989 4990 4991
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4992
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4993 4994 4995 4996 4997
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4998
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4999 5000 5001 5002 5003
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
5004
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
5005 5006 5007
}
SLAB_ATTR_RO(objects);

5008 5009 5010 5011 5012 5013
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

5014 5015 5016 5017 5018 5019 5020 5021
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
5022 5023 5024
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
5036 5037 5038
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

5078 5079
static ssize_t usersize_show(struct kmem_cache *s, char *buf)
{
5080
	return sprintf(buf, "%u\n", s->usersize);
5081 5082 5083
}
SLAB_ATTR_RO(usersize);

5084 5085
static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
5086
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5087 5088 5089
}
SLAB_ATTR_RO(destroy_by_rcu);

5090
#ifdef CONFIG_SLUB_DEBUG
5091 5092 5093 5094 5095 5096
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

5097 5098 5099 5100 5101 5102
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
5103 5104
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
5105
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
C
Christoph Lameter 已提交
5106 5107 5108 5109 5110
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
5111
	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5112 5113
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
5114
		s->flags |= SLAB_CONSISTENCY_CHECKS;
5115
	}
C
Christoph Lameter 已提交
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5128 5129 5130 5131 5132 5133 5134 5135
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
5136
	s->flags &= ~SLAB_TRACE;
5137 5138
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5139
		s->flags |= SLAB_TRACE;
5140
	}
C
Christoph Lameter 已提交
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
5157
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5158
		s->flags |= SLAB_RED_ZONE;
5159
	}
5160
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
5177
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5178
		s->flags |= SLAB_POISON;
5179
	}
5180
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
5197 5198
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5199
		s->flags |= SLAB_STORE_USER;
5200
	}
5201
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5202 5203 5204 5205
	return length;
}
SLAB_ATTR(store_user);

5206 5207 5208 5209 5210 5211 5212 5213
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5214 5215 5216 5217 5218 5219 5220 5221
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
5222 5223
}
SLAB_ATTR(validate);
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5251 5252 5253
	if (s->refcount > 1)
		return -EINVAL;

5254 5255 5256 5257 5258 5259
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
5260
#endif
5261

5262 5263 5264 5265 5266 5267 5268 5269
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5270 5271 5272
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
5273 5274 5275 5276 5277
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
5278
#ifdef CONFIG_NUMA
5279
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
5280
{
5281
	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
5282 5283
}

5284
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5285 5286
				const char *buf, size_t length)
{
5287
	unsigned int ratio;
5288 5289
	int err;

5290
	err = kstrtouint(buf, 10, &ratio);
5291 5292
	if (err)
		return err;
5293 5294
	if (ratio > 100)
		return -ERANGE;
5295

5296
	s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5297 5298 5299

	return length;
}
5300
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5301 5302
#endif

5303 5304 5305 5306 5307 5308
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
5309
	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5310 5311 5312 5313 5314

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5315
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5316 5317 5318 5319 5320 5321 5322

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

5323
#ifdef CONFIG_SMP
5324 5325
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
5326
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5327
	}
5328
#endif
5329 5330 5331 5332
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5333 5334 5335 5336 5337
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5338
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5339 5340
}

5341 5342 5343 5344 5345
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5346 5347 5348 5349 5350 5351 5352 5353 5354
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5366
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5367 5368 5369 5370 5371 5372 5373
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5374
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5375
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5376 5377
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5378 5379
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5380 5381
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5382 5383
#endif

P
Pekka Enberg 已提交
5384
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5385 5386 5387 5388
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5389
	&min_partial_attr.attr,
5390
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5391
	&objects_attr.attr,
5392
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5393 5394 5395 5396 5397 5398 5399 5400
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5401
	&shrink_attr.attr,
5402
	&slabs_cpu_partial_attr.attr,
5403
#ifdef CONFIG_SLUB_DEBUG
5404 5405 5406 5407
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5408 5409 5410
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5411
	&validate_attr.attr,
5412 5413
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5414
#endif
C
Christoph Lameter 已提交
5415 5416 5417 5418
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5419
	&remote_node_defrag_ratio_attr.attr,
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5432
	&alloc_node_mismatch_attr.attr,
5433 5434 5435 5436 5437 5438 5439
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5440
	&deactivate_bypass_attr.attr,
5441
	&order_fallback_attr.attr,
5442 5443
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5444 5445
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5446 5447
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5448
#endif
5449 5450 5451
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif
5452
	&usersize_attr.attr,
5453

C
Christoph Lameter 已提交
5454 5455 5456
	NULL
};

5457
static const struct attribute_group slab_attr_group = {
C
Christoph Lameter 已提交
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5495
#ifdef CONFIG_MEMCG
5496
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5497
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5498

5499 5500 5501 5502
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5520 5521
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5522 5523 5524
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5525 5526 5527
	return err;
}

5528 5529
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5530
#ifdef CONFIG_MEMCG
5531 5532
	int i;
	char *buffer = NULL;
5533
	struct kmem_cache *root_cache;
5534

5535
	if (is_root_cache(s))
5536 5537
		return;

5538
	root_cache = s->memcg_params.root_cache;
5539

5540 5541 5542 5543
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5544
	if (!root_cache->max_attr_size)
5545 5546 5547 5548 5549 5550
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5551
		ssize_t len;
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5567
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5568 5569 5570 5571 5572 5573 5574 5575
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5576 5577 5578
		len = attr->show(root_cache, buf);
		if (len > 0)
			attr->store(s, buf, len);
5579 5580 5581 5582 5583 5584 5585
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5586 5587 5588 5589 5590
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5591
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5592 5593 5594 5595 5596 5597
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5598
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5610
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5611 5612 5613
	.filter = uevent_filter,
};

5614
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5615

5616 5617
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5618
#ifdef CONFIG_MEMCG
5619
	if (!is_root_cache(s))
5620
		return s->memcg_params.root_cache->memcg_kset;
5621 5622 5623 5624
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5625 5626 5627
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5628 5629
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
5648 5649
	if (s->flags & SLAB_CACHE_DMA32)
		*p++ = 'D';
C
Christoph Lameter 已提交
5650 5651
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
5652
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
C
Christoph Lameter 已提交
5653
		*p++ = 'F';
V
Vladimir Davydov 已提交
5654 5655
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5656 5657
	if (p != name + 1)
		*p++ = '-';
A
Alexey Dobriyan 已提交
5658
	p += sprintf(p, "%07u", s->size);
5659

C
Christoph Lameter 已提交
5660 5661 5662 5663
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
static void sysfs_slab_remove_workfn(struct work_struct *work)
{
	struct kmem_cache *s =
		container_of(work, struct kmem_cache, kobj_remove_work);

	if (!s->kobj.state_in_sysfs)
		/*
		 * For a memcg cache, this may be called during
		 * deactivation and again on shutdown.  Remove only once.
		 * A cache is never shut down before deactivation is
		 * complete, so no need to worry about synchronization.
		 */
5676
		goto out;
5677 5678 5679 5680 5681

#ifdef CONFIG_MEMCG
	kset_unregister(s->memcg_kset);
#endif
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5682
out:
5683 5684 5685
	kobject_put(&s->kobj);
}

C
Christoph Lameter 已提交
5686 5687 5688 5689
static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5690
	struct kset *kset = cache_kset(s);
5691
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5692

5693 5694
	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);

5695 5696 5697 5698 5699
	if (!kset) {
		kobject_init(&s->kobj, &slab_ktype);
		return 0;
	}

5700 5701 5702 5703
	if (!unmergeable && disable_higher_order_debug &&
			(slub_debug & DEBUG_METADATA_FLAGS))
		unmergeable = 1;

C
Christoph Lameter 已提交
5704 5705 5706 5707 5708 5709
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5710
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5711 5712 5713 5714 5715 5716 5717 5718 5719
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5720
	s->kobj.kset = kset;
5721
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5722
	if (err)
5723
		goto out;
C
Christoph Lameter 已提交
5724 5725

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5726 5727
	if (err)
		goto out_del_kobj;
5728

5729
#ifdef CONFIG_MEMCG
5730
	if (is_root_cache(s) && memcg_sysfs_enabled) {
5731 5732
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5733 5734
			err = -ENOMEM;
			goto out_del_kobj;
5735 5736 5737 5738
		}
	}
#endif

C
Christoph Lameter 已提交
5739 5740 5741 5742 5743
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5744 5745 5746 5747 5748 5749 5750
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5751 5752
}

5753
static void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5754
{
5755
	if (slab_state < FULL)
5756 5757 5758 5759 5760 5761
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5762 5763
	kobject_get(&s->kobj);
	schedule_work(&s->kobj_remove_work);
5764 5765
}

5766 5767 5768 5769 5770 5771
void sysfs_slab_unlink(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_del(&s->kobj);
}

5772 5773 5774 5775
void sysfs_slab_release(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5776 5777 5778 5779
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5780
 * available lest we lose that information.
C
Christoph Lameter 已提交
5781 5782 5783 5784 5785 5786 5787
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5788
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5789 5790 5791 5792 5793

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5794
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5795 5796 5797
		/*
		 * If we have a leftover link then remove it.
		 */
5798 5799
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5815
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5816 5817
	int err;

5818
	mutex_lock(&slab_mutex);
5819

5820
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5821
	if (!slab_kset) {
5822
		mutex_unlock(&slab_mutex);
5823
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5824 5825 5826
		return -ENOSYS;
	}

5827
	slab_state = FULL;
5828

5829
	list_for_each_entry(s, &slab_caches, list) {
5830
		err = sysfs_slab_add(s);
5831
		if (err)
5832 5833
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5834
	}
C
Christoph Lameter 已提交
5835 5836 5837 5838 5839 5840

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5841
		if (err)
5842 5843
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5844 5845 5846
		kfree(al);
	}

5847
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5848 5849 5850 5851 5852
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5853
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5854 5855 5856 5857

/*
 * The /proc/slabinfo ABI
 */
Y
Yang Shi 已提交
5858
#ifdef CONFIG_SLUB_DEBUG
5859
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5860 5861
{
	unsigned long nr_slabs = 0;
5862 5863
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5864
	int node;
C
Christoph Lameter 已提交
5865
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5866

C
Christoph Lameter 已提交
5867
	for_each_kmem_cache_node(s, node, n) {
5868 5869
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5870
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5871 5872
	}

5873 5874 5875 5876 5877 5878
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5879 5880
}

5881
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5882 5883 5884
{
}

5885 5886
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5887
{
5888
	return -EIO;
5889
}
Y
Yang Shi 已提交
5890
#endif /* CONFIG_SLUB_DEBUG */