slub.c 126.8 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

C
Christoph Lameter 已提交
172 173 174 175
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 177
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
178 179

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
180
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
181

182 183
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
184
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185

C
Christoph Lameter 已提交
186
/* Internal SLUB flags */
C
Christoph Lameter 已提交
187
#define __OBJECT_POISON		0x80000000UL /* Poison object */
188
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
189 190 191 192 193

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

194 195 196
/*
 * Tracking user of a slab.
 */
197
#define TRACK_ADDRS_COUNT 16
198
struct track {
199
	unsigned long addr;	/* Called from address */
200 201 202
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
203 204 205 206 207 208 209
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

210
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
211 212 213
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
214
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
215
#else
216 217 218
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
219
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220

221
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
222 223
#endif

224
static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 226
{
#ifdef CONFIG_SLUB_STATS
227
	__this_cpu_inc(s->cpu_slab->stat[si]);
228 229 230
#endif
}

C
Christoph Lameter 已提交
231 232 233 234 235 236 237 238 239
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

C
Christoph Lameter 已提交
240
/* Verify that a pointer has an address that is valid within a slab page */
241 242 243 244 245
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

246
	if (!object)
247 248
		return 1;

249
	base = page_address(page);
250
	if (object < base || object >= base + page->objects * s->size ||
251 252 253 254 255 256 257
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

258 259 260 261 262
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

263 264 265 266 267
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

268 269 270 271 272 273 274 275 276 277 278 279
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

280 281 282 283 284 285
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
286 287
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 289 290 291 292 293 294 295
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

296 297 298 299 300 301 302 303
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304
		return s->object_size;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

320 321 322 323 324
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

325
static inline struct kmem_cache_order_objects oo_make(int order,
326
		unsigned long size, int reserved)
327 328
{
	struct kmem_cache_order_objects x = {
329
		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 331 332 333 334 335 336
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
337
	return x.x >> OO_SHIFT;
338 339 340 341
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
342
	return x.x & OO_MASK;
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

373 374 375 376 377 378 379
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
380 381
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382
	if (s->flags & __CMPXCHG_DOUBLE) {
383
		if (cmpxchg_double(&page->freelist, &page->counters,
384 385 386 387 388 389 390
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
391 392
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
393
			page->freelist = freelist_new;
394
			set_page_slub_counters(page, counters_new);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

411 412 413 414 415
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
416 417
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418
	if (s->flags & __CMPXCHG_DOUBLE) {
419
		if (cmpxchg_double(&page->freelist, &page->counters,
420 421 422 423 424 425
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
426 427 428
		unsigned long flags;

		local_irq_save(flags);
429
		slab_lock(page);
430 431
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
432
			page->freelist = freelist_new;
433
			set_page_slub_counters(page, counters_new);
434
			slab_unlock(page);
435
			local_irq_restore(flags);
436 437
			return 1;
		}
438
		slab_unlock(page);
439
		local_irq_restore(flags);
440 441 442 443 444 445 446 447 448 449 450 451
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

C
Christoph Lameter 已提交
452
#ifdef CONFIG_SLUB_DEBUG
453 454 455
/*
 * Determine a map of object in use on a page.
 *
456
 * Node listlock must be held to guarantee that the page does
457 458 459 460 461 462 463 464 465 466 467
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
468 469 470
/*
 * Debug settings:
 */
471 472 473
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
474
static int slub_debug;
475
#endif
C
Christoph Lameter 已提交
476 477

static char *slub_debug_slabs;
478
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
479

C
Christoph Lameter 已提交
480 481 482 483 484
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
485 486
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
503
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
504
{
A
Akinobu Mita 已提交
505
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
506 507

	if (addr) {
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
526 527
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
528
		p->pid = current->pid;
C
Christoph Lameter 已提交
529 530 531 532 533 534 535
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
536 537 538
	if (!(s->flags & SLAB_STORE_USER))
		return;

539 540
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
541 542 543 544 545 546 547
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

548
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
549
		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
550 551 552 553 554 555 556 557 558 559
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
			else
				break;
	}
#endif
560 561 562 563 564 565 566 567 568 569 570 571 572
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
573 574 575
	printk(KERN_ERR
	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
	       page, page->objects, page->inuse, page->freelist, page->flags);
576 577 578 579 580 581 582 583 584 585 586 587 588

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
589
	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
590 591
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
592

593
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
C
Christoph Lameter 已提交
594 595
}

596 597 598 599 600 601 602 603 604 605 606 607
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
608 609
{
	unsigned int off;	/* Offset of last byte */
610
	u8 *addr = page_address(page);
611 612 613 614 615 616 617 618 619

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
620
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
621

622
	print_section("Object ", p, min_t(unsigned long, s->object_size,
623
				PAGE_SIZE));
C
Christoph Lameter 已提交
624
	if (s->flags & SLAB_RED_ZONE)
625 626
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
627 628 629 630 631 632

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

633
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
634 635 636 637
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
638
		print_section("Padding ", p + off, s->size - off);
639 640

	dump_stack();
C
Christoph Lameter 已提交
641 642 643 644 645
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
646
	slab_bug(s, "%s", reason);
647
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
648 649
}

650 651
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
652 653 654 655
{
	va_list args;
	char buf[100];

656 657
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
658
	va_end(args);
659
	slab_bug(s, "%s", buf);
660
	print_page_info(page);
C
Christoph Lameter 已提交
661 662 663
	dump_stack();
}

664
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
665 666 667 668
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
669 670
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
671 672 673
	}

	if (s->flags & SLAB_RED_ZONE)
674
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
675 676
}

677 678 679 680 681 682 683 684 685
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
686
			u8 *start, unsigned int value, unsigned int bytes)
687 688 689 690
{
	u8 *fault;
	u8 *end;

691
	fault = memchr_inv(start, value, bytes);
692 693 694 695 696 697 698 699 700 701 702 703 704 705
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
706 707 708 709 710 711 712 713 714
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
715
 *
C
Christoph Lameter 已提交
716 717 718
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
719
 * object + s->object_size
C
Christoph Lameter 已提交
720
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
721
 * 	Padding is extended by another word if Redzoning is enabled and
722
 * 	object_size == inuse.
C
Christoph Lameter 已提交
723
 *
C
Christoph Lameter 已提交
724 725 726 727
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
728 729
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
730 731
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
732
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
733
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
734 735 736
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
737 738
 *
 * object + s->size
C
Christoph Lameter 已提交
739
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
740
 *
741
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
742
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

761 762
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
763 764
}

765
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
766 767
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
768 769 770 771 772
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
773 774 775 776

	if (!(s->flags & SLAB_POISON))
		return 1;

777
	start = page_address(page);
778
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 780
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
781 782 783
	if (!remainder)
		return 1;

784
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 786 787 788 789 790
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791
	print_section("Padding ", end - remainder, remainder);
792

E
Eric Dumazet 已提交
793
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794
	return 0;
C
Christoph Lameter 已提交
795 796 797
}

static int check_object(struct kmem_cache *s, struct page *page,
798
					void *object, u8 val)
C
Christoph Lameter 已提交
799 800
{
	u8 *p = object;
801
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
802 803

	if (s->flags & SLAB_RED_ZONE) {
804
		if (!check_bytes_and_report(s, page, object, "Redzone",
805
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
806 807
			return 0;
	} else {
808
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
809
			check_bytes_and_report(s, page, p, "Alignment padding",
810 811
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
812
		}
C
Christoph Lameter 已提交
813 814 815
	}

	if (s->flags & SLAB_POISON) {
816
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817
			(!check_bytes_and_report(s, page, p, "Poison", p,
818
					POISON_FREE, s->object_size - 1) ||
819
			 !check_bytes_and_report(s, page, p, "Poison",
820
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
821 822 823 824 825 826 827
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

828
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
829 830 831 832 833 834 835 836 837 838
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
839
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
840
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
841
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
842
		 */
843
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
844 845 846 847 848 849 850
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
851 852
	int maxobj;

C
Christoph Lameter 已提交
853 854 855
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
856
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
857 858
		return 0;
	}
859

860
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 862 863 864 865 866
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
867
		slab_err(s, page, "inuse %u > max %u",
868
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
869 870 871 872 873 874 875 876
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
877 878
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
879 880 881 882
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
883
	void *fp;
C
Christoph Lameter 已提交
884
	void *object = NULL;
885
	unsigned long max_objects;
C
Christoph Lameter 已提交
886

887
	fp = page->freelist;
888
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
889 890 891 892 893 894
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
895
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
896
			} else {
897
				slab_err(s, page, "Freepointer corrupt");
898
				page->freelist = NULL;
899
				page->inuse = page->objects;
900
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
901 902 903 904 905 906 907 908 909
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

910
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 912
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
913 914 915 916 917 918 919

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
920
	if (page->inuse != page->objects - nr) {
921
		slab_err(s, page, "Wrong object count. Counter is %d but "
922 923
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
924
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
925 926 927 928
	}
	return search == NULL;
}

929 930
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
931 932 933 934 935 936 937 938 939
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
940 941
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
942 943 944 945 946

		dump_stack();
	}
}

947 948 949 950
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
951 952 953 954 955 956 957 958 959 960
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

961 962
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
963
	flags &= gfp_allowed_mask;
964 965 966
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

967
	return should_failslab(s->object_size, flags, s->flags);
968 969
}

970 971
static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
972
{
973
	flags &= gfp_allowed_mask;
974
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 977 978 979 980 981
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

982
	/*
X
Xie XiuQi 已提交
983
	 * Trouble is that we may no longer disable interrupts in the fast path
984 985 986 987 988 989 990 991
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
992 993
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
994 995 996
		local_irq_restore(flags);
	}
#endif
997
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
998
		debug_check_no_obj_freed(x, s->object_size);
999 1000
}

1001
/*
C
Christoph Lameter 已提交
1002
 * Tracking of fully allocated slabs for debugging purposes.
1003
 */
1004 1005
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1006
{
P
Peter Zijlstra 已提交
1007 1008
	lockdep_assert_held(&n->list_lock);

1009 1010 1011
	if (!(s->flags & SLAB_STORE_USER))
		return;

1012 1013 1014
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
1015
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1016
{
P
Peter Zijlstra 已提交
1017 1018
	lockdep_assert_held(&n->list_lock);

1019 1020 1021 1022 1023 1024
	if (!(s->flags & SLAB_STORE_USER))
		return;

	list_del(&page->lru);
}

1025 1026 1027 1028 1029 1030 1031 1032
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1033 1034 1035 1036 1037
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1038
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1039 1040 1041 1042 1043 1044 1045 1046 1047
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1048
	if (likely(n)) {
1049
		atomic_long_inc(&n->nr_slabs);
1050 1051
		atomic_long_add(objects, &n->total_objects);
	}
1052
}
1053
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1054 1055 1056 1057
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1058
	atomic_long_sub(objects, &n->total_objects);
1059 1060 1061
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1062 1063 1064 1065 1066 1067
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1068
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1069 1070 1071
	init_tracking(s, object);
}

1072 1073
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1074
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1075 1076 1077 1078 1079 1080
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1081
		goto bad;
C
Christoph Lameter 已提交
1082 1083
	}

1084
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1085 1086
		goto bad;

C
Christoph Lameter 已提交
1087 1088 1089 1090
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1091
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1092
	return 1;
C
Christoph Lameter 已提交
1093

C
Christoph Lameter 已提交
1094 1095 1096 1097 1098
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1099
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1100
		 */
1101
		slab_fix(s, "Marking all objects used");
1102
		page->inuse = page->objects;
1103
		page->freelist = NULL;
C
Christoph Lameter 已提交
1104 1105 1106 1107
	}
	return 0;
}

1108 1109 1110
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1111
{
1112
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1113

1114
	spin_lock_irqsave(&n->list_lock, *flags);
1115 1116
	slab_lock(page);

C
Christoph Lameter 已提交
1117 1118 1119 1120
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1121
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1122 1123 1124 1125
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1126
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1127 1128 1129
		goto fail;
	}

1130
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1131
		goto out;
C
Christoph Lameter 已提交
1132

1133
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1134
		if (!PageSlab(page)) {
1135 1136
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1137
		} else if (!page->slab_cache) {
C
Christoph Lameter 已提交
1138
			printk(KERN_ERR
1139
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
1140
						object);
1141
			dump_stack();
P
Pekka Enberg 已提交
1142
		} else
1143 1144
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1145 1146
		goto fail;
	}
C
Christoph Lameter 已提交
1147 1148 1149 1150

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1151
	init_object(s, object, SLUB_RED_INACTIVE);
1152
out:
1153
	slab_unlock(page);
1154 1155 1156 1157 1158
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1159

C
Christoph Lameter 已提交
1160
fail:
1161 1162
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1163
	slab_fix(s, "Object at 0x%p not freed", object);
1164
	return NULL;
C
Christoph Lameter 已提交
1165 1166
}

C
Christoph Lameter 已提交
1167 1168
static int __init setup_slub_debug(char *str)
{
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1183 1184 1185 1186 1187 1188 1189 1190 1191
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1202
	for (; *str && *str != ','; str++) {
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1219 1220 1221
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1222 1223
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1224
				"unknown. skipped\n", *str);
1225
		}
C
Christoph Lameter 已提交
1226 1227
	}

1228
check_slabs:
C
Christoph Lameter 已提交
1229 1230
	if (*str == ',')
		slub_debug_slabs = str + 1;
1231
out:
C
Christoph Lameter 已提交
1232 1233 1234 1235 1236
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1237
static unsigned long kmem_cache_flags(unsigned long object_size,
1238
	unsigned long flags, const char *name,
1239
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1240 1241
{
	/*
1242
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1243
	 */
1244 1245
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1246
		flags |= slub_debug;
1247 1248

	return flags;
C
Christoph Lameter 已提交
1249 1250
}
#else
C
Christoph Lameter 已提交
1251 1252
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1253

C
Christoph Lameter 已提交
1254
static inline int alloc_debug_processing(struct kmem_cache *s,
1255
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1256

1257 1258 1259
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1260 1261 1262 1263

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1264
			void *object, u8 val) { return 1; }
1265 1266
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1267 1268
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1269
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1270
	unsigned long flags, const char *name,
1271
	void (*ctor)(void *))
1272 1273 1274
{
	return flags;
}
C
Christoph Lameter 已提交
1275
#define slub_debug 0
1276

1277 1278
#define disable_higher_order_debug 0

1279 1280
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1281 1282
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1283 1284 1285 1286
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1298 1299 1300 1301
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1302 1303 1304 1305 1306
		void *object)
{
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
		flags & gfp_allowed_mask);
}
1307

1308 1309 1310 1311
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
}
1312

1313
#endif /* CONFIG_SLUB_DEBUG */
1314

C
Christoph Lameter 已提交
1315 1316 1317
/*
 * Slab allocation and freeing
 */
1318 1319 1320 1321 1322
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

1323 1324
	flags |= __GFP_NOTRACK;

1325
	if (node == NUMA_NO_NODE)
1326 1327
		return alloc_pages(flags, order);
	else
1328
		return alloc_pages_exact_node(node, flags, order);
1329 1330
}

C
Christoph Lameter 已提交
1331 1332
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1333
	struct page *page;
1334
	struct kmem_cache_order_objects oo = s->oo;
1335
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1336

1337 1338 1339 1340 1341
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1342
	flags |= s->allocflags;
1343

1344 1345 1346 1347 1348 1349 1350
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

	page = alloc_slab_page(alloc_gfp, node, oo);
1351 1352 1353 1354 1355 1356 1357
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
C
Christoph Lameter 已提交
1358

1359 1360
		if (page)
			stat(s, ORDER_FALLBACK);
1361
	}
V
Vegard Nossum 已提交
1362

1363
	if (kmemcheck_enabled && page
1364
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
		int pages = 1 << oo_order(oo);

		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1377 1378
	}

1379 1380 1381 1382 1383
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1384
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1385 1386 1387
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1388
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1389 1390 1391 1392 1393 1394 1395

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1396
	setup_object_debug(s, page, object);
1397
	if (unlikely(s->ctor))
1398
		s->ctor(object);
C
Christoph Lameter 已提交
1399 1400 1401 1402 1403 1404 1405 1406
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;
G
Glauber Costa 已提交
1407
	int order;
C
Christoph Lameter 已提交
1408

C
Christoph Lameter 已提交
1409
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1410

C
Christoph Lameter 已提交
1411 1412
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1413 1414 1415
	if (!page)
		goto out;

G
Glauber Costa 已提交
1416
	order = compound_order(page);
1417
	inc_slabs_node(s, page_to_nid(page), page->objects);
G
Glauber Costa 已提交
1418
	memcg_bind_pages(s, order);
1419
	page->slab_cache = s;
1420
	__SetPageSlab(page);
1421 1422
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1423 1424 1425 1426

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1427
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1428 1429

	last = start;
1430
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1431 1432 1433 1434 1435
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1436
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1437 1438

	page->freelist = start;
1439
	page->inuse = page->objects;
1440
	page->frozen = 1;
C
Christoph Lameter 已提交
1441 1442 1443 1444 1445 1446
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1447 1448
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1449

1450
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1451 1452 1453
		void *p;

		slab_pad_check(s, page);
1454 1455
		for_each_object(p, s, page_address(page),
						page->objects)
1456
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1457 1458
	}

1459
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1460

C
Christoph Lameter 已提交
1461 1462 1463
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1464
		-pages);
C
Christoph Lameter 已提交
1465

1466
	__ClearPageSlabPfmemalloc(page);
1467
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1468 1469

	memcg_release_pages(s, order);
1470
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1471 1472
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1473
	__free_memcg_kmem_pages(page, order);
C
Christoph Lameter 已提交
1474 1475
}

1476 1477 1478
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1479 1480 1481 1482
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1483 1484 1485 1486 1487
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1488
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1489 1490 1491 1492 1493
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1508 1509 1510 1511 1512 1513 1514 1515

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1516
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1517 1518 1519 1520
	free_slab(s, page);
}

/*
1521
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1522
 */
1523
static inline void add_partial(struct kmem_cache_node *n,
1524
				struct page *page, int tail)
C
Christoph Lameter 已提交
1525
{
P
Peter Zijlstra 已提交
1526 1527
	lockdep_assert_held(&n->list_lock);

C
Christoph Lameter 已提交
1528
	n->nr_partial++;
1529
	if (tail == DEACTIVATE_TO_TAIL)
1530 1531 1532
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1533 1534
}

1535
static inline void remove_partial(struct kmem_cache_node *n,
1536 1537
					struct page *page)
{
P
Peter Zijlstra 已提交
1538 1539
	lockdep_assert_held(&n->list_lock);

1540 1541 1542 1543
	list_del(&page->lru);
	n->nr_partial--;
}

C
Christoph Lameter 已提交
1544
/*
1545 1546
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1547
 *
1548
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1549
 */
1550
static inline void *acquire_slab(struct kmem_cache *s,
1551
		struct kmem_cache_node *n, struct page *page,
1552
		int mode, int *objects)
C
Christoph Lameter 已提交
1553
{
1554 1555 1556 1557
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1558 1559
	lockdep_assert_held(&n->list_lock);

1560 1561 1562 1563 1564
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1565 1566 1567
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1568
	*objects = new.objects - new.inuse;
1569
	if (mode) {
1570
		new.inuse = page->objects;
1571 1572 1573 1574
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1575

1576
	VM_BUG_ON(new.frozen);
1577
	new.frozen = 1;
1578

1579
	if (!__cmpxchg_double_slab(s, page,
1580
			freelist, counters,
1581
			new.freelist, new.counters,
1582 1583
			"acquire_slab"))
		return NULL;
1584 1585

	remove_partial(n, page);
1586
	WARN_ON(!freelist);
1587
	return freelist;
C
Christoph Lameter 已提交
1588 1589
}

1590
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1591
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1592

C
Christoph Lameter 已提交
1593
/*
C
Christoph Lameter 已提交
1594
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1595
 */
1596 1597
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1598
{
1599 1600
	struct page *page, *page2;
	void *object = NULL;
1601 1602
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1603 1604 1605 1606

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1607 1608
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1609 1610 1611 1612 1613
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1614
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1615
		void *t;
1616

1617 1618 1619
		if (!pfmemalloc_match(page, flags))
			continue;

1620
		t = acquire_slab(s, n, page, object == NULL, &objects);
1621 1622 1623
		if (!t)
			break;

1624
		available += objects;
1625
		if (!object) {
1626 1627 1628 1629
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1630
			put_cpu_partial(s, page, 0);
1631
			stat(s, CPU_PARTIAL_NODE);
1632
		}
1633 1634
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1635 1636
			break;

1637
	}
C
Christoph Lameter 已提交
1638
	spin_unlock(&n->list_lock);
1639
	return object;
C
Christoph Lameter 已提交
1640 1641 1642
}

/*
C
Christoph Lameter 已提交
1643
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1644
 */
1645
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1646
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1647 1648 1649
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1650
	struct zoneref *z;
1651 1652
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1653
	void *object;
1654
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1655 1656

	/*
C
Christoph Lameter 已提交
1657 1658 1659 1660
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1661
	 *
C
Christoph Lameter 已提交
1662 1663 1664 1665
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1666
	 *
C
Christoph Lameter 已提交
1667
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1668 1669 1670 1671 1672
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1673
	 */
1674 1675
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1676 1677
		return NULL;

1678 1679
	do {
		cpuset_mems_cookie = get_mems_allowed();
1680
		zonelist = node_zonelist(slab_node(), flags);
1681 1682 1683 1684 1685 1686 1687
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1688
				object = get_partial_node(s, n, c, flags);
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
				if (object) {
					/*
					 * Return the object even if
					 * put_mems_allowed indicated that
					 * the cpuset mems_allowed was
					 * updated in parallel. It's a
					 * harmless race between the alloc
					 * and the cpuset update.
					 */
					put_mems_allowed(cpuset_mems_cookie);
					return object;
				}
1701
			}
C
Christoph Lameter 已提交
1702
		}
1703
	} while (!put_mems_allowed(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1704 1705 1706 1707 1708 1709 1710
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1711
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1712
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1713
{
1714
	void *object;
1715
	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
C
Christoph Lameter 已提交
1716

1717
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1718 1719
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1720

1721
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1722 1723
}

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		printk("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		printk("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
1780
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1781 1782
}

1783
static void init_kmem_cache_cpus(struct kmem_cache *s)
1784 1785 1786 1787 1788 1789
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1790

C
Christoph Lameter 已提交
1791 1792 1793
/*
 * Remove the cpu slab
 */
1794 1795
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1796
{
1797 1798 1799 1800 1801
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1802
	int tail = DEACTIVATE_TO_HEAD;
1803 1804 1805 1806
	struct page new;
	struct page old;

	if (page->freelist) {
1807
		stat(s, DEACTIVATE_REMOTE_FREES);
1808
		tail = DEACTIVATE_TO_TAIL;
1809 1810
	}

1811
	/*
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1829
			VM_BUG_ON(!new.frozen);
1830

1831
		} while (!__cmpxchg_double_slab(s, page,
1832 1833 1834 1835 1836 1837 1838
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1839
	/*
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1852
	 */
1853
redo:
1854

1855 1856
	old.freelist = page->freelist;
	old.counters = page->counters;
1857
	VM_BUG_ON(!old.frozen);
1858

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1870
	if (!new.inuse && n->nr_partial > s->min_partial)
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1903

P
Peter Zijlstra 已提交
1904
			remove_full(s, n, page);
1905 1906 1907 1908

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1909
			stat(s, tail);
1910 1911

		} else if (m == M_FULL) {
1912

1913 1914 1915 1916 1917 1918 1919
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1920
	if (!__cmpxchg_double_slab(s, page,
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1933
	}
C
Christoph Lameter 已提交
1934 1935
}

1936 1937 1938
/*
 * Unfreeze all the cpu partial slabs.
 *
1939 1940 1941
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1942
 */
1943 1944
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1945
{
1946
#ifdef CONFIG_SLUB_CPU_PARTIAL
1947
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1948
	struct page *page, *discard_page = NULL;
1949 1950 1951 1952 1953 1954

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1955 1956 1957 1958 1959 1960 1961 1962 1963

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1964 1965 1966 1967 1968

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1969
			VM_BUG_ON(!old.frozen);
1970 1971 1972 1973 1974 1975

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1976
		} while (!__cmpxchg_double_slab(s, page,
1977 1978 1979 1980
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1981
		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1982 1983
			page->next = discard_page;
			discard_page = page;
1984 1985 1986
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1987 1988 1989 1990 1991
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1992 1993 1994 1995 1996 1997 1998 1999 2000

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2001
#endif
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2013
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2014
{
2015
#ifdef CONFIG_SLUB_CPU_PARTIAL
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2035
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2036
				local_irq_restore(flags);
2037
				oldpage = NULL;
2038 2039
				pobjects = 0;
				pages = 0;
2040
				stat(s, CPU_PARTIAL_DRAIN);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2051 2052
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2053
#endif
2054 2055
}

2056
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2057
{
2058
	stat(s, CPUSLAB_FLUSH);
2059 2060 2061 2062 2063
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2064 2065 2066 2067
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2068
 *
C
Christoph Lameter 已提交
2069 2070
 * Called from IPI handler with interrupts disabled.
 */
2071
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2072
{
2073
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2074

2075 2076 2077 2078
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2079
		unfreeze_partials(s, c);
2080
	}
C
Christoph Lameter 已提交
2081 2082 2083 2084 2085 2086
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2087
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2088 2089
}

2090 2091 2092 2093 2094
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2095
	return c->page || c->partial;
2096 2097
}

C
Christoph Lameter 已提交
2098 2099
static void flush_all(struct kmem_cache *s)
{
2100
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2101 2102
}

2103 2104 2105 2106
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2107
static inline int node_match(struct page *page, int node)
2108 2109
{
#ifdef CONFIG_NUMA
2110
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2111 2112 2113 2114 2115
		return 0;
#endif
	return 1;
}

P
Pekka Enberg 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2135 2136 2137 2138 2139 2140 2141 2142 2143
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
#ifdef CONFIG_SLUB_DEBUG
	return atomic_long_read(&n->total_objects);
#else
	return 0;
#endif
}

P
Pekka Enberg 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
	int node;

	printk(KERN_WARNING
		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2153
		"default order: %d, min order: %d\n", s->name, s->object_size,
P
Pekka Enberg 已提交
2154 2155
		s->size, oo_order(s->oo), oo_order(s->min));

2156
	if (oo_order(s->min) > get_order(s->object_size))
2157 2158 2159
		printk(KERN_WARNING "  %s debugging increased min order, use "
		       "slub_debug=O to disable.\n", s->name);

P
Pekka Enberg 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2169 2170 2171
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2172 2173 2174 2175 2176 2177 2178

		printk(KERN_WARNING
			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
			node, nr_slabs, nr_objs, nr_free);
	}
}

2179 2180 2181
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2182
	void *freelist;
2183 2184
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2185

2186
	freelist = get_partial(s, flags, node, c);
2187

2188 2189 2190 2191
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2192 2193 2194 2195 2196 2197 2198 2199 2200
	if (page) {
		c = __this_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2201
		freelist = page->freelist;
2202 2203 2204 2205 2206 2207
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2208
		freelist = NULL;
2209

2210
	return freelist;
2211 2212
}

2213 2214 2215 2216 2217 2218 2219 2220
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2221
/*
2222 2223
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2224 2225 2226 2227
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2228 2229
 *
 * This function must be called with interrupt disabled.
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2240

2241
		new.counters = counters;
2242
		VM_BUG_ON(!new.frozen);
2243 2244 2245 2246

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2247
	} while (!__cmpxchg_double_slab(s, page,
2248 2249 2250 2251 2252 2253 2254
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2255
/*
2256 2257 2258 2259 2260 2261
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2262
 *
2263 2264 2265
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2266
 *
2267
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2268 2269
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2270
 */
2271 2272
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2273
{
2274
	void *freelist;
2275
	struct page *page;
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2287

2288 2289
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2290
		goto new_slab;
2291
redo:
2292

2293
	if (unlikely(!node_match(page, node))) {
2294
		stat(s, ALLOC_NODE_MISMATCH);
2295
		deactivate_slab(s, page, c->freelist);
2296 2297
		c->page = NULL;
		c->freelist = NULL;
2298 2299
		goto new_slab;
	}
C
Christoph Lameter 已提交
2300

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2313
	/* must check again c->freelist in case of cpu migration or IRQ */
2314 2315
	freelist = c->freelist;
	if (freelist)
2316
		goto load_freelist;
2317

2318
	stat(s, ALLOC_SLOWPATH);
2319

2320
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2321

2322
	if (!freelist) {
2323 2324
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2325
		goto new_slab;
2326
	}
C
Christoph Lameter 已提交
2327

2328
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2329

2330
load_freelist:
2331 2332 2333 2334 2335
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2336
	VM_BUG_ON(!c->page->frozen);
2337
	c->freelist = get_freepointer(s, freelist);
2338 2339
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2340
	return freelist;
C
Christoph Lameter 已提交
2341 2342

new_slab:
2343

2344
	if (c->partial) {
2345 2346
		page = c->page = c->partial;
		c->partial = page->next;
2347 2348 2349
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2350 2351
	}

2352
	freelist = new_slab_objects(s, gfpflags, node, &c);
2353

2354 2355 2356
	if (unlikely(!freelist)) {
		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(s, gfpflags, node);
2357

2358 2359
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2360
	}
2361

2362
	page = c->page;
2363
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2364
		goto load_freelist;
2365

2366
	/* Only entered in the debug case */
2367 2368
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2369
		goto new_slab;	/* Slab failed checks. Next slab needed */
2370

2371
	deactivate_slab(s, page, get_freepointer(s, freelist));
2372 2373
	c->page = NULL;
	c->freelist = NULL;
2374
	local_irq_restore(flags);
2375
	return freelist;
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2388
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2389
		gfp_t gfpflags, int node, unsigned long addr)
2390 2391
{
	void **object;
2392
	struct kmem_cache_cpu *c;
2393
	struct page *page;
2394
	unsigned long tid;
2395

2396
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2397
		return NULL;
2398

2399
	s = memcg_kmem_get_cache(s, gfpflags);
2400 2401 2402 2403 2404 2405
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2406 2407 2408 2409 2410
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2411
	 */
2412
	preempt_disable();
2413
	c = __this_cpu_ptr(s->cpu_slab);
2414 2415 2416 2417 2418 2419 2420 2421

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2422
	preempt_enable();
2423

2424
	object = c->freelist;
2425
	page = c->page;
L
Libin 已提交
2426
	if (unlikely(!object || !node_match(page, node)))
2427
		object = __slab_alloc(s, gfpflags, node, addr, c);
2428 2429

	else {
2430 2431
		void *next_object = get_freepointer_safe(s, object);

2432
		/*
L
Lucas De Marchi 已提交
2433
		 * The cmpxchg will only match if there was no additional
2434 2435
		 * operation and if we are on the right processor.
		 *
2436 2437
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2438 2439 2440 2441
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2442 2443 2444
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2445
		 */
2446
		if (unlikely(!this_cpu_cmpxchg_double(
2447 2448
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2449
				next_object, next_tid(tid)))) {
2450 2451 2452 2453

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2454
		prefetch_freepointer(s, next_object);
2455
		stat(s, ALLOC_FASTPATH);
2456
	}
2457

2458
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2459
		memset(object, 0, s->object_size);
2460

2461
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2462

2463
	return object;
C
Christoph Lameter 已提交
2464 2465
}

2466 2467 2468 2469 2470 2471
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2472 2473
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2474
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2475

2476 2477
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2478 2479

	return ret;
C
Christoph Lameter 已提交
2480 2481 2482
}
EXPORT_SYMBOL(kmem_cache_alloc);

2483
#ifdef CONFIG_TRACING
2484 2485
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2486
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2487 2488 2489 2490
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2491 2492
#endif

C
Christoph Lameter 已提交
2493 2494 2495
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2496
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2497

2498
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2499
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2500 2501

	return ret;
C
Christoph Lameter 已提交
2502 2503 2504
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2505
#ifdef CONFIG_TRACING
2506
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2507
				    gfp_t gfpflags,
2508
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2509
{
2510
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2511 2512 2513 2514

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2515
}
2516
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2517
#endif
2518
#endif
E
Eduard - Gabriel Munteanu 已提交
2519

C
Christoph Lameter 已提交
2520
/*
2521 2522
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2523
 *
2524 2525 2526
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2527
 */
2528
static void __slab_free(struct kmem_cache *s, struct page *page,
2529
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2530 2531 2532
{
	void *prior;
	void **object = (void *)x;
2533 2534 2535 2536
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2537
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2538

2539
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2540

2541 2542
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2543
		return;
C
Christoph Lameter 已提交
2544

2545
	do {
2546 2547 2548 2549
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2550 2551 2552 2553 2554 2555
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2556
		if ((!new.inuse || !prior) && !was_frozen) {
2557

P
Peter Zijlstra 已提交
2558
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2559 2560

				/*
2561 2562 2563 2564
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2565 2566 2567
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2568
			} else { /* Needs to be taken off a list */
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2582
		}
C
Christoph Lameter 已提交
2583

2584 2585 2586 2587
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2588

2589
	if (likely(!n)) {
2590 2591 2592 2593 2594

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2595
		if (new.frozen && !was_frozen) {
2596
			put_cpu_partial(s, page, 1);
2597 2598
			stat(s, CPU_PARTIAL_FREE);
		}
2599
		/*
2600 2601 2602 2603 2604
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2605
                return;
2606
        }
C
Christoph Lameter 已提交
2607

2608 2609 2610
	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
		goto slab_empty;

C
Christoph Lameter 已提交
2611
	/*
2612 2613
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2614
	 */
2615 2616
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2617
			remove_full(s, n, page);
2618 2619
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2620
	}
2621
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2622 2623 2624
	return;

slab_empty:
2625
	if (prior) {
C
Christoph Lameter 已提交
2626
		/*
2627
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2628
		 */
2629
		remove_partial(n, page);
2630
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2631
	} else {
2632
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2633 2634
		remove_full(s, n, page);
	}
2635

2636
	spin_unlock_irqrestore(&n->list_lock, flags);
2637
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2638 2639 2640
	discard_slab(s, page);
}

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2652
static __always_inline void slab_free(struct kmem_cache *s,
2653
			struct page *page, void *x, unsigned long addr)
2654 2655
{
	void **object = (void *)x;
2656
	struct kmem_cache_cpu *c;
2657
	unsigned long tid;
2658

2659 2660
	slab_free_hook(s, x);

2661 2662 2663 2664 2665 2666 2667
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2668
	preempt_disable();
2669
	c = __this_cpu_ptr(s->cpu_slab);
2670

2671
	tid = c->tid;
2672
	preempt_enable();
2673

2674
	if (likely(page == c->page)) {
2675
		set_freepointer(s, object, c->freelist);
2676

2677
		if (unlikely(!this_cpu_cmpxchg_double(
2678 2679 2680 2681 2682 2683 2684
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2685
		stat(s, FREE_FASTPATH);
2686
	} else
2687
		__slab_free(s, page, x, addr);
2688 2689 2690

}

C
Christoph Lameter 已提交
2691 2692
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2693 2694
	s = cache_from_obj(s, x);
	if (!s)
2695
		return;
2696
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2697
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2698 2699 2700 2701
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2702 2703 2704 2705
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2706 2707 2708 2709
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2710
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2721
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2722
static int slub_min_objects;
C
Christoph Lameter 已提交
2723 2724 2725

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2726
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2727 2728 2729 2730 2731 2732
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2733 2734 2735 2736
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2737
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2738 2739 2740 2741 2742 2743
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2744
 *
C
Christoph Lameter 已提交
2745 2746 2747 2748
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2749
 *
C
Christoph Lameter 已提交
2750 2751 2752 2753
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2754
 */
2755
static inline int slab_order(int size, int min_objects,
2756
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2757 2758 2759
{
	int order;
	int rem;
2760
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2761

2762
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2763
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2764

2765
	for (order = max(min_order,
2766 2767
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2768

2769
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2770

2771
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2772 2773
			continue;

2774
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2775

2776
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2777 2778 2779
			break;

	}
C
Christoph Lameter 已提交
2780

C
Christoph Lameter 已提交
2781 2782 2783
	return order;
}

2784
static inline int calculate_order(int size, int reserved)
2785 2786 2787 2788
{
	int order;
	int min_objects;
	int fraction;
2789
	int max_objects;
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2800 2801
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2802
	max_objects = order_objects(slub_max_order, size, reserved);
2803 2804
	min_objects = min(min_objects, max_objects);

2805
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2806
		fraction = 16;
2807 2808
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2809
					slub_max_order, fraction, reserved);
2810 2811 2812 2813
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2814
		min_objects--;
2815 2816 2817 2818 2819 2820
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2821
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2822 2823 2824 2825 2826 2827
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2828
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2829
	if (order < MAX_ORDER)
2830 2831 2832 2833
		return order;
	return -ENOSYS;
}

2834
static void
2835
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2836 2837 2838 2839
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2840
#ifdef CONFIG_SLUB_DEBUG
2841
	atomic_long_set(&n->nr_slabs, 0);
2842
	atomic_long_set(&n->total_objects, 0);
2843
	INIT_LIST_HEAD(&n->full);
2844
#endif
C
Christoph Lameter 已提交
2845 2846
}

2847
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2848
{
2849
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2850
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2851

2852
	/*
2853 2854
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2855
	 */
2856 2857
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2858 2859 2860 2861 2862

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2863

2864
	return 1;
2865 2866
}

2867 2868
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2869 2870 2871 2872 2873
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2874 2875
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2876
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2877
 */
2878
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2879 2880 2881 2882
{
	struct page *page;
	struct kmem_cache_node *n;

2883
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2884

2885
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2886 2887

	BUG_ON(!page);
2888 2889 2890 2891 2892 2893 2894
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2895 2896
	n = page->freelist;
	BUG_ON(!n);
2897
	page->freelist = get_freepointer(kmem_cache_node, n);
2898
	page->inuse = 1;
2899
	page->frozen = 0;
2900
	kmem_cache_node->node[node] = n;
2901
#ifdef CONFIG_SLUB_DEBUG
2902
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2903
	init_tracking(kmem_cache_node, n);
2904
#endif
2905
	init_kmem_cache_node(n);
2906
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2907

2908 2909 2910 2911 2912
	/*
	 * the lock is for lockdep's sake, not for any actual
	 * race protection
	 */
	spin_lock(&n->list_lock);
2913
	add_partial(n, page, DEACTIVATE_TO_HEAD);
2914
	spin_unlock(&n->list_lock);
C
Christoph Lameter 已提交
2915 2916 2917 2918 2919 2920
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2921
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2922
		struct kmem_cache_node *n = s->node[node];
2923

2924
		if (n)
2925 2926
			kmem_cache_free(kmem_cache_node, n);

C
Christoph Lameter 已提交
2927 2928 2929 2930
		s->node[node] = NULL;
	}
}

2931
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2932 2933 2934
{
	int node;

C
Christoph Lameter 已提交
2935
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2936 2937
		struct kmem_cache_node *n;

2938
		if (slab_state == DOWN) {
2939
			early_kmem_cache_node_alloc(node);
2940 2941
			continue;
		}
2942
		n = kmem_cache_alloc_node(kmem_cache_node,
2943
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2944

2945 2946 2947
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2948
		}
2949

C
Christoph Lameter 已提交
2950
		s->node[node] = n;
2951
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2952 2953 2954 2955
	}
	return 1;
}

2956
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2957 2958 2959 2960 2961 2962 2963 2964
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2965 2966 2967 2968
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2969
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2970 2971
{
	unsigned long flags = s->flags;
2972
	unsigned long size = s->object_size;
2973
	int order;
C
Christoph Lameter 已提交
2974

2975 2976 2977 2978 2979 2980 2981 2982
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2983 2984 2985 2986 2987 2988
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2989
			!s->ctor)
C
Christoph Lameter 已提交
2990 2991 2992 2993 2994 2995
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2996
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2997
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2998
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2999
	 */
3000
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3001
		size += sizeof(void *);
C
Christoph Lameter 已提交
3002
#endif
C
Christoph Lameter 已提交
3003 3004

	/*
C
Christoph Lameter 已提交
3005 3006
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3007 3008 3009 3010
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3011
		s->ctor)) {
C
Christoph Lameter 已提交
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3024
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3025 3026 3027 3028 3029 3030 3031
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3032
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3033 3034 3035 3036
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3037
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3038 3039 3040
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3041
#endif
C
Christoph Lameter 已提交
3042

C
Christoph Lameter 已提交
3043 3044 3045 3046 3047
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3048
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3049
	s->size = size;
3050 3051 3052
	if (forced_order >= 0)
		order = forced_order;
	else
3053
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3054

3055
	if (order < 0)
C
Christoph Lameter 已提交
3056 3057
		return 0;

3058
	s->allocflags = 0;
3059
	if (order)
3060 3061 3062
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3063
		s->allocflags |= GFP_DMA;
3064 3065 3066 3067

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3068 3069 3070
	/*
	 * Determine the number of objects per slab
	 */
3071 3072
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3073 3074
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3075

3076
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3077 3078
}

3079
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3080
{
3081
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3082
	s->reserved = 0;
C
Christoph Lameter 已提交
3083

3084 3085
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3086

3087
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3088
		goto error;
3089 3090 3091 3092 3093
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3094
		if (get_order(s->size) > get_order(s->object_size)) {
3095 3096 3097 3098 3099 3100
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3101

3102 3103
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3104 3105 3106 3107 3108
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3109 3110 3111 3112
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3128
	 * B) The number of objects in cpu partial slabs to extract from the
3129 3130
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3131
	 */
3132
	if (!kmem_cache_has_cpu_partial(s))
3133 3134
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3135 3136 3137 3138 3139 3140 3141 3142
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3143
#ifdef CONFIG_NUMA
3144
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3145
#endif
3146
	if (!init_kmem_cache_nodes(s))
3147
		goto error;
C
Christoph Lameter 已提交
3148

3149
	if (alloc_kmem_cache_cpus(s))
3150
		return 0;
3151

3152
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3153 3154 3155 3156
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3157 3158
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3159
	return -EINVAL;
C
Christoph Lameter 已提交
3160 3161
}

3162 3163 3164 3165 3166 3167
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3168 3169
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3170 3171
	if (!map)
		return;
3172
	slab_err(s, page, text, s->name);
3173 3174
	slab_lock(page);

3175
	get_map(s, page, map);
3176 3177 3178 3179 3180 3181 3182 3183 3184
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3185
	kfree(map);
3186 3187 3188
#endif
}

C
Christoph Lameter 已提交
3189
/*
C
Christoph Lameter 已提交
3190
 * Attempt to free all partial slabs on a node.
3191 3192
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3193
 */
C
Christoph Lameter 已提交
3194
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3195 3196 3197
{
	struct page *page, *h;

3198
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3199
		if (!page->inuse) {
3200
			remove_partial(n, page);
C
Christoph Lameter 已提交
3201
			discard_slab(s, page);
3202 3203
		} else {
			list_slab_objects(s, page,
3204
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3205
		}
3206
	}
C
Christoph Lameter 已提交
3207 3208 3209
}

/*
C
Christoph Lameter 已提交
3210
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3211
 */
3212
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3213 3214 3215 3216 3217
{
	int node;

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3218
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3219 3220
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
3221 3222
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3223 3224
			return 1;
	}
3225
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3226 3227 3228 3229
	free_kmem_cache_nodes(s);
	return 0;
}

3230
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3231
{
3232
	int rc = kmem_cache_close(s);
3233

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	if (!rc) {
		/*
		 * We do the same lock strategy around sysfs_slab_add, see
		 * __kmem_cache_create. Because this is pretty much the last
		 * operation we do and the lock will be released shortly after
		 * that in slab_common.c, we could just move sysfs_slab_remove
		 * to a later point in common code. We should do that when we
		 * have a common sysfs framework for all allocators.
		 */
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3244
		sysfs_slab_remove(s);
3245 3246
		mutex_lock(&slab_mutex);
	}
3247 3248

	return rc;
C
Christoph Lameter 已提交
3249 3250 3251 3252 3253 3254 3255 3256
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3257
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3258 3259 3260 3261 3262 3263 3264 3265

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3266
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3267
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3268 3269 3270 3271 3272 3273 3274 3275

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3276
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

void *__kmalloc(size_t size, gfp_t flags)
{
3293
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3294
	void *ret;
C
Christoph Lameter 已提交
3295

3296
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3297
		return kmalloc_large(size, flags);
3298

3299
	s = kmalloc_slab(size, flags);
3300 3301

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3302 3303
		return s;

3304
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3305

3306
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3307 3308

	return ret;
C
Christoph Lameter 已提交
3309 3310 3311
}
EXPORT_SYMBOL(__kmalloc);

3312
#ifdef CONFIG_NUMA
3313 3314
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3315
	struct page *page;
3316
	void *ptr = NULL;
3317

3318
	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3319
	page = alloc_pages_node(node, flags, get_order(size));
3320
	if (page)
3321 3322
		ptr = page_address(page);

3323
	kmalloc_large_node_hook(ptr, size, flags);
3324
	return ptr;
3325 3326
}

C
Christoph Lameter 已提交
3327 3328
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3329
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3330
	void *ret;
C
Christoph Lameter 已提交
3331

3332
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3333 3334
		ret = kmalloc_large_node(size, flags, node);

3335 3336 3337
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3338 3339 3340

		return ret;
	}
3341

3342
	s = kmalloc_slab(size, flags);
3343 3344

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3345 3346
		return s;

3347
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3348

3349
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3350 3351

	return ret;
C
Christoph Lameter 已提交
3352 3353 3354 3355 3356 3357
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3358
	struct page *page;
C
Christoph Lameter 已提交
3359

3360
	if (unlikely(object == ZERO_SIZE_PTR))
3361 3362
		return 0;

3363 3364
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3365 3366
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3367
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3368
	}
C
Christoph Lameter 已提交
3369

3370
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3371
}
K
Kirill A. Shutemov 已提交
3372
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3373 3374 3375 3376

void kfree(const void *x)
{
	struct page *page;
3377
	void *object = (void *)x;
C
Christoph Lameter 已提交
3378

3379 3380
	trace_kfree(_RET_IP_, x);

3381
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3382 3383
		return;

3384
	page = virt_to_head_page(x);
3385
	if (unlikely(!PageSlab(page))) {
3386
		BUG_ON(!PageCompound(page));
3387
		kfree_hook(x);
3388
		__free_memcg_kmem_pages(page, compound_order(page));
3389 3390
		return;
	}
3391
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3392 3393 3394
}
EXPORT_SYMBOL(kfree);

3395
/*
C
Christoph Lameter 已提交
3396 3397 3398 3399 3400 3401 3402 3403
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3404 3405 3406 3407 3408 3409 3410 3411
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3412
	int objects = oo_objects(s->max);
3413
	struct list_head *slabs_by_inuse =
3414
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3415 3416 3417 3418 3419 3420
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3421
	for_each_node_state(node, N_NORMAL_MEMORY) {
3422 3423 3424 3425 3426
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3427
		for (i = 0; i < objects; i++)
3428 3429 3430 3431 3432
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3433
		 * Build lists indexed by the items in use in each slab.
3434
		 *
C
Christoph Lameter 已提交
3435 3436
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3437 3438
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3439 3440 3441
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3442 3443 3444
		}

		/*
C
Christoph Lameter 已提交
3445 3446
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3447
		 */
3448
		for (i = objects - 1; i > 0; i--)
3449 3450 3451
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3452 3453 3454 3455

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3456 3457 3458 3459 3460 3461 3462
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

3463 3464 3465 3466
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3467
	mutex_lock(&slab_mutex);
3468 3469
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
3470
	mutex_unlock(&slab_mutex);
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3482
	offline_node = marg->status_change_nid_normal;
3483 3484 3485 3486 3487 3488 3489 3490

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3491
	mutex_lock(&slab_mutex);
3492 3493 3494 3495 3496 3497
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3498
			 * and offline_pages() function shouldn't call this
3499 3500
			 * callback. So, we must fail.
			 */
3501
			BUG_ON(slabs_node(s, offline_node));
3502 3503

			s->node[offline_node] = NULL;
3504
			kmem_cache_free(kmem_cache_node, n);
3505 3506
		}
	}
3507
	mutex_unlock(&slab_mutex);
3508 3509 3510 3511 3512 3513 3514
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3515
	int nid = marg->status_change_nid_normal;
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3526
	 * We are bringing a node online. No memory is available yet. We must
3527 3528 3529
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3530
	mutex_lock(&slab_mutex);
3531 3532 3533 3534 3535 3536
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3537
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3538 3539 3540 3541
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3542
		init_kmem_cache_node(n);
3543 3544 3545
		s->node[nid] = n;
	}
out:
3546
	mutex_unlock(&slab_mutex);
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3570 3571 3572 3573
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3574 3575 3576
	return ret;
}

3577 3578 3579 3580
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3581

C
Christoph Lameter 已提交
3582 3583 3584 3585
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3586 3587
/*
 * Used for early kmem_cache structures that were allocated using
3588 3589
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3590 3591
 */

3592
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3593 3594
{
	int node;
3595
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3596

3597
	memcpy(s, static_cache, kmem_cache->object_size);
3598

3599 3600 3601 3602 3603 3604
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
3605 3606 3607 3608 3609 3610
	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
3611
				p->slab_cache = s;
3612

L
Li Zefan 已提交
3613
#ifdef CONFIG_SLUB_DEBUG
3614
			list_for_each_entry(p, &n->full, lru)
3615
				p->slab_cache = s;
3616 3617 3618
#endif
		}
	}
3619 3620
	list_add(&s->list, &slab_caches);
	return s;
3621 3622
}

C
Christoph Lameter 已提交
3623 3624
void __init kmem_cache_init(void)
{
3625 3626
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3627

3628 3629 3630
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3631 3632
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3633

3634 3635
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3636

3637
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3638 3639 3640 3641

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3642 3643 3644 3645
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3646

3647
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3648

3649 3650 3651 3652 3653
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3654
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3655 3656

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3657
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3658 3659 3660

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3661
#endif
C
Christoph Lameter 已提交
3662

I
Ingo Molnar 已提交
3663
	printk(KERN_INFO
3664
		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3665
		" CPUs=%d, Nodes=%d\n",
3666
		cache_line_size(),
C
Christoph Lameter 已提交
3667 3668 3669 3670
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3671 3672 3673 3674
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3675 3676 3677 3678 3679 3680 3681 3682
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3683
	if (s->ctor)
C
Christoph Lameter 已提交
3684 3685
		return 1;

3686 3687 3688 3689 3690 3691
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3692 3693 3694
	return 0;
}

3695
static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3696
		size_t align, unsigned long flags, const char *name,
3697
		void (*ctor)(void *))
C
Christoph Lameter 已提交
3698
{
3699
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3700 3701 3702 3703

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3704
	if (ctor)
C
Christoph Lameter 已提交
3705 3706 3707 3708 3709
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3710
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3711

3712
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3713 3714 3715 3716 3717 3718
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3719
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3720 3721 3722 3723 3724
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3725
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3726 3727 3728 3729 3730
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

3731 3732 3733
		if (!cache_match_memcg(s, memcg))
			continue;

C
Christoph Lameter 已提交
3734 3735 3736 3737 3738
		return s;
	}
	return NULL;
}

3739 3740 3741
struct kmem_cache *
__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
		   size_t align, unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3742 3743 3744
{
	struct kmem_cache *s;

3745
	s = find_mergeable(memcg, size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3746 3747 3748 3749 3750 3751
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3752
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3753
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3754

3755 3756
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3757
			s = NULL;
3758
		}
3759
	}
C
Christoph Lameter 已提交
3760

3761 3762
	return s;
}
P
Pekka Enberg 已提交
3763

3764
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3765
{
3766 3767 3768 3769 3770
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3771

3772 3773 3774 3775
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3776
	memcg_propagate_slab_attrs(s);
3777 3778 3779
	mutex_unlock(&slab_mutex);
	err = sysfs_slab_add(s);
	mutex_lock(&slab_mutex);
3780

3781 3782
	if (err)
		kmem_cache_close(s);
3783

3784
	return err;
C
Christoph Lameter 已提交
3785 3786 3787 3788
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3789 3790
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3791
 */
3792
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3793 3794 3795
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3796 3797
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3798 3799 3800

	switch (action) {
	case CPU_UP_CANCELED:
3801
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3802
	case CPU_DEAD:
3803
	case CPU_DEAD_FROZEN:
3804
		mutex_lock(&slab_mutex);
3805 3806 3807 3808 3809
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3810
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3811 3812 3813 3814 3815 3816 3817
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3818
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3819
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3820
};
C
Christoph Lameter 已提交
3821 3822 3823

#endif

3824
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3825
{
3826
	struct kmem_cache *s;
3827
	void *ret;
3828

3829
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3830 3831
		return kmalloc_large(size, gfpflags);

3832
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3833

3834
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3835
		return s;
C
Christoph Lameter 已提交
3836

3837
	ret = slab_alloc(s, gfpflags, caller);
3838

L
Lucas De Marchi 已提交
3839
	/* Honor the call site pointer we received. */
3840
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3841 3842

	return ret;
C
Christoph Lameter 已提交
3843 3844
}

3845
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3846
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3847
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3848
{
3849
	struct kmem_cache *s;
3850
	void *ret;
3851

3852
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3853 3854 3855 3856 3857 3858 3859 3860
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3861

3862
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3863

3864
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3865
		return s;
C
Christoph Lameter 已提交
3866

3867
	ret = slab_alloc_node(s, gfpflags, node, caller);
3868

L
Lucas De Marchi 已提交
3869
	/* Honor the call site pointer we received. */
3870
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3871 3872

	return ret;
C
Christoph Lameter 已提交
3873
}
3874
#endif
C
Christoph Lameter 已提交
3875

3876
#ifdef CONFIG_SYSFS
3877 3878 3879 3880 3881 3882 3883 3884 3885
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3886
#endif
3887

3888
#ifdef CONFIG_SLUB_DEBUG
3889 3890
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3891 3892
{
	void *p;
3893
	void *addr = page_address(page);
3894 3895 3896 3897 3898 3899

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3900
	bitmap_zero(map, page->objects);
3901

3902 3903 3904 3905 3906
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3907 3908
	}

3909
	for_each_object(p, s, addr, page->objects)
3910
		if (!test_bit(slab_index(p, s, addr), map))
3911
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3912 3913 3914 3915
				return 0;
	return 1;
}

3916 3917
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3918
{
3919 3920 3921
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3922 3923
}

3924 3925
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3926 3927 3928 3929 3930 3931 3932 3933
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3934
		validate_slab_slab(s, page, map);
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3945
		validate_slab_slab(s, page, map);
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3958
static long validate_slab_cache(struct kmem_cache *s)
3959 3960 3961
{
	int node;
	unsigned long count = 0;
3962
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3963 3964 3965 3966
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3967 3968

	flush_all(s);
C
Christoph Lameter 已提交
3969
	for_each_node_state(node, N_NORMAL_MEMORY) {
3970 3971
		struct kmem_cache_node *n = get_node(s, node);

3972
		count += validate_slab_node(s, n, map);
3973
	}
3974
	kfree(map);
3975 3976
	return count;
}
3977
/*
C
Christoph Lameter 已提交
3978
 * Generate lists of code addresses where slabcache objects are allocated
3979 3980 3981 3982 3983
 * and freed.
 */

struct location {
	unsigned long count;
3984
	unsigned long addr;
3985 3986 3987 3988 3989
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3990
	DECLARE_BITMAP(cpus, NR_CPUS);
3991
	nodemask_t nodes;
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4007
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4008 4009 4010 4011 4012 4013
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4014
	l = (void *)__get_free_pages(flags, order);
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4028
				const struct track *track)
4029 4030 4031
{
	long start, end, pos;
	struct location *l;
4032
	unsigned long caddr;
4033
	unsigned long age = jiffies - track->when;
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4065 4066
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4067 4068
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4069 4070 4071
			return 1;
		}

4072
		if (track->addr < caddr)
4073 4074 4075 4076 4077 4078
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4079
	 * Not found. Insert new tracking element.
4080
	 */
4081
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4082 4083 4084 4085 4086 4087 4088 4089
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4090 4091 4092 4093 4094 4095
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4096 4097
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4098 4099
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4100 4101 4102 4103
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4104
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4105
		unsigned long *map)
4106
{
4107
	void *addr = page_address(page);
4108 4109
	void *p;

4110
	bitmap_zero(map, page->objects);
4111
	get_map(s, page, map);
4112

4113
	for_each_object(p, s, addr, page->objects)
4114 4115
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4116 4117 4118 4119 4120
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4121
	int len = 0;
4122
	unsigned long i;
4123
	struct loc_track t = { 0, 0, NULL };
4124
	int node;
E
Eric Dumazet 已提交
4125 4126
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4127

E
Eric Dumazet 已提交
4128 4129 4130
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4131
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4132
	}
4133 4134 4135
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4136
	for_each_node_state(node, N_NORMAL_MEMORY) {
4137 4138 4139 4140
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4141
		if (!atomic_long_read(&n->nr_slabs))
4142 4143 4144 4145
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4146
			process_slab(&t, s, page, alloc, map);
4147
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4148
			process_slab(&t, s, page, alloc, map);
4149 4150 4151 4152
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4153
		struct location *l = &t.loc[i];
4154

H
Hugh Dickins 已提交
4155
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4156
			break;
4157
		len += sprintf(buf + len, "%7ld ", l->count);
4158 4159

		if (l->addr)
J
Joe Perches 已提交
4160
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4161
		else
4162
			len += sprintf(buf + len, "<not-available>");
4163 4164

		if (l->sum_time != l->min_time) {
4165
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4166 4167 4168
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4169
		} else
4170
			len += sprintf(buf + len, " age=%ld",
4171 4172 4173
				l->min_time);

		if (l->min_pid != l->max_pid)
4174
			len += sprintf(buf + len, " pid=%ld-%ld",
4175 4176
				l->min_pid, l->max_pid);
		else
4177
			len += sprintf(buf + len, " pid=%ld",
4178 4179
				l->min_pid);

R
Rusty Russell 已提交
4180 4181
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4182 4183
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4184 4185
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4186
						 to_cpumask(l->cpus));
4187 4188
		}

4189
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4190 4191
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4192 4193 4194
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4195 4196
		}

4197
		len += sprintf(buf + len, "\n");
4198 4199 4200
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4201
	kfree(map);
4202
	if (!t.count)
4203 4204
		len += sprintf(buf, "No data\n");
	return len;
4205
}
4206
#endif
4207

4208 4209 4210 4211 4212
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

4213
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches[6]);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4270
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4271
enum slab_stat_type {
4272 4273 4274 4275 4276
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4277 4278
};

4279
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4280 4281 4282
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4283
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4284

4285 4286
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4287 4288 4289 4290 4291 4292
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4293
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4294 4295
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4296

4297 4298
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4299

4300
		for_each_possible_cpu(cpu) {
4301 4302
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4303
			int node;
4304
			struct page *page;
4305

4306
			page = ACCESS_ONCE(c->page);
4307 4308
			if (!page)
				continue;
4309

4310 4311 4312 4313 4314 4315 4316
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4317

4318 4319 4320 4321
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4322
			if (page) {
L
Li Zefan 已提交
4323 4324 4325 4326 4327 4328 4329
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4330 4331
				total += x;
				nodes[node] += x;
4332
			}
C
Christoph Lameter 已提交
4333 4334 4335
		}
	}

4336
	lock_memory_hotplug();
4337
#ifdef CONFIG_SLUB_DEBUG
4338 4339 4340 4341
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

4342 4343 4344 4345 4346
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4347
			else
4348
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4349 4350 4351 4352
			total += x;
			nodes[node] += x;
		}

4353 4354 4355
	} else
#endif
	if (flags & SO_PARTIAL) {
4356 4357
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
4358

4359 4360 4361 4362
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4363
			else
4364
				x = n->nr_partial;
C
Christoph Lameter 已提交
4365 4366 4367 4368 4369 4370
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4371
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
4372 4373 4374 4375
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4376
	unlock_memory_hotplug();
C
Christoph Lameter 已提交
4377 4378 4379 4380
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4381
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4382 4383 4384 4385
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4386
	for_each_online_node(node) {
C
Christoph Lameter 已提交
4387 4388
		struct kmem_cache_node *n = get_node(s, node);

4389 4390 4391
		if (!n)
			continue;

4392
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4393 4394 4395 4396
			return 1;
	}
	return 0;
}
4397
#endif
C
Christoph Lameter 已提交
4398 4399

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4400
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4401 4402 4403 4404 4405 4406 4407 4408

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4409 4410
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4411 4412 4413

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4414
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4430
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4431 4432 4433 4434 4435
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4436
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4437 4438 4439
}
SLAB_ATTR_RO(objs_per_slab);

4440 4441 4442
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4443 4444 4445
	unsigned long order;
	int err;

4446
	err = kstrtoul(buf, 10, &order);
4447 4448
	if (err)
		return err;
4449 4450 4451 4452 4453 4454 4455 4456

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4457 4458
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4459
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4460
}
4461
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4462

4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4474
	err = kstrtoul(buf, 10, &min);
4475 4476 4477
	if (err)
		return err;

4478
	set_min_partial(s, min);
4479 4480 4481 4482
	return length;
}
SLAB_ATTR(min_partial);

4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4494
	err = kstrtoul(buf, 10, &objects);
4495 4496
	if (err)
		return err;
4497
	if (objects && !kmem_cache_has_cpu_partial(s))
4498
		return -EINVAL;
4499 4500 4501 4502 4503 4504 4505

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4506 4507
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4508 4509 4510
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4522
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4523 4524 4525 4526 4527
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4528
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4529 4530 4531 4532 4533
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4534
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4535 4536 4537
}
SLAB_ATTR_RO(objects);

4538 4539 4540 4541 4542 4543
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4610 4611 4612 4613 4614 4615
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4616
#ifdef CONFIG_SLUB_DEBUG
4617 4618 4619 4620 4621 4622
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4623 4624 4625 4626 4627 4628
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4629 4630 4631 4632 4633 4634 4635 4636 4637
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4638 4639
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4640
		s->flags |= SLAB_DEBUG_FREE;
4641
	}
C
Christoph Lameter 已提交
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4655 4656
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4657
		s->flags |= SLAB_TRACE;
4658
	}
C
Christoph Lameter 已提交
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4675 4676
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4677
		s->flags |= SLAB_RED_ZONE;
4678
	}
4679
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4696 4697
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4698
		s->flags |= SLAB_POISON;
4699
	}
4700
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4717 4718
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4719
		s->flags |= SLAB_STORE_USER;
4720
	}
4721
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4722 4723 4724 4725
	return length;
}
SLAB_ATTR(store_user);

4726 4727 4728 4729 4730 4731 4732 4733
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4734 4735 4736 4737 4738 4739 4740 4741
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4742 4743
}
SLAB_ATTR(validate);
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4777
#endif
4778

4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4798
#ifdef CONFIG_NUMA
4799
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4800
{
4801
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4802 4803
}

4804
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4805 4806
				const char *buf, size_t length)
{
4807 4808 4809
	unsigned long ratio;
	int err;

4810
	err = kstrtoul(buf, 10, &ratio);
4811 4812 4813
	if (err)
		return err;

4814
	if (ratio <= 100)
4815
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4816 4817 4818

	return length;
}
4819
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4820 4821
#endif

4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4834
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4835 4836 4837 4838 4839 4840 4841

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4842
#ifdef CONFIG_SMP
4843 4844
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4845
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4846
	}
4847
#endif
4848 4849 4850 4851
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4852 4853 4854 4855 4856
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4857
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4858 4859
}

4860 4861 4862 4863 4864
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4865 4866 4867 4868 4869 4870 4871 4872 4873
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4885
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4886 4887 4888 4889 4890 4891 4892
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4893
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4894
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4895 4896
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4897 4898
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4899 4900
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4901 4902
#endif

P
Pekka Enberg 已提交
4903
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4904 4905 4906 4907
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4908
	&min_partial_attr.attr,
4909
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4910
	&objects_attr.attr,
4911
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4912 4913 4914 4915 4916 4917 4918 4919
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4920
	&shrink_attr.attr,
4921
	&reserved_attr.attr,
4922
	&slabs_cpu_partial_attr.attr,
4923
#ifdef CONFIG_SLUB_DEBUG
4924 4925 4926 4927
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4928 4929 4930
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4931
	&validate_attr.attr,
4932 4933
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4934
#endif
C
Christoph Lameter 已提交
4935 4936 4937 4938
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4939
	&remote_node_defrag_ratio_attr.attr,
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4952
	&alloc_node_mismatch_attr.attr,
4953 4954 4955 4956 4957 4958 4959
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4960
	&deactivate_bypass_attr.attr,
4961
	&order_fallback_attr.attr,
4962 4963
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4964 4965
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4966 4967
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4968
#endif
4969 4970 4971 4972
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5014 5015 5016
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
5017

5018 5019 5020 5021
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5039
		for_each_memcg_cache_index(i) {
5040
			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5041 5042 5043 5044 5045 5046
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5047 5048 5049
	return err;
}

5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;

	if (!is_root_cache(s))
		return;

	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
	if (!s->max_attr_size)
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

		attr->show(s->memcg_params->root_cache, buf);
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5103
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5121
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5122 5123 5124
	.filter = uevent_filter,
};

5125
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5126 5127 5128 5129

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5130 5131
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5154 5155
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5156 5157 5158
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5159 5160 5161

#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5162 5163
		p += sprintf(p, "-%08d",
				memcg_cache_id(s->memcg_params->memcg));
5164 5165
#endif

C
Christoph Lameter 已提交
5166 5167 5168 5169 5170 5171 5172 5173
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5174
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5175 5176 5177 5178 5179 5180 5181

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5182
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5183 5184 5185 5186 5187 5188 5189 5190 5191
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5192
	s->kobj.kset = slab_kset;
5193
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5194 5195
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5196
		return err;
5197
	}
C
Christoph Lameter 已提交
5198 5199

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5200 5201 5202
	if (err) {
		kobject_del(&s->kobj);
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5203
		return err;
5204
	}
C
Christoph Lameter 已提交
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
5216
	if (slab_state < FULL)
5217 5218 5219 5220 5221 5222
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

C
Christoph Lameter 已提交
5223 5224
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5225
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5226 5227 5228 5229
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5230
 * available lest we lose that information.
C
Christoph Lameter 已提交
5231 5232 5233 5234 5235 5236 5237
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5238
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5239 5240 5241 5242 5243

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5244
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5245 5246 5247
		/*
		 * If we have a leftover link then remove it.
		 */
5248 5249
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5265
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5266 5267
	int err;

5268
	mutex_lock(&slab_mutex);
5269

5270
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5271
	if (!slab_kset) {
5272
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5273 5274 5275 5276
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

5277
	slab_state = FULL;
5278

5279
	list_for_each_entry(s, &slab_caches, list) {
5280
		err = sysfs_slab_add(s);
5281 5282 5283
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
5284
	}
C
Christoph Lameter 已提交
5285 5286 5287 5288 5289 5290

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5291 5292
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5293
					" %s to sysfs\n", al->name);
C
Christoph Lameter 已提交
5294 5295 5296
		kfree(al);
	}

5297
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5298 5299 5300 5301 5302
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5303
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5304 5305 5306 5307

/*
 * The /proc/slabinfo ABI
 */
5308
#ifdef CONFIG_SLABINFO
5309
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5310 5311
{
	unsigned long nr_slabs = 0;
5312 5313
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5314 5315 5316 5317 5318 5319 5320 5321
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

5322 5323
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5324
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5325 5326
	}

5327 5328 5329 5330 5331 5332
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5333 5334
}

5335
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5336 5337 5338
{
}

5339 5340
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5341
{
5342
	return -EIO;
5343
}
5344
#endif /* CONFIG_SLABINFO */