slub.c 133.0 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
V
Vegard Nossum 已提交
24
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
29
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
30
#include <linux/kallsyms.h>
31
#include <linux/memory.h>
R
Roman Zippel 已提交
32
#include <linux/math64.h>
A
Akinobu Mita 已提交
33
#include <linux/fault-inject.h>
34
#include <linux/stacktrace.h>
35
#include <linux/prefetch.h>
36
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
85 86
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
87
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
88 89
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
90 91 92 93 94 95 96
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
97 98 99 100 101 102 103 104 105 106 107 108
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
109
 * 			freelist that allows lockless access to
110 111
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
112 113 114
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
115
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
116 117
 */

118 119
static inline int kmem_cache_debug(struct kmem_cache *s)
{
120
#ifdef CONFIG_SLUB_DEBUG
121
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122
#else
123
	return 0;
124
#endif
125
}
126

127 128 129 130 131 132 133 134 135
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
136 137 138 139 140 141 142 143 144 145 146
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

147 148 149
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

150 151 152 153
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
154
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
155

156 157 158
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
159
 * sort the partial list by the number of objects in use.
160 161 162
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
163 164
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
165

166
/*
167 168 169
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
170
 */
171
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172

173 174
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
175
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
176

C
Christoph Lameter 已提交
177
/* Internal SLUB flags */
C
Christoph Lameter 已提交
178
#define __OBJECT_POISON		0x80000000UL /* Poison object */
179
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
180 181 182 183 184

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

185 186 187
/*
 * Tracking user of a slab.
 */
188
#define TRACK_ADDRS_COUNT 16
189
struct track {
190
	unsigned long addr;	/* Called from address */
191 192 193
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
194 195 196 197 198 199 200
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

201
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
202 203
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
204
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
205
#else
206 207 208
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
209
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
210 211
#endif

212
static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 214
{
#ifdef CONFIG_SLUB_STATS
215 216 217 218 219
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
220 221 222
#endif
}

C
Christoph Lameter 已提交
223 224 225 226
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

C
Christoph Lameter 已提交
227
/* Verify that a pointer has an address that is valid within a slab page */
228 229 230 231 232
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

233
	if (!object)
234 235
		return 1;

236
	base = page_address(page);
237
	if (object < base || object >= base + page->objects * s->size ||
238 239 240 241 242 243 244
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

245 246 247 248 249
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

250 251 252 253 254
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

255 256 257 258 259 260 261 262 263 264 265 266
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

267 268 269 270 271 272
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
273 274
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 276
			__p += (__s)->size)

277 278 279 280
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
	for (__p = (__addr), __idx = 1; __idx <= __objects;\
			__p += (__s)->size, __idx++)

281 282 283 284 285 286
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

287 288 289 290 291 292 293 294
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295
		return s->object_size;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

311 312 313 314 315
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

316
static inline struct kmem_cache_order_objects oo_make(int order,
317
		unsigned long size, int reserved)
318 319
{
	struct kmem_cache_order_objects x = {
320
		(order << OO_SHIFT) + order_objects(order, size, reserved)
321 322 323 324 325 326 327
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
328
	return x.x >> OO_SHIFT;
329 330 331 332
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
333
	return x.x & OO_MASK;
334 335
}

336 337 338 339 340
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
341
	VM_BUG_ON_PAGE(PageTail(page), page);
342 343 344 345 346
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
347
	VM_BUG_ON_PAGE(PageTail(page), page);
348 349 350
	__bit_spin_unlock(PG_locked, &page->flags);
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

366 367 368 369 370 371 372
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
373 374
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
375
	if (s->flags & __CMPXCHG_DOUBLE) {
376
		if (cmpxchg_double(&page->freelist, &page->counters,
377 378
				   freelist_old, counters_old,
				   freelist_new, counters_new))
379
			return true;
380 381 382 383
	} else
#endif
	{
		slab_lock(page);
384 385
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
386
			page->freelist = freelist_new;
387
			set_page_slub_counters(page, counters_new);
388
			slab_unlock(page);
389
			return true;
390 391 392 393 394 395 396 397
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
398
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
399 400
#endif

401
	return false;
402 403
}

404 405 406 407 408
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
409 410
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
411
	if (s->flags & __CMPXCHG_DOUBLE) {
412
		if (cmpxchg_double(&page->freelist, &page->counters,
413 414
				   freelist_old, counters_old,
				   freelist_new, counters_new))
415
			return true;
416 417 418
	} else
#endif
	{
419 420 421
		unsigned long flags;

		local_irq_save(flags);
422
		slab_lock(page);
423 424
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
425
			page->freelist = freelist_new;
426
			set_page_slub_counters(page, counters_new);
427
			slab_unlock(page);
428
			local_irq_restore(flags);
429
			return true;
430
		}
431
		slab_unlock(page);
432
		local_irq_restore(flags);
433 434 435 436 437 438
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
439
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
440 441
#endif

442
	return false;
443 444
}

C
Christoph Lameter 已提交
445
#ifdef CONFIG_SLUB_DEBUG
446 447 448
/*
 * Determine a map of object in use on a page.
 *
449
 * Node listlock must be held to guarantee that the page does
450 451 452 453 454 455 456 457 458 459 460
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
461 462 463
/*
 * Debug settings:
 */
464
#if defined(CONFIG_SLUB_DEBUG_ON)
465
static int slub_debug = DEBUG_DEFAULT_FLAGS;
466 467
#elif defined(CONFIG_KASAN)
static int slub_debug = SLAB_STORE_USER;
468
#else
C
Christoph Lameter 已提交
469
static int slub_debug;
470
#endif
C
Christoph Lameter 已提交
471 472

static char *slub_debug_slabs;
473
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
474

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
491 492 493 494 495
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
496
	metadata_access_enable();
497 498
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
499
	metadata_access_disable();
C
Christoph Lameter 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
516
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
517
{
A
Akinobu Mita 已提交
518
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
519 520

	if (addr) {
521 522 523 524 525 526 527 528
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
529
		metadata_access_enable();
530
		save_stack_trace(&trace);
531
		metadata_access_disable();
532 533 534 535 536 537 538 539 540

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
541 542
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
543
		p->pid = current->pid;
C
Christoph Lameter 已提交
544 545 546 547 548 549 550
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
551 552 553
	if (!(s->flags & SLAB_STORE_USER))
		return;

554 555
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
556 557 558 559 560 561 562
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

563 564
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
565 566 567 568 569
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
570
				pr_err("\t%pS\n", (void *)t->addrs[i]);
571 572 573 574
			else
				break;
	}
#endif
575 576 577 578 579 580 581 582 583 584 585 586 587
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
588
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
589
	       page, page->objects, page->inuse, page->freelist, page->flags);
590 591 592 593 594

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
595
	struct va_format vaf;
596 597 598
	va_list args;

	va_start(args, fmt);
599 600
	vaf.fmt = fmt;
	vaf.va = &args;
601
	pr_err("=============================================================================\n");
602
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
603
	pr_err("-----------------------------------------------------------------------------\n\n");
604

605
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
606
	va_end(args);
C
Christoph Lameter 已提交
607 608
}

609 610
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
611
	struct va_format vaf;
612 613 614
	va_list args;

	va_start(args, fmt);
615 616 617
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
618 619 620 621
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
622 623
{
	unsigned int off;	/* Offset of last byte */
624
	u8 *addr = page_address(page);
625 626 627 628 629

	print_tracking(s, p);

	print_page_info(page);

630 631
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
632 633

	if (p > addr + 16)
634
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
635

636
	print_section("Object ", p, min_t(unsigned long, s->object_size,
637
				PAGE_SIZE));
C
Christoph Lameter 已提交
638
	if (s->flags & SLAB_RED_ZONE)
639 640
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
641 642 643 644 645 646

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

647
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
648 649 650 651
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
652
		print_section("Padding ", p + off, s->size - off);
653 654

	dump_stack();
C
Christoph Lameter 已提交
655 656
}

657
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
658 659
			u8 *object, char *reason)
{
660
	slab_bug(s, "%s", reason);
661
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
662 663
}

664 665
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
666 667 668 669
{
	va_list args;
	char buf[100];

670 671
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
672
	va_end(args);
673
	slab_bug(s, "%s", buf);
674
	print_page_info(page);
C
Christoph Lameter 已提交
675 676 677
	dump_stack();
}

678
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
679 680 681 682
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
683 684
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
685 686 687
	}

	if (s->flags & SLAB_RED_ZONE)
688
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
689 690
}

691 692 693 694 695 696 697 698 699
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
700
			u8 *start, unsigned int value, unsigned int bytes)
701 702 703 704
{
	u8 *fault;
	u8 *end;

705
	metadata_access_enable();
706
	fault = memchr_inv(start, value, bytes);
707
	metadata_access_disable();
708 709 710 711 712 713 714 715
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
716
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
717 718 719 720 721
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
722 723 724 725 726 727 728 729 730
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
731
 *
C
Christoph Lameter 已提交
732 733 734
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
735
 * object + s->object_size
C
Christoph Lameter 已提交
736
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
737
 * 	Padding is extended by another word if Redzoning is enabled and
738
 * 	object_size == inuse.
C
Christoph Lameter 已提交
739
 *
C
Christoph Lameter 已提交
740 741 742 743
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
744 745
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
746 747
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
748
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
749
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
750 751 752
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
753 754
 *
 * object + s->size
C
Christoph Lameter 已提交
755
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
756
 *
757
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
758
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

777 778
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
779 780
}

781
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
782 783
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
784 785 786 787 788
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
789 790 791 792

	if (!(s->flags & SLAB_POISON))
		return 1;

793
	start = page_address(page);
794
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
795 796
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
797 798 799
	if (!remainder)
		return 1;

800
	metadata_access_enable();
801
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
802
	metadata_access_disable();
803 804 805 806 807 808
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
809
	print_section("Padding ", end - remainder, remainder);
810

E
Eric Dumazet 已提交
811
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
812
	return 0;
C
Christoph Lameter 已提交
813 814 815
}

static int check_object(struct kmem_cache *s, struct page *page,
816
					void *object, u8 val)
C
Christoph Lameter 已提交
817 818
{
	u8 *p = object;
819
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
820 821

	if (s->flags & SLAB_RED_ZONE) {
822
		if (!check_bytes_and_report(s, page, object, "Redzone",
823
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
824 825
			return 0;
	} else {
826
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
827
			check_bytes_and_report(s, page, p, "Alignment padding",
828 829
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
830
		}
C
Christoph Lameter 已提交
831 832 833
	}

	if (s->flags & SLAB_POISON) {
834
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
835
			(!check_bytes_and_report(s, page, p, "Poison", p,
836
					POISON_FREE, s->object_size - 1) ||
837
			 !check_bytes_and_report(s, page, p, "Poison",
838
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
839 840 841 842 843 844 845
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

846
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
847 848 849 850 851 852 853 854 855 856
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
857
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
858
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
859
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
860
		 */
861
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
862 863 864 865 866 867 868
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
869 870
	int maxobj;

C
Christoph Lameter 已提交
871 872 873
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
874
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
875 876
		return 0;
	}
877

878
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
879 880
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
881
			page->objects, maxobj);
882 883 884
		return 0;
	}
	if (page->inuse > page->objects) {
885
		slab_err(s, page, "inuse %u > max %u",
886
			page->inuse, page->objects);
C
Christoph Lameter 已提交
887 888 889 890 891 892 893 894
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
895 896
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
897 898 899 900
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
901
	void *fp;
C
Christoph Lameter 已提交
902
	void *object = NULL;
903
	int max_objects;
C
Christoph Lameter 已提交
904

905
	fp = page->freelist;
906
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
907 908 909 910 911 912
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
913
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
914
			} else {
915
				slab_err(s, page, "Freepointer corrupt");
916
				page->freelist = NULL;
917
				page->inuse = page->objects;
918
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
919 920 921 922 923 924 925 926 927
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

928
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
929 930
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
931 932 933 934 935 936 937

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
938
	if (page->inuse != page->objects - nr) {
939
		slab_err(s, page, "Wrong object count. Counter is %d but "
940 941
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
942
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
943 944 945 946
	}
	return search == NULL;
}

947 948
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
949 950
{
	if (s->flags & SLAB_TRACE) {
951
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
952 953 954 955 956 957
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
958 959
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
960 961 962 963 964

		dump_stack();
	}
}

965
/*
C
Christoph Lameter 已提交
966
 * Tracking of fully allocated slabs for debugging purposes.
967
 */
968 969
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
970
{
971 972 973
	if (!(s->flags & SLAB_STORE_USER))
		return;

974
	lockdep_assert_held(&n->list_lock);
975 976 977
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
978
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
979 980 981 982
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

983
	lockdep_assert_held(&n->list_lock);
984 985 986
	list_del(&page->lru);
}

987 988 989 990 991 992 993 994
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

995 996 997 998 999
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1000
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1001 1002 1003 1004 1005 1006 1007 1008 1009
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1010
	if (likely(n)) {
1011
		atomic_long_inc(&n->nr_slabs);
1012 1013
		atomic_long_add(objects, &n->total_objects);
	}
1014
}
1015
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1016 1017 1018 1019
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1020
	atomic_long_sub(objects, &n->total_objects);
1021 1022 1023
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1024 1025 1026 1027 1028 1029
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1030
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1031 1032 1033
	init_tracking(s, object);
}

1034 1035
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1036
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1037 1038 1039 1040 1041 1042
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1043
		goto bad;
C
Christoph Lameter 已提交
1044 1045
	}

1046
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1047 1048
		goto bad;

C
Christoph Lameter 已提交
1049 1050 1051 1052
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1053
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1054
	return 1;
C
Christoph Lameter 已提交
1055

C
Christoph Lameter 已提交
1056 1057 1058 1059 1060
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1061
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1062
		 */
1063
		slab_fix(s, "Marking all objects used");
1064
		page->inuse = page->objects;
1065
		page->freelist = NULL;
C
Christoph Lameter 已提交
1066 1067 1068 1069
	}
	return 0;
}

1070
/* Supports checking bulk free of a constructed freelist */
1071
static noinline struct kmem_cache_node *free_debug_processing(
1072 1073
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1074
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1075
{
1076
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1077 1078
	void *object = head;
	int cnt = 0;
1079

1080
	spin_lock_irqsave(&n->list_lock, *flags);
1081 1082
	slab_lock(page);

C
Christoph Lameter 已提交
1083 1084 1085
	if (!check_slab(s, page))
		goto fail;

1086 1087 1088
next_object:
	cnt++;

C
Christoph Lameter 已提交
1089
	if (!check_valid_pointer(s, page, object)) {
1090
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1091 1092 1093 1094
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1095
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1096 1097 1098
		goto fail;
	}

1099
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1100
		goto out;
C
Christoph Lameter 已提交
1101

1102
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1103
		if (!PageSlab(page)) {
1104 1105
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1106
		} else if (!page->slab_cache) {
1107 1108
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1109
			dump_stack();
P
Pekka Enberg 已提交
1110
		} else
1111 1112
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1113 1114
		goto fail;
	}
C
Christoph Lameter 已提交
1115 1116 1117 1118

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1119
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1120
	init_object(s, object, SLUB_RED_INACTIVE);
1121 1122 1123 1124 1125 1126

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1127
out:
1128 1129 1130 1131
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1132
	slab_unlock(page);
1133 1134 1135 1136 1137
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1138

C
Christoph Lameter 已提交
1139
fail:
1140 1141
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1142
	slab_fix(s, "Object at 0x%p not freed", object);
1143
	return NULL;
C
Christoph Lameter 已提交
1144 1145
}

C
Christoph Lameter 已提交
1146 1147
static int __init setup_slub_debug(char *str)
{
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1172
	for (; *str && *str != ','; str++) {
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1189 1190 1191
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1192 1193 1194 1195 1196 1197 1198
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1199
		default:
1200 1201
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1202
		}
C
Christoph Lameter 已提交
1203 1204
	}

1205
check_slabs:
C
Christoph Lameter 已提交
1206 1207
	if (*str == ',')
		slub_debug_slabs = str + 1;
1208
out:
C
Christoph Lameter 已提交
1209 1210 1211 1212 1213
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1214
unsigned long kmem_cache_flags(unsigned long object_size,
1215
	unsigned long flags, const char *name,
1216
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1217 1218
{
	/*
1219
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1220
	 */
1221 1222
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1223
		flags |= slub_debug;
1224 1225

	return flags;
C
Christoph Lameter 已提交
1226
}
1227
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1228 1229
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1230

C
Christoph Lameter 已提交
1231
static inline int alloc_debug_processing(struct kmem_cache *s,
1232
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1233

1234
static inline struct kmem_cache_node *free_debug_processing(
1235 1236
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1237
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1238 1239 1240 1241

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1242
			void *object, u8 val) { return 1; }
1243 1244
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1245 1246
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1247
unsigned long kmem_cache_flags(unsigned long object_size,
1248
	unsigned long flags, const char *name,
1249
	void (*ctor)(void *))
1250 1251 1252
{
	return flags;
}
C
Christoph Lameter 已提交
1253
#define slub_debug 0
1254

1255 1256
#define disable_higher_order_debug 0

1257 1258
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1259 1260
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1261 1262 1263 1264
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1265

1266 1267 1268 1269 1270 1271
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1272 1273 1274
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
1275
	kasan_kmalloc_large(ptr, size);
1276 1277 1278 1279 1280
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
1281
	kasan_kfree_large(x);
1282 1283
}

1284 1285
static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
						     gfp_t flags)
1286 1287 1288
{
	flags &= gfp_allowed_mask;
	lockdep_trace_alloc(flags);
1289
	might_sleep_if(gfpflags_allow_blocking(flags));
1290

1291 1292 1293 1294
	if (should_failslab(s->object_size, flags, s->flags))
		return NULL;

	return memcg_kmem_get_cache(s, flags);
1295 1296
}

1297 1298
static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
					size_t size, void **p)
1299
{
1300 1301
	size_t i;

1302
	flags &= gfp_allowed_mask;
1303 1304 1305 1306 1307 1308 1309 1310
	for (i = 0; i < size; i++) {
		void *object = p[i];

		kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
		kmemleak_alloc_recursive(object, s->object_size, 1,
					 s->flags, flags);
		kasan_slab_alloc(s, object);
	}
1311
	memcg_kmem_put_cache(s);
1312
}
1313

1314 1315 1316
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1335 1336

	kasan_slab_free(s, x);
1337
}
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static inline void slab_free_freelist_hook(struct kmem_cache *s,
					   void *head, void *tail)
{
/*
 * Compiler cannot detect this function can be removed if slab_free_hook()
 * evaluates to nothing.  Thus, catch all relevant config debug options here.
 */
#if defined(CONFIG_KMEMCHECK) ||		\
	defined(CONFIG_LOCKDEP)	||		\
	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
	defined(CONFIG_KASAN)

	void *object = head;
	void *tail_obj = tail ? : head;

	do {
		slab_free_hook(s, object);
	} while ((object != tail_obj) &&
		 (object = get_freepointer(s, object)));
#endif
}

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
	setup_object_debug(s, page, object);
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
}

C
Christoph Lameter 已提交
1373 1374 1375
/*
 * Slab allocation and freeing
 */
1376 1377
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1378
{
1379
	struct page *page;
1380 1381
	int order = oo_order(oo);

1382 1383
	flags |= __GFP_NOTRACK;

1384
	if (node == NUMA_NO_NODE)
1385
		page = alloc_pages(flags, order);
1386
	else
1387
		page = __alloc_pages_node(node, flags, order);
1388

1389 1390 1391 1392
	if (page && memcg_charge_slab(page, flags, order, s)) {
		__free_pages(page, order);
		page = NULL;
	}
1393 1394

	return page;
1395 1396
}

C
Christoph Lameter 已提交
1397 1398
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1399
	struct page *page;
1400
	struct kmem_cache_order_objects oo = s->oo;
1401
	gfp_t alloc_gfp;
1402 1403
	void *start, *p;
	int idx, order;
C
Christoph Lameter 已提交
1404

1405 1406
	flags &= gfp_allowed_mask;

1407
	if (gfpflags_allow_blocking(flags))
1408 1409
		local_irq_enable();

1410
	flags |= s->allocflags;
1411

1412 1413 1414 1415 1416
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1417 1418
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
1419

1420
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1421 1422
	if (unlikely(!page)) {
		oo = s->min;
1423
		alloc_gfp = flags;
1424 1425 1426 1427
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1428
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1429 1430 1431
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1432
	}
V
Vegard Nossum 已提交
1433

1434 1435
	if (kmemcheck_enabled &&
	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1436 1437
		int pages = 1 << oo_order(oo);

1438
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1439 1440 1441 1442 1443 1444 1445 1446 1447

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1448 1449
	}

1450
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1451

G
Glauber Costa 已提交
1452
	order = compound_order(page);
1453
	page->slab_cache = s;
1454
	__SetPageSlab(page);
1455
	if (page_is_pfmemalloc(page))
1456
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1457 1458 1459 1460

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1461
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1462

1463 1464
	kasan_poison_slab(page);

1465 1466 1467 1468 1469 1470
	for_each_object_idx(p, idx, s, start, page->objects) {
		setup_object(s, page, p);
		if (likely(idx < page->objects))
			set_freepointer(s, p, p + s->size);
		else
			set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1471 1472 1473
	}

	page->freelist = start;
1474
	page->inuse = page->objects;
1475
	page->frozen = 1;
1476

C
Christoph Lameter 已提交
1477
out:
1478
	if (gfpflags_allow_blocking(flags))
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		local_irq_disable();
	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		1 << oo_order(oo));

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1490 1491 1492
	return page;
}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1504 1505
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1506 1507
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1508

1509
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1510 1511 1512
		void *p;

		slab_pad_check(s, page);
1513 1514
		for_each_object(p, s, page_address(page),
						page->objects)
1515
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1516 1517
	}

1518
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1519

C
Christoph Lameter 已提交
1520 1521 1522
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1523
		-pages);
C
Christoph Lameter 已提交
1524

1525
	__ClearPageSlabPfmemalloc(page);
1526
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1527

1528
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1529 1530
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1531
	__free_kmem_pages(page, order);
C
Christoph Lameter 已提交
1532 1533
}

1534 1535 1536
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1537 1538 1539 1540
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1541 1542 1543 1544 1545
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1546
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1547 1548 1549 1550 1551
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1552 1553 1554 1555 1556 1557 1558 1559 1560
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
1561
			head = &page->rcu_head;
1562
		}
C
Christoph Lameter 已提交
1563 1564 1565 1566 1567 1568 1569 1570

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1571
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1572 1573 1574 1575
	free_slab(s, page);
}

/*
1576
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1577
 */
1578 1579
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1580
{
C
Christoph Lameter 已提交
1581
	n->nr_partial++;
1582
	if (tail == DEACTIVATE_TO_TAIL)
1583 1584 1585
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1586 1587
}

1588 1589
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1590
{
P
Peter Zijlstra 已提交
1591
	lockdep_assert_held(&n->list_lock);
1592 1593
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1594

1595 1596 1597
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1598 1599 1600 1601
	list_del(&page->lru);
	n->nr_partial--;
}

1602 1603 1604 1605 1606 1607 1608
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

C
Christoph Lameter 已提交
1609
/*
1610 1611
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1612
 *
1613
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1614
 */
1615
static inline void *acquire_slab(struct kmem_cache *s,
1616
		struct kmem_cache_node *n, struct page *page,
1617
		int mode, int *objects)
C
Christoph Lameter 已提交
1618
{
1619 1620 1621 1622
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1623 1624
	lockdep_assert_held(&n->list_lock);

1625 1626 1627 1628 1629
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1630 1631 1632
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1633
	*objects = new.objects - new.inuse;
1634
	if (mode) {
1635
		new.inuse = page->objects;
1636 1637 1638 1639
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1640

1641
	VM_BUG_ON(new.frozen);
1642
	new.frozen = 1;
1643

1644
	if (!__cmpxchg_double_slab(s, page,
1645
			freelist, counters,
1646
			new.freelist, new.counters,
1647 1648
			"acquire_slab"))
		return NULL;
1649 1650

	remove_partial(n, page);
1651
	WARN_ON(!freelist);
1652
	return freelist;
C
Christoph Lameter 已提交
1653 1654
}

1655
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1656
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1657

C
Christoph Lameter 已提交
1658
/*
C
Christoph Lameter 已提交
1659
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1660
 */
1661 1662
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1663
{
1664 1665
	struct page *page, *page2;
	void *object = NULL;
1666 1667
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1668 1669 1670 1671

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1672 1673
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1674 1675 1676 1677 1678
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1679
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1680
		void *t;
1681

1682 1683 1684
		if (!pfmemalloc_match(page, flags))
			continue;

1685
		t = acquire_slab(s, n, page, object == NULL, &objects);
1686 1687 1688
		if (!t)
			break;

1689
		available += objects;
1690
		if (!object) {
1691 1692 1693 1694
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1695
			put_cpu_partial(s, page, 0);
1696
			stat(s, CPU_PARTIAL_NODE);
1697
		}
1698 1699
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1700 1701
			break;

1702
	}
C
Christoph Lameter 已提交
1703
	spin_unlock(&n->list_lock);
1704
	return object;
C
Christoph Lameter 已提交
1705 1706 1707
}

/*
C
Christoph Lameter 已提交
1708
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1709
 */
1710
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1711
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1712 1713 1714
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1715
	struct zoneref *z;
1716 1717
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1718
	void *object;
1719
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1720 1721

	/*
C
Christoph Lameter 已提交
1722 1723 1724 1725
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1726
	 *
C
Christoph Lameter 已提交
1727 1728 1729 1730
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1731
	 *
C
Christoph Lameter 已提交
1732
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1733 1734 1735 1736 1737
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1738
	 */
1739 1740
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1741 1742
		return NULL;

1743
	do {
1744
		cpuset_mems_cookie = read_mems_allowed_begin();
1745
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1746 1747 1748 1749 1750
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1751
			if (n && cpuset_zone_allowed(zone, flags) &&
1752
					n->nr_partial > s->min_partial) {
1753
				object = get_partial_node(s, n, c, flags);
1754 1755
				if (object) {
					/*
1756 1757 1758 1759 1760
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1761 1762 1763
					 */
					return object;
				}
1764
			}
C
Christoph Lameter 已提交
1765
		}
1766
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1767 1768 1769 1770 1771 1772 1773
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1774
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1775
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1776
{
1777
	void *object;
1778 1779 1780 1781 1782 1783
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1784

1785
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1786 1787
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1788

1789
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1790 1791
}

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1833
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1834 1835 1836

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1837
		pr_warn("due to cpu change %d -> %d\n",
1838 1839 1840 1841
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1842
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1843 1844
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1845
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1846 1847
			actual_tid, tid, next_tid(tid));
#endif
1848
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1849 1850
}

1851
static void init_kmem_cache_cpus(struct kmem_cache *s)
1852 1853 1854 1855 1856 1857
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1858

C
Christoph Lameter 已提交
1859 1860 1861
/*
 * Remove the cpu slab
 */
1862 1863
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1864
{
1865 1866 1867 1868 1869
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1870
	int tail = DEACTIVATE_TO_HEAD;
1871 1872 1873 1874
	struct page new;
	struct page old;

	if (page->freelist) {
1875
		stat(s, DEACTIVATE_REMOTE_FREES);
1876
		tail = DEACTIVATE_TO_TAIL;
1877 1878
	}

1879
	/*
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1897
			VM_BUG_ON(!new.frozen);
1898

1899
		} while (!__cmpxchg_double_slab(s, page,
1900 1901 1902 1903 1904 1905 1906
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1907
	/*
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1920
	 */
1921
redo:
1922

1923 1924
	old.freelist = page->freelist;
	old.counters = page->counters;
1925
	VM_BUG_ON(!old.frozen);
1926

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1938
	if (!new.inuse && n->nr_partial >= s->min_partial)
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1971

P
Peter Zijlstra 已提交
1972
			remove_full(s, n, page);
1973 1974 1975 1976

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1977
			stat(s, tail);
1978 1979

		} else if (m == M_FULL) {
1980

1981 1982 1983 1984 1985 1986 1987
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1988
	if (!__cmpxchg_double_slab(s, page,
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2001
	}
C
Christoph Lameter 已提交
2002 2003
}

2004 2005 2006
/*
 * Unfreeze all the cpu partial slabs.
 *
2007 2008 2009
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2010
 */
2011 2012
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2013
{
2014
#ifdef CONFIG_SLUB_CPU_PARTIAL
2015
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2016
	struct page *page, *discard_page = NULL;
2017 2018 2019 2020 2021 2022

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
2023 2024 2025 2026 2027 2028 2029 2030 2031

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2032 2033 2034 2035 2036

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2037
			VM_BUG_ON(!old.frozen);
2038 2039 2040 2041 2042 2043

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2044
		} while (!__cmpxchg_double_slab(s, page,
2045 2046 2047 2048
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2049
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2050 2051
			page->next = discard_page;
			discard_page = page;
2052 2053 2054
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2055 2056 2057 2058 2059
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2060 2061 2062 2063 2064 2065 2066 2067 2068

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2069
#endif
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2081
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2082
{
2083
#ifdef CONFIG_SLUB_CPU_PARTIAL
2084 2085 2086 2087
	struct page *oldpage;
	int pages;
	int pobjects;

2088
	preempt_disable();
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2104
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2105
				local_irq_restore(flags);
2106
				oldpage = NULL;
2107 2108
				pobjects = 0;
				pages = 0;
2109
				stat(s, CPU_PARTIAL_DRAIN);
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2120 2121
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2122 2123 2124 2125 2126 2127 2128 2129
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2130
#endif
2131 2132
}

2133
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2134
{
2135
	stat(s, CPUSLAB_FLUSH);
2136 2137 2138 2139 2140
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2141 2142 2143 2144
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2145
 *
C
Christoph Lameter 已提交
2146 2147
 * Called from IPI handler with interrupts disabled.
 */
2148
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2149
{
2150
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2151

2152 2153 2154 2155
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2156
		unfreeze_partials(s, c);
2157
	}
C
Christoph Lameter 已提交
2158 2159 2160 2161 2162 2163
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2164
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2165 2166
}

2167 2168 2169 2170 2171
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2172
	return c->page || c->partial;
2173 2174
}

C
Christoph Lameter 已提交
2175 2176
static void flush_all(struct kmem_cache *s)
{
2177
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2178 2179
}

2180 2181 2182 2183
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2184
static inline int node_match(struct page *page, int node)
2185 2186
{
#ifdef CONFIG_NUMA
2187
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2188 2189 2190 2191 2192
		return 0;
#endif
	return 1;
}

2193
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2194 2195 2196 2197 2198
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2199 2200 2201 2202 2203 2204 2205
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2219
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2220

P
Pekka Enberg 已提交
2221 2222 2223
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2224 2225 2226
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2227
	int node;
C
Christoph Lameter 已提交
2228
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2229

2230 2231 2232
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2233
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
P
Pekka Enberg 已提交
2234
		nid, gfpflags);
2235 2236 2237
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2238

2239
	if (oo_order(s->min) > get_order(s->object_size))
2240 2241
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2242

C
Christoph Lameter 已提交
2243
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2244 2245 2246 2247
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2248 2249 2250
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2251

2252
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2253 2254
			node, nr_slabs, nr_objs, nr_free);
	}
2255
#endif
P
Pekka Enberg 已提交
2256 2257
}

2258 2259 2260
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2261
	void *freelist;
2262 2263
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2264

2265
	freelist = get_partial(s, flags, node, c);
2266

2267 2268 2269 2270
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2271
	if (page) {
2272
		c = raw_cpu_ptr(s->cpu_slab);
2273 2274 2275 2276 2277 2278 2279
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2280
		freelist = page->freelist;
2281 2282 2283 2284 2285 2286
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2287
		freelist = NULL;
2288

2289
	return freelist;
2290 2291
}

2292 2293 2294 2295 2296 2297 2298 2299
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2300
/*
2301 2302
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2303 2304 2305 2306
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2307 2308
 *
 * This function must be called with interrupt disabled.
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2319

2320
		new.counters = counters;
2321
		VM_BUG_ON(!new.frozen);
2322 2323 2324 2325

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2326
	} while (!__cmpxchg_double_slab(s, page,
2327 2328 2329 2330 2331 2332 2333
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2334
/*
2335 2336 2337 2338 2339 2340
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2341
 *
2342 2343 2344
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2345
 *
2346
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2347 2348
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2349 2350 2351
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2352
 */
2353
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2354
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2355
{
2356
	void *freelist;
2357
	struct page *page;
C
Christoph Lameter 已提交
2358

2359 2360
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2361
		goto new_slab;
2362
redo:
2363

2364
	if (unlikely(!node_match(page, node))) {
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
			deactivate_slab(s, page, c->freelist);
			c->page = NULL;
			c->freelist = NULL;
			goto new_slab;
		}
2377
	}
C
Christoph Lameter 已提交
2378

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2391
	/* must check again c->freelist in case of cpu migration or IRQ */
2392 2393
	freelist = c->freelist;
	if (freelist)
2394
		goto load_freelist;
2395

2396
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2397

2398
	if (!freelist) {
2399 2400
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2401
		goto new_slab;
2402
	}
C
Christoph Lameter 已提交
2403

2404
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2405

2406
load_freelist:
2407 2408 2409 2410 2411
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2412
	VM_BUG_ON(!c->page->frozen);
2413
	c->freelist = get_freepointer(s, freelist);
2414
	c->tid = next_tid(c->tid);
2415
	return freelist;
C
Christoph Lameter 已提交
2416 2417

new_slab:
2418

2419
	if (c->partial) {
2420 2421
		page = c->page = c->partial;
		c->partial = page->next;
2422 2423 2424
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2425 2426
	}

2427
	freelist = new_slab_objects(s, gfpflags, node, &c);
2428

2429
	if (unlikely(!freelist)) {
2430
		slab_out_of_memory(s, gfpflags, node);
2431
		return NULL;
C
Christoph Lameter 已提交
2432
	}
2433

2434
	page = c->page;
2435
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2436
		goto load_freelist;
2437

2438
	/* Only entered in the debug case */
2439 2440
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2441
		goto new_slab;	/* Slab failed checks. Next slab needed */
2442

2443
	deactivate_slab(s, page, get_freepointer(s, freelist));
2444 2445
	c->page = NULL;
	c->freelist = NULL;
2446
	return freelist;
2447 2448
}

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2484
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2485
		gfp_t gfpflags, int node, unsigned long addr)
2486
{
2487
	void *object;
2488
	struct kmem_cache_cpu *c;
2489
	struct page *page;
2490
	unsigned long tid;
2491

2492 2493
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2494
		return NULL;
2495 2496 2497 2498 2499 2500
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2501
	 *
2502 2503 2504
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2505
	 */
2506 2507 2508
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2509 2510
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2521 2522 2523 2524 2525 2526 2527 2528

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2529
	object = c->freelist;
2530
	page = c->page;
D
Dave Hansen 已提交
2531
	if (unlikely(!object || !node_match(page, node))) {
2532
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2533 2534
		stat(s, ALLOC_SLOWPATH);
	} else {
2535 2536
		void *next_object = get_freepointer_safe(s, object);

2537
		/*
L
Lucas De Marchi 已提交
2538
		 * The cmpxchg will only match if there was no additional
2539 2540
		 * operation and if we are on the right processor.
		 *
2541 2542
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2543 2544 2545 2546
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2547 2548 2549
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2550
		 */
2551
		if (unlikely(!this_cpu_cmpxchg_double(
2552 2553
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2554
				next_object, next_tid(tid)))) {
2555 2556 2557 2558

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2559
		prefetch_freepointer(s, next_object);
2560
		stat(s, ALLOC_FASTPATH);
2561
	}
2562

2563
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2564
		memset(object, 0, s->object_size);
2565

2566
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2567

2568
	return object;
C
Christoph Lameter 已提交
2569 2570
}

2571 2572 2573 2574 2575 2576
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2577 2578
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2579
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2580

2581 2582
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2583 2584

	return ret;
C
Christoph Lameter 已提交
2585 2586 2587
}
EXPORT_SYMBOL(kmem_cache_alloc);

2588
#ifdef CONFIG_TRACING
2589 2590
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2591
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2592
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2593
	kasan_kmalloc(s, ret, size);
2594 2595 2596
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2597 2598
#endif

C
Christoph Lameter 已提交
2599 2600 2601
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2602
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2603

2604
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2605
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2606 2607

	return ret;
C
Christoph Lameter 已提交
2608 2609 2610
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2611
#ifdef CONFIG_TRACING
2612
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2613
				    gfp_t gfpflags,
2614
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2615
{
2616
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2617 2618 2619

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2620 2621

	kasan_kmalloc(s, ret, size);
2622
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2623
}
2624
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2625
#endif
2626
#endif
E
Eduard - Gabriel Munteanu 已提交
2627

C
Christoph Lameter 已提交
2628
/*
K
Kim Phillips 已提交
2629
 * Slow path handling. This may still be called frequently since objects
2630
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2631
 *
2632 2633 2634
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2635
 */
2636
static void __slab_free(struct kmem_cache *s, struct page *page,
2637 2638 2639
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2640 2641
{
	void *prior;
2642 2643 2644 2645
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2646
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2647

2648
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2649

2650
	if (kmem_cache_debug(s) &&
2651 2652
	    !(n = free_debug_processing(s, page, head, tail, cnt,
					addr, &flags)))
2653
		return;
C
Christoph Lameter 已提交
2654

2655
	do {
2656 2657 2658 2659
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2660 2661
		prior = page->freelist;
		counters = page->counters;
2662
		set_freepointer(s, tail, prior);
2663 2664
		new.counters = counters;
		was_frozen = new.frozen;
2665
		new.inuse -= cnt;
2666
		if ((!new.inuse || !prior) && !was_frozen) {
2667

P
Peter Zijlstra 已提交
2668
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2669 2670

				/*
2671 2672 2673 2674
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2675 2676 2677
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2678
			} else { /* Needs to be taken off a list */
2679

2680
				n = get_node(s, page_to_nid(page));
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2692
		}
C
Christoph Lameter 已提交
2693

2694 2695
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
2696
		head, new.counters,
2697
		"__slab_free"));
C
Christoph Lameter 已提交
2698

2699
	if (likely(!n)) {
2700 2701 2702 2703 2704

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2705
		if (new.frozen && !was_frozen) {
2706
			put_cpu_partial(s, page, 1);
2707 2708
			stat(s, CPU_PARTIAL_FREE);
		}
2709
		/*
2710 2711 2712
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2713 2714 2715 2716
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2717

2718
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2719 2720
		goto slab_empty;

C
Christoph Lameter 已提交
2721
	/*
2722 2723
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2724
	 */
2725 2726
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2727
			remove_full(s, n, page);
2728 2729
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2730
	}
2731
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2732 2733 2734
	return;

slab_empty:
2735
	if (prior) {
C
Christoph Lameter 已提交
2736
		/*
2737
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2738
		 */
2739
		remove_partial(n, page);
2740
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2741
	} else {
2742
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2743 2744
		remove_full(s, n, page);
	}
2745

2746
	spin_unlock_irqrestore(&n->list_lock, flags);
2747
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2748 2749 2750
	discard_slab(s, page);
}

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
2761 2762 2763 2764
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
2765
 */
2766 2767 2768
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
2769
{
2770
	void *tail_obj = tail ? : head;
2771
	struct kmem_cache_cpu *c;
2772
	unsigned long tid;
2773

2774
	slab_free_freelist_hook(s, head, tail);
2775

2776 2777 2778 2779 2780
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2781
	 * during the cmpxchg then the free will succeed.
2782
	 */
2783 2784 2785
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2786 2787
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2788

2789 2790
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2791

2792
	if (likely(page == c->page)) {
2793
		set_freepointer(s, tail_obj, c->freelist);
2794

2795
		if (unlikely(!this_cpu_cmpxchg_double(
2796 2797
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
2798
				head, next_tid(tid)))) {
2799 2800 2801 2802

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2803
		stat(s, FREE_FASTPATH);
2804
	} else
2805
		__slab_free(s, page, head, tail_obj, cnt, addr);
2806 2807 2808

}

C
Christoph Lameter 已提交
2809 2810
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2811 2812
	s = cache_from_obj(s, x);
	if (!s)
2813
		return;
2814
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2815
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2816 2817 2818
}
EXPORT_SYMBOL(kmem_cache_free);

2819
struct detached_freelist {
2820
	struct page *page;
2821 2822 2823 2824
	void *tail;
	void *freelist;
	int cnt;
};
2825

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
static int build_detached_freelist(struct kmem_cache *s, size_t size,
				   void **p, struct detached_freelist *df)
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
2844

2845 2846
	/* Always re-init detached_freelist */
	df->page = NULL;
2847

2848 2849 2850
	do {
		object = p[--size];
	} while (!object && size);
2851

2852 2853
	if (!object)
		return 0;
2854

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
	/* Start new detached freelist */
	set_freepointer(s, object, NULL);
	df->page = virt_to_head_page(object);
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
			set_freepointer(s, object, df->freelist);
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
2877
		}
2878 2879 2880 2881 2882 2883 2884

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
2885
	}
2886 2887 2888 2889 2890 2891

	return first_skipped_index;
}


/* Note that interrupts must be enabled when calling this function. */
2892
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
2893 2894 2895 2896 2897 2898
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;
2899 2900 2901 2902
		struct kmem_cache *s;

		/* Support for memcg */
		s = cache_from_obj(orig_s, p[size - 1]);
2903 2904 2905 2906 2907 2908 2909

		size = build_detached_freelist(s, size, p, &df);
		if (unlikely(!df.page))
			continue;

		slab_free(s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
	} while (likely(size));
2910 2911 2912
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

2913
/* Note that interrupts must be enabled when calling this function. */
2914 2915
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
2916
{
2917 2918 2919
	struct kmem_cache_cpu *c;
	int i;

2920 2921 2922 2923
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

2935 2936 2937 2938 2939
		if (unlikely(!object)) {
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
2940
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
2941
					    _RET_IP_, c);
2942 2943 2944
			if (unlikely(!p[i]))
				goto error;

2945 2946 2947
			c = this_cpu_ptr(s->cpu_slab);
			continue; /* goto for-loop */
		}
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
		c->freelist = get_freepointer(s, object);
		p[i] = object;
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
	if (unlikely(flags & __GFP_ZERO)) {
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

2962 2963
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
2964
	return i;
2965 2966
error:
	local_irq_enable();
2967 2968
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
2969
	return 0;
2970 2971 2972 2973
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
2974
/*
C
Christoph Lameter 已提交
2975 2976 2977 2978
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2979 2980 2981 2982
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2983
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2994
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2995
static int slub_min_objects;
C
Christoph Lameter 已提交
2996 2997 2998 2999

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3000 3001 3002 3003
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3004
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3005 3006 3007 3008 3009 3010
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3011
 *
C
Christoph Lameter 已提交
3012 3013 3014 3015
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3016
 *
C
Christoph Lameter 已提交
3017 3018 3019 3020
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3021
 */
3022
static inline int slab_order(int size, int min_objects,
3023
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
3024 3025 3026
{
	int order;
	int rem;
3027
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
3028

3029
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3030
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3031

3032
	for (order = max(min_order, get_order(min_objects * size + reserved));
3033
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3034

3035
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
3036

3037
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
3038

3039
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3040 3041
			break;
	}
C
Christoph Lameter 已提交
3042

C
Christoph Lameter 已提交
3043 3044 3045
	return order;
}

3046
static inline int calculate_order(int size, int reserved)
3047 3048 3049 3050
{
	int order;
	int min_objects;
	int fraction;
3051
	int max_objects;
3052 3053 3054 3055 3056 3057

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3058
	 * First we increase the acceptable waste in a slab. Then
3059 3060 3061
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3062 3063
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3064
	max_objects = order_objects(slub_max_order, size, reserved);
3065 3066
	min_objects = min(min_objects, max_objects);

3067
	while (min_objects > 1) {
C
Christoph Lameter 已提交
3068
		fraction = 16;
3069 3070
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3071
					slub_max_order, fraction, reserved);
3072 3073 3074 3075
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3076
		min_objects--;
3077 3078 3079 3080 3081 3082
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3083
	order = slab_order(size, 1, slub_max_order, 1, reserved);
3084 3085 3086 3087 3088 3089
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3090
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
3091
	if (order < MAX_ORDER)
3092 3093 3094 3095
		return order;
	return -ENOSYS;
}

3096
static void
3097
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3098 3099 3100 3101
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3102
#ifdef CONFIG_SLUB_DEBUG
3103
	atomic_long_set(&n->nr_slabs, 0);
3104
	atomic_long_set(&n->total_objects, 0);
3105
	INIT_LIST_HEAD(&n->full);
3106
#endif
C
Christoph Lameter 已提交
3107 3108
}

3109
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3110
{
3111
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3112
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3113

3114
	/*
3115 3116
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3117
	 */
3118 3119
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3120 3121 3122 3123 3124

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3125

3126
	return 1;
3127 3128
}

3129 3130
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3131 3132 3133 3134 3135
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3136 3137
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3138
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3139
 */
3140
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3141 3142 3143 3144
{
	struct page *page;
	struct kmem_cache_node *n;

3145
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3146

3147
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3148 3149

	BUG_ON(!page);
3150
	if (page_to_nid(page) != node) {
3151 3152
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3153 3154
	}

C
Christoph Lameter 已提交
3155 3156
	n = page->freelist;
	BUG_ON(!n);
3157
	page->freelist = get_freepointer(kmem_cache_node, n);
3158
	page->inuse = 1;
3159
	page->frozen = 0;
3160
	kmem_cache_node->node[node] = n;
3161
#ifdef CONFIG_SLUB_DEBUG
3162
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3163
	init_tracking(kmem_cache_node, n);
3164
#endif
3165
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3166
	init_kmem_cache_node(n);
3167
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3168

3169
	/*
3170 3171
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3172
	 */
3173
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3174 3175 3176 3177 3178
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3179
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3180

C
Christoph Lameter 已提交
3181 3182
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3183 3184 3185 3186
		s->node[node] = NULL;
	}
}

3187
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3188 3189 3190
{
	int node;

C
Christoph Lameter 已提交
3191
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3192 3193
		struct kmem_cache_node *n;

3194
		if (slab_state == DOWN) {
3195
			early_kmem_cache_node_alloc(node);
3196 3197
			continue;
		}
3198
		n = kmem_cache_alloc_node(kmem_cache_node,
3199
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3200

3201 3202 3203
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3204
		}
3205

C
Christoph Lameter 已提交
3206
		s->node[node] = n;
3207
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
3208 3209 3210 3211
	}
	return 1;
}

3212
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3213 3214 3215 3216 3217 3218 3219 3220
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
3221 3222 3223 3224
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3225
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3226 3227
{
	unsigned long flags = s->flags;
3228
	unsigned long size = s->object_size;
3229
	int order;
C
Christoph Lameter 已提交
3230

3231 3232 3233 3234 3235 3236 3237 3238
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3239 3240 3241 3242 3243 3244
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3245
			!s->ctor)
C
Christoph Lameter 已提交
3246 3247 3248 3249 3250 3251
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3252
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3253
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3254
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3255
	 */
3256
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3257
		size += sizeof(void *);
C
Christoph Lameter 已提交
3258
#endif
C
Christoph Lameter 已提交
3259 3260

	/*
C
Christoph Lameter 已提交
3261 3262
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3263 3264 3265 3266
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3267
		s->ctor)) {
C
Christoph Lameter 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3280
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3281 3282 3283 3284 3285 3286 3287
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3288
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3289 3290 3291 3292
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3293
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3294 3295 3296
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3297
#endif
C
Christoph Lameter 已提交
3298

C
Christoph Lameter 已提交
3299 3300 3301 3302 3303
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3304
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3305
	s->size = size;
3306 3307 3308
	if (forced_order >= 0)
		order = forced_order;
	else
3309
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3310

3311
	if (order < 0)
C
Christoph Lameter 已提交
3312 3313
		return 0;

3314
	s->allocflags = 0;
3315
	if (order)
3316 3317 3318
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3319
		s->allocflags |= GFP_DMA;
3320 3321 3322 3323

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3324 3325 3326
	/*
	 * Determine the number of objects per slab
	 */
3327 3328
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3329 3330
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3331

3332
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3333 3334
}

3335
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3336
{
3337
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3338
	s->reserved = 0;
C
Christoph Lameter 已提交
3339

3340 3341
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3342

3343
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3344
		goto error;
3345 3346 3347 3348 3349
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3350
		if (get_order(s->size) > get_order(s->object_size)) {
3351 3352 3353 3354 3355 3356
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3357

3358 3359
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3360 3361 3362 3363 3364
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3365 3366 3367 3368
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3384
	 * B) The number of objects in cpu partial slabs to extract from the
3385 3386
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3387
	 */
3388
	if (!kmem_cache_has_cpu_partial(s))
3389 3390
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3391 3392 3393 3394 3395 3396 3397 3398
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3399
#ifdef CONFIG_NUMA
3400
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3401
#endif
3402
	if (!init_kmem_cache_nodes(s))
3403
		goto error;
C
Christoph Lameter 已提交
3404

3405
	if (alloc_kmem_cache_cpus(s))
3406
		return 0;
3407

3408
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3409 3410 3411 3412
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3413 3414
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3415
	return -EINVAL;
C
Christoph Lameter 已提交
3416 3417
}

3418 3419 3420 3421 3422 3423
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3424 3425
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3426 3427
	if (!map)
		return;
3428
	slab_err(s, page, text, s->name);
3429 3430
	slab_lock(page);

3431
	get_map(s, page, map);
3432 3433 3434
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3435
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3436 3437 3438 3439
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3440
	kfree(map);
3441 3442 3443
#endif
}

C
Christoph Lameter 已提交
3444
/*
C
Christoph Lameter 已提交
3445
 * Attempt to free all partial slabs on a node.
3446 3447
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3448
 */
C
Christoph Lameter 已提交
3449
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3450 3451 3452
{
	struct page *page, *h;

3453
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3454
		if (!page->inuse) {
3455
			__remove_partial(n, page);
C
Christoph Lameter 已提交
3456
			discard_slab(s, page);
3457 3458
		} else {
			list_slab_objects(s, page,
3459
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3460
		}
3461
	}
C
Christoph Lameter 已提交
3462 3463 3464
}

/*
C
Christoph Lameter 已提交
3465
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3466
 */
3467
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3468 3469
{
	int node;
C
Christoph Lameter 已提交
3470
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3471 3472 3473

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3474
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3475 3476
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3477 3478
			return 1;
	}
3479
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3480 3481 3482 3483
	free_kmem_cache_nodes(s);
	return 0;
}

3484
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3485
{
3486
	return kmem_cache_close(s);
C
Christoph Lameter 已提交
3487 3488 3489 3490 3491 3492 3493 3494
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3495
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3496 3497 3498 3499 3500 3501 3502 3503

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3504
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3505
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3506 3507 3508 3509 3510 3511 3512 3513

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3514
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3515 3516 3517 3518 3519 3520 3521 3522

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3523
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3524
	void *ret;
C
Christoph Lameter 已提交
3525

3526
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3527
		return kmalloc_large(size, flags);
3528

3529
	s = kmalloc_slab(size, flags);
3530 3531

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3532 3533
		return s;

3534
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3535

3536
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3537

3538 3539
	kasan_kmalloc(s, ret, size);

E
Eduard - Gabriel Munteanu 已提交
3540
	return ret;
C
Christoph Lameter 已提交
3541 3542 3543
}
EXPORT_SYMBOL(__kmalloc);

3544
#ifdef CONFIG_NUMA
3545 3546
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3547
	struct page *page;
3548
	void *ptr = NULL;
3549

V
Vladimir Davydov 已提交
3550 3551
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3552
	if (page)
3553 3554
		ptr = page_address(page);

3555
	kmalloc_large_node_hook(ptr, size, flags);
3556
	return ptr;
3557 3558
}

C
Christoph Lameter 已提交
3559 3560
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3561
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3562
	void *ret;
C
Christoph Lameter 已提交
3563

3564
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3565 3566
		ret = kmalloc_large_node(size, flags, node);

3567 3568 3569
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3570 3571 3572

		return ret;
	}
3573

3574
	s = kmalloc_slab(size, flags);
3575 3576

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3577 3578
		return s;

3579
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3580

3581
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3582

3583 3584
	kasan_kmalloc(s, ret, size);

E
Eduard - Gabriel Munteanu 已提交
3585
	return ret;
C
Christoph Lameter 已提交
3586 3587 3588 3589
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

3590
static size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3591
{
3592
	struct page *page;
C
Christoph Lameter 已提交
3593

3594
	if (unlikely(object == ZERO_SIZE_PTR))
3595 3596
		return 0;

3597 3598
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3599 3600
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3601
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3602
	}
C
Christoph Lameter 已提交
3603

3604
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3605
}
3606 3607 3608 3609 3610 3611 3612 3613 3614

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
	   so we need unpoison this area. */
	kasan_krealloc(object, size);
	return size;
}
K
Kirill A. Shutemov 已提交
3615
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3616 3617 3618 3619

void kfree(const void *x)
{
	struct page *page;
3620
	void *object = (void *)x;
C
Christoph Lameter 已提交
3621

3622 3623
	trace_kfree(_RET_IP_, x);

3624
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3625 3626
		return;

3627
	page = virt_to_head_page(x);
3628
	if (unlikely(!PageSlab(page))) {
3629
		BUG_ON(!PageCompound(page));
3630
		kfree_hook(x);
V
Vladimir Davydov 已提交
3631
		__free_kmem_pages(page, compound_order(page));
3632 3633
		return;
	}
3634
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
3635 3636 3637
}
EXPORT_SYMBOL(kfree);

3638 3639
#define SHRINK_PROMOTE_MAX 32

3640
/*
3641 3642 3643
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3644 3645 3646 3647
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3648
 */
3649
int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3650 3651 3652 3653 3654 3655
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3656 3657
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3658
	unsigned long flags;
3659
	int ret = 0;
3660

3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
	if (deactivate) {
		/*
		 * Disable empty slabs caching. Used to avoid pinning offline
		 * memory cgroups by kmem pages that can be freed.
		 */
		s->cpu_partial = 0;
		s->min_partial = 0;

		/*
		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
		 * so we have to make sure the change is visible.
		 */
		kick_all_cpus_sync();
	}

3676
	flush_all(s);
C
Christoph Lameter 已提交
3677
	for_each_kmem_cache_node(s, node, n) {
3678 3679 3680
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3681 3682 3683 3684

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3685
		 * Build lists of slabs to discard or promote.
3686
		 *
C
Christoph Lameter 已提交
3687 3688
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3689 3690
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3701
				n->nr_partial--;
3702 3703
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3704 3705 3706
		}

		/*
3707 3708
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3709
		 */
3710 3711
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3712 3713

		spin_unlock_irqrestore(&n->list_lock, flags);
3714 3715

		/* Release empty slabs */
3716
		list_for_each_entry_safe(page, t, &discard, lru)
3717
			discard_slab(s, page);
3718 3719 3720

		if (slabs_node(s, node))
			ret = 1;
3721 3722
	}

3723
	return ret;
3724 3725
}

3726 3727 3728 3729
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3730
	mutex_lock(&slab_mutex);
3731
	list_for_each_entry(s, &slab_caches, list)
3732
		__kmem_cache_shrink(s, false);
3733
	mutex_unlock(&slab_mutex);
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3745
	offline_node = marg->status_change_nid_normal;
3746 3747 3748 3749 3750 3751 3752 3753

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3754
	mutex_lock(&slab_mutex);
3755 3756 3757 3758 3759 3760
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3761
			 * and offline_pages() function shouldn't call this
3762 3763
			 * callback. So, we must fail.
			 */
3764
			BUG_ON(slabs_node(s, offline_node));
3765 3766

			s->node[offline_node] = NULL;
3767
			kmem_cache_free(kmem_cache_node, n);
3768 3769
		}
	}
3770
	mutex_unlock(&slab_mutex);
3771 3772 3773 3774 3775 3776 3777
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3778
	int nid = marg->status_change_nid_normal;
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3789
	 * We are bringing a node online. No memory is available yet. We must
3790 3791 3792
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3793
	mutex_lock(&slab_mutex);
3794 3795 3796 3797 3798 3799
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3800
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3801 3802 3803 3804
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3805
		init_kmem_cache_node(n);
3806 3807 3808
		s->node[nid] = n;
	}
out:
3809
	mutex_unlock(&slab_mutex);
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3833 3834 3835 3836
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3837 3838 3839
	return ret;
}

3840 3841 3842 3843
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3844

C
Christoph Lameter 已提交
3845 3846 3847 3848
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3849 3850
/*
 * Used for early kmem_cache structures that were allocated using
3851 3852
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3853 3854
 */

3855
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3856 3857
{
	int node;
3858
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
3859
	struct kmem_cache_node *n;
3860

3861
	memcpy(s, static_cache, kmem_cache->object_size);
3862

3863 3864 3865 3866 3867 3868
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
3869
	for_each_kmem_cache_node(s, node, n) {
3870 3871
		struct page *p;

C
Christoph Lameter 已提交
3872 3873
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
3874

L
Li Zefan 已提交
3875
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3876 3877
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
3878 3879
#endif
	}
3880
	slab_init_memcg_params(s);
3881 3882
	list_add(&s->list, &slab_caches);
	return s;
3883 3884
}

C
Christoph Lameter 已提交
3885 3886
void __init kmem_cache_init(void)
{
3887 3888
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3889

3890 3891 3892
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3893 3894
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3895

3896 3897
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3898

3899
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3900 3901 3902 3903

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3904 3905 3906 3907
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3908

3909
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3910

3911 3912 3913 3914 3915
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3916
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3917 3918

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3919
	setup_kmalloc_cache_index_table();
3920
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3921 3922 3923

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3924
#endif
C
Christoph Lameter 已提交
3925

3926
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3927
		cache_line_size(),
C
Christoph Lameter 已提交
3928 3929 3930 3931
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3932 3933 3934 3935
void __init kmem_cache_init_late(void)
{
}

3936
struct kmem_cache *
3937 3938
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3939
{
3940
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
3941

3942
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3943 3944
	if (s) {
		s->refcount++;
3945

C
Christoph Lameter 已提交
3946 3947 3948 3949
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3950
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3951
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3952

3953
		for_each_memcg_cache(c, s) {
3954 3955 3956 3957 3958
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3959 3960
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3961
			s = NULL;
3962
		}
3963
	}
C
Christoph Lameter 已提交
3964

3965 3966
	return s;
}
P
Pekka Enberg 已提交
3967

3968
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3969
{
3970 3971 3972 3973 3974
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3975

3976 3977 3978 3979
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3980
	memcg_propagate_slab_attrs(s);
3981 3982 3983
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3984

3985
	return err;
C
Christoph Lameter 已提交
3986 3987 3988 3989
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3990 3991
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3992
 */
3993
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3994 3995 3996
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3997 3998
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3999 4000 4001

	switch (action) {
	case CPU_UP_CANCELED:
4002
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
4003
	case CPU_DEAD:
4004
	case CPU_DEAD_FROZEN:
4005
		mutex_lock(&slab_mutex);
4006 4007 4008 4009 4010
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
4011
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
4012 4013 4014 4015 4016 4017 4018
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

4019
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
4020
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
4021
};
C
Christoph Lameter 已提交
4022 4023 4024

#endif

4025
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4026
{
4027
	struct kmem_cache *s;
4028
	void *ret;
4029

4030
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4031 4032
		return kmalloc_large(size, gfpflags);

4033
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4034

4035
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4036
		return s;
C
Christoph Lameter 已提交
4037

4038
	ret = slab_alloc(s, gfpflags, caller);
4039

L
Lucas De Marchi 已提交
4040
	/* Honor the call site pointer we received. */
4041
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4042 4043

	return ret;
C
Christoph Lameter 已提交
4044 4045
}

4046
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4047
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4048
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4049
{
4050
	struct kmem_cache *s;
4051
	void *ret;
4052

4053
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4054 4055 4056 4057 4058 4059 4060 4061
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4062

4063
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4064

4065
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4066
		return s;
C
Christoph Lameter 已提交
4067

4068
	ret = slab_alloc_node(s, gfpflags, node, caller);
4069

L
Lucas De Marchi 已提交
4070
	/* Honor the call site pointer we received. */
4071
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4072 4073

	return ret;
C
Christoph Lameter 已提交
4074
}
4075
#endif
C
Christoph Lameter 已提交
4076

4077
#ifdef CONFIG_SYSFS
4078 4079 4080 4081 4082 4083 4084 4085 4086
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4087
#endif
4088

4089
#ifdef CONFIG_SLUB_DEBUG
4090 4091
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4092 4093
{
	void *p;
4094
	void *addr = page_address(page);
4095 4096 4097 4098 4099 4100

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
4101
	bitmap_zero(map, page->objects);
4102

4103 4104 4105 4106 4107
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
4108 4109
	}

4110
	for_each_object(p, s, addr, page->objects)
4111
		if (!test_bit(slab_index(p, s, addr), map))
4112
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4113 4114 4115 4116
				return 0;
	return 1;
}

4117 4118
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4119
{
4120 4121 4122
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4123 4124
}

4125 4126
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4127 4128 4129 4130 4131 4132 4133 4134
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
4135
		validate_slab_slab(s, page, map);
4136 4137 4138
		count++;
	}
	if (count != n->nr_partial)
4139 4140
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4141 4142 4143 4144 4145

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
4146
		validate_slab_slab(s, page, map);
4147 4148 4149
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4150 4151
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4152 4153 4154 4155 4156 4157

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4158
static long validate_slab_cache(struct kmem_cache *s)
4159 4160 4161
{
	int node;
	unsigned long count = 0;
4162
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4163
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4164
	struct kmem_cache_node *n;
4165 4166 4167

	if (!map)
		return -ENOMEM;
4168 4169

	flush_all(s);
C
Christoph Lameter 已提交
4170
	for_each_kmem_cache_node(s, node, n)
4171 4172
		count += validate_slab_node(s, n, map);
	kfree(map);
4173 4174
	return count;
}
4175
/*
C
Christoph Lameter 已提交
4176
 * Generate lists of code addresses where slabcache objects are allocated
4177 4178 4179 4180 4181
 * and freed.
 */

struct location {
	unsigned long count;
4182
	unsigned long addr;
4183 4184 4185 4186 4187
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4188
	DECLARE_BITMAP(cpus, NR_CPUS);
4189
	nodemask_t nodes;
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4205
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4206 4207 4208 4209 4210 4211
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4212
	l = (void *)__get_free_pages(flags, order);
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4226
				const struct track *track)
4227 4228 4229
{
	long start, end, pos;
	struct location *l;
4230
	unsigned long caddr;
4231
	unsigned long age = jiffies - track->when;
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4263 4264
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4265 4266
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4267 4268 4269
			return 1;
		}

4270
		if (track->addr < caddr)
4271 4272 4273 4274 4275 4276
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4277
	 * Not found. Insert new tracking element.
4278
	 */
4279
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4280 4281 4282 4283 4284 4285 4286 4287
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4288 4289 4290 4291 4292 4293
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4294 4295
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4296 4297
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4298 4299 4300 4301
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4302
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4303
		unsigned long *map)
4304
{
4305
	void *addr = page_address(page);
4306 4307
	void *p;

4308
	bitmap_zero(map, page->objects);
4309
	get_map(s, page, map);
4310

4311
	for_each_object(p, s, addr, page->objects)
4312 4313
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4314 4315 4316 4317 4318
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4319
	int len = 0;
4320
	unsigned long i;
4321
	struct loc_track t = { 0, 0, NULL };
4322
	int node;
E
Eric Dumazet 已提交
4323 4324
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4325
	struct kmem_cache_node *n;
4326

E
Eric Dumazet 已提交
4327 4328 4329
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4330
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4331
	}
4332 4333 4334
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4335
	for_each_kmem_cache_node(s, node, n) {
4336 4337 4338
		unsigned long flags;
		struct page *page;

4339
		if (!atomic_long_read(&n->nr_slabs))
4340 4341 4342 4343
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4344
			process_slab(&t, s, page, alloc, map);
4345
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4346
			process_slab(&t, s, page, alloc, map);
4347 4348 4349 4350
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4351
		struct location *l = &t.loc[i];
4352

H
Hugh Dickins 已提交
4353
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4354
			break;
4355
		len += sprintf(buf + len, "%7ld ", l->count);
4356 4357

		if (l->addr)
J
Joe Perches 已提交
4358
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4359
		else
4360
			len += sprintf(buf + len, "<not-available>");
4361 4362

		if (l->sum_time != l->min_time) {
4363
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4364 4365 4366
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4367
		} else
4368
			len += sprintf(buf + len, " age=%ld",
4369 4370 4371
				l->min_time);

		if (l->min_pid != l->max_pid)
4372
			len += sprintf(buf + len, " pid=%ld-%ld",
4373 4374
				l->min_pid, l->max_pid);
		else
4375
			len += sprintf(buf + len, " pid=%ld",
4376 4377
				l->min_pid);

R
Rusty Russell 已提交
4378 4379
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4380 4381 4382 4383
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4384

4385
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4386 4387 4388 4389
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4390

4391
		len += sprintf(buf + len, "\n");
4392 4393 4394
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4395
	kfree(map);
4396
	if (!t.count)
4397 4398
		len += sprintf(buf, "No data\n");
	return len;
4399
}
4400
#endif
4401

4402
#ifdef SLUB_RESILIENCY_TEST
4403
static void __init resiliency_test(void)
4404 4405 4406
{
	u8 *p;

4407
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4408

4409 4410 4411
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4412 4413 4414

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4415 4416
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4417 4418 4419 4420 4421 4422

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4423 4424 4425
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4426 4427 4428 4429 4430

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4431 4432 4433
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4434 4435
	validate_slab_cache(kmalloc_caches[6]);

4436
	pr_err("\nB. Corruption after free\n");
4437 4438 4439
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4440
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4441 4442 4443 4444 4445
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4446
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4447 4448 4449 4450 4451
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4452
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4453 4454 4455 4456 4457 4458 4459 4460
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4461
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4462
enum slab_stat_type {
4463 4464 4465 4466 4467
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4468 4469
};

4470
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4471 4472 4473
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4474
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4475

4476 4477
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4478 4479 4480 4481 4482 4483
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4484
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4485 4486
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4487

4488 4489
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4490

4491
		for_each_possible_cpu(cpu) {
4492 4493
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4494
			int node;
4495
			struct page *page;
4496

4497
			page = READ_ONCE(c->page);
4498 4499
			if (!page)
				continue;
4500

4501 4502 4503 4504 4505 4506 4507
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4508

4509 4510 4511
			total += x;
			nodes[node] += x;

4512
			page = READ_ONCE(c->partial);
4513
			if (page) {
L
Li Zefan 已提交
4514 4515 4516 4517 4518 4519 4520
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4521 4522
				total += x;
				nodes[node] += x;
4523
			}
C
Christoph Lameter 已提交
4524 4525 4526
		}
	}

4527
	get_online_mems();
4528
#ifdef CONFIG_SLUB_DEBUG
4529
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4530 4531 4532
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4533

4534 4535 4536 4537 4538
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4539
			else
4540
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4541 4542 4543 4544
			total += x;
			nodes[node] += x;
		}

4545 4546 4547
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4548
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4549

C
Christoph Lameter 已提交
4550
		for_each_kmem_cache_node(s, node, n) {
4551 4552 4553 4554
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4555
			else
4556
				x = n->nr_partial;
C
Christoph Lameter 已提交
4557 4558 4559 4560 4561 4562
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4563
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4564 4565 4566 4567
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4568
	put_online_mems();
C
Christoph Lameter 已提交
4569 4570 4571 4572
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4573
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4574 4575 4576
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4577
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4578

C
Christoph Lameter 已提交
4579
	for_each_kmem_cache_node(s, node, n)
4580
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4581
			return 1;
C
Christoph Lameter 已提交
4582

C
Christoph Lameter 已提交
4583 4584
	return 0;
}
4585
#endif
C
Christoph Lameter 已提交
4586 4587

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4588
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4589 4590 4591 4592 4593 4594 4595 4596

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4597 4598
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4599 4600 4601

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4602
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4618
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4619 4620 4621 4622 4623
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4624
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4625 4626 4627
}
SLAB_ATTR_RO(objs_per_slab);

4628 4629 4630
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4631 4632 4633
	unsigned long order;
	int err;

4634
	err = kstrtoul(buf, 10, &order);
4635 4636
	if (err)
		return err;
4637 4638 4639 4640 4641 4642 4643 4644

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4645 4646
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4647
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4648
}
4649
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4650

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4662
	err = kstrtoul(buf, 10, &min);
4663 4664 4665
	if (err)
		return err;

4666
	set_min_partial(s, min);
4667 4668 4669 4670
	return length;
}
SLAB_ATTR(min_partial);

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4682
	err = kstrtoul(buf, 10, &objects);
4683 4684
	if (err)
		return err;
4685
	if (objects && !kmem_cache_has_cpu_partial(s))
4686
		return -EINVAL;
4687 4688 4689 4690 4691 4692 4693

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4694 4695
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4696 4697 4698
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4699 4700 4701 4702 4703
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4704
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4705 4706 4707 4708 4709
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4710
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4711 4712 4713 4714 4715
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4716
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4717 4718 4719 4720 4721
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4722
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4723 4724 4725
}
SLAB_ATTR_RO(objects);

4726 4727 4728 4729 4730 4731
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4798 4799 4800 4801 4802 4803
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4804
#ifdef CONFIG_SLUB_DEBUG
4805 4806 4807 4808 4809 4810
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4811 4812 4813 4814 4815 4816
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4817 4818 4819 4820 4821 4822 4823 4824 4825
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4826 4827
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4828
		s->flags |= SLAB_DEBUG_FREE;
4829
	}
C
Christoph Lameter 已提交
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4842 4843 4844 4845 4846 4847 4848 4849
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
4850
	s->flags &= ~SLAB_TRACE;
4851 4852
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4853
		s->flags |= SLAB_TRACE;
4854
	}
C
Christoph Lameter 已提交
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4871 4872
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4873
		s->flags |= SLAB_RED_ZONE;
4874
	}
4875
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4892 4893
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4894
		s->flags |= SLAB_POISON;
4895
	}
4896
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4913 4914
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4915
		s->flags |= SLAB_STORE_USER;
4916
	}
4917
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4918 4919 4920 4921
	return length;
}
SLAB_ATTR(store_user);

4922 4923 4924 4925 4926 4927 4928 4929
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4930 4931 4932 4933 4934 4935 4936 4937
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4938 4939
}
SLAB_ATTR(validate);
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4967 4968 4969
	if (s->refcount > 1)
		return -EINVAL;

4970 4971 4972 4973 4974 4975
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4976
#endif
4977

4978 4979 4980 4981 4982 4983 4984 4985
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4986 4987 4988
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
4989 4990 4991 4992 4993
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4994
#ifdef CONFIG_NUMA
4995
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4996
{
4997
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4998 4999
}

5000
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5001 5002
				const char *buf, size_t length)
{
5003 5004 5005
	unsigned long ratio;
	int err;

5006
	err = kstrtoul(buf, 10, &ratio);
5007 5008 5009
	if (err)
		return err;

5010
	if (ratio <= 100)
5011
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5012 5013 5014

	return length;
}
5015
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5016 5017
#endif

5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5030
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5031 5032 5033 5034 5035 5036 5037

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

5038
#ifdef CONFIG_SMP
5039 5040
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
5041
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5042
	}
5043
#endif
5044 5045 5046 5047
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5048 5049 5050 5051 5052
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5053
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5054 5055
}

5056 5057 5058 5059 5060
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5061 5062 5063 5064 5065 5066 5067 5068 5069
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5081
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5082 5083 5084 5085 5086 5087 5088
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5089
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5090
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5091 5092
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5093 5094
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5095 5096
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5097 5098
#endif

P
Pekka Enberg 已提交
5099
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5100 5101 5102 5103
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5104
	&min_partial_attr.attr,
5105
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5106
	&objects_attr.attr,
5107
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5108 5109 5110 5111 5112 5113 5114 5115
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5116
	&shrink_attr.attr,
5117
	&reserved_attr.attr,
5118
	&slabs_cpu_partial_attr.attr,
5119
#ifdef CONFIG_SLUB_DEBUG
5120 5121 5122 5123
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5124 5125 5126
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5127
	&validate_attr.attr,
5128 5129
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5130
#endif
C
Christoph Lameter 已提交
5131 5132 5133 5134
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5135
	&remote_node_defrag_ratio_attr.attr,
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5148
	&alloc_node_mismatch_attr.attr,
5149 5150 5151 5152 5153 5154 5155
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5156
	&deactivate_bypass_attr.attr,
5157
	&order_fallback_attr.attr,
5158 5159
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5160 5161
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5162 5163
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5164
#endif
5165 5166 5167 5168
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5210
#ifdef CONFIG_MEMCG
5211
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5212
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5213

5214 5215 5216 5217
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5235 5236
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5237 5238 5239
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5240 5241 5242
	return err;
}

5243 5244
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5245
#ifdef CONFIG_MEMCG
5246 5247
	int i;
	char *buffer = NULL;
5248
	struct kmem_cache *root_cache;
5249

5250
	if (is_root_cache(s))
5251 5252
		return;

5253
	root_cache = s->memcg_params.root_cache;
5254

5255 5256 5257 5258
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5259
	if (!root_cache->max_attr_size)
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5281
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5282 5283 5284 5285 5286 5287 5288 5289
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5290
		attr->show(root_cache, buf);
5291 5292 5293 5294 5295 5296 5297 5298
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5299 5300 5301 5302 5303
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5304
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5305 5306 5307 5308 5309 5310
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5311
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5323
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5324 5325 5326
	.filter = uevent_filter,
};

5327
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5328

5329 5330
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5331
#ifdef CONFIG_MEMCG
5332
	if (!is_root_cache(s))
5333
		return s->memcg_params.root_cache->memcg_kset;
5334 5335 5336 5337
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5338 5339 5340
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5341 5342
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5365 5366
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
V
Vladimir Davydov 已提交
5367 5368
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5369 5370 5371
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5372

C
Christoph Lameter 已提交
5373 5374 5375 5376 5377 5378 5379 5380
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5381
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5382 5383 5384 5385 5386 5387 5388

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5389
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5390 5391 5392 5393 5394 5395 5396 5397 5398
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5399
	s->kobj.kset = cache_kset(s);
5400
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5401
	if (err)
5402
		goto out;
C
Christoph Lameter 已提交
5403 5404

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5405 5406
	if (err)
		goto out_del_kobj;
5407

5408
#ifdef CONFIG_MEMCG
5409 5410 5411
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5412 5413
			err = -ENOMEM;
			goto out_del_kobj;
5414 5415 5416 5417
		}
	}
#endif

C
Christoph Lameter 已提交
5418 5419 5420 5421 5422
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5423 5424 5425 5426 5427 5428 5429
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5430 5431
}

5432
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5433
{
5434
	if (slab_state < FULL)
5435 5436 5437 5438 5439 5440
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5441
#ifdef CONFIG_MEMCG
5442 5443
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5444 5445
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5446
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5447 5448 5449 5450
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5451
 * available lest we lose that information.
C
Christoph Lameter 已提交
5452 5453 5454 5455 5456 5457 5458
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5459
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5460 5461 5462 5463 5464

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5465
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5466 5467 5468
		/*
		 * If we have a leftover link then remove it.
		 */
5469 5470
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5486
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5487 5488
	int err;

5489
	mutex_lock(&slab_mutex);
5490

5491
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5492
	if (!slab_kset) {
5493
		mutex_unlock(&slab_mutex);
5494
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5495 5496 5497
		return -ENOSYS;
	}

5498
	slab_state = FULL;
5499

5500
	list_for_each_entry(s, &slab_caches, list) {
5501
		err = sysfs_slab_add(s);
5502
		if (err)
5503 5504
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5505
	}
C
Christoph Lameter 已提交
5506 5507 5508 5509 5510 5511

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5512
		if (err)
5513 5514
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5515 5516 5517
		kfree(al);
	}

5518
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5519 5520 5521 5522 5523
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5524
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5525 5526 5527 5528

/*
 * The /proc/slabinfo ABI
 */
5529
#ifdef CONFIG_SLABINFO
5530
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5531 5532
{
	unsigned long nr_slabs = 0;
5533 5534
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5535
	int node;
C
Christoph Lameter 已提交
5536
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5537

C
Christoph Lameter 已提交
5538
	for_each_kmem_cache_node(s, node, n) {
5539 5540
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5541
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5542 5543
	}

5544 5545 5546 5547 5548 5549
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5550 5551
}

5552
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5553 5554 5555
{
}

5556 5557
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5558
{
5559
	return -EIO;
5560
}
5561
#endif /* CONFIG_SLABINFO */