slub.c 141.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2 3 4 5
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
6 7
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
8
 *
C
Christoph Lameter 已提交
9
 * (C) 2007 SGI, Christoph Lameter
10
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
11 12 13
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
14
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
15 16 17 18 19
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
20
#include "slab.h"
21
#include <linux/proc_fs.h>
22
#include <linux/notifier.h>
C
Christoph Lameter 已提交
23
#include <linux/seq_file.h>
24
#include <linux/kasan.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
29
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
30
#include <linux/kallsyms.h>
31
#include <linux/memory.h>
R
Roman Zippel 已提交
32
#include <linux/math64.h>
A
Akinobu Mita 已提交
33
#include <linux/fault-inject.h>
34
#include <linux/stacktrace.h>
35
#include <linux/prefetch.h>
36
#include <linux/memcontrol.h>
37
#include <linux/random.h>
C
Christoph Lameter 已提交
38

39 40
#include <trace/events/kmem.h>

41 42
#include "internal.h"

C
Christoph Lameter 已提交
43 44
/*
 * Lock order:
45
 *   1. slab_mutex (Global Mutex)
46 47
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
48
 *
49
 *   slab_mutex
50
 *
51
 *   The role of the slab_mutex is to protect the list of all the slabs
52 53 54 55 56 57 58 59 60 61 62 63 64 65
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
86 87
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
88
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
89 90
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
91 92 93 94 95 96 97
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
98 99 100 101 102 103 104 105 106 107 108 109
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
110
 * 			freelist that allows lockless access to
111 112
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
113 114 115
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
116
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
117 118
 */

119 120
static inline int kmem_cache_debug(struct kmem_cache *s)
{
121
#ifdef CONFIG_SLUB_DEBUG
122
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123
#else
124
	return 0;
125
#endif
126
}
127

128
void *fixup_red_left(struct kmem_cache *s, void *p)
J
Joonsoo Kim 已提交
129 130 131 132 133 134 135
{
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
		p += s->red_left_pad;

	return p;
}

136 137 138 139 140 141 142 143 144
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
145 146 147 148 149 150 151 152 153 154 155
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

156 157 158
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

159 160 161 162
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
163
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
164

165 166 167
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
168
 * sort the partial list by the number of objects in use.
169 170 171
 */
#define MAX_PARTIAL 10

172
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
C
Christoph Lameter 已提交
173
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
174

175 176 177 178 179 180 181 182
/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


183
/*
184 185 186
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
187
 */
188
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189

190 191
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
192
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
193

C
Christoph Lameter 已提交
194
/* Internal SLUB flags */
195
/* Poison object */
196
#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
197
/* Use cmpxchg_double */
198
#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
C
Christoph Lameter 已提交
199

200 201 202
/*
 * Tracking user of a slab.
 */
203
#define TRACK_ADDRS_COUNT 16
204
struct track {
205
	unsigned long addr;	/* Called from address */
206 207 208
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
209 210 211 212 213 214 215
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

216
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
217 218
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
219
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220
static void sysfs_slab_remove(struct kmem_cache *s);
C
Christoph Lameter 已提交
221
#else
222 223 224
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
225
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
227 228
#endif

229
static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 231
{
#ifdef CONFIG_SLUB_STATS
232 233 234 235 236
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
237 238 239
#endif
}

C
Christoph Lameter 已提交
240 241 242 243
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/*
 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 * with an XOR of the address where the pointer is held and a per-cache
 * random number.
 */
static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
				 unsigned long ptr_addr)
{
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
#else
	return ptr;
#endif
}

/* Returns the freelist pointer recorded at location ptr_addr. */
static inline void *freelist_dereference(const struct kmem_cache *s,
					 void *ptr_addr)
{
	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
			    (unsigned long)ptr_addr);
}

267 268
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
269
	return freelist_dereference(s, object + s->offset);
270 271
}

272 273
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
274 275
	if (object)
		prefetch(freelist_dereference(s, object + s->offset));
276 277
}

278 279
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
280
	unsigned long freepointer_addr;
281 282
	void *p;

283 284 285
	if (!debug_pagealloc_enabled())
		return get_freepointer(s, object);

286 287 288
	freepointer_addr = (unsigned long)object + s->offset;
	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
	return freelist_ptr(s, p, freepointer_addr);
289 290
}

291 292
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
293 294
	unsigned long freeptr_addr = (unsigned long)object + s->offset;

295 296 297 298
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	BUG_ON(object == fp); /* naive detection of double free or corruption */
#endif

299
	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
300 301 302
}

/* Loop over all objects in a slab */
303
#define for_each_object(__p, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
304 305 306
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)
307

308
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
309 310 311
	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
		__idx <= __objects; \
		__p += (__s)->size, __idx++)
312

313 314 315 316 317 318
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

319 320 321 322 323
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

324
static inline struct kmem_cache_order_objects oo_make(int order,
325
		unsigned long size, int reserved)
326 327
{
	struct kmem_cache_order_objects x = {
328
		(order << OO_SHIFT) + order_objects(order, size, reserved)
329 330 331 332 333 334 335
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
336
	return x.x >> OO_SHIFT;
337 338 339 340
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
341
	return x.x & OO_MASK;
342 343
}

344 345 346 347 348
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
349
	VM_BUG_ON_PAGE(PageTail(page), page);
350 351 352 353 354
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
355
	VM_BUG_ON_PAGE(PageTail(page), page);
356 357 358
	__bit_spin_unlock(PG_locked, &page->flags);
}

359 360 361 362 363 364
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
365 366
	 * as page->_refcount.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_refcount, so
367 368 369 370 371 372 373
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

374 375 376 377 378 379 380
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
381 382
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383
	if (s->flags & __CMPXCHG_DOUBLE) {
384
		if (cmpxchg_double(&page->freelist, &page->counters,
385 386
				   freelist_old, counters_old,
				   freelist_new, counters_new))
387
			return true;
388 389 390 391
	} else
#endif
	{
		slab_lock(page);
392 393
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
394
			page->freelist = freelist_new;
395
			set_page_slub_counters(page, counters_new);
396
			slab_unlock(page);
397
			return true;
398 399 400 401 402 403 404 405
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
406
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 408
#endif

409
	return false;
410 411
}

412 413 414 415 416
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
417 418
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419
	if (s->flags & __CMPXCHG_DOUBLE) {
420
		if (cmpxchg_double(&page->freelist, &page->counters,
421 422
				   freelist_old, counters_old,
				   freelist_new, counters_new))
423
			return true;
424 425 426
	} else
#endif
	{
427 428 429
		unsigned long flags;

		local_irq_save(flags);
430
		slab_lock(page);
431 432
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
433
			page->freelist = freelist_new;
434
			set_page_slub_counters(page, counters_new);
435
			slab_unlock(page);
436
			local_irq_restore(flags);
437
			return true;
438
		}
439
		slab_unlock(page);
440
		local_irq_restore(flags);
441 442 443 444 445 446
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
447
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 449
#endif

450
	return false;
451 452
}

C
Christoph Lameter 已提交
453
#ifdef CONFIG_SLUB_DEBUG
454 455 456
/*
 * Determine a map of object in use on a page.
 *
457
 * Node listlock must be held to guarantee that the page does
458 459 460 461 462 463 464 465 466 467 468
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

J
Joonsoo Kim 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static inline int size_from_object(struct kmem_cache *s)
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

C
Christoph Lameter 已提交
485 486 487
/*
 * Debug settings:
 */
488
#if defined(CONFIG_SLUB_DEBUG_ON)
489
static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490
#else
491
static slab_flags_t slub_debug;
492
#endif
C
Christoph Lameter 已提交
493 494

static char *slub_debug_slabs;
495
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
496

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
513 514 515
/*
 * Object debugging
 */
J
Joonsoo Kim 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

536 537
static void print_section(char *level, char *text, u8 *addr,
			  unsigned int length)
C
Christoph Lameter 已提交
538
{
539
	metadata_access_enable();
540
	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
541
			length, 1);
542
	metadata_access_disable();
C
Christoph Lameter 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
559
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
560
{
A
Akinobu Mita 已提交
561
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
562 563

	if (addr) {
564 565 566 567 568 569 570 571
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
572
		metadata_access_enable();
573
		save_stack_trace(&trace);
574
		metadata_access_disable();
575 576 577 578 579 580 581 582 583

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
584 585
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
586
		p->pid = current->pid;
C
Christoph Lameter 已提交
587 588 589 590 591 592 593
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
594 595 596
	if (!(s->flags & SLAB_STORE_USER))
		return;

597 598
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
599 600 601 602 603 604 605
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

606 607
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
608 609 610 611 612
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
613
				pr_err("\t%pS\n", (void *)t->addrs[i]);
614 615 616 617
			else
				break;
	}
#endif
618 619 620 621 622 623 624 625 626 627 628 629 630
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
631
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
632
	       page, page->objects, page->inuse, page->freelist, page->flags);
633 634 635 636 637

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
638
	struct va_format vaf;
639 640 641
	va_list args;

	va_start(args, fmt);
642 643
	vaf.fmt = fmt;
	vaf.va = &args;
644
	pr_err("=============================================================================\n");
645
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
646
	pr_err("-----------------------------------------------------------------------------\n\n");
647

648
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
649
	va_end(args);
C
Christoph Lameter 已提交
650 651
}

652 653
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
654
	struct va_format vaf;
655 656 657
	va_list args;

	va_start(args, fmt);
658 659 660
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
661 662 663 664
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
665 666
{
	unsigned int off;	/* Offset of last byte */
667
	u8 *addr = page_address(page);
668 669 670 671 672

	print_tracking(s, p);

	print_page_info(page);

673 674
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
675

J
Joonsoo Kim 已提交
676
	if (s->flags & SLAB_RED_ZONE)
677 678
		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
			      s->red_left_pad);
J
Joonsoo Kim 已提交
679
	else if (p > addr + 16)
680
		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
681

682 683
	print_section(KERN_ERR, "Object ", p,
		      min_t(unsigned long, s->object_size, PAGE_SIZE));
C
Christoph Lameter 已提交
684
	if (s->flags & SLAB_RED_ZONE)
685
		print_section(KERN_ERR, "Redzone ", p + s->object_size,
686
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
687 688 689 690 691 692

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

693
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
694 695
		off += 2 * sizeof(struct track);

696 697
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
698
	if (off != size_from_object(s))
C
Christoph Lameter 已提交
699
		/* Beginning of the filler is the free pointer */
700 701
		print_section(KERN_ERR, "Padding ", p + off,
			      size_from_object(s) - off);
702 703

	dump_stack();
C
Christoph Lameter 已提交
704 705
}

706
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
707 708
			u8 *object, char *reason)
{
709
	slab_bug(s, "%s", reason);
710
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
711 712
}

713 714
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
715 716 717 718
{
	va_list args;
	char buf[100];

719 720
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
721
	va_end(args);
722
	slab_bug(s, "%s", buf);
723
	print_page_info(page);
C
Christoph Lameter 已提交
724 725 726
	dump_stack();
}

727
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
728 729 730
{
	u8 *p = object;

J
Joonsoo Kim 已提交
731 732 733
	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

C
Christoph Lameter 已提交
734
	if (s->flags & __OBJECT_POISON) {
735 736
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
737 738 739
	}

	if (s->flags & SLAB_RED_ZONE)
740
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
741 742
}

743 744 745 746 747 748 749 750 751
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
752
			u8 *start, unsigned int value, unsigned int bytes)
753 754 755 756
{
	u8 *fault;
	u8 *end;

757
	metadata_access_enable();
758
	fault = memchr_inv(start, value, bytes);
759
	metadata_access_disable();
760 761 762 763 764 765 766 767
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
768
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
769 770 771 772 773
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
774 775 776 777 778 779 780 781 782
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
783
 *
C
Christoph Lameter 已提交
784 785 786
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
787
 * object + s->object_size
C
Christoph Lameter 已提交
788
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
789
 * 	Padding is extended by another word if Redzoning is enabled and
790
 * 	object_size == inuse.
C
Christoph Lameter 已提交
791
 *
C
Christoph Lameter 已提交
792 793 794 795
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
796 797
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
798 799
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
800
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
801
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
802 803 804
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
805 806
 *
 * object + s->size
C
Christoph Lameter 已提交
807
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
808
 *
809
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
810
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

826 827
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
828
	if (size_from_object(s) == off)
C
Christoph Lameter 已提交
829 830
		return 1;

831
	return check_bytes_and_report(s, page, p, "Object padding",
J
Joonsoo Kim 已提交
832
			p + off, POISON_INUSE, size_from_object(s) - off);
C
Christoph Lameter 已提交
833 834
}

835
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
836 837
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
838 839 840
	u8 *start;
	u8 *fault;
	u8 *end;
841
	u8 *pad;
842 843
	int length;
	int remainder;
C
Christoph Lameter 已提交
844 845 846 847

	if (!(s->flags & SLAB_POISON))
		return 1;

848
	start = page_address(page);
849
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
850 851
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
852 853 854
	if (!remainder)
		return 1;

855
	pad = end - remainder;
856
	metadata_access_enable();
857
	fault = memchr_inv(pad, POISON_INUSE, remainder);
858
	metadata_access_disable();
859 860 861 862 863 864
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
865
	print_section(KERN_ERR, "Padding ", pad, remainder);
866

867
	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
868
	return 0;
C
Christoph Lameter 已提交
869 870 871
}

static int check_object(struct kmem_cache *s, struct page *page,
872
					void *object, u8 val)
C
Christoph Lameter 已提交
873 874
{
	u8 *p = object;
875
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
876 877

	if (s->flags & SLAB_RED_ZONE) {
J
Joonsoo Kim 已提交
878 879 880 881
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

882
		if (!check_bytes_and_report(s, page, object, "Redzone",
883
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
884 885
			return 0;
	} else {
886
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
887
			check_bytes_and_report(s, page, p, "Alignment padding",
888 889
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
890
		}
C
Christoph Lameter 已提交
891 892 893
	}

	if (s->flags & SLAB_POISON) {
894
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
895
			(!check_bytes_and_report(s, page, p, "Poison", p,
896
					POISON_FREE, s->object_size - 1) ||
897
			 !check_bytes_and_report(s, page, p, "Poison",
898
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
899 900 901 902 903 904 905
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

906
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
907 908 909 910 911 912 913 914 915 916
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
917
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
918
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
919
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
920
		 */
921
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
922 923 924 925 926 927 928
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
929 930
	int maxobj;

C
Christoph Lameter 已提交
931 932 933
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
934
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
935 936
		return 0;
	}
937

938
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
939 940
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
941
			page->objects, maxobj);
942 943 944
		return 0;
	}
	if (page->inuse > page->objects) {
945
		slab_err(s, page, "inuse %u > max %u",
946
			page->inuse, page->objects);
C
Christoph Lameter 已提交
947 948 949 950 951 952 953 954
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
955 956
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
957 958 959 960
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
961
	void *fp;
C
Christoph Lameter 已提交
962
	void *object = NULL;
963
	int max_objects;
C
Christoph Lameter 已提交
964

965
	fp = page->freelist;
966
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
967 968 969 970 971 972
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
973
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
974
			} else {
975
				slab_err(s, page, "Freepointer corrupt");
976
				page->freelist = NULL;
977
				page->inuse = page->objects;
978
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
979 980 981 982 983 984 985 986 987
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

988
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
989 990
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
991 992

	if (page->objects != max_objects) {
J
Joe Perches 已提交
993 994
		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
			 page->objects, max_objects);
995 996 997
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
998
	if (page->inuse != page->objects - nr) {
J
Joe Perches 已提交
999 1000
		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
			 page->inuse, page->objects - nr);
1001
		page->inuse = page->objects - nr;
1002
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
1003 1004 1005 1006
	}
	return search == NULL;
}

1007 1008
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
1009 1010
{
	if (s->flags & SLAB_TRACE) {
1011
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
1012 1013 1014 1015 1016 1017
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
1018
			print_section(KERN_INFO, "Object ", (void *)object,
1019
					s->object_size);
C
Christoph Lameter 已提交
1020 1021 1022 1023 1024

		dump_stack();
	}
}

1025
/*
C
Christoph Lameter 已提交
1026
 * Tracking of fully allocated slabs for debugging purposes.
1027
 */
1028 1029
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1030
{
1031 1032 1033
	if (!(s->flags & SLAB_STORE_USER))
		return;

1034
	lockdep_assert_held(&n->list_lock);
1035 1036 1037
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
1038
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1039 1040 1041 1042
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1043
	lockdep_assert_held(&n->list_lock);
1044 1045 1046
	list_del(&page->lru);
}

1047 1048 1049 1050 1051 1052 1053 1054
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1055 1056 1057 1058 1059
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1060
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1061 1062 1063 1064 1065 1066 1067 1068 1069
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1070
	if (likely(n)) {
1071
		atomic_long_inc(&n->nr_slabs);
1072 1073
		atomic_long_add(objects, &n->total_objects);
	}
1074
}
1075
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1076 1077 1078 1079
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1080
	atomic_long_sub(objects, &n->total_objects);
1081 1082 1083
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1084 1085 1086 1087 1088 1089
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1090
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1091 1092 1093
	init_tracking(s, object);
}

1094
static inline int alloc_consistency_checks(struct kmem_cache *s,
1095
					struct page *page,
1096
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1097 1098
{
	if (!check_slab(s, page))
1099
		return 0;
C
Christoph Lameter 已提交
1100 1101 1102

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1103
		return 0;
C
Christoph Lameter 已提交
1104 1105
	}

1106
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!alloc_consistency_checks(s, page, object, addr))
			goto bad;
	}
C
Christoph Lameter 已提交
1120

C
Christoph Lameter 已提交
1121 1122 1123 1124
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1125
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1126
	return 1;
C
Christoph Lameter 已提交
1127

C
Christoph Lameter 已提交
1128 1129 1130 1131 1132
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1133
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1134
		 */
1135
		slab_fix(s, "Marking all objects used");
1136
		page->inuse = page->objects;
1137
		page->freelist = NULL;
C
Christoph Lameter 已提交
1138 1139 1140 1141
	}
	return 0;
}

1142 1143
static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
C
Christoph Lameter 已提交
1144 1145
{
	if (!check_valid_pointer(s, page, object)) {
1146
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1147
		return 0;
C
Christoph Lameter 已提交
1148 1149 1150
	}

	if (on_freelist(s, page, object)) {
1151
		object_err(s, page, object, "Object already free");
1152
		return 0;
C
Christoph Lameter 已提交
1153 1154
	}

1155
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1156
		return 0;
C
Christoph Lameter 已提交
1157

1158
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1159
		if (!PageSlab(page)) {
J
Joe Perches 已提交
1160 1161
			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
				 object);
1162
		} else if (!page->slab_cache) {
1163 1164
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1165
			dump_stack();
P
Pekka Enberg 已提交
1166
		} else
1167 1168
			object_err(s, page, object,
					"page slab pointer corrupt.");
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
	unsigned long uninitialized_var(flags);
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
C
Christoph Lameter 已提交
1200
	}
C
Christoph Lameter 已提交
1201 1202 1203 1204

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1205
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1206
	init_object(s, object, SLUB_RED_INACTIVE);
1207 1208 1209 1210 1211 1212

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1213 1214
	ret = 1;

1215
out:
1216 1217 1218 1219
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1220
	slab_unlock(page);
1221
	spin_unlock_irqrestore(&n->list_lock, flags);
1222 1223 1224
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1225 1226
}

C
Christoph Lameter 已提交
1227 1228
static int __init setup_slub_debug(char *str)
{
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1253
	for (; *str && *str != ','; str++) {
1254 1255
		switch (tolower(*str)) {
		case 'f':
1256
			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1270 1271 1272
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1273 1274 1275 1276 1277 1278 1279
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1280
		default:
1281 1282
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1283
		}
C
Christoph Lameter 已提交
1284 1285
	}

1286
check_slabs:
C
Christoph Lameter 已提交
1287 1288
	if (*str == ',')
		slub_debug_slabs = str + 1;
1289
out:
C
Christoph Lameter 已提交
1290 1291 1292 1293 1294
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1295 1296
slab_flags_t kmem_cache_flags(unsigned long object_size,
	slab_flags_t flags, const char *name,
1297
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1298 1299
{
	/*
1300
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1301
	 */
1302 1303
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1304
		flags |= slub_debug;
1305 1306

	return flags;
C
Christoph Lameter 已提交
1307
}
1308
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1309 1310
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1311

C
Christoph Lameter 已提交
1312
static inline int alloc_debug_processing(struct kmem_cache *s,
1313
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1314

1315
static inline int free_debug_processing(
1316 1317
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1318
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1319 1320 1321 1322

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1323
			void *object, u8 val) { return 1; }
1324 1325
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1326 1327
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1328 1329
slab_flags_t kmem_cache_flags(unsigned long object_size,
	slab_flags_t flags, const char *name,
1330
	void (*ctor)(void *))
1331 1332 1333
{
	return flags;
}
C
Christoph Lameter 已提交
1334
#define slub_debug 0
1335

1336 1337
#define disable_higher_order_debug 0

1338 1339
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1340 1341
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1342 1343 1344 1345
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1346

1347 1348 1349 1350 1351 1352
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1353 1354 1355
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
1356
	kasan_kmalloc_large(ptr, size, flags);
1357 1358 1359 1360 1361
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
1362
	kasan_kfree_large(x);
1363 1364
}

1365
static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1366
{
1367 1368
	void *freeptr;

1369
	kmemleak_free_recursive(x, s->flags);
1370

1371 1372 1373 1374 1375
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
1376
#ifdef CONFIG_LOCKDEP
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	{
		unsigned long flags;

		local_irq_save(flags);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1387

1388 1389 1390 1391 1392
	freeptr = get_freepointer(s, x);
	/*
	 * kasan_slab_free() may put x into memory quarantine, delaying its
	 * reuse. In this case the object's freelist pointer is changed.
	 */
1393
	kasan_slab_free(s, x);
1394
	return freeptr;
1395
}
1396

1397 1398 1399 1400 1401 1402 1403
static inline void slab_free_freelist_hook(struct kmem_cache *s,
					   void *head, void *tail)
{
/*
 * Compiler cannot detect this function can be removed if slab_free_hook()
 * evaluates to nothing.  Thus, catch all relevant config debug options here.
 */
1404
#if defined(CONFIG_LOCKDEP)	||		\
1405 1406 1407 1408 1409 1410
	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
	defined(CONFIG_KASAN)

	void *object = head;
	void *tail_obj = tail ? : head;
1411
	void *freeptr;
1412 1413

	do {
1414 1415
		freeptr = slab_free_hook(s, object);
	} while ((object != tail_obj) && (object = freeptr));
1416 1417 1418
#endif
}

1419 1420 1421 1422
static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
	setup_object_debug(s, page, object);
1423
	kasan_init_slab_obj(s, object);
1424 1425 1426 1427 1428 1429 1430
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
}

C
Christoph Lameter 已提交
1431 1432 1433
/*
 * Slab allocation and freeing
 */
1434 1435
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1436
{
1437
	struct page *page;
1438 1439
	int order = oo_order(oo);

1440
	if (node == NUMA_NO_NODE)
1441
		page = alloc_pages(flags, order);
1442
	else
1443
		page = __alloc_pages_node(node, flags, order);
1444

1445 1446 1447 1448
	if (page && memcg_charge_slab(page, flags, order, s)) {
		__free_pages(page, order);
		page = NULL;
	}
1449 1450

	return page;
1451 1452
}

T
Thomas Garnier 已提交
1453 1454 1455 1456 1457 1458 1459
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
	int err;
	unsigned long i, count = oo_objects(s->oo);

1460 1461 1462 1463
	/* Bailout if already initialised */
	if (s->random_seq)
		return 0;

T
Thomas Garnier 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	err = cache_random_seq_create(s, count, GFP_KERNEL);
	if (err) {
		pr_err("SLUB: Unable to initialize free list for %s\n",
			s->name);
		return err;
	}

	/* Transform to an offset on the set of pages */
	if (s->random_seq) {
		for (i = 0; i < count; i++)
			s->random_seq[i] *= s->size;
	}
	return 0;
}

/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
	struct kmem_cache *s;

	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list)
		init_cache_random_seq(s);

	mutex_unlock(&slab_mutex);
}

/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
				unsigned long *pos, void *start,
				unsigned long page_limit,
				unsigned long freelist_count)
{
	unsigned int idx;

	/*
	 * If the target page allocation failed, the number of objects on the
	 * page might be smaller than the usual size defined by the cache.
	 */
	do {
		idx = s->random_seq[*pos];
		*pos += 1;
		if (*pos >= freelist_count)
			*pos = 0;
	} while (unlikely(idx >= page_limit));

	return (char *)start + idx;
}

/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	void *start;
	void *cur;
	void *next;
	unsigned long idx, pos, page_limit, freelist_count;

	if (page->objects < 2 || !s->random_seq)
		return false;

	freelist_count = oo_objects(s->oo);
	pos = get_random_int() % freelist_count;

	page_limit = page->objects * s->size;
	start = fixup_red_left(s, page_address(page));

	/* First entry is used as the base of the freelist */
	cur = next_freelist_entry(s, page, &pos, start, page_limit,
				freelist_count);
	page->freelist = cur;

	for (idx = 1; idx < page->objects; idx++) {
		setup_object(s, page, cur);
		next = next_freelist_entry(s, page, &pos, start, page_limit,
			freelist_count);
		set_freepointer(s, cur, next);
		cur = next;
	}
	setup_object(s, page, cur);
	set_freepointer(s, cur, NULL);

	return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
	return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

C
Christoph Lameter 已提交
1560 1561
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1562
	struct page *page;
1563
	struct kmem_cache_order_objects oo = s->oo;
1564
	gfp_t alloc_gfp;
1565 1566
	void *start, *p;
	int idx, order;
T
Thomas Garnier 已提交
1567
	bool shuffle;
C
Christoph Lameter 已提交
1568

1569 1570
	flags &= gfp_allowed_mask;

1571
	if (gfpflags_allow_blocking(flags))
1572 1573
		local_irq_enable();

1574
	flags |= s->allocflags;
1575

1576 1577 1578 1579 1580
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1581
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1582
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1583

1584
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1585 1586
	if (unlikely(!page)) {
		oo = s->min;
1587
		alloc_gfp = flags;
1588 1589 1590 1591
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1592
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1593 1594 1595
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1596
	}
V
Vegard Nossum 已提交
1597

1598
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1599

G
Glauber Costa 已提交
1600
	order = compound_order(page);
1601
	page->slab_cache = s;
1602
	__SetPageSlab(page);
1603
	if (page_is_pfmemalloc(page))
1604
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1605 1606 1607 1608

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1609
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1610

1611 1612
	kasan_poison_slab(page);

T
Thomas Garnier 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	shuffle = shuffle_freelist(s, page);

	if (!shuffle) {
		for_each_object_idx(p, idx, s, start, page->objects) {
			setup_object(s, page, p);
			if (likely(idx < page->objects))
				set_freepointer(s, p, p + s->size);
			else
				set_freepointer(s, p, NULL);
		}
		page->freelist = fixup_red_left(s, start);
C
Christoph Lameter 已提交
1624 1625
	}

1626
	page->inuse = page->objects;
1627
	page->frozen = 1;
1628

C
Christoph Lameter 已提交
1629
out:
1630
	if (gfpflags_allow_blocking(flags))
1631 1632 1633 1634
		local_irq_disable();
	if (!page)
		return NULL;

1635
	mod_lruvec_page_state(page,
1636 1637 1638 1639 1640 1641
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		1 << oo_order(oo));

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1642 1643 1644
	return page;
}

1645 1646 1647
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1648
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1649 1650 1651
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
1652
		dump_stack();
1653 1654 1655 1656 1657 1658
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1659 1660
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1661 1662
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1663

1664
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
C
Christoph Lameter 已提交
1665 1666 1667
		void *p;

		slab_pad_check(s, page);
1668 1669
		for_each_object(p, s, page_address(page),
						page->objects)
1670
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1671 1672
	}

1673
	mod_lruvec_page_state(page,
C
Christoph Lameter 已提交
1674 1675
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1676
		-pages);
C
Christoph Lameter 已提交
1677

1678
	__ClearPageSlabPfmemalloc(page);
1679
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1680

1681
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1682 1683
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1684 1685
	memcg_uncharge_slab(page, order, s);
	__free_pages(page, order);
C
Christoph Lameter 已提交
1686 1687
}

1688 1689 1690
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1691 1692 1693 1694
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1695 1696 1697 1698 1699
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1700
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1701 1702 1703 1704
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
1705
	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1706 1707 1708 1709 1710 1711 1712 1713 1714
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
1715
			head = &page->rcu_head;
1716
		}
C
Christoph Lameter 已提交
1717 1718 1719 1720 1721 1722 1723 1724

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1725
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1726 1727 1728 1729
	free_slab(s, page);
}

/*
1730
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1731
 */
1732 1733
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1734
{
C
Christoph Lameter 已提交
1735
	n->nr_partial++;
1736
	if (tail == DEACTIVATE_TO_TAIL)
1737 1738 1739
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1740 1741
}

1742 1743
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1744
{
P
Peter Zijlstra 已提交
1745
	lockdep_assert_held(&n->list_lock);
1746 1747
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1748

1749 1750 1751 1752
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1753 1754
	list_del(&page->lru);
	n->nr_partial--;
1755 1756
}

C
Christoph Lameter 已提交
1757
/*
1758 1759
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1760
 *
1761
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1762
 */
1763
static inline void *acquire_slab(struct kmem_cache *s,
1764
		struct kmem_cache_node *n, struct page *page,
1765
		int mode, int *objects)
C
Christoph Lameter 已提交
1766
{
1767 1768 1769 1770
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1771 1772
	lockdep_assert_held(&n->list_lock);

1773 1774 1775 1776 1777
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1778 1779 1780
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1781
	*objects = new.objects - new.inuse;
1782
	if (mode) {
1783
		new.inuse = page->objects;
1784 1785 1786 1787
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1788

1789
	VM_BUG_ON(new.frozen);
1790
	new.frozen = 1;
1791

1792
	if (!__cmpxchg_double_slab(s, page,
1793
			freelist, counters,
1794
			new.freelist, new.counters,
1795 1796
			"acquire_slab"))
		return NULL;
1797 1798

	remove_partial(n, page);
1799
	WARN_ON(!freelist);
1800
	return freelist;
C
Christoph Lameter 已提交
1801 1802
}

1803
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1804
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1805

C
Christoph Lameter 已提交
1806
/*
C
Christoph Lameter 已提交
1807
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1808
 */
1809 1810
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1811
{
1812 1813
	struct page *page, *page2;
	void *object = NULL;
1814 1815
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1816 1817 1818 1819

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1820 1821
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1822 1823 1824 1825 1826
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1827
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1828
		void *t;
1829

1830 1831 1832
		if (!pfmemalloc_match(page, flags))
			continue;

1833
		t = acquire_slab(s, n, page, object == NULL, &objects);
1834 1835 1836
		if (!t)
			break;

1837
		available += objects;
1838
		if (!object) {
1839 1840 1841 1842
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1843
			put_cpu_partial(s, page, 0);
1844
			stat(s, CPU_PARTIAL_NODE);
1845
		}
1846
		if (!kmem_cache_has_cpu_partial(s)
1847
			|| available > slub_cpu_partial(s) / 2)
1848 1849
			break;

1850
	}
C
Christoph Lameter 已提交
1851
	spin_unlock(&n->list_lock);
1852
	return object;
C
Christoph Lameter 已提交
1853 1854 1855
}

/*
C
Christoph Lameter 已提交
1856
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1857
 */
1858
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1859
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1860 1861 1862
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1863
	struct zoneref *z;
1864 1865
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1866
	void *object;
1867
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1868 1869

	/*
C
Christoph Lameter 已提交
1870 1871 1872 1873
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1874
	 *
C
Christoph Lameter 已提交
1875 1876 1877 1878
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1879
	 *
1880 1881 1882 1883 1884
	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
	 * (which makes defrag_ratio = 1000) then every (well almost)
	 * allocation will first attempt to defrag slab caches on other nodes.
	 * This means scanning over all nodes to look for partial slabs which
	 * may be expensive if we do it every time we are trying to find a slab
C
Christoph Lameter 已提交
1885
	 * with available objects.
C
Christoph Lameter 已提交
1886
	 */
1887 1888
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1889 1890
		return NULL;

1891
	do {
1892
		cpuset_mems_cookie = read_mems_allowed_begin();
1893
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1894 1895 1896 1897 1898
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1899
			if (n && cpuset_zone_allowed(zone, flags) &&
1900
					n->nr_partial > s->min_partial) {
1901
				object = get_partial_node(s, n, c, flags);
1902 1903
				if (object) {
					/*
1904 1905 1906 1907 1908
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1909 1910 1911
					 */
					return object;
				}
1912
			}
C
Christoph Lameter 已提交
1913
		}
1914
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1915 1916 1917 1918 1919 1920 1921
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1922
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1923
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1924
{
1925
	void *object;
1926 1927 1928 1929 1930 1931
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1932

1933
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1934 1935
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1936

1937
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1938 1939
}

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1981
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1982 1983 1984

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1985
		pr_warn("due to cpu change %d -> %d\n",
1986 1987 1988 1989
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1990
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1991 1992
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1993
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1994 1995
			actual_tid, tid, next_tid(tid));
#endif
1996
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1997 1998
}

1999
static void init_kmem_cache_cpus(struct kmem_cache *s)
2000 2001 2002 2003 2004 2005
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
2006

C
Christoph Lameter 已提交
2007 2008 2009
/*
 * Remove the cpu slab
 */
2010
static void deactivate_slab(struct kmem_cache *s, struct page *page,
2011
				void *freelist, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2012
{
2013 2014 2015 2016 2017
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
2018
	int tail = DEACTIVATE_TO_HEAD;
2019 2020 2021 2022
	struct page new;
	struct page old;

	if (page->freelist) {
2023
		stat(s, DEACTIVATE_REMOTE_FREES);
2024
		tail = DEACTIVATE_TO_TAIL;
2025 2026
	}

2027
	/*
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
2045
			VM_BUG_ON(!new.frozen);
2046

2047
		} while (!__cmpxchg_double_slab(s, page,
2048 2049 2050 2051 2052 2053 2054
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

2055
	/*
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
2068
	 */
2069
redo:
2070

2071 2072
	old.freelist = page->freelist;
	old.counters = page->counters;
2073
	VM_BUG_ON(!old.frozen);
2074

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

2086
	if (!new.inuse && n->nr_partial >= s->min_partial)
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
2119

P
Peter Zijlstra 已提交
2120
			remove_full(s, n, page);
2121 2122 2123 2124

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
2125
			stat(s, tail);
2126 2127

		} else if (m == M_FULL) {
2128

2129 2130 2131 2132 2133 2134 2135
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
2136
	if (!__cmpxchg_double_slab(s, page,
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2149
	}
2150 2151 2152

	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2153 2154
}

2155 2156 2157
/*
 * Unfreeze all the cpu partial slabs.
 *
2158 2159 2160
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2161
 */
2162 2163
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2164
{
2165
#ifdef CONFIG_SLUB_CPU_PARTIAL
2166
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2167
	struct page *page, *discard_page = NULL;
2168 2169 2170 2171 2172 2173

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
2174 2175 2176 2177 2178 2179 2180 2181 2182

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2183 2184 2185 2186 2187

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2188
			VM_BUG_ON(!old.frozen);
2189 2190 2191 2192 2193 2194

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2195
		} while (!__cmpxchg_double_slab(s, page,
2196 2197 2198 2199
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2200
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2201 2202
			page->next = discard_page;
			discard_page = page;
2203 2204 2205
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2206 2207 2208 2209 2210
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2211 2212 2213 2214 2215 2216 2217 2218 2219

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2220
#endif
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2232
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2233
{
2234
#ifdef CONFIG_SLUB_CPU_PARTIAL
2235 2236 2237 2238
	struct page *oldpage;
	int pages;
	int pobjects;

2239
	preempt_disable();
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2255
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2256
				local_irq_restore(flags);
2257
				oldpage = NULL;
2258 2259
				pobjects = 0;
				pages = 0;
2260
				stat(s, CPU_PARTIAL_DRAIN);
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2271 2272
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2273 2274 2275 2276 2277 2278 2279 2280
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2281
#endif
2282 2283
}

2284
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2285
{
2286
	stat(s, CPUSLAB_FLUSH);
2287
	deactivate_slab(s, c->page, c->freelist, c);
2288 2289

	c->tid = next_tid(c->tid);
C
Christoph Lameter 已提交
2290 2291 2292 2293
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2294
 *
C
Christoph Lameter 已提交
2295 2296
 * Called from IPI handler with interrupts disabled.
 */
2297
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2298
{
2299
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2300

2301 2302 2303 2304
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2305
		unfreeze_partials(s, c);
2306
	}
C
Christoph Lameter 已提交
2307 2308 2309 2310 2311 2312
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2313
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2314 2315
}

2316 2317 2318 2319 2320
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2321
	return c->page || slub_percpu_partial(c);
2322 2323
}

C
Christoph Lameter 已提交
2324 2325
static void flush_all(struct kmem_cache *s)
{
2326
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2327 2328
}

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
/*
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
 */
static int slub_cpu_dead(unsigned int cpu)
{
	struct kmem_cache *s;
	unsigned long flags;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		local_irq_save(flags);
		__flush_cpu_slab(s, cpu);
		local_irq_restore(flags);
	}
	mutex_unlock(&slab_mutex);
	return 0;
}

2348 2349 2350 2351
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2352
static inline int node_match(struct page *page, int node)
2353 2354
{
#ifdef CONFIG_NUMA
2355
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2356 2357 2358 2359 2360
		return 0;
#endif
	return 1;
}

2361
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2362 2363 2364 2365 2366
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2367 2368 2369 2370 2371 2372 2373
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2387
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2388

P
Pekka Enberg 已提交
2389 2390 2391
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2392 2393 2394
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2395
	int node;
C
Christoph Lameter 已提交
2396
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2397

2398 2399 2400
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2401 2402
	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
2403 2404 2405
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2406

2407
	if (oo_order(s->min) > get_order(s->object_size))
2408 2409
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2410

C
Christoph Lameter 已提交
2411
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2412 2413 2414 2415
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2416 2417 2418
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2419

2420
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2421 2422
			node, nr_slabs, nr_objs, nr_free);
	}
2423
#endif
P
Pekka Enberg 已提交
2424 2425
}

2426 2427 2428
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2429
	void *freelist;
2430 2431
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2432

2433
	freelist = get_partial(s, flags, node, c);
2434

2435 2436 2437 2438
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2439
	if (page) {
2440
		c = raw_cpu_ptr(s->cpu_slab);
2441 2442 2443 2444 2445 2446 2447
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2448
		freelist = page->freelist;
2449 2450 2451 2452 2453 2454
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2455
		freelist = NULL;
2456

2457
	return freelist;
2458 2459
}

2460 2461 2462 2463 2464 2465 2466 2467
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2468
/*
2469 2470
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2471 2472 2473 2474
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2475 2476
 *
 * This function must be called with interrupt disabled.
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2487

2488
		new.counters = counters;
2489
		VM_BUG_ON(!new.frozen);
2490 2491 2492 2493

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2494
	} while (!__cmpxchg_double_slab(s, page,
2495 2496 2497 2498 2499 2500 2501
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2502
/*
2503 2504 2505 2506 2507 2508
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2509
 *
2510 2511 2512
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2513
 *
2514
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2515 2516
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2517 2518 2519
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2520
 */
2521
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2522
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2523
{
2524
	void *freelist;
2525
	struct page *page;
C
Christoph Lameter 已提交
2526

2527 2528
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2529
		goto new_slab;
2530
redo:
2531

2532
	if (unlikely(!node_match(page, node))) {
2533 2534 2535 2536 2537 2538 2539
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
2540
			deactivate_slab(s, page, c->freelist, c);
2541 2542
			goto new_slab;
		}
2543
	}
C
Christoph Lameter 已提交
2544

2545 2546 2547 2548 2549 2550
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2551
		deactivate_slab(s, page, c->freelist, c);
2552 2553 2554
		goto new_slab;
	}

2555
	/* must check again c->freelist in case of cpu migration or IRQ */
2556 2557
	freelist = c->freelist;
	if (freelist)
2558
		goto load_freelist;
2559

2560
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2561

2562
	if (!freelist) {
2563 2564
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2565
		goto new_slab;
2566
	}
C
Christoph Lameter 已提交
2567

2568
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2569

2570
load_freelist:
2571 2572 2573 2574 2575
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2576
	VM_BUG_ON(!c->page->frozen);
2577
	c->freelist = get_freepointer(s, freelist);
2578
	c->tid = next_tid(c->tid);
2579
	return freelist;
C
Christoph Lameter 已提交
2580 2581

new_slab:
2582

2583 2584 2585
	if (slub_percpu_partial(c)) {
		page = c->page = slub_percpu_partial(c);
		slub_set_percpu_partial(c, page);
2586 2587
		stat(s, CPU_PARTIAL_ALLOC);
		goto redo;
C
Christoph Lameter 已提交
2588 2589
	}

2590
	freelist = new_slab_objects(s, gfpflags, node, &c);
2591

2592
	if (unlikely(!freelist)) {
2593
		slab_out_of_memory(s, gfpflags, node);
2594
		return NULL;
C
Christoph Lameter 已提交
2595
	}
2596

2597
	page = c->page;
2598
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2599
		goto load_freelist;
2600

2601
	/* Only entered in the debug case */
2602 2603
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2604
		goto new_slab;	/* Slab failed checks. Next slab needed */
2605

2606
	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2607
	return freelist;
2608 2609
}

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2645
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2646
		gfp_t gfpflags, int node, unsigned long addr)
2647
{
2648
	void *object;
2649
	struct kmem_cache_cpu *c;
2650
	struct page *page;
2651
	unsigned long tid;
2652

2653 2654
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2655
		return NULL;
2656 2657 2658 2659 2660 2661
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2662
	 *
2663 2664 2665
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2666
	 */
2667 2668 2669
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2670 2671
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2682 2683 2684 2685 2686 2687 2688 2689

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2690
	object = c->freelist;
2691
	page = c->page;
D
Dave Hansen 已提交
2692
	if (unlikely(!object || !node_match(page, node))) {
2693
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2694 2695
		stat(s, ALLOC_SLOWPATH);
	} else {
2696 2697
		void *next_object = get_freepointer_safe(s, object);

2698
		/*
L
Lucas De Marchi 已提交
2699
		 * The cmpxchg will only match if there was no additional
2700 2701
		 * operation and if we are on the right processor.
		 *
2702 2703
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2704 2705 2706 2707
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2708 2709 2710
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2711
		 */
2712
		if (unlikely(!this_cpu_cmpxchg_double(
2713 2714
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2715
				next_object, next_tid(tid)))) {
2716 2717 2718 2719

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2720
		prefetch_freepointer(s, next_object);
2721
		stat(s, ALLOC_FASTPATH);
2722
	}
2723

2724
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2725
		memset(object, 0, s->object_size);
2726

2727
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2728

2729
	return object;
C
Christoph Lameter 已提交
2730 2731
}

2732 2733 2734 2735 2736 2737
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2738 2739
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2740
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2741

2742 2743
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2744 2745

	return ret;
C
Christoph Lameter 已提交
2746 2747 2748
}
EXPORT_SYMBOL(kmem_cache_alloc);

2749
#ifdef CONFIG_TRACING
2750 2751
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2752
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2753
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2754
	kasan_kmalloc(s, ret, size, gfpflags);
2755 2756 2757
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2758 2759
#endif

C
Christoph Lameter 已提交
2760 2761 2762
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2763
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2764

2765
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2766
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2767 2768

	return ret;
C
Christoph Lameter 已提交
2769 2770 2771
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2772
#ifdef CONFIG_TRACING
2773
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2774
				    gfp_t gfpflags,
2775
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2776
{
2777
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2778 2779 2780

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2781

2782
	kasan_kmalloc(s, ret, size, gfpflags);
2783
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2784
}
2785
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2786
#endif
2787
#endif
E
Eduard - Gabriel Munteanu 已提交
2788

C
Christoph Lameter 已提交
2789
/*
K
Kim Phillips 已提交
2790
 * Slow path handling. This may still be called frequently since objects
2791
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2792
 *
2793 2794 2795
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2796
 */
2797
static void __slab_free(struct kmem_cache *s, struct page *page,
2798 2799 2800
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2801 2802
{
	void *prior;
2803 2804 2805 2806
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2807
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2808

2809
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2810

2811
	if (kmem_cache_debug(s) &&
2812
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2813
		return;
C
Christoph Lameter 已提交
2814

2815
	do {
2816 2817 2818 2819
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2820 2821
		prior = page->freelist;
		counters = page->counters;
2822
		set_freepointer(s, tail, prior);
2823 2824
		new.counters = counters;
		was_frozen = new.frozen;
2825
		new.inuse -= cnt;
2826
		if ((!new.inuse || !prior) && !was_frozen) {
2827

P
Peter Zijlstra 已提交
2828
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2829 2830

				/*
2831 2832 2833 2834
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2835 2836 2837
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2838
			} else { /* Needs to be taken off a list */
2839

2840
				n = get_node(s, page_to_nid(page));
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2852
		}
C
Christoph Lameter 已提交
2853

2854 2855
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
2856
		head, new.counters,
2857
		"__slab_free"));
C
Christoph Lameter 已提交
2858

2859
	if (likely(!n)) {
2860 2861 2862 2863 2864

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2865
		if (new.frozen && !was_frozen) {
2866
			put_cpu_partial(s, page, 1);
2867 2868
			stat(s, CPU_PARTIAL_FREE);
		}
2869
		/*
2870 2871 2872
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2873 2874 2875 2876
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2877

2878
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2879 2880
		goto slab_empty;

C
Christoph Lameter 已提交
2881
	/*
2882 2883
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2884
	 */
2885 2886
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2887
			remove_full(s, n, page);
2888 2889
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2890
	}
2891
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2892 2893 2894
	return;

slab_empty:
2895
	if (prior) {
C
Christoph Lameter 已提交
2896
		/*
2897
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2898
		 */
2899
		remove_partial(n, page);
2900
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2901
	} else {
2902
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2903 2904
		remove_full(s, n, page);
	}
2905

2906
	spin_unlock_irqrestore(&n->list_lock, flags);
2907
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2908 2909 2910
	discard_slab(s, page);
}

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
2921 2922 2923 2924
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
2925
 */
2926 2927 2928
static __always_inline void do_slab_free(struct kmem_cache *s,
				struct page *page, void *head, void *tail,
				int cnt, unsigned long addr)
2929
{
2930
	void *tail_obj = tail ? : head;
2931
	struct kmem_cache_cpu *c;
2932 2933 2934 2935 2936 2937
	unsigned long tid;
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2938
	 * during the cmpxchg then the free will succeed.
2939
	 */
2940 2941 2942
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2943 2944
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2945

2946 2947
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2948

2949
	if (likely(page == c->page)) {
2950
		set_freepointer(s, tail_obj, c->freelist);
2951

2952
		if (unlikely(!this_cpu_cmpxchg_double(
2953 2954
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
2955
				head, next_tid(tid)))) {
2956 2957 2958 2959

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2960
		stat(s, FREE_FASTPATH);
2961
	} else
2962
		__slab_free(s, page, head, tail_obj, cnt, addr);
2963 2964 2965

}

2966 2967 2968 2969 2970 2971 2972 2973 2974
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
{
	slab_free_freelist_hook(s, head, tail);
	/*
	 * slab_free_freelist_hook() could have put the items into quarantine.
	 * If so, no need to free them.
	 */
2975
	if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
		return;
	do_slab_free(s, page, head, tail, cnt, addr);
}

#ifdef CONFIG_KASAN
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
}
#endif

C
Christoph Lameter 已提交
2987 2988
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2989 2990
	s = cache_from_obj(s, x);
	if (!s)
2991
		return;
2992
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2993
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2994 2995 2996
}
EXPORT_SYMBOL(kmem_cache_free);

2997
struct detached_freelist {
2998
	struct page *page;
2999 3000 3001
	void *tail;
	void *freelist;
	int cnt;
3002
	struct kmem_cache *s;
3003
};
3004

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
3017 3018 3019
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
3020 3021 3022 3023
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
3024
	struct page *page;
3025

3026 3027
	/* Always re-init detached_freelist */
	df->page = NULL;
3028

3029 3030
	do {
		object = p[--size];
3031
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3032
	} while (!object && size);
3033

3034 3035
	if (!object)
		return 0;
3036

3037 3038 3039 3040 3041 3042
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
3043
			__free_pages(page, compound_order(page));
3044 3045 3046 3047 3048 3049 3050 3051
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
3052

3053
	/* Start new detached freelist */
3054
	df->page = page;
3055
	set_freepointer(df->s, object, NULL);
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
3069
			set_freepointer(df->s, object, df->freelist);
3070 3071 3072 3073 3074
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
3075
		}
3076 3077 3078 3079 3080 3081 3082

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
3083
	}
3084 3085 3086 3087 3088

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
3089
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3090 3091 3092 3093 3094 3095 3096 3097
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
A
Arnd Bergmann 已提交
3098
		if (!df.page)
3099 3100
			continue;

3101
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3102
	} while (likely(size));
3103 3104 3105
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

3106
/* Note that interrupts must be enabled when calling this function. */
3107 3108
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
3109
{
3110 3111 3112
	struct kmem_cache_cpu *c;
	int i;

3113 3114 3115 3116
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

3128 3129 3130 3131 3132
		if (unlikely(!object)) {
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
3133
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3134
					    _RET_IP_, c);
3135 3136 3137
			if (unlikely(!p[i]))
				goto error;

3138 3139 3140
			c = this_cpu_ptr(s->cpu_slab);
			continue; /* goto for-loop */
		}
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
		c->freelist = get_freepointer(s, object);
		p[i] = object;
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
	if (unlikely(flags & __GFP_ZERO)) {
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

3155 3156
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
3157
	return i;
3158 3159
error:
	local_irq_enable();
3160 3161
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
3162
	return 0;
3163 3164 3165 3166
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
3167
/*
C
Christoph Lameter 已提交
3168 3169 3170 3171
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
3172 3173 3174 3175
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
3176
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
3187
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3188
static int slub_min_objects;
C
Christoph Lameter 已提交
3189 3190 3191 3192

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3193 3194 3195 3196
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3197
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3198 3199 3200 3201 3202 3203
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3204
 *
C
Christoph Lameter 已提交
3205 3206 3207 3208
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3209
 *
C
Christoph Lameter 已提交
3210 3211 3212 3213
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3214
 */
3215
static inline int slab_order(int size, int min_objects,
3216
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
3217 3218 3219
{
	int order;
	int rem;
3220
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
3221

3222
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3223
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3224

3225
	for (order = max(min_order, get_order(min_objects * size + reserved));
3226
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3227

3228
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
3229

3230
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
3231

3232
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3233 3234
			break;
	}
C
Christoph Lameter 已提交
3235

C
Christoph Lameter 已提交
3236 3237 3238
	return order;
}

3239
static inline int calculate_order(int size, int reserved)
3240 3241 3242 3243
{
	int order;
	int min_objects;
	int fraction;
3244
	int max_objects;
3245 3246 3247 3248 3249 3250

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3251
	 * First we increase the acceptable waste in a slab. Then
3252 3253 3254
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3255 3256
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3257
	max_objects = order_objects(slub_max_order, size, reserved);
3258 3259
	min_objects = min(min_objects, max_objects);

3260
	while (min_objects > 1) {
C
Christoph Lameter 已提交
3261
		fraction = 16;
3262 3263
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3264
					slub_max_order, fraction, reserved);
3265 3266 3267 3268
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3269
		min_objects--;
3270 3271 3272 3273 3274 3275
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3276
	order = slab_order(size, 1, slub_max_order, 1, reserved);
3277 3278 3279 3280 3281 3282
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3283
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
3284
	if (order < MAX_ORDER)
3285 3286 3287 3288
		return order;
	return -ENOSYS;
}

3289
static void
3290
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3291 3292 3293 3294
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3295
#ifdef CONFIG_SLUB_DEBUG
3296
	atomic_long_set(&n->nr_slabs, 0);
3297
	atomic_long_set(&n->total_objects, 0);
3298
	INIT_LIST_HEAD(&n->full);
3299
#endif
C
Christoph Lameter 已提交
3300 3301
}

3302
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3303
{
3304
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3305
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3306

3307
	/*
3308 3309
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3310
	 */
3311 3312
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3313 3314 3315 3316 3317

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3318

3319
	return 1;
3320 3321
}

3322 3323
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3324 3325 3326 3327 3328
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3329 3330
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3331
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3332
 */
3333
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3334 3335 3336 3337
{
	struct page *page;
	struct kmem_cache_node *n;

3338
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3339

3340
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3341 3342

	BUG_ON(!page);
3343
	if (page_to_nid(page) != node) {
3344 3345
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3346 3347
	}

C
Christoph Lameter 已提交
3348 3349
	n = page->freelist;
	BUG_ON(!n);
3350
	page->freelist = get_freepointer(kmem_cache_node, n);
3351
	page->inuse = 1;
3352
	page->frozen = 0;
3353
	kmem_cache_node->node[node] = n;
3354
#ifdef CONFIG_SLUB_DEBUG
3355
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3356
	init_tracking(kmem_cache_node, n);
3357
#endif
3358 3359
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
		      GFP_KERNEL);
3360
	init_kmem_cache_node(n);
3361
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3362

3363
	/*
3364 3365
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3366
	 */
3367
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3368 3369 3370 3371 3372
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3373
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3374

C
Christoph Lameter 已提交
3375
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3376
		s->node[node] = NULL;
3377
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3378 3379 3380
	}
}

3381 3382
void __kmem_cache_release(struct kmem_cache *s)
{
T
Thomas Garnier 已提交
3383
	cache_random_seq_destroy(s);
3384 3385 3386 3387
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3388
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3389 3390 3391
{
	int node;

C
Christoph Lameter 已提交
3392
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3393 3394
		struct kmem_cache_node *n;

3395
		if (slab_state == DOWN) {
3396
			early_kmem_cache_node_alloc(node);
3397 3398
			continue;
		}
3399
		n = kmem_cache_alloc_node(kmem_cache_node,
3400
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3401

3402 3403 3404
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3405
		}
3406

3407
		init_kmem_cache_node(n);
3408
		s->node[node] = n;
C
Christoph Lameter 已提交
3409 3410 3411 3412
	}
	return 1;
}

3413
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3414 3415 3416 3417 3418 3419 3420 3421
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
static void set_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
	 * B) The number of objects in cpu partial slabs to extract from the
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
	 */
	if (!kmem_cache_has_cpu_partial(s))
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;
#endif
}

C
Christoph Lameter 已提交
3455 3456 3457 3458
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3459
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3460
{
3461
	slab_flags_t flags = s->flags;
3462
	size_t size = s->object_size;
3463
	int order;
C
Christoph Lameter 已提交
3464

3465 3466 3467 3468 3469 3470 3471 3472
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3473 3474 3475 3476 3477
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
3478
	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3479
			!s->ctor)
C
Christoph Lameter 已提交
3480 3481 3482 3483 3484 3485
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3486
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3487
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3488
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3489
	 */
3490
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3491
		size += sizeof(void *);
C
Christoph Lameter 已提交
3492
#endif
C
Christoph Lameter 已提交
3493 3494

	/*
C
Christoph Lameter 已提交
3495 3496
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3497 3498 3499
	 */
	s->inuse = size;

3500
	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3501
		s->ctor)) {
C
Christoph Lameter 已提交
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3514
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3515 3516 3517 3518 3519 3520
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);
3521
#endif
C
Christoph Lameter 已提交
3522

3523 3524
	kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
J
Joonsoo Kim 已提交
3525
	if (flags & SLAB_RED_ZONE) {
C
Christoph Lameter 已提交
3526 3527 3528 3529
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3530
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3531 3532 3533
		 * of the object.
		 */
		size += sizeof(void *);
J
Joonsoo Kim 已提交
3534 3535 3536 3537 3538

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
C
Christoph Lameter 已提交
3539
#endif
C
Christoph Lameter 已提交
3540

C
Christoph Lameter 已提交
3541 3542 3543 3544 3545
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3546
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3547
	s->size = size;
3548 3549 3550
	if (forced_order >= 0)
		order = forced_order;
	else
3551
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3552

3553
	if (order < 0)
C
Christoph Lameter 已提交
3554 3555
		return 0;

3556
	s->allocflags = 0;
3557
	if (order)
3558 3559 3560
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3561
		s->allocflags |= GFP_DMA;
3562 3563 3564 3565

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3566 3567 3568
	/*
	 * Determine the number of objects per slab
	 */
3569 3570
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3571 3572
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3573

3574
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3575 3576
}

3577
static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
C
Christoph Lameter 已提交
3578
{
3579
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3580
	s->reserved = 0;
3581 3582 3583
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	s->random = get_random_long();
#endif
C
Christoph Lameter 已提交
3584

3585
	if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3586
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3587

3588
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3589
		goto error;
3590 3591 3592 3593 3594
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3595
		if (get_order(s->size) > get_order(s->object_size)) {
3596 3597 3598 3599 3600 3601
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3602

3603 3604
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3605
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3606 3607 3608 3609
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3610 3611 3612 3613
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3614 3615
	set_min_partial(s, ilog2(s->size) / 2);

3616
	set_cpu_partial(s);
3617

C
Christoph Lameter 已提交
3618
#ifdef CONFIG_NUMA
3619
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3620
#endif
T
Thomas Garnier 已提交
3621 3622 3623 3624 3625 3626 3627

	/* Initialize the pre-computed randomized freelist if slab is up */
	if (slab_state >= UP) {
		if (init_cache_random_seq(s))
			goto error;
	}

3628
	if (!init_kmem_cache_nodes(s))
3629
		goto error;
C
Christoph Lameter 已提交
3630

3631
	if (alloc_kmem_cache_cpus(s))
3632
		return 0;
3633

3634
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3635 3636
error:
	if (flags & SLAB_PANIC)
J
Joe Perches 已提交
3637 3638
		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
		      s->name, (unsigned long)s->size, s->size,
3639
		      oo_order(s->oo), s->offset, (unsigned long)flags);
3640
	return -EINVAL;
C
Christoph Lameter 已提交
3641 3642
}

3643 3644 3645 3646 3647 3648
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3649 3650
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3651 3652
	if (!map)
		return;
3653
	slab_err(s, page, text, s->name);
3654 3655
	slab_lock(page);

3656
	get_map(s, page, map);
3657 3658 3659
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3660
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3661 3662 3663 3664
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3665
	kfree(map);
3666 3667 3668
#endif
}

C
Christoph Lameter 已提交
3669
/*
C
Christoph Lameter 已提交
3670
 * Attempt to free all partial slabs on a node.
3671 3672
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3673
 */
C
Christoph Lameter 已提交
3674
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3675
{
3676
	LIST_HEAD(discard);
C
Christoph Lameter 已提交
3677 3678
	struct page *page, *h;

3679 3680
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3681
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3682
		if (!page->inuse) {
3683
			remove_partial(n, page);
3684
			list_add(&page->lru, &discard);
3685 3686
		} else {
			list_slab_objects(s, page,
3687
			"Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3688
		}
3689
	}
3690
	spin_unlock_irq(&n->list_lock);
3691 3692 3693

	list_for_each_entry_safe(page, h, &discard, lru)
		discard_slab(s, page);
C
Christoph Lameter 已提交
3694 3695 3696
}

/*
C
Christoph Lameter 已提交
3697
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3698
 */
3699
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3700 3701
{
	int node;
C
Christoph Lameter 已提交
3702
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3703 3704 3705

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3706
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3707 3708
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3709 3710
			return 1;
	}
3711
	sysfs_slab_remove(s);
C
Christoph Lameter 已提交
3712 3713 3714 3715 3716 3717 3718 3719 3720
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3721
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3722 3723 3724 3725 3726 3727 3728 3729

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3730
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3731
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3732 3733 3734 3735 3736 3737 3738 3739

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3740
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3741 3742 3743 3744 3745 3746 3747 3748

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3749
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3750
	void *ret;
C
Christoph Lameter 已提交
3751

3752
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3753
		return kmalloc_large(size, flags);
3754

3755
	s = kmalloc_slab(size, flags);
3756 3757

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3758 3759
		return s;

3760
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3761

3762
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3763

3764
	kasan_kmalloc(s, ret, size, flags);
3765

E
Eduard - Gabriel Munteanu 已提交
3766
	return ret;
C
Christoph Lameter 已提交
3767 3768 3769
}
EXPORT_SYMBOL(__kmalloc);

3770
#ifdef CONFIG_NUMA
3771 3772
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3773
	struct page *page;
3774
	void *ptr = NULL;
3775

3776
	flags |= __GFP_COMP;
3777
	page = alloc_pages_node(node, flags, get_order(size));
3778
	if (page)
3779 3780
		ptr = page_address(page);

3781
	kmalloc_large_node_hook(ptr, size, flags);
3782
	return ptr;
3783 3784
}

C
Christoph Lameter 已提交
3785 3786
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3787
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3788
	void *ret;
C
Christoph Lameter 已提交
3789

3790
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3791 3792
		ret = kmalloc_large_node(size, flags, node);

3793 3794 3795
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3796 3797 3798

		return ret;
	}
3799

3800
	s = kmalloc_slab(size, flags);
3801 3802

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3803 3804
		return s;

3805
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3806

3807
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3808

3809
	kasan_kmalloc(s, ret, size, flags);
3810

E
Eduard - Gabriel Munteanu 已提交
3811
	return ret;
C
Christoph Lameter 已提交
3812 3813 3814 3815
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

K
Kees Cook 已提交
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
#ifdef CONFIG_HARDENED_USERCOPY
/*
 * Rejects objects that are incorrectly sized.
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
const char *__check_heap_object(const void *ptr, unsigned long n,
				struct page *page)
{
	struct kmem_cache *s;
	unsigned long offset;
	size_t object_size;

	/* Find object and usable object size. */
	s = page->slab_cache;
	object_size = slab_ksize(s);

	/* Reject impossible pointers. */
	if (ptr < page_address(page))
		return s->name;

	/* Find offset within object. */
	offset = (ptr - page_address(page)) % s->size;

	/* Adjust for redzone and reject if within the redzone. */
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
		if (offset < s->red_left_pad)
			return s->name;
		offset -= s->red_left_pad;
	}

	/* Allow address range falling entirely within object size. */
	if (offset <= object_size && n <= object_size - offset)
		return NULL;

	return s->name;
}
#endif /* CONFIG_HARDENED_USERCOPY */

3856
static size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3857
{
3858
	struct page *page;
C
Christoph Lameter 已提交
3859

3860
	if (unlikely(object == ZERO_SIZE_PTR))
3861 3862
		return 0;

3863 3864
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3865 3866
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3867
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3868
	}
C
Christoph Lameter 已提交
3869

3870
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3871
}
3872 3873 3874 3875 3876

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
3877 3878 3879
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(object, size);
3880 3881
	return size;
}
K
Kirill A. Shutemov 已提交
3882
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3883 3884 3885 3886

void kfree(const void *x)
{
	struct page *page;
3887
	void *object = (void *)x;
C
Christoph Lameter 已提交
3888

3889 3890
	trace_kfree(_RET_IP_, x);

3891
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3892 3893
		return;

3894
	page = virt_to_head_page(x);
3895
	if (unlikely(!PageSlab(page))) {
3896
		BUG_ON(!PageCompound(page));
3897
		kfree_hook(x);
3898
		__free_pages(page, compound_order(page));
3899 3900
		return;
	}
3901
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
3902 3903 3904
}
EXPORT_SYMBOL(kfree);

3905 3906
#define SHRINK_PROMOTE_MAX 32

3907
/*
3908 3909 3910
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3911 3912 3913 3914
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3915
 */
3916
int __kmem_cache_shrink(struct kmem_cache *s)
3917 3918 3919 3920 3921 3922
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3923 3924
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3925
	unsigned long flags;
3926
	int ret = 0;
3927 3928

	flush_all(s);
C
Christoph Lameter 已提交
3929
	for_each_kmem_cache_node(s, node, n) {
3930 3931 3932
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3933 3934 3935 3936

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3937
		 * Build lists of slabs to discard or promote.
3938
		 *
C
Christoph Lameter 已提交
3939 3940
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3941 3942
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3953
				n->nr_partial--;
3954 3955
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3956 3957 3958
		}

		/*
3959 3960
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3961
		 */
3962 3963
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3964 3965

		spin_unlock_irqrestore(&n->list_lock, flags);
3966 3967

		/* Release empty slabs */
3968
		list_for_each_entry_safe(page, t, &discard, lru)
3969
			discard_slab(s, page);
3970 3971 3972

		if (slabs_node(s, node))
			ret = 1;
3973 3974
	}

3975
	return ret;
3976 3977
}

3978
#ifdef CONFIG_MEMCG
3979 3980
static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
{
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
	/*
	 * Called with all the locks held after a sched RCU grace period.
	 * Even if @s becomes empty after shrinking, we can't know that @s
	 * doesn't have allocations already in-flight and thus can't
	 * destroy @s until the associated memcg is released.
	 *
	 * However, let's remove the sysfs files for empty caches here.
	 * Each cache has a lot of interface files which aren't
	 * particularly useful for empty draining caches; otherwise, we can
	 * easily end up with millions of unnecessary sysfs files on
	 * systems which have a lot of memory and transient cgroups.
	 */
	if (!__kmem_cache_shrink(s))
		sysfs_slab_remove(s);
3995 3996
}

3997 3998 3999 4000 4001 4002
void __kmemcg_cache_deactivate(struct kmem_cache *s)
{
	/*
	 * Disable empty slabs caching. Used to avoid pinning offline
	 * memory cgroups by kmem pages that can be freed.
	 */
4003
	slub_set_cpu_partial(s, 0);
4004 4005 4006 4007
	s->min_partial = 0;

	/*
	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4008
	 * we have to make sure the change is visible before shrinking.
4009
	 */
4010
	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4011 4012 4013
}
#endif

4014 4015 4016 4017
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

4018
	mutex_lock(&slab_mutex);
4019
	list_for_each_entry(s, &slab_caches, list)
4020
		__kmem_cache_shrink(s);
4021
	mutex_unlock(&slab_mutex);
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

4033
	offline_node = marg->status_change_nid_normal;
4034 4035 4036 4037 4038 4039 4040 4041

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

4042
	mutex_lock(&slab_mutex);
4043 4044 4045 4046 4047 4048
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
4049
			 * and offline_pages() function shouldn't call this
4050 4051
			 * callback. So, we must fail.
			 */
4052
			BUG_ON(slabs_node(s, offline_node));
4053 4054

			s->node[offline_node] = NULL;
4055
			kmem_cache_free(kmem_cache_node, n);
4056 4057
		}
	}
4058
	mutex_unlock(&slab_mutex);
4059 4060 4061 4062 4063 4064 4065
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
4066
	int nid = marg->status_change_nid_normal;
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
4077
	 * We are bringing a node online. No memory is available yet. We must
4078 4079 4080
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
4081
	mutex_lock(&slab_mutex);
4082 4083 4084 4085 4086 4087
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
4088
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4089 4090 4091 4092
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
4093
		init_kmem_cache_node(n);
4094 4095 4096
		s->node[nid] = n;
	}
out:
4097
	mutex_unlock(&slab_mutex);
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
4121 4122 4123 4124
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
4125 4126 4127
	return ret;
}

4128 4129 4130 4131
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
4132

C
Christoph Lameter 已提交
4133 4134 4135 4136
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

4137 4138
/*
 * Used for early kmem_cache structures that were allocated using
4139 4140
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
4141 4142
 */

4143
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4144 4145
{
	int node;
4146
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
4147
	struct kmem_cache_node *n;
4148

4149
	memcpy(s, static_cache, kmem_cache->object_size);
4150

4151 4152 4153 4154 4155 4156
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
4157
	for_each_kmem_cache_node(s, node, n) {
4158 4159
		struct page *p;

C
Christoph Lameter 已提交
4160 4161
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
4162

L
Li Zefan 已提交
4163
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4164 4165
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
4166 4167
#endif
	}
4168
	slab_init_memcg_params(s);
4169
	list_add(&s->list, &slab_caches);
4170
	memcg_link_cache(s);
4171
	return s;
4172 4173
}

C
Christoph Lameter 已提交
4174 4175
void __init kmem_cache_init(void)
{
4176 4177
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
4178

4179 4180 4181
	if (debug_guardpage_minorder())
		slub_max_order = 0;

4182 4183
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
4184

4185 4186
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4187

4188
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
4189 4190 4191 4192

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

4193 4194 4195 4196
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
4197

4198
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
4199

4200 4201 4202 4203 4204
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
4205
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4206 4207

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4208
	setup_kmalloc_cache_index_table();
4209
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
4210

T
Thomas Garnier 已提交
4211 4212 4213
	/* Setup random freelists for each cache */
	init_freelist_randomization();

4214 4215
	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
				  slub_cpu_dead);
C
Christoph Lameter 已提交
4216

4217
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4218
		cache_line_size(),
C
Christoph Lameter 已提交
4219 4220 4221 4222
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

4223 4224 4225 4226
void __init kmem_cache_init_late(void)
{
}

4227
struct kmem_cache *
4228
__kmem_cache_alias(const char *name, size_t size, size_t align,
4229
		   slab_flags_t flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
4230
{
4231
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
4232

4233
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
4234 4235
	if (s) {
		s->refcount++;
4236

C
Christoph Lameter 已提交
4237 4238 4239 4240
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
4241
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
4242
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
4243

4244
		for_each_memcg_cache(c, s) {
4245 4246 4247 4248 4249
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

4250 4251
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
4252
			s = NULL;
4253
		}
4254
	}
C
Christoph Lameter 已提交
4255

4256 4257
	return s;
}
P
Pekka Enberg 已提交
4258

4259
int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4260
{
4261 4262 4263 4264 4265
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
4266

4267 4268 4269 4270
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

4271
	memcg_propagate_slab_attrs(s);
4272 4273
	err = sysfs_slab_add(s);
	if (err)
4274
		__kmem_cache_release(s);
4275

4276
	return err;
C
Christoph Lameter 已提交
4277 4278
}

4279
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4280
{
4281
	struct kmem_cache *s;
4282
	void *ret;
4283

4284
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4285 4286
		return kmalloc_large(size, gfpflags);

4287
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4288

4289
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4290
		return s;
C
Christoph Lameter 已提交
4291

4292
	ret = slab_alloc(s, gfpflags, caller);
4293

L
Lucas De Marchi 已提交
4294
	/* Honor the call site pointer we received. */
4295
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4296 4297

	return ret;
C
Christoph Lameter 已提交
4298 4299
}

4300
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4301
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4302
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4303
{
4304
	struct kmem_cache *s;
4305
	void *ret;
4306

4307
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4308 4309 4310 4311 4312 4313 4314 4315
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4316

4317
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4318

4319
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4320
		return s;
C
Christoph Lameter 已提交
4321

4322
	ret = slab_alloc_node(s, gfpflags, node, caller);
4323

L
Lucas De Marchi 已提交
4324
	/* Honor the call site pointer we received. */
4325
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4326 4327

	return ret;
C
Christoph Lameter 已提交
4328
}
4329
#endif
C
Christoph Lameter 已提交
4330

4331
#ifdef CONFIG_SYSFS
4332 4333 4334 4335 4336 4337 4338 4339 4340
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4341
#endif
4342

4343
#ifdef CONFIG_SLUB_DEBUG
4344 4345
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4346 4347
{
	void *p;
4348
	void *addr = page_address(page);
4349 4350 4351 4352 4353 4354

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
4355
	bitmap_zero(map, page->objects);
4356

4357 4358 4359 4360 4361
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
4362 4363
	}

4364
	for_each_object(p, s, addr, page->objects)
4365
		if (!test_bit(slab_index(p, s, addr), map))
4366
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4367 4368 4369 4370
				return 0;
	return 1;
}

4371 4372
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4373
{
4374 4375 4376
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4377 4378
}

4379 4380
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4381 4382 4383 4384 4385 4386 4387 4388
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
4389
		validate_slab_slab(s, page, map);
4390 4391 4392
		count++;
	}
	if (count != n->nr_partial)
4393 4394
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4395 4396 4397 4398 4399

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
4400
		validate_slab_slab(s, page, map);
4401 4402 4403
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4404 4405
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4406 4407 4408 4409 4410 4411

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4412
static long validate_slab_cache(struct kmem_cache *s)
4413 4414 4415
{
	int node;
	unsigned long count = 0;
4416
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4417
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4418
	struct kmem_cache_node *n;
4419 4420 4421

	if (!map)
		return -ENOMEM;
4422 4423

	flush_all(s);
C
Christoph Lameter 已提交
4424
	for_each_kmem_cache_node(s, node, n)
4425 4426
		count += validate_slab_node(s, n, map);
	kfree(map);
4427 4428
	return count;
}
4429
/*
C
Christoph Lameter 已提交
4430
 * Generate lists of code addresses where slabcache objects are allocated
4431 4432 4433 4434 4435
 * and freed.
 */

struct location {
	unsigned long count;
4436
	unsigned long addr;
4437 4438 4439 4440 4441
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4442
	DECLARE_BITMAP(cpus, NR_CPUS);
4443
	nodemask_t nodes;
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4459
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4460 4461 4462 4463 4464 4465
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4466
	l = (void *)__get_free_pages(flags, order);
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4480
				const struct track *track)
4481 4482 4483
{
	long start, end, pos;
	struct location *l;
4484
	unsigned long caddr;
4485
	unsigned long age = jiffies - track->when;
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4517 4518
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4519 4520
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4521 4522 4523
			return 1;
		}

4524
		if (track->addr < caddr)
4525 4526 4527 4528 4529 4530
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4531
	 * Not found. Insert new tracking element.
4532
	 */
4533
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4534 4535 4536 4537 4538 4539 4540 4541
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4542 4543 4544 4545 4546 4547
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4548 4549
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4550 4551
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4552 4553 4554 4555
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4556
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4557
		unsigned long *map)
4558
{
4559
	void *addr = page_address(page);
4560 4561
	void *p;

4562
	bitmap_zero(map, page->objects);
4563
	get_map(s, page, map);
4564

4565
	for_each_object(p, s, addr, page->objects)
4566 4567
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4568 4569 4570 4571 4572
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4573
	int len = 0;
4574
	unsigned long i;
4575
	struct loc_track t = { 0, 0, NULL };
4576
	int node;
E
Eric Dumazet 已提交
4577 4578
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4579
	struct kmem_cache_node *n;
4580

E
Eric Dumazet 已提交
4581
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4582
				     GFP_KERNEL)) {
E
Eric Dumazet 已提交
4583
		kfree(map);
4584
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4585
	}
4586 4587 4588
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4589
	for_each_kmem_cache_node(s, node, n) {
4590 4591 4592
		unsigned long flags;
		struct page *page;

4593
		if (!atomic_long_read(&n->nr_slabs))
4594 4595 4596 4597
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4598
			process_slab(&t, s, page, alloc, map);
4599
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4600
			process_slab(&t, s, page, alloc, map);
4601 4602 4603 4604
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4605
		struct location *l = &t.loc[i];
4606

H
Hugh Dickins 已提交
4607
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4608
			break;
4609
		len += sprintf(buf + len, "%7ld ", l->count);
4610 4611

		if (l->addr)
J
Joe Perches 已提交
4612
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4613
		else
4614
			len += sprintf(buf + len, "<not-available>");
4615 4616

		if (l->sum_time != l->min_time) {
4617
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4618 4619 4620
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4621
		} else
4622
			len += sprintf(buf + len, " age=%ld",
4623 4624 4625
				l->min_time);

		if (l->min_pid != l->max_pid)
4626
			len += sprintf(buf + len, " pid=%ld-%ld",
4627 4628
				l->min_pid, l->max_pid);
		else
4629
			len += sprintf(buf + len, " pid=%ld",
4630 4631
				l->min_pid);

R
Rusty Russell 已提交
4632 4633
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4634 4635 4636 4637
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4638

4639
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4640 4641 4642 4643
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4644

4645
		len += sprintf(buf + len, "\n");
4646 4647 4648
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4649
	kfree(map);
4650
	if (!t.count)
4651 4652
		len += sprintf(buf, "No data\n");
	return len;
4653
}
4654
#endif
4655

4656
#ifdef SLUB_RESILIENCY_TEST
4657
static void __init resiliency_test(void)
4658 4659 4660
{
	u8 *p;

4661
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4662

4663 4664 4665
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4666 4667 4668

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4669 4670
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4671 4672 4673 4674 4675 4676

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4677 4678 4679
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4680 4681 4682 4683 4684

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4685 4686 4687
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4688 4689
	validate_slab_cache(kmalloc_caches[6]);

4690
	pr_err("\nB. Corruption after free\n");
4691 4692 4693
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4694
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4695 4696 4697 4698 4699
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4700
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4701 4702 4703 4704 4705
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4706
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4707 4708 4709 4710 4711 4712 4713 4714
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4715
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4716
enum slab_stat_type {
4717 4718 4719 4720 4721
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4722 4723
};

4724
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4725 4726 4727
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4728
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4729

4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
#ifdef CONFIG_MEMCG
static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);

static int __init setup_slub_memcg_sysfs(char *str)
{
	int v;

	if (get_option(&str, &v) > 0)
		memcg_sysfs_enabled = v;

	return 1;
}

__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
#endif

4746 4747
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4748 4749 4750 4751 4752 4753
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4754
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4755 4756
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4757

4758 4759
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4760

4761
		for_each_possible_cpu(cpu) {
4762 4763
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4764
			int node;
4765
			struct page *page;
4766

4767
			page = READ_ONCE(c->page);
4768 4769
			if (!page)
				continue;
4770

4771 4772 4773 4774 4775 4776 4777
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4778

4779 4780 4781
			total += x;
			nodes[node] += x;

4782
			page = slub_percpu_partial_read_once(c);
4783
			if (page) {
L
Li Zefan 已提交
4784 4785 4786 4787 4788 4789 4790
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4791 4792
				total += x;
				nodes[node] += x;
4793
			}
C
Christoph Lameter 已提交
4794 4795 4796
		}
	}

4797
	get_online_mems();
4798
#ifdef CONFIG_SLUB_DEBUG
4799
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4800 4801 4802
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4803

4804 4805 4806 4807 4808
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4809
			else
4810
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4811 4812 4813 4814
			total += x;
			nodes[node] += x;
		}

4815 4816 4817
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4818
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4819

C
Christoph Lameter 已提交
4820
		for_each_kmem_cache_node(s, node, n) {
4821 4822 4823 4824
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4825
			else
4826
				x = n->nr_partial;
C
Christoph Lameter 已提交
4827 4828 4829 4830 4831 4832
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4833
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4834 4835 4836 4837
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4838
	put_online_mems();
C
Christoph Lameter 已提交
4839 4840 4841 4842
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4843
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4844 4845 4846
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4847
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4848

C
Christoph Lameter 已提交
4849
	for_each_kmem_cache_node(s, node, n)
4850
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4851
			return 1;
C
Christoph Lameter 已提交
4852

C
Christoph Lameter 已提交
4853 4854
	return 0;
}
4855
#endif
C
Christoph Lameter 已提交
4856 4857

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4858
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4859 4860 4861 4862 4863 4864 4865 4866

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4867 4868
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4869 4870 4871

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4872
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4888
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4889 4890 4891 4892 4893
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4894
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4895 4896 4897
}
SLAB_ATTR_RO(objs_per_slab);

4898 4899 4900
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4901 4902 4903
	unsigned long order;
	int err;

4904
	err = kstrtoul(buf, 10, &order);
4905 4906
	if (err)
		return err;
4907 4908 4909 4910 4911 4912 4913 4914

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4915 4916
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4917
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4918
}
4919
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4920

4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4932
	err = kstrtoul(buf, 10, &min);
4933 4934 4935
	if (err)
		return err;

4936
	set_min_partial(s, min);
4937 4938 4939 4940
	return length;
}
SLAB_ATTR(min_partial);

4941 4942
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
4943
	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4944 4945 4946 4947 4948 4949 4950 4951
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4952
	err = kstrtoul(buf, 10, &objects);
4953 4954
	if (err)
		return err;
4955
	if (objects && !kmem_cache_has_cpu_partial(s))
4956
		return -EINVAL;
4957

4958
	slub_set_cpu_partial(s, objects);
4959 4960 4961 4962 4963
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4964 4965
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4966 4967 4968
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4969 4970 4971 4972 4973
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4974
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4975 4976 4977 4978 4979
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4980
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4981 4982 4983 4984 4985
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4986
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4987 4988 4989 4990 4991
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4992
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4993 4994 4995
}
SLAB_ATTR_RO(objects);

4996 4997 4998 4999 5000 5001
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

5002 5003 5004 5005 5006 5007 5008 5009
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
5010 5011 5012
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
5024 5025 5026
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
5068
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5069 5070 5071
}
SLAB_ATTR_RO(destroy_by_rcu);

5072 5073 5074 5075 5076 5077
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

5078
#ifdef CONFIG_SLUB_DEBUG
5079 5080 5081 5082 5083 5084
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

5085 5086 5087 5088 5089 5090
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
5091 5092
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
5093
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
C
Christoph Lameter 已提交
5094 5095 5096 5097 5098
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
5099
	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5100 5101
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
5102
		s->flags |= SLAB_CONSISTENCY_CHECKS;
5103
	}
C
Christoph Lameter 已提交
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5116 5117 5118 5119 5120 5121 5122 5123
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
5124
	s->flags &= ~SLAB_TRACE;
5125 5126
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5127
		s->flags |= SLAB_TRACE;
5128
	}
C
Christoph Lameter 已提交
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
5145
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5146
		s->flags |= SLAB_RED_ZONE;
5147
	}
5148
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
5165
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5166
		s->flags |= SLAB_POISON;
5167
	}
5168
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
5185 5186
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5187
		s->flags |= SLAB_STORE_USER;
5188
	}
5189
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5190 5191 5192 5193
	return length;
}
SLAB_ATTR(store_user);

5194 5195 5196 5197 5198 5199 5200 5201
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5202 5203 5204 5205 5206 5207 5208 5209
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
5210 5211
}
SLAB_ATTR(validate);
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5239 5240 5241
	if (s->refcount > 1)
		return -EINVAL;

5242 5243 5244 5245 5246 5247
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
5248
#endif
5249

5250 5251 5252 5253 5254 5255 5256 5257
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5258 5259 5260
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
5261 5262 5263 5264 5265
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
5266
#ifdef CONFIG_NUMA
5267
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
5268
{
5269
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
5270 5271
}

5272
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5273 5274
				const char *buf, size_t length)
{
5275 5276 5277
	unsigned long ratio;
	int err;

5278
	err = kstrtoul(buf, 10, &ratio);
5279 5280 5281
	if (err)
		return err;

5282
	if (ratio <= 100)
5283
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5284 5285 5286

	return length;
}
5287
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5288 5289
#endif

5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5302
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5303 5304 5305 5306 5307 5308 5309

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

5310
#ifdef CONFIG_SMP
5311 5312
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
5313
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5314
	}
5315
#endif
5316 5317 5318 5319
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5320 5321 5322 5323 5324
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5325
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5326 5327
}

5328 5329 5330 5331 5332
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5333 5334 5335 5336 5337 5338 5339 5340 5341
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5353
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5354 5355 5356 5357 5358 5359 5360
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5361
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5362
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5363 5364
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5365 5366
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5367 5368
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5369 5370
#endif

P
Pekka Enberg 已提交
5371
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5372 5373 5374 5375
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5376
	&min_partial_attr.attr,
5377
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5378
	&objects_attr.attr,
5379
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5380 5381 5382 5383 5384 5385 5386 5387
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5388
	&shrink_attr.attr,
5389
	&reserved_attr.attr,
5390
	&slabs_cpu_partial_attr.attr,
5391
#ifdef CONFIG_SLUB_DEBUG
5392 5393 5394 5395
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5396 5397 5398
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5399
	&validate_attr.attr,
5400 5401
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5402
#endif
C
Christoph Lameter 已提交
5403 5404 5405 5406
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5407
	&remote_node_defrag_ratio_attr.attr,
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5420
	&alloc_node_mismatch_attr.attr,
5421 5422 5423 5424 5425 5426 5427
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5428
	&deactivate_bypass_attr.attr,
5429
	&order_fallback_attr.attr,
5430 5431
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5432 5433
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5434 5435
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5436
#endif
5437 5438 5439 5440
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
5441 5442 5443
	NULL
};

5444
static const struct attribute_group slab_attr_group = {
C
Christoph Lameter 已提交
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5482
#ifdef CONFIG_MEMCG
5483
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5484
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5485

5486 5487 5488 5489
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5507 5508
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5509 5510 5511
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5512 5513 5514
	return err;
}

5515 5516
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5517
#ifdef CONFIG_MEMCG
5518 5519
	int i;
	char *buffer = NULL;
5520
	struct kmem_cache *root_cache;
5521

5522
	if (is_root_cache(s))
5523 5524
		return;

5525
	root_cache = s->memcg_params.root_cache;
5526

5527 5528 5529 5530
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5531
	if (!root_cache->max_attr_size)
5532 5533 5534 5535 5536 5537
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5538
		ssize_t len;
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5554
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5555 5556 5557 5558 5559 5560 5561 5562
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5563 5564 5565
		len = attr->show(root_cache, buf);
		if (len > 0)
			attr->store(s, buf, len);
5566 5567 5568 5569 5570 5571 5572
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5573 5574 5575 5576 5577
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5578
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5579 5580 5581 5582 5583 5584
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5585
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5597
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5598 5599 5600
	.filter = uevent_filter,
};

5601
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5602

5603 5604
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5605
#ifdef CONFIG_MEMCG
5606
	if (!is_root_cache(s))
5607
		return s->memcg_params.root_cache->memcg_kset;
5608 5609 5610 5611
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5612 5613 5614
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5615 5616
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
5637
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
C
Christoph Lameter 已提交
5638
		*p++ = 'F';
V
Vladimir Davydov 已提交
5639 5640
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5641 5642 5643
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5644

C
Christoph Lameter 已提交
5645 5646 5647 5648
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
static void sysfs_slab_remove_workfn(struct work_struct *work)
{
	struct kmem_cache *s =
		container_of(work, struct kmem_cache, kobj_remove_work);

	if (!s->kobj.state_in_sysfs)
		/*
		 * For a memcg cache, this may be called during
		 * deactivation and again on shutdown.  Remove only once.
		 * A cache is never shut down before deactivation is
		 * complete, so no need to worry about synchronization.
		 */
5661
		goto out;
5662 5663 5664 5665 5666 5667

#ifdef CONFIG_MEMCG
	kset_unregister(s->memcg_kset);
#endif
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
5668
out:
5669 5670 5671
	kobject_put(&s->kobj);
}

C
Christoph Lameter 已提交
5672 5673 5674 5675
static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5676
	struct kset *kset = cache_kset(s);
5677
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5678

5679 5680
	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);

5681 5682 5683 5684 5685
	if (!kset) {
		kobject_init(&s->kobj, &slab_ktype);
		return 0;
	}

5686 5687 5688 5689
	if (!unmergeable && disable_higher_order_debug &&
			(slub_debug & DEBUG_METADATA_FLAGS))
		unmergeable = 1;

C
Christoph Lameter 已提交
5690 5691 5692 5693 5694 5695
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5696
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5697 5698 5699 5700 5701 5702 5703 5704 5705
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5706
	s->kobj.kset = kset;
5707
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5708
	if (err)
5709
		goto out;
C
Christoph Lameter 已提交
5710 5711

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5712 5713
	if (err)
		goto out_del_kobj;
5714

5715
#ifdef CONFIG_MEMCG
5716
	if (is_root_cache(s) && memcg_sysfs_enabled) {
5717 5718
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5719 5720
			err = -ENOMEM;
			goto out_del_kobj;
5721 5722 5723 5724
		}
	}
#endif

C
Christoph Lameter 已提交
5725 5726 5727 5728 5729
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5730 5731 5732 5733 5734 5735 5736
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5737 5738
}

5739
static void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5740
{
5741
	if (slab_state < FULL)
5742 5743 5744 5745 5746 5747
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5748 5749
	kobject_get(&s->kobj);
	schedule_work(&s->kobj_remove_work);
5750 5751 5752 5753 5754 5755
}

void sysfs_slab_release(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5756 5757 5758 5759
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5760
 * available lest we lose that information.
C
Christoph Lameter 已提交
5761 5762 5763 5764 5765 5766 5767
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5768
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5769 5770 5771 5772 5773

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5774
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5775 5776 5777
		/*
		 * If we have a leftover link then remove it.
		 */
5778 5779
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5795
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5796 5797
	int err;

5798
	mutex_lock(&slab_mutex);
5799

5800
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5801
	if (!slab_kset) {
5802
		mutex_unlock(&slab_mutex);
5803
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5804 5805 5806
		return -ENOSYS;
	}

5807
	slab_state = FULL;
5808

5809
	list_for_each_entry(s, &slab_caches, list) {
5810
		err = sysfs_slab_add(s);
5811
		if (err)
5812 5813
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5814
	}
C
Christoph Lameter 已提交
5815 5816 5817 5818 5819 5820

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5821
		if (err)
5822 5823
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5824 5825 5826
		kfree(al);
	}

5827
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5828 5829 5830 5831 5832
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5833
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5834 5835 5836 5837

/*
 * The /proc/slabinfo ABI
 */
Y
Yang Shi 已提交
5838
#ifdef CONFIG_SLUB_DEBUG
5839
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5840 5841
{
	unsigned long nr_slabs = 0;
5842 5843
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5844
	int node;
C
Christoph Lameter 已提交
5845
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5846

C
Christoph Lameter 已提交
5847
	for_each_kmem_cache_node(s, node, n) {
5848 5849
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5850
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5851 5852
	}

5853 5854 5855 5856 5857 5858
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5859 5860
}

5861
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5862 5863 5864
{
}

5865 5866
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5867
{
5868
	return -EIO;
5869
}
Y
Yang Shi 已提交
5870
#endif /* CONFIG_SLUB_DEBUG */