slub.c 126.2 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

C
Christoph Lameter 已提交
172 173 174 175
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 177
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
178 179

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
180
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
181

182 183
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
184
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185

C
Christoph Lameter 已提交
186
/* Internal SLUB flags */
C
Christoph Lameter 已提交
187
#define __OBJECT_POISON		0x80000000UL /* Poison object */
188
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
189 190 191 192 193

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

194 195 196
/*
 * Tracking user of a slab.
 */
197
#define TRACK_ADDRS_COUNT 16
198
struct track {
199
	unsigned long addr;	/* Called from address */
200 201 202
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
203 204 205 206 207 208 209
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

210
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
211 212 213
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
214
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
215
#else
216 217 218
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
219
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220

221
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
222 223
#endif

224
static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 226
{
#ifdef CONFIG_SLUB_STATS
227
	__this_cpu_inc(s->cpu_slab->stat[si]);
228 229 230
#endif
}

C
Christoph Lameter 已提交
231 232 233 234 235 236 237 238 239
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

C
Christoph Lameter 已提交
240
/* Verify that a pointer has an address that is valid within a slab page */
241 242 243 244 245
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

246
	if (!object)
247 248
		return 1;

249
	base = page_address(page);
250
	if (object < base || object >= base + page->objects * s->size ||
251 252 253 254 255 256 257
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

258 259 260 261 262
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

263 264 265 266 267
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

268 269 270 271 272 273 274 275 276 277 278 279
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

280 281 282 283 284 285
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
286 287
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 289 290 291 292 293 294 295
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

296 297 298 299 300 301 302 303
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304
		return s->object_size;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

320 321 322 323 324
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

325
static inline struct kmem_cache_order_objects oo_make(int order,
326
		unsigned long size, int reserved)
327 328
{
	struct kmem_cache_order_objects x = {
329
		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 331 332 333 334 335 336
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
337
	return x.x >> OO_SHIFT;
338 339 340 341
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
342
	return x.x & OO_MASK;
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

358 359 360 361 362 363 364
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
365 366
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367
	if (s->flags & __CMPXCHG_DOUBLE) {
368
		if (cmpxchg_double(&page->freelist, &page->counters,
369 370 371 372 373 374 375
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
376 377
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
			page->freelist = freelist_new;
			page->counters = counters_new;
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

396 397 398 399 400
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
401 402
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
403
	if (s->flags & __CMPXCHG_DOUBLE) {
404
		if (cmpxchg_double(&page->freelist, &page->counters,
405 406 407 408 409 410
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
411 412 413
		unsigned long flags;

		local_irq_save(flags);
414
		slab_lock(page);
415 416
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
417 418
			page->freelist = freelist_new;
			page->counters = counters_new;
419
			slab_unlock(page);
420
			local_irq_restore(flags);
421 422
			return 1;
		}
423
		slab_unlock(page);
424
		local_irq_restore(flags);
425 426 427 428 429 430 431 432 433 434 435 436
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

C
Christoph Lameter 已提交
437
#ifdef CONFIG_SLUB_DEBUG
438 439 440
/*
 * Determine a map of object in use on a page.
 *
441
 * Node listlock must be held to guarantee that the page does
442 443 444 445 446 447 448 449 450 451 452
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
453 454 455
/*
 * Debug settings:
 */
456 457 458
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
459
static int slub_debug;
460
#endif
C
Christoph Lameter 已提交
461 462

static char *slub_debug_slabs;
463
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
464

C
Christoph Lameter 已提交
465 466 467 468 469
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
470 471
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
488
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
489
{
A
Akinobu Mita 已提交
490
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
491 492

	if (addr) {
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
511 512
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
513
		p->pid = current->pid;
C
Christoph Lameter 已提交
514 515 516 517 518 519 520
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
521 522 523
	if (!(s->flags & SLAB_STORE_USER))
		return;

524 525
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
526 527 528 529 530 531 532
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

533
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
534
		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
535 536 537 538 539 540 541 542 543 544
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
			else
				break;
	}
#endif
545 546 547 548 549 550 551 552 553 554 555 556 557
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
558 559 560
	printk(KERN_ERR
	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
	       page, page->objects, page->inuse, page->freelist, page->flags);
561 562 563 564 565 566 567 568 569 570 571 572 573

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
574
	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
575 576
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
577

578
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
C
Christoph Lameter 已提交
579 580
}

581 582 583 584 585 586 587 588 589 590 591 592
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
593 594
{
	unsigned int off;	/* Offset of last byte */
595
	u8 *addr = page_address(page);
596 597 598 599 600 601 602 603 604

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
605
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
606

607
	print_section("Object ", p, min_t(unsigned long, s->object_size,
608
				PAGE_SIZE));
C
Christoph Lameter 已提交
609
	if (s->flags & SLAB_RED_ZONE)
610 611
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
612 613 614 615 616 617

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

618
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
619 620 621 622
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
623
		print_section("Padding ", p + off, s->size - off);
624 625

	dump_stack();
C
Christoph Lameter 已提交
626 627 628 629 630
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
631
	slab_bug(s, "%s", reason);
632
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
633 634
}

635 636
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
637 638 639 640
{
	va_list args;
	char buf[100];

641 642
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
643
	va_end(args);
644
	slab_bug(s, "%s", buf);
645
	print_page_info(page);
C
Christoph Lameter 已提交
646 647 648
	dump_stack();
}

649
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
650 651 652 653
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
654 655
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
656 657 658
	}

	if (s->flags & SLAB_RED_ZONE)
659
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
660 661
}

662 663 664 665 666 667 668 669 670
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
671
			u8 *start, unsigned int value, unsigned int bytes)
672 673 674 675
{
	u8 *fault;
	u8 *end;

676
	fault = memchr_inv(start, value, bytes);
677 678 679 680 681 682 683 684 685 686 687 688 689 690
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
691 692 693 694 695 696 697 698 699
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
700
 *
C
Christoph Lameter 已提交
701 702 703
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
704
 * object + s->object_size
C
Christoph Lameter 已提交
705
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
706
 * 	Padding is extended by another word if Redzoning is enabled and
707
 * 	object_size == inuse.
C
Christoph Lameter 已提交
708
 *
C
Christoph Lameter 已提交
709 710 711 712
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
713 714
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
715 716
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
717
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
718
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
719 720 721
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
722 723
 *
 * object + s->size
C
Christoph Lameter 已提交
724
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
725
 *
726
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
727
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

746 747
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
748 749
}

750
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
751 752
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
753 754 755 756 757
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
758 759 760 761

	if (!(s->flags & SLAB_POISON))
		return 1;

762
	start = page_address(page);
763
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
764 765
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
766 767 768
	if (!remainder)
		return 1;

769
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
770 771 772 773 774 775
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
776
	print_section("Padding ", end - remainder, remainder);
777

E
Eric Dumazet 已提交
778
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
779
	return 0;
C
Christoph Lameter 已提交
780 781 782
}

static int check_object(struct kmem_cache *s, struct page *page,
783
					void *object, u8 val)
C
Christoph Lameter 已提交
784 785
{
	u8 *p = object;
786
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
787 788

	if (s->flags & SLAB_RED_ZONE) {
789
		if (!check_bytes_and_report(s, page, object, "Redzone",
790
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
791 792
			return 0;
	} else {
793
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
794
			check_bytes_and_report(s, page, p, "Alignment padding",
795 796
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
797
		}
C
Christoph Lameter 已提交
798 799 800
	}

	if (s->flags & SLAB_POISON) {
801
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
802
			(!check_bytes_and_report(s, page, p, "Poison", p,
803
					POISON_FREE, s->object_size - 1) ||
804
			 !check_bytes_and_report(s, page, p, "Poison",
805
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
806 807 808 809 810 811 812
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

813
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
814 815 816 817 818 819 820 821 822 823
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
824
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
825
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
826
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
827
		 */
828
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
829 830 831 832 833 834 835
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
836 837
	int maxobj;

C
Christoph Lameter 已提交
838 839 840
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
841
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
842 843
		return 0;
	}
844

845
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
846 847 848 849 850 851
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
852
		slab_err(s, page, "inuse %u > max %u",
853
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
854 855 856 857 858 859 860 861
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
862 863
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
864 865 866 867
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
868
	void *fp;
C
Christoph Lameter 已提交
869
	void *object = NULL;
870
	unsigned long max_objects;
C
Christoph Lameter 已提交
871

872
	fp = page->freelist;
873
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
874 875 876 877 878 879
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
880
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
881
			} else {
882
				slab_err(s, page, "Freepointer corrupt");
883
				page->freelist = NULL;
884
				page->inuse = page->objects;
885
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
886 887 888 889 890 891 892 893 894
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

895
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
896 897
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
898 899 900 901 902 903 904

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
905
	if (page->inuse != page->objects - nr) {
906
		slab_err(s, page, "Wrong object count. Counter is %d but "
907 908
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
909
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
910 911 912 913
	}
	return search == NULL;
}

914 915
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
916 917 918 919 920 921 922 923 924
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
925 926
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
927 928 929 930 931

		dump_stack();
	}
}

932 933 934 935
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
936 937 938 939 940 941 942 943 944 945
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

946 947
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
948
	flags &= gfp_allowed_mask;
949 950 951
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

952
	return should_failslab(s->object_size, flags, s->flags);
953 954
}

955 956
static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
957
{
958
	flags &= gfp_allowed_mask;
959
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
960
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
961 962 963 964 965 966
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

967
	/*
X
Xie XiuQi 已提交
968
	 * Trouble is that we may no longer disable interrupts in the fast path
969 970 971 972 973 974 975 976
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
977 978
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
979 980 981
		local_irq_restore(flags);
	}
#endif
982
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
983
		debug_check_no_obj_freed(x, s->object_size);
984 985
}

986
/*
C
Christoph Lameter 已提交
987
 * Tracking of fully allocated slabs for debugging purposes.
988
 */
989 990
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
991
{
P
Peter Zijlstra 已提交
992 993
	lockdep_assert_held(&n->list_lock);

994 995 996
	if (!(s->flags & SLAB_STORE_USER))
		return;

997 998 999
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
1000
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1001
{
P
Peter Zijlstra 已提交
1002 1003
	lockdep_assert_held(&n->list_lock);

1004 1005 1006 1007 1008 1009
	if (!(s->flags & SLAB_STORE_USER))
		return;

	list_del(&page->lru);
}

1010 1011 1012 1013 1014 1015 1016 1017
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1018 1019 1020 1021 1022
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1023
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1024 1025 1026 1027 1028 1029 1030 1031 1032
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1033
	if (likely(n)) {
1034
		atomic_long_inc(&n->nr_slabs);
1035 1036
		atomic_long_add(objects, &n->total_objects);
	}
1037
}
1038
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1039 1040 1041 1042
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1043
	atomic_long_sub(objects, &n->total_objects);
1044 1045 1046
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1047 1048 1049 1050 1051 1052
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1053
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1054 1055 1056
	init_tracking(s, object);
}

1057 1058
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1059
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1060 1061 1062 1063 1064 1065
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1066
		goto bad;
C
Christoph Lameter 已提交
1067 1068
	}

1069
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1070 1071
		goto bad;

C
Christoph Lameter 已提交
1072 1073 1074 1075
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1076
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1077
	return 1;
C
Christoph Lameter 已提交
1078

C
Christoph Lameter 已提交
1079 1080 1081 1082 1083
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1084
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1085
		 */
1086
		slab_fix(s, "Marking all objects used");
1087
		page->inuse = page->objects;
1088
		page->freelist = NULL;
C
Christoph Lameter 已提交
1089 1090 1091 1092
	}
	return 0;
}

1093 1094 1095
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1096
{
1097
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1098

1099
	spin_lock_irqsave(&n->list_lock, *flags);
1100 1101
	slab_lock(page);

C
Christoph Lameter 已提交
1102 1103 1104 1105
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1106
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1107 1108 1109 1110
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1111
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1112 1113 1114
		goto fail;
	}

1115
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1116
		goto out;
C
Christoph Lameter 已提交
1117

1118
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1119
		if (!PageSlab(page)) {
1120 1121
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1122
		} else if (!page->slab_cache) {
C
Christoph Lameter 已提交
1123
			printk(KERN_ERR
1124
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
1125
						object);
1126
			dump_stack();
P
Pekka Enberg 已提交
1127
		} else
1128 1129
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1130 1131
		goto fail;
	}
C
Christoph Lameter 已提交
1132 1133 1134 1135

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1136
	init_object(s, object, SLUB_RED_INACTIVE);
1137
out:
1138
	slab_unlock(page);
1139 1140 1141 1142 1143
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1144

C
Christoph Lameter 已提交
1145
fail:
1146 1147
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1148
	slab_fix(s, "Object at 0x%p not freed", object);
1149
	return NULL;
C
Christoph Lameter 已提交
1150 1151
}

C
Christoph Lameter 已提交
1152 1153
static int __init setup_slub_debug(char *str)
{
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1168 1169 1170 1171 1172 1173 1174 1175 1176
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1187
	for (; *str && *str != ','; str++) {
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1204 1205 1206
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1207 1208
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1209
				"unknown. skipped\n", *str);
1210
		}
C
Christoph Lameter 已提交
1211 1212
	}

1213
check_slabs:
C
Christoph Lameter 已提交
1214 1215
	if (*str == ',')
		slub_debug_slabs = str + 1;
1216
out:
C
Christoph Lameter 已提交
1217 1218 1219 1220 1221
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1222
static unsigned long kmem_cache_flags(unsigned long object_size,
1223
	unsigned long flags, const char *name,
1224
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1225 1226
{
	/*
1227
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1228
	 */
1229 1230
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1231
		flags |= slub_debug;
1232 1233

	return flags;
C
Christoph Lameter 已提交
1234 1235
}
#else
C
Christoph Lameter 已提交
1236 1237
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1238

C
Christoph Lameter 已提交
1239
static inline int alloc_debug_processing(struct kmem_cache *s,
1240
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1241

1242 1243 1244
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1245 1246 1247 1248

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1249
			void *object, u8 val) { return 1; }
1250 1251
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1252 1253
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1254
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1255
	unsigned long flags, const char *name,
1256
	void (*ctor)(void *))
1257 1258 1259
{
	return flags;
}
C
Christoph Lameter 已提交
1260
#define slub_debug 0
1261

1262 1263
#define disable_higher_order_debug 0

1264 1265
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1266 1267
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1268 1269 1270 1271
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1283 1284 1285 1286
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1287 1288 1289 1290 1291
		void *object)
{
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
		flags & gfp_allowed_mask);
}
1292

1293 1294 1295 1296
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
}
1297

1298
#endif /* CONFIG_SLUB_DEBUG */
1299

C
Christoph Lameter 已提交
1300 1301 1302
/*
 * Slab allocation and freeing
 */
1303 1304 1305 1306 1307
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

1308 1309
	flags |= __GFP_NOTRACK;

1310
	if (node == NUMA_NO_NODE)
1311 1312
		return alloc_pages(flags, order);
	else
1313
		return alloc_pages_exact_node(node, flags, order);
1314 1315
}

C
Christoph Lameter 已提交
1316 1317
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1318
	struct page *page;
1319
	struct kmem_cache_order_objects oo = s->oo;
1320
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1321

1322 1323 1324 1325 1326
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1327
	flags |= s->allocflags;
1328

1329 1330 1331 1332 1333 1334 1335
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

	page = alloc_slab_page(alloc_gfp, node, oo);
1336 1337 1338 1339 1340 1341 1342
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
C
Christoph Lameter 已提交
1343

1344 1345
		if (page)
			stat(s, ORDER_FALLBACK);
1346
	}
V
Vegard Nossum 已提交
1347

1348
	if (kmemcheck_enabled && page
1349
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		int pages = 1 << oo_order(oo);

		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1362 1363
	}

1364 1365 1366 1367 1368
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1369
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1370 1371 1372
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1373
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1374 1375 1376 1377 1378 1379 1380

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1381
	setup_object_debug(s, page, object);
1382
	if (unlikely(s->ctor))
1383
		s->ctor(object);
C
Christoph Lameter 已提交
1384 1385 1386 1387 1388 1389 1390 1391
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;
G
Glauber Costa 已提交
1392
	int order;
C
Christoph Lameter 已提交
1393

C
Christoph Lameter 已提交
1394
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1395

C
Christoph Lameter 已提交
1396 1397
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1398 1399 1400
	if (!page)
		goto out;

G
Glauber Costa 已提交
1401
	order = compound_order(page);
1402
	inc_slabs_node(s, page_to_nid(page), page->objects);
G
Glauber Costa 已提交
1403
	memcg_bind_pages(s, order);
1404
	page->slab_cache = s;
1405
	__SetPageSlab(page);
1406 1407
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1408 1409 1410 1411

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1412
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1413 1414

	last = start;
1415
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1416 1417 1418 1419 1420
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1421
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1422 1423

	page->freelist = start;
1424
	page->inuse = page->objects;
1425
	page->frozen = 1;
C
Christoph Lameter 已提交
1426 1427 1428 1429 1430 1431
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1432 1433
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1434

1435
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1436 1437 1438
		void *p;

		slab_pad_check(s, page);
1439 1440
		for_each_object(p, s, page_address(page),
						page->objects)
1441
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1442 1443
	}

1444
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1445

C
Christoph Lameter 已提交
1446 1447 1448
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1449
		-pages);
C
Christoph Lameter 已提交
1450

1451
	__ClearPageSlabPfmemalloc(page);
1452
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1453 1454

	memcg_release_pages(s, order);
1455
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1456 1457
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1458
	__free_memcg_kmem_pages(page, order);
C
Christoph Lameter 已提交
1459 1460
}

1461 1462 1463
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1464 1465 1466 1467
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1468 1469 1470 1471 1472
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1473
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1474 1475 1476 1477 1478
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1493 1494 1495 1496 1497 1498 1499 1500

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1501
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1502 1503 1504 1505
	free_slab(s, page);
}

/*
1506
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1507
 */
1508
static inline void add_partial(struct kmem_cache_node *n,
1509
				struct page *page, int tail)
C
Christoph Lameter 已提交
1510
{
P
Peter Zijlstra 已提交
1511 1512
	lockdep_assert_held(&n->list_lock);

C
Christoph Lameter 已提交
1513
	n->nr_partial++;
1514
	if (tail == DEACTIVATE_TO_TAIL)
1515 1516 1517
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1518 1519
}

1520
static inline void remove_partial(struct kmem_cache_node *n,
1521 1522
					struct page *page)
{
P
Peter Zijlstra 已提交
1523 1524
	lockdep_assert_held(&n->list_lock);

1525 1526 1527 1528
	list_del(&page->lru);
	n->nr_partial--;
}

C
Christoph Lameter 已提交
1529
/*
1530 1531
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1532
 *
1533
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1534
 */
1535
static inline void *acquire_slab(struct kmem_cache *s,
1536
		struct kmem_cache_node *n, struct page *page,
1537
		int mode, int *objects)
C
Christoph Lameter 已提交
1538
{
1539 1540 1541 1542
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1543 1544
	lockdep_assert_held(&n->list_lock);

1545 1546 1547 1548 1549
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1550 1551 1552
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1553
	*objects = new.objects - new.inuse;
1554
	if (mode) {
1555
		new.inuse = page->objects;
1556 1557 1558 1559
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1560

1561 1562
	VM_BUG_ON(new.frozen);
	new.frozen = 1;
1563

1564
	if (!__cmpxchg_double_slab(s, page,
1565
			freelist, counters,
1566
			new.freelist, new.counters,
1567 1568
			"acquire_slab"))
		return NULL;
1569 1570

	remove_partial(n, page);
1571
	WARN_ON(!freelist);
1572
	return freelist;
C
Christoph Lameter 已提交
1573 1574
}

1575
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1576
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1577

C
Christoph Lameter 已提交
1578
/*
C
Christoph Lameter 已提交
1579
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1580
 */
1581 1582
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1583
{
1584 1585
	struct page *page, *page2;
	void *object = NULL;
1586 1587
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1588 1589 1590 1591

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1592 1593
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1594 1595 1596 1597 1598
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1599
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1600
		void *t;
1601

1602 1603 1604
		if (!pfmemalloc_match(page, flags))
			continue;

1605
		t = acquire_slab(s, n, page, object == NULL, &objects);
1606 1607 1608
		if (!t)
			break;

1609
		available += objects;
1610
		if (!object) {
1611 1612 1613 1614
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1615
			put_cpu_partial(s, page, 0);
1616
			stat(s, CPU_PARTIAL_NODE);
1617
		}
1618 1619
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1620 1621
			break;

1622
	}
C
Christoph Lameter 已提交
1623
	spin_unlock(&n->list_lock);
1624
	return object;
C
Christoph Lameter 已提交
1625 1626 1627
}

/*
C
Christoph Lameter 已提交
1628
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1629
 */
1630
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1631
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1632 1633 1634
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1635
	struct zoneref *z;
1636 1637
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1638
	void *object;
1639
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1640 1641

	/*
C
Christoph Lameter 已提交
1642 1643 1644 1645
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1646
	 *
C
Christoph Lameter 已提交
1647 1648 1649 1650
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1651
	 *
C
Christoph Lameter 已提交
1652
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1653 1654 1655 1656 1657
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1658
	 */
1659 1660
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1661 1662
		return NULL;

1663 1664
	do {
		cpuset_mems_cookie = get_mems_allowed();
1665
		zonelist = node_zonelist(slab_node(), flags);
1666 1667 1668 1669 1670 1671 1672
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1673
				object = get_partial_node(s, n, c, flags);
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
				if (object) {
					/*
					 * Return the object even if
					 * put_mems_allowed indicated that
					 * the cpuset mems_allowed was
					 * updated in parallel. It's a
					 * harmless race between the alloc
					 * and the cpuset update.
					 */
					put_mems_allowed(cpuset_mems_cookie);
					return object;
				}
1686
			}
C
Christoph Lameter 已提交
1687
		}
1688
	} while (!put_mems_allowed(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1689 1690 1691 1692 1693 1694 1695
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1696
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1697
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1698
{
1699
	void *object;
1700
	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
C
Christoph Lameter 已提交
1701

1702
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1703 1704
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1705

1706
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1707 1708
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		printk("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		printk("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
1765
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1766 1767
}

1768
static void init_kmem_cache_cpus(struct kmem_cache *s)
1769 1770 1771 1772 1773 1774
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1775

C
Christoph Lameter 已提交
1776 1777 1778
/*
 * Remove the cpu slab
 */
1779 1780
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1781
{
1782 1783 1784 1785 1786
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1787
	int tail = DEACTIVATE_TO_HEAD;
1788 1789 1790 1791
	struct page new;
	struct page old;

	if (page->freelist) {
1792
		stat(s, DEACTIVATE_REMOTE_FREES);
1793
		tail = DEACTIVATE_TO_TAIL;
1794 1795
	}

1796
	/*
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
			VM_BUG_ON(!new.frozen);

1816
		} while (!__cmpxchg_double_slab(s, page,
1817 1818 1819 1820 1821 1822 1823
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1824
	/*
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1837
	 */
1838
redo:
1839

1840 1841 1842
	old.freelist = page->freelist;
	old.counters = page->counters;
	VM_BUG_ON(!old.frozen);
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1855
	if (!new.inuse && n->nr_partial > s->min_partial)
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1888

P
Peter Zijlstra 已提交
1889
			remove_full(s, n, page);
1890 1891 1892 1893

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1894
			stat(s, tail);
1895 1896

		} else if (m == M_FULL) {
1897

1898 1899 1900 1901 1902 1903 1904
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1905
	if (!__cmpxchg_double_slab(s, page,
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1918
	}
C
Christoph Lameter 已提交
1919 1920
}

1921 1922 1923
/*
 * Unfreeze all the cpu partial slabs.
 *
1924 1925 1926
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1927
 */
1928 1929
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1930
{
1931
#ifdef CONFIG_SLUB_CPU_PARTIAL
1932
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1933
	struct page *page, *discard_page = NULL;
1934 1935 1936 1937 1938 1939

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1940 1941 1942 1943 1944 1945 1946 1947 1948

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
			VM_BUG_ON(!old.frozen);

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1961
		} while (!__cmpxchg_double_slab(s, page,
1962 1963 1964 1965
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1966
		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1967 1968
			page->next = discard_page;
			discard_page = page;
1969 1970 1971
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1972 1973 1974 1975 1976
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1977 1978 1979 1980 1981 1982 1983 1984 1985

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1986
#endif
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
1998
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1999
{
2000
#ifdef CONFIG_SLUB_CPU_PARTIAL
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2020
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2021
				local_irq_restore(flags);
2022
				oldpage = NULL;
2023 2024
				pobjects = 0;
				pages = 0;
2025
				stat(s, CPU_PARTIAL_DRAIN);
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2036 2037
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2038
#endif
2039 2040
}

2041
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2042
{
2043
	stat(s, CPUSLAB_FLUSH);
2044 2045 2046 2047 2048
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2049 2050 2051 2052
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2053
 *
C
Christoph Lameter 已提交
2054 2055
 * Called from IPI handler with interrupts disabled.
 */
2056
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2057
{
2058
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2059

2060 2061 2062 2063
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2064
		unfreeze_partials(s, c);
2065
	}
C
Christoph Lameter 已提交
2066 2067 2068 2069 2070 2071
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2072
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2073 2074
}

2075 2076 2077 2078 2079
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2080
	return c->page || c->partial;
2081 2082
}

C
Christoph Lameter 已提交
2083 2084
static void flush_all(struct kmem_cache *s)
{
2085
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2086 2087
}

2088 2089 2090 2091
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2092
static inline int node_match(struct page *page, int node)
2093 2094
{
#ifdef CONFIG_NUMA
2095
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2096 2097 2098 2099 2100
		return 0;
#endif
	return 1;
}

P
Pekka Enberg 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2120 2121 2122 2123 2124 2125 2126 2127 2128
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
#ifdef CONFIG_SLUB_DEBUG
	return atomic_long_read(&n->total_objects);
#else
	return 0;
#endif
}

P
Pekka Enberg 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
	int node;

	printk(KERN_WARNING
		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2138
		"default order: %d, min order: %d\n", s->name, s->object_size,
P
Pekka Enberg 已提交
2139 2140
		s->size, oo_order(s->oo), oo_order(s->min));

2141
	if (oo_order(s->min) > get_order(s->object_size))
2142 2143 2144
		printk(KERN_WARNING "  %s debugging increased min order, use "
		       "slub_debug=O to disable.\n", s->name);

P
Pekka Enberg 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2154 2155 2156
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2157 2158 2159 2160 2161 2162 2163

		printk(KERN_WARNING
			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
			node, nr_slabs, nr_objs, nr_free);
	}
}

2164 2165 2166
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2167
	void *freelist;
2168 2169
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2170

2171
	freelist = get_partial(s, flags, node, c);
2172

2173 2174 2175 2176
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2177 2178 2179 2180 2181 2182 2183 2184 2185
	if (page) {
		c = __this_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2186
		freelist = page->freelist;
2187 2188 2189 2190 2191 2192
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2193
		freelist = NULL;
2194

2195
	return freelist;
2196 2197
}

2198 2199 2200 2201 2202 2203 2204 2205
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2206
/*
2207 2208
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2209 2210 2211 2212
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2213 2214
 *
 * This function must be called with interrupt disabled.
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2225

2226 2227 2228 2229 2230 2231
		new.counters = counters;
		VM_BUG_ON(!new.frozen);

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2232
	} while (!__cmpxchg_double_slab(s, page,
2233 2234 2235 2236 2237 2238 2239
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2240
/*
2241 2242 2243 2244 2245 2246
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2247
 *
2248 2249 2250
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2251
 *
2252
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2253 2254
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2255
 */
2256 2257
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2258
{
2259
	void *freelist;
2260
	struct page *page;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2272

2273 2274
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2275
		goto new_slab;
2276
redo:
2277

2278
	if (unlikely(!node_match(page, node))) {
2279
		stat(s, ALLOC_NODE_MISMATCH);
2280
		deactivate_slab(s, page, c->freelist);
2281 2282
		c->page = NULL;
		c->freelist = NULL;
2283 2284
		goto new_slab;
	}
C
Christoph Lameter 已提交
2285

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2298
	/* must check again c->freelist in case of cpu migration or IRQ */
2299 2300
	freelist = c->freelist;
	if (freelist)
2301
		goto load_freelist;
2302

2303
	stat(s, ALLOC_SLOWPATH);
2304

2305
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2306

2307
	if (!freelist) {
2308 2309
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2310
		goto new_slab;
2311
	}
C
Christoph Lameter 已提交
2312

2313
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2314

2315
load_freelist:
2316 2317 2318 2319 2320 2321
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
	VM_BUG_ON(!c->page->frozen);
2322
	c->freelist = get_freepointer(s, freelist);
2323 2324
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2325
	return freelist;
C
Christoph Lameter 已提交
2326 2327

new_slab:
2328

2329
	if (c->partial) {
2330 2331
		page = c->page = c->partial;
		c->partial = page->next;
2332 2333 2334
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2335 2336
	}

2337
	freelist = new_slab_objects(s, gfpflags, node, &c);
2338

2339 2340 2341
	if (unlikely(!freelist)) {
		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(s, gfpflags, node);
2342

2343 2344
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2345
	}
2346

2347
	page = c->page;
2348
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2349
		goto load_freelist;
2350

2351
	/* Only entered in the debug case */
2352 2353
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2354
		goto new_slab;	/* Slab failed checks. Next slab needed */
2355

2356
	deactivate_slab(s, page, get_freepointer(s, freelist));
2357 2358
	c->page = NULL;
	c->freelist = NULL;
2359
	local_irq_restore(flags);
2360
	return freelist;
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2373
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2374
		gfp_t gfpflags, int node, unsigned long addr)
2375 2376
{
	void **object;
2377
	struct kmem_cache_cpu *c;
2378
	struct page *page;
2379
	unsigned long tid;
2380

2381
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2382
		return NULL;
2383

2384
	s = memcg_kmem_get_cache(s, gfpflags);
2385 2386 2387 2388 2389 2390
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2391 2392 2393 2394 2395
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2396
	 */
2397
	preempt_disable();
2398
	c = __this_cpu_ptr(s->cpu_slab);
2399 2400 2401 2402 2403 2404 2405 2406

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2407
	preempt_enable();
2408

2409
	object = c->freelist;
2410
	page = c->page;
L
Libin 已提交
2411
	if (unlikely(!object || !node_match(page, node)))
2412
		object = __slab_alloc(s, gfpflags, node, addr, c);
2413 2414

	else {
2415 2416
		void *next_object = get_freepointer_safe(s, object);

2417
		/*
L
Lucas De Marchi 已提交
2418
		 * The cmpxchg will only match if there was no additional
2419 2420
		 * operation and if we are on the right processor.
		 *
2421 2422
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2423 2424 2425 2426
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2427 2428 2429
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2430
		 */
2431
		if (unlikely(!this_cpu_cmpxchg_double(
2432 2433
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2434
				next_object, next_tid(tid)))) {
2435 2436 2437 2438

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2439
		prefetch_freepointer(s, next_object);
2440
		stat(s, ALLOC_FASTPATH);
2441
	}
2442

2443
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2444
		memset(object, 0, s->object_size);
2445

2446
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2447

2448
	return object;
C
Christoph Lameter 已提交
2449 2450
}

2451 2452 2453 2454 2455 2456
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2457 2458
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2459
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2460

2461 2462
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2463 2464

	return ret;
C
Christoph Lameter 已提交
2465 2466 2467
}
EXPORT_SYMBOL(kmem_cache_alloc);

2468
#ifdef CONFIG_TRACING
2469 2470
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2471
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2472 2473 2474 2475
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2476 2477
#endif

C
Christoph Lameter 已提交
2478 2479 2480
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2481
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2482

2483
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2484
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2485 2486

	return ret;
C
Christoph Lameter 已提交
2487 2488 2489
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2490
#ifdef CONFIG_TRACING
2491
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2492
				    gfp_t gfpflags,
2493
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2494
{
2495
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2496 2497 2498 2499

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2500
}
2501
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2502
#endif
2503
#endif
E
Eduard - Gabriel Munteanu 已提交
2504

C
Christoph Lameter 已提交
2505
/*
2506 2507
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2508
 *
2509 2510 2511
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2512
 */
2513
static void __slab_free(struct kmem_cache *s, struct page *page,
2514
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2515 2516 2517
{
	void *prior;
	void **object = (void *)x;
2518 2519 2520 2521
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2522
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2523

2524
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2525

2526 2527
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2528
		return;
C
Christoph Lameter 已提交
2529

2530
	do {
2531 2532 2533 2534
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2535 2536 2537 2538 2539 2540
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2541
		if ((!new.inuse || !prior) && !was_frozen) {
2542

P
Peter Zijlstra 已提交
2543
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2544 2545

				/*
2546 2547 2548 2549
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2550 2551 2552
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2553
			} else { /* Needs to be taken off a list */
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2567
		}
C
Christoph Lameter 已提交
2568

2569 2570 2571 2572
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2573

2574
	if (likely(!n)) {
2575 2576 2577 2578 2579

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2580
		if (new.frozen && !was_frozen) {
2581
			put_cpu_partial(s, page, 1);
2582 2583
			stat(s, CPU_PARTIAL_FREE);
		}
2584
		/*
2585 2586 2587 2588 2589
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2590
                return;
2591
        }
C
Christoph Lameter 已提交
2592

2593 2594 2595
	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
		goto slab_empty;

C
Christoph Lameter 已提交
2596
	/*
2597 2598
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2599
	 */
2600 2601
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2602
			remove_full(s, n, page);
2603 2604
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2605
	}
2606
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2607 2608 2609
	return;

slab_empty:
2610
	if (prior) {
C
Christoph Lameter 已提交
2611
		/*
2612
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2613
		 */
2614
		remove_partial(n, page);
2615
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2616
	} else {
2617
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2618 2619
		remove_full(s, n, page);
	}
2620

2621
	spin_unlock_irqrestore(&n->list_lock, flags);
2622
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2623 2624 2625
	discard_slab(s, page);
}

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2637
static __always_inline void slab_free(struct kmem_cache *s,
2638
			struct page *page, void *x, unsigned long addr)
2639 2640
{
	void **object = (void *)x;
2641
	struct kmem_cache_cpu *c;
2642
	unsigned long tid;
2643

2644 2645
	slab_free_hook(s, x);

2646 2647 2648 2649 2650 2651 2652
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2653
	preempt_disable();
2654
	c = __this_cpu_ptr(s->cpu_slab);
2655

2656
	tid = c->tid;
2657
	preempt_enable();
2658

2659
	if (likely(page == c->page)) {
2660
		set_freepointer(s, object, c->freelist);
2661

2662
		if (unlikely(!this_cpu_cmpxchg_double(
2663 2664 2665 2666 2667 2668 2669
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2670
		stat(s, FREE_FASTPATH);
2671
	} else
2672
		__slab_free(s, page, x, addr);
2673 2674 2675

}

C
Christoph Lameter 已提交
2676 2677
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2678 2679
	s = cache_from_obj(s, x);
	if (!s)
2680
		return;
2681
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2682
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2683 2684 2685 2686
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2687 2688 2689 2690
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2691 2692 2693 2694
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2695
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2706
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2707
static int slub_min_objects;
C
Christoph Lameter 已提交
2708 2709 2710

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2711
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2712 2713 2714 2715 2716 2717
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2718 2719 2720 2721
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2722
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2723 2724 2725 2726 2727 2728
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2729
 *
C
Christoph Lameter 已提交
2730 2731 2732 2733
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2734
 *
C
Christoph Lameter 已提交
2735 2736 2737 2738
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2739
 */
2740
static inline int slab_order(int size, int min_objects,
2741
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2742 2743 2744
{
	int order;
	int rem;
2745
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2746

2747
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2748
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2749

2750
	for (order = max(min_order,
2751 2752
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2753

2754
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2755

2756
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2757 2758
			continue;

2759
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2760

2761
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2762 2763 2764
			break;

	}
C
Christoph Lameter 已提交
2765

C
Christoph Lameter 已提交
2766 2767 2768
	return order;
}

2769
static inline int calculate_order(int size, int reserved)
2770 2771 2772 2773
{
	int order;
	int min_objects;
	int fraction;
2774
	int max_objects;
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2785 2786
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2787
	max_objects = order_objects(slub_max_order, size, reserved);
2788 2789
	min_objects = min(min_objects, max_objects);

2790
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2791
		fraction = 16;
2792 2793
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2794
					slub_max_order, fraction, reserved);
2795 2796 2797 2798
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2799
		min_objects--;
2800 2801 2802 2803 2804 2805
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2806
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2807 2808 2809 2810 2811 2812
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2813
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2814
	if (order < MAX_ORDER)
2815 2816 2817 2818
		return order;
	return -ENOSYS;
}

2819
static void
2820
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2821 2822 2823 2824
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2825
#ifdef CONFIG_SLUB_DEBUG
2826
	atomic_long_set(&n->nr_slabs, 0);
2827
	atomic_long_set(&n->total_objects, 0);
2828
	INIT_LIST_HEAD(&n->full);
2829
#endif
C
Christoph Lameter 已提交
2830 2831
}

2832
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2833
{
2834
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2835
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2836

2837
	/*
2838 2839
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2840
	 */
2841 2842
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2843 2844 2845 2846 2847

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2848

2849
	return 1;
2850 2851
}

2852 2853
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2854 2855 2856 2857 2858
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2859 2860
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2861
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2862
 */
2863
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2864 2865 2866 2867
{
	struct page *page;
	struct kmem_cache_node *n;

2868
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2869

2870
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2871 2872

	BUG_ON(!page);
2873 2874 2875 2876 2877 2878 2879
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2880 2881
	n = page->freelist;
	BUG_ON(!n);
2882
	page->freelist = get_freepointer(kmem_cache_node, n);
2883
	page->inuse = 1;
2884
	page->frozen = 0;
2885
	kmem_cache_node->node[node] = n;
2886
#ifdef CONFIG_SLUB_DEBUG
2887
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2888
	init_tracking(kmem_cache_node, n);
2889
#endif
2890
	init_kmem_cache_node(n);
2891
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2892

2893
	add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2894 2895 2896 2897 2898 2899
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2900
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2901
		struct kmem_cache_node *n = s->node[node];
2902

2903
		if (n)
2904 2905
			kmem_cache_free(kmem_cache_node, n);

C
Christoph Lameter 已提交
2906 2907 2908 2909
		s->node[node] = NULL;
	}
}

2910
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2911 2912 2913
{
	int node;

C
Christoph Lameter 已提交
2914
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2915 2916
		struct kmem_cache_node *n;

2917
		if (slab_state == DOWN) {
2918
			early_kmem_cache_node_alloc(node);
2919 2920
			continue;
		}
2921
		n = kmem_cache_alloc_node(kmem_cache_node,
2922
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2923

2924 2925 2926
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2927
		}
2928

C
Christoph Lameter 已提交
2929
		s->node[node] = n;
2930
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2931 2932 2933 2934
	}
	return 1;
}

2935
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2936 2937 2938 2939 2940 2941 2942 2943
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2944 2945 2946 2947
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2948
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2949 2950
{
	unsigned long flags = s->flags;
2951
	unsigned long size = s->object_size;
2952
	int order;
C
Christoph Lameter 已提交
2953

2954 2955 2956 2957 2958 2959 2960 2961
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2962 2963 2964 2965 2966 2967
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2968
			!s->ctor)
C
Christoph Lameter 已提交
2969 2970 2971 2972 2973 2974
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2975
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2976
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2977
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2978
	 */
2979
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
2980
		size += sizeof(void *);
C
Christoph Lameter 已提交
2981
#endif
C
Christoph Lameter 已提交
2982 2983

	/*
C
Christoph Lameter 已提交
2984 2985
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2986 2987 2988 2989
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2990
		s->ctor)) {
C
Christoph Lameter 已提交
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3003
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3004 3005 3006 3007 3008 3009 3010
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3011
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3012 3013 3014 3015
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3016
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3017 3018 3019
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3020
#endif
C
Christoph Lameter 已提交
3021

C
Christoph Lameter 已提交
3022 3023 3024 3025 3026
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3027
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3028
	s->size = size;
3029 3030 3031
	if (forced_order >= 0)
		order = forced_order;
	else
3032
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3033

3034
	if (order < 0)
C
Christoph Lameter 已提交
3035 3036
		return 0;

3037
	s->allocflags = 0;
3038
	if (order)
3039 3040 3041
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3042
		s->allocflags |= GFP_DMA;
3043 3044 3045 3046

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3047 3048 3049
	/*
	 * Determine the number of objects per slab
	 */
3050 3051
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3052 3053
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3054

3055
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3056 3057
}

3058
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3059
{
3060
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3061
	s->reserved = 0;
C
Christoph Lameter 已提交
3062

3063 3064
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3065

3066
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3067
		goto error;
3068 3069 3070 3071 3072
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3073
		if (get_order(s->size) > get_order(s->object_size)) {
3074 3075 3076 3077 3078 3079
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3080

3081 3082
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3083 3084 3085 3086 3087
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3088 3089 3090 3091
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3107
	 * B) The number of objects in cpu partial slabs to extract from the
3108 3109
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3110
	 */
3111
	if (!kmem_cache_has_cpu_partial(s))
3112 3113
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3114 3115 3116 3117 3118 3119 3120 3121
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3122
#ifdef CONFIG_NUMA
3123
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3124
#endif
3125
	if (!init_kmem_cache_nodes(s))
3126
		goto error;
C
Christoph Lameter 已提交
3127

3128
	if (alloc_kmem_cache_cpus(s))
3129
		return 0;
3130

3131
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3132 3133 3134 3135
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3136 3137
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3138
	return -EINVAL;
C
Christoph Lameter 已提交
3139 3140
}

3141 3142 3143 3144 3145 3146
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3147 3148
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3149 3150
	if (!map)
		return;
3151
	slab_err(s, page, text, s->name);
3152 3153
	slab_lock(page);

3154
	get_map(s, page, map);
3155 3156 3157 3158 3159 3160 3161 3162 3163
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3164
	kfree(map);
3165 3166 3167
#endif
}

C
Christoph Lameter 已提交
3168
/*
C
Christoph Lameter 已提交
3169
 * Attempt to free all partial slabs on a node.
3170 3171
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3172
 */
C
Christoph Lameter 已提交
3173
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3174 3175 3176
{
	struct page *page, *h;

3177
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3178
		if (!page->inuse) {
3179
			remove_partial(n, page);
C
Christoph Lameter 已提交
3180
			discard_slab(s, page);
3181 3182
		} else {
			list_slab_objects(s, page,
3183
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3184
		}
3185
	}
C
Christoph Lameter 已提交
3186 3187 3188
}

/*
C
Christoph Lameter 已提交
3189
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3190
 */
3191
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3192 3193 3194 3195 3196
{
	int node;

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3197
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3198 3199
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
3200 3201
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3202 3203
			return 1;
	}
3204
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3205 3206 3207 3208
	free_kmem_cache_nodes(s);
	return 0;
}

3209
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3210
{
3211
	int rc = kmem_cache_close(s);
3212

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	if (!rc) {
		/*
		 * We do the same lock strategy around sysfs_slab_add, see
		 * __kmem_cache_create. Because this is pretty much the last
		 * operation we do and the lock will be released shortly after
		 * that in slab_common.c, we could just move sysfs_slab_remove
		 * to a later point in common code. We should do that when we
		 * have a common sysfs framework for all allocators.
		 */
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3223
		sysfs_slab_remove(s);
3224 3225
		mutex_lock(&slab_mutex);
	}
3226 3227

	return rc;
C
Christoph Lameter 已提交
3228 3229 3230 3231 3232 3233 3234 3235
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3236
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3237 3238 3239 3240 3241 3242 3243 3244

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3245
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3246
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3247 3248 3249 3250 3251 3252 3253 3254

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3255
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

void *__kmalloc(size_t size, gfp_t flags)
{
3272
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3273
	void *ret;
C
Christoph Lameter 已提交
3274

3275
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3276
		return kmalloc_large(size, flags);
3277

3278
	s = kmalloc_slab(size, flags);
3279 3280

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3281 3282
		return s;

3283
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3284

3285
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3286 3287

	return ret;
C
Christoph Lameter 已提交
3288 3289 3290
}
EXPORT_SYMBOL(__kmalloc);

3291
#ifdef CONFIG_NUMA
3292 3293
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3294
	struct page *page;
3295
	void *ptr = NULL;
3296

3297
	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3298
	page = alloc_pages_node(node, flags, get_order(size));
3299
	if (page)
3300 3301
		ptr = page_address(page);

3302
	kmalloc_large_node_hook(ptr, size, flags);
3303
	return ptr;
3304 3305
}

C
Christoph Lameter 已提交
3306 3307
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3308
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3309
	void *ret;
C
Christoph Lameter 已提交
3310

3311
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3312 3313
		ret = kmalloc_large_node(size, flags, node);

3314 3315 3316
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3317 3318 3319

		return ret;
	}
3320

3321
	s = kmalloc_slab(size, flags);
3322 3323

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3324 3325
		return s;

3326
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3327

3328
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3329 3330

	return ret;
C
Christoph Lameter 已提交
3331 3332 3333 3334 3335 3336
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3337
	struct page *page;
C
Christoph Lameter 已提交
3338

3339
	if (unlikely(object == ZERO_SIZE_PTR))
3340 3341
		return 0;

3342 3343
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3344 3345
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3346
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3347
	}
C
Christoph Lameter 已提交
3348

3349
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3350
}
K
Kirill A. Shutemov 已提交
3351
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3352 3353 3354 3355

void kfree(const void *x)
{
	struct page *page;
3356
	void *object = (void *)x;
C
Christoph Lameter 已提交
3357

3358 3359
	trace_kfree(_RET_IP_, x);

3360
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3361 3362
		return;

3363
	page = virt_to_head_page(x);
3364
	if (unlikely(!PageSlab(page))) {
3365
		BUG_ON(!PageCompound(page));
3366
		kfree_hook(x);
3367
		__free_memcg_kmem_pages(page, compound_order(page));
3368 3369
		return;
	}
3370
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3371 3372 3373
}
EXPORT_SYMBOL(kfree);

3374
/*
C
Christoph Lameter 已提交
3375 3376 3377 3378 3379 3380 3381 3382
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3383 3384 3385 3386 3387 3388 3389 3390
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3391
	int objects = oo_objects(s->max);
3392
	struct list_head *slabs_by_inuse =
3393
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3394 3395 3396 3397 3398 3399
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3400
	for_each_node_state(node, N_NORMAL_MEMORY) {
3401 3402 3403 3404 3405
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3406
		for (i = 0; i < objects; i++)
3407 3408 3409 3410 3411
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3412
		 * Build lists indexed by the items in use in each slab.
3413
		 *
C
Christoph Lameter 已提交
3414 3415
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3416 3417
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3418 3419 3420
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3421 3422 3423
		}

		/*
C
Christoph Lameter 已提交
3424 3425
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3426
		 */
3427
		for (i = objects - 1; i > 0; i--)
3428 3429 3430
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3431 3432 3433 3434

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3435 3436 3437 3438 3439 3440 3441
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

3442 3443 3444 3445
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3446
	mutex_lock(&slab_mutex);
3447 3448
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
3449
	mutex_unlock(&slab_mutex);
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3461
	offline_node = marg->status_change_nid_normal;
3462 3463 3464 3465 3466 3467 3468 3469

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3470
	mutex_lock(&slab_mutex);
3471 3472 3473 3474 3475 3476
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3477
			 * and offline_pages() function shouldn't call this
3478 3479
			 * callback. So, we must fail.
			 */
3480
			BUG_ON(slabs_node(s, offline_node));
3481 3482

			s->node[offline_node] = NULL;
3483
			kmem_cache_free(kmem_cache_node, n);
3484 3485
		}
	}
3486
	mutex_unlock(&slab_mutex);
3487 3488 3489 3490 3491 3492 3493
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3494
	int nid = marg->status_change_nid_normal;
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3505
	 * We are bringing a node online. No memory is available yet. We must
3506 3507 3508
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3509
	mutex_lock(&slab_mutex);
3510 3511 3512 3513 3514 3515
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3516
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3517 3518 3519 3520
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3521
		init_kmem_cache_node(n);
3522 3523 3524
		s->node[nid] = n;
	}
out:
3525
	mutex_unlock(&slab_mutex);
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3549 3550 3551 3552
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3553 3554 3555
	return ret;
}

3556 3557 3558 3559
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3560

C
Christoph Lameter 已提交
3561 3562 3563 3564
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3565 3566
/*
 * Used for early kmem_cache structures that were allocated using
3567 3568
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3569 3570
 */

3571
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3572 3573
{
	int node;
3574
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3575

3576
	memcpy(s, static_cache, kmem_cache->object_size);
3577

3578 3579 3580 3581 3582 3583
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
3584 3585 3586 3587 3588 3589
	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
3590
				p->slab_cache = s;
3591

L
Li Zefan 已提交
3592
#ifdef CONFIG_SLUB_DEBUG
3593
			list_for_each_entry(p, &n->full, lru)
3594
				p->slab_cache = s;
3595 3596 3597
#endif
		}
	}
3598 3599
	list_add(&s->list, &slab_caches);
	return s;
3600 3601
}

C
Christoph Lameter 已提交
3602 3603
void __init kmem_cache_init(void)
{
3604 3605
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3606

3607 3608 3609
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3610 3611
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3612

3613 3614
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3615

3616
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3617 3618 3619 3620

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3621 3622 3623 3624
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3625

3626
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3627

3628 3629 3630 3631 3632
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3633
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3634 3635

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3636
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3637 3638 3639

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3640
#endif
C
Christoph Lameter 已提交
3641

I
Ingo Molnar 已提交
3642
	printk(KERN_INFO
3643
		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3644
		" CPUs=%d, Nodes=%d\n",
3645
		cache_line_size(),
C
Christoph Lameter 已提交
3646 3647 3648 3649
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3650 3651 3652 3653
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3654 3655 3656 3657 3658 3659 3660 3661
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3662
	if (s->ctor)
C
Christoph Lameter 已提交
3663 3664
		return 1;

3665 3666 3667 3668 3669 3670
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3671 3672 3673
	return 0;
}

3674
static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3675
		size_t align, unsigned long flags, const char *name,
3676
		void (*ctor)(void *))
C
Christoph Lameter 已提交
3677
{
3678
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3679 3680 3681 3682

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3683
	if (ctor)
C
Christoph Lameter 已提交
3684 3685 3686 3687 3688
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3689
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3690

3691
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3692 3693 3694 3695 3696 3697
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3698
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3699 3700 3701 3702 3703
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3704
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3705 3706 3707 3708 3709
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

3710 3711 3712
		if (!cache_match_memcg(s, memcg))
			continue;

C
Christoph Lameter 已提交
3713 3714 3715 3716 3717
		return s;
	}
	return NULL;
}

3718 3719 3720
struct kmem_cache *
__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
		   size_t align, unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3721 3722 3723
{
	struct kmem_cache *s;

3724
	s = find_mergeable(memcg, size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3725 3726 3727 3728 3729 3730
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3731
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3732
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3733

3734 3735
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3736
			s = NULL;
3737
		}
3738
	}
C
Christoph Lameter 已提交
3739

3740 3741
	return s;
}
P
Pekka Enberg 已提交
3742

3743
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3744
{
3745 3746 3747 3748 3749
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3750

3751 3752 3753 3754
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3755
	memcg_propagate_slab_attrs(s);
3756 3757 3758
	mutex_unlock(&slab_mutex);
	err = sysfs_slab_add(s);
	mutex_lock(&slab_mutex);
3759

3760 3761
	if (err)
		kmem_cache_close(s);
3762

3763
	return err;
C
Christoph Lameter 已提交
3764 3765 3766 3767
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3768 3769
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3770
 */
3771
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3772 3773 3774
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3775 3776
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3777 3778 3779

	switch (action) {
	case CPU_UP_CANCELED:
3780
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3781
	case CPU_DEAD:
3782
	case CPU_DEAD_FROZEN:
3783
		mutex_lock(&slab_mutex);
3784 3785 3786 3787 3788
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3789
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3790 3791 3792 3793 3794 3795 3796
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3797
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3798
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3799
};
C
Christoph Lameter 已提交
3800 3801 3802

#endif

3803
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3804
{
3805
	struct kmem_cache *s;
3806
	void *ret;
3807

3808
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3809 3810
		return kmalloc_large(size, gfpflags);

3811
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3812

3813
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3814
		return s;
C
Christoph Lameter 已提交
3815

3816
	ret = slab_alloc(s, gfpflags, caller);
3817

L
Lucas De Marchi 已提交
3818
	/* Honor the call site pointer we received. */
3819
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3820 3821

	return ret;
C
Christoph Lameter 已提交
3822 3823
}

3824
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3825
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3826
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3827
{
3828
	struct kmem_cache *s;
3829
	void *ret;
3830

3831
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3832 3833 3834 3835 3836 3837 3838 3839
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3840

3841
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3842

3843
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3844
		return s;
C
Christoph Lameter 已提交
3845

3846
	ret = slab_alloc_node(s, gfpflags, node, caller);
3847

L
Lucas De Marchi 已提交
3848
	/* Honor the call site pointer we received. */
3849
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3850 3851

	return ret;
C
Christoph Lameter 已提交
3852
}
3853
#endif
C
Christoph Lameter 已提交
3854

3855
#ifdef CONFIG_SYSFS
3856 3857 3858 3859 3860 3861 3862 3863 3864
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3865
#endif
3866

3867
#ifdef CONFIG_SLUB_DEBUG
3868 3869
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3870 3871
{
	void *p;
3872
	void *addr = page_address(page);
3873 3874 3875 3876 3877 3878

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3879
	bitmap_zero(map, page->objects);
3880

3881 3882 3883 3884 3885
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3886 3887
	}

3888
	for_each_object(p, s, addr, page->objects)
3889
		if (!test_bit(slab_index(p, s, addr), map))
3890
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3891 3892 3893 3894
				return 0;
	return 1;
}

3895 3896
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3897
{
3898 3899 3900
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3901 3902
}

3903 3904
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3905 3906 3907 3908 3909 3910 3911 3912
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3913
		validate_slab_slab(s, page, map);
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3924
		validate_slab_slab(s, page, map);
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3937
static long validate_slab_cache(struct kmem_cache *s)
3938 3939 3940
{
	int node;
	unsigned long count = 0;
3941
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3942 3943 3944 3945
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3946 3947

	flush_all(s);
C
Christoph Lameter 已提交
3948
	for_each_node_state(node, N_NORMAL_MEMORY) {
3949 3950
		struct kmem_cache_node *n = get_node(s, node);

3951
		count += validate_slab_node(s, n, map);
3952
	}
3953
	kfree(map);
3954 3955
	return count;
}
3956
/*
C
Christoph Lameter 已提交
3957
 * Generate lists of code addresses where slabcache objects are allocated
3958 3959 3960 3961 3962
 * and freed.
 */

struct location {
	unsigned long count;
3963
	unsigned long addr;
3964 3965 3966 3967 3968
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3969
	DECLARE_BITMAP(cpus, NR_CPUS);
3970
	nodemask_t nodes;
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3986
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3987 3988 3989 3990 3991 3992
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3993
	l = (void *)__get_free_pages(flags, order);
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4007
				const struct track *track)
4008 4009 4010
{
	long start, end, pos;
	struct location *l;
4011
	unsigned long caddr;
4012
	unsigned long age = jiffies - track->when;
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4044 4045
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4046 4047
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4048 4049 4050
			return 1;
		}

4051
		if (track->addr < caddr)
4052 4053 4054 4055 4056 4057
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4058
	 * Not found. Insert new tracking element.
4059
	 */
4060
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4061 4062 4063 4064 4065 4066 4067 4068
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4069 4070 4071 4072 4073 4074
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4075 4076
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4077 4078
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4079 4080 4081 4082
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4083
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4084
		unsigned long *map)
4085
{
4086
	void *addr = page_address(page);
4087 4088
	void *p;

4089
	bitmap_zero(map, page->objects);
4090
	get_map(s, page, map);
4091

4092
	for_each_object(p, s, addr, page->objects)
4093 4094
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4095 4096 4097 4098 4099
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4100
	int len = 0;
4101
	unsigned long i;
4102
	struct loc_track t = { 0, 0, NULL };
4103
	int node;
E
Eric Dumazet 已提交
4104 4105
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4106

E
Eric Dumazet 已提交
4107 4108 4109
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4110
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4111
	}
4112 4113 4114
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4115
	for_each_node_state(node, N_NORMAL_MEMORY) {
4116 4117 4118 4119
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4120
		if (!atomic_long_read(&n->nr_slabs))
4121 4122 4123 4124
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4125
			process_slab(&t, s, page, alloc, map);
4126
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4127
			process_slab(&t, s, page, alloc, map);
4128 4129 4130 4131
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4132
		struct location *l = &t.loc[i];
4133

H
Hugh Dickins 已提交
4134
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4135
			break;
4136
		len += sprintf(buf + len, "%7ld ", l->count);
4137 4138

		if (l->addr)
J
Joe Perches 已提交
4139
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4140
		else
4141
			len += sprintf(buf + len, "<not-available>");
4142 4143

		if (l->sum_time != l->min_time) {
4144
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4145 4146 4147
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4148
		} else
4149
			len += sprintf(buf + len, " age=%ld",
4150 4151 4152
				l->min_time);

		if (l->min_pid != l->max_pid)
4153
			len += sprintf(buf + len, " pid=%ld-%ld",
4154 4155
				l->min_pid, l->max_pid);
		else
4156
			len += sprintf(buf + len, " pid=%ld",
4157 4158
				l->min_pid);

R
Rusty Russell 已提交
4159 4160
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4161 4162
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4163 4164
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4165
						 to_cpumask(l->cpus));
4166 4167
		}

4168
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4169 4170
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4171 4172 4173
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4174 4175
		}

4176
		len += sprintf(buf + len, "\n");
4177 4178 4179
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4180
	kfree(map);
4181
	if (!t.count)
4182 4183
		len += sprintf(buf, "No data\n");
	return len;
4184
}
4185
#endif
4186

4187 4188 4189 4190 4191
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

4192
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches[6]);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4249
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4250
enum slab_stat_type {
4251 4252 4253 4254 4255
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4256 4257
};

4258
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4259 4260 4261
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4262
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4263

4264 4265
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4266 4267 4268 4269 4270 4271
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4272
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4273 4274
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4275

4276 4277
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4278

4279
		for_each_possible_cpu(cpu) {
4280 4281
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4282
			int node;
4283
			struct page *page;
4284

4285
			page = ACCESS_ONCE(c->page);
4286 4287
			if (!page)
				continue;
4288

4289 4290 4291 4292 4293 4294 4295
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4296

4297 4298 4299 4300
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4301
			if (page) {
L
Li Zefan 已提交
4302 4303 4304 4305 4306 4307 4308
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4309 4310
				total += x;
				nodes[node] += x;
4311
			}
C
Christoph Lameter 已提交
4312 4313 4314
		}
	}

4315
	lock_memory_hotplug();
4316
#ifdef CONFIG_SLUB_DEBUG
4317 4318 4319 4320
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

4321 4322 4323 4324 4325
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4326
			else
4327
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4328 4329 4330 4331
			total += x;
			nodes[node] += x;
		}

4332 4333 4334
	} else
#endif
	if (flags & SO_PARTIAL) {
4335 4336
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
4337

4338 4339 4340 4341
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4342
			else
4343
				x = n->nr_partial;
C
Christoph Lameter 已提交
4344 4345 4346 4347 4348 4349
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4350
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
4351 4352 4353 4354
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4355
	unlock_memory_hotplug();
C
Christoph Lameter 已提交
4356 4357 4358 4359
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4360
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4361 4362 4363 4364
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4365
	for_each_online_node(node) {
C
Christoph Lameter 已提交
4366 4367
		struct kmem_cache_node *n = get_node(s, node);

4368 4369 4370
		if (!n)
			continue;

4371
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4372 4373 4374 4375
			return 1;
	}
	return 0;
}
4376
#endif
C
Christoph Lameter 已提交
4377 4378

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4379
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4380 4381 4382 4383 4384 4385 4386 4387

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4388 4389
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4390 4391 4392

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4393
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4409
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4410 4411 4412 4413 4414
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4415
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4416 4417 4418
}
SLAB_ATTR_RO(objs_per_slab);

4419 4420 4421
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4422 4423 4424
	unsigned long order;
	int err;

4425
	err = kstrtoul(buf, 10, &order);
4426 4427
	if (err)
		return err;
4428 4429 4430 4431 4432 4433 4434 4435

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4436 4437
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4438
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4439
}
4440
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4441

4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4453
	err = kstrtoul(buf, 10, &min);
4454 4455 4456
	if (err)
		return err;

4457
	set_min_partial(s, min);
4458 4459 4460 4461
	return length;
}
SLAB_ATTR(min_partial);

4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4473
	err = kstrtoul(buf, 10, &objects);
4474 4475
	if (err)
		return err;
4476
	if (objects && !kmem_cache_has_cpu_partial(s))
4477
		return -EINVAL;
4478 4479 4480 4481 4482 4483 4484

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4485 4486
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4487 4488 4489
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4501
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4502 4503 4504 4505 4506
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4507
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4508 4509 4510 4511 4512
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4513
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4514 4515 4516
}
SLAB_ATTR_RO(objects);

4517 4518 4519 4520 4521 4522
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4589 4590 4591 4592 4593 4594
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4595
#ifdef CONFIG_SLUB_DEBUG
4596 4597 4598 4599 4600 4601
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4602 4603 4604 4605 4606 4607
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4608 4609 4610 4611 4612 4613 4614 4615 4616
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4617 4618
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4619
		s->flags |= SLAB_DEBUG_FREE;
4620
	}
C
Christoph Lameter 已提交
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4634 4635
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4636
		s->flags |= SLAB_TRACE;
4637
	}
C
Christoph Lameter 已提交
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4654 4655
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4656
		s->flags |= SLAB_RED_ZONE;
4657
	}
4658
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4675 4676
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4677
		s->flags |= SLAB_POISON;
4678
	}
4679
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4696 4697
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4698
		s->flags |= SLAB_STORE_USER;
4699
	}
4700
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4701 4702 4703 4704
	return length;
}
SLAB_ATTR(store_user);

4705 4706 4707 4708 4709 4710 4711 4712
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4713 4714 4715 4716 4717 4718 4719 4720
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4721 4722
}
SLAB_ATTR(validate);
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4756
#endif
4757

4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4777
#ifdef CONFIG_NUMA
4778
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4779
{
4780
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4781 4782
}

4783
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4784 4785
				const char *buf, size_t length)
{
4786 4787 4788
	unsigned long ratio;
	int err;

4789
	err = kstrtoul(buf, 10, &ratio);
4790 4791 4792
	if (err)
		return err;

4793
	if (ratio <= 100)
4794
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4795 4796 4797

	return length;
}
4798
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4799 4800
#endif

4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4813
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4814 4815 4816 4817 4818 4819 4820

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4821
#ifdef CONFIG_SMP
4822 4823
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4824
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4825
	}
4826
#endif
4827 4828 4829 4830
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4831 4832 4833 4834 4835
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4836
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4837 4838
}

4839 4840 4841 4842 4843
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4844 4845 4846 4847 4848 4849 4850 4851 4852
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4864
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4865 4866 4867 4868 4869 4870 4871
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4872
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4873
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4874 4875
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4876 4877
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4878 4879
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4880 4881
#endif

P
Pekka Enberg 已提交
4882
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4883 4884 4885 4886
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4887
	&min_partial_attr.attr,
4888
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4889
	&objects_attr.attr,
4890
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4891 4892 4893 4894 4895 4896 4897 4898
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4899
	&shrink_attr.attr,
4900
	&reserved_attr.attr,
4901
	&slabs_cpu_partial_attr.attr,
4902
#ifdef CONFIG_SLUB_DEBUG
4903 4904 4905 4906
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4907 4908 4909
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4910
	&validate_attr.attr,
4911 4912
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4913
#endif
C
Christoph Lameter 已提交
4914 4915 4916 4917
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4918
	&remote_node_defrag_ratio_attr.attr,
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4931
	&alloc_node_mismatch_attr.attr,
4932 4933 4934 4935 4936 4937 4938
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4939
	&deactivate_bypass_attr.attr,
4940
	&order_fallback_attr.attr,
4941 4942
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4943 4944
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4945 4946
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4947
#endif
4948 4949 4950 4951
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
4993 4994 4995
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
4996

4997 4998 4999 5000
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5018
		for_each_memcg_cache_index(i) {
5019
			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5020 5021 5022 5023 5024 5025
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5026 5027 5028
	return err;
}

5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;

	if (!is_root_cache(s))
		return;

	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
	if (!s->max_attr_size)
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

		attr->show(s->memcg_params->root_cache, buf);
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5082
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5100
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5101 5102 5103
	.filter = uevent_filter,
};

5104
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5105 5106 5107 5108

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5109 5110
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5133 5134
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5135 5136 5137
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5138 5139 5140

#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5141 5142
		p += sprintf(p, "-%08d",
				memcg_cache_id(s->memcg_params->memcg));
5143 5144
#endif

C
Christoph Lameter 已提交
5145 5146 5147 5148 5149 5150 5151 5152
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5153
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5154 5155 5156 5157 5158 5159 5160

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5161
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5162 5163 5164 5165 5166 5167 5168 5169 5170
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5171
	s->kobj.kset = slab_kset;
5172 5173 5174
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5175
		return err;
5176
	}
C
Christoph Lameter 已提交
5177 5178

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5179 5180 5181
	if (err) {
		kobject_del(&s->kobj);
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5182
		return err;
5183
	}
C
Christoph Lameter 已提交
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
5195
	if (slab_state < FULL)
5196 5197 5198 5199 5200 5201
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

C
Christoph Lameter 已提交
5202 5203
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5204
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5205 5206 5207 5208
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5209
 * available lest we lose that information.
C
Christoph Lameter 已提交
5210 5211 5212 5213 5214 5215 5216
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5217
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5218 5219 5220 5221 5222

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5223
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5224 5225 5226
		/*
		 * If we have a leftover link then remove it.
		 */
5227 5228
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5244
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5245 5246
	int err;

5247
	mutex_lock(&slab_mutex);
5248

5249
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5250
	if (!slab_kset) {
5251
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5252 5253 5254 5255
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

5256
	slab_state = FULL;
5257

5258
	list_for_each_entry(s, &slab_caches, list) {
5259
		err = sysfs_slab_add(s);
5260 5261 5262
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
5263
	}
C
Christoph Lameter 已提交
5264 5265 5266 5267 5268 5269

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5270 5271
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5272
					" %s to sysfs\n", al->name);
C
Christoph Lameter 已提交
5273 5274 5275
		kfree(al);
	}

5276
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5277 5278 5279 5280 5281
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5282
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5283 5284 5285 5286

/*
 * The /proc/slabinfo ABI
 */
5287
#ifdef CONFIG_SLABINFO
5288
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5289 5290
{
	unsigned long nr_slabs = 0;
5291 5292
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5293 5294 5295 5296 5297 5298 5299 5300
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

5301 5302
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5303
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5304 5305
	}

5306 5307 5308 5309 5310 5311
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5312 5313
}

5314
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5315 5316 5317
{
}

5318 5319
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5320
{
5321
	return -EIO;
5322
}
5323
#endif /* CONFIG_SLABINFO */