slub.c 140.4 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
V
Vegard Nossum 已提交
24
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
29
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
30
#include <linux/kallsyms.h>
31
#include <linux/memory.h>
R
Roman Zippel 已提交
32
#include <linux/math64.h>
A
Akinobu Mita 已提交
33
#include <linux/fault-inject.h>
34
#include <linux/stacktrace.h>
35
#include <linux/prefetch.h>
36
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
85 86
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
87
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
88 89
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
90 91 92 93 94 95 96
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
97 98 99 100 101 102 103 104 105 106 107 108
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
109
 * 			freelist that allows lockless access to
110 111
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
112 113 114
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
115
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
116 117
 */

118 119
static inline int kmem_cache_debug(struct kmem_cache *s)
{
120
#ifdef CONFIG_SLUB_DEBUG
121
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122
#else
123
	return 0;
124
#endif
125
}
126

127
void *fixup_red_left(struct kmem_cache *s, void *p)
J
Joonsoo Kim 已提交
128 129 130 131 132 133 134
{
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
		p += s->red_left_pad;

	return p;
}

135 136 137 138 139 140 141 142 143
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
144 145 146 147 148 149 150 151 152 153 154
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

155 156 157
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

158 159 160 161
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
162
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
163

164 165 166
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
167
 * sort the partial list by the number of objects in use.
168 169 170
 */
#define MAX_PARTIAL 10

171
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
C
Christoph Lameter 已提交
172
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
173

174 175 176 177 178 179 180 181
/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


182
/*
183 184 185
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
186
 */
187
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188

189 190
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
191
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
192

C
Christoph Lameter 已提交
193
/* Internal SLUB flags */
C
Christoph Lameter 已提交
194
#define __OBJECT_POISON		0x80000000UL /* Poison object */
195
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
196

197 198 199
/*
 * Tracking user of a slab.
 */
200
#define TRACK_ADDRS_COUNT 16
201
struct track {
202
	unsigned long addr;	/* Called from address */
203 204 205
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
206 207 208 209 210 211 212
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

213
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
214 215
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
216
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
217
static void sysfs_slab_remove(struct kmem_cache *s);
C
Christoph Lameter 已提交
218
#else
219 220 221
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
222
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
223
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
224 225
#endif

226
static inline void stat(const struct kmem_cache *s, enum stat_item si)
227 228
{
#ifdef CONFIG_SLUB_STATS
229 230 231 232 233
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
234 235 236
#endif
}

C
Christoph Lameter 已提交
237 238 239 240
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

241 242 243 244 245
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

246 247 248 249 250
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

251 252 253 254
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

255 256 257
	if (!debug_pagealloc_enabled())
		return get_freepointer(s, object);

258 259 260 261
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
	return p;
}

262 263 264 265 266 267
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
268
#define for_each_object(__p, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
269 270 271
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)
272

273
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
274 275 276
	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
		__idx <= __objects; \
		__p += (__s)->size, __idx++)
277

278 279 280 281 282 283
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

284 285 286 287 288
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

289
static inline struct kmem_cache_order_objects oo_make(int order,
290
		unsigned long size, int reserved)
291 292
{
	struct kmem_cache_order_objects x = {
293
		(order << OO_SHIFT) + order_objects(order, size, reserved)
294 295 296 297 298 299 300
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
301
	return x.x >> OO_SHIFT;
302 303 304 305
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
306
	return x.x & OO_MASK;
307 308
}

309 310 311 312 313
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
314
	VM_BUG_ON_PAGE(PageTail(page), page);
315 316 317 318 319
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
320
	VM_BUG_ON_PAGE(PageTail(page), page);
321 322 323
	__bit_spin_unlock(PG_locked, &page->flags);
}

324 325 326 327 328 329
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
330 331
	 * as page->_refcount.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_refcount, so
332 333 334 335 336 337 338
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

339 340 341 342 343 344 345
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
346 347
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
348
	if (s->flags & __CMPXCHG_DOUBLE) {
349
		if (cmpxchg_double(&page->freelist, &page->counters,
350 351
				   freelist_old, counters_old,
				   freelist_new, counters_new))
352
			return true;
353 354 355 356
	} else
#endif
	{
		slab_lock(page);
357 358
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
359
			page->freelist = freelist_new;
360
			set_page_slub_counters(page, counters_new);
361
			slab_unlock(page);
362
			return true;
363 364 365 366 367 368 369 370
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
371
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
372 373
#endif

374
	return false;
375 376
}

377 378 379 380 381
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
382 383
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
384
	if (s->flags & __CMPXCHG_DOUBLE) {
385
		if (cmpxchg_double(&page->freelist, &page->counters,
386 387
				   freelist_old, counters_old,
				   freelist_new, counters_new))
388
			return true;
389 390 391
	} else
#endif
	{
392 393 394
		unsigned long flags;

		local_irq_save(flags);
395
		slab_lock(page);
396 397
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
398
			page->freelist = freelist_new;
399
			set_page_slub_counters(page, counters_new);
400
			slab_unlock(page);
401
			local_irq_restore(flags);
402
			return true;
403
		}
404
		slab_unlock(page);
405
		local_irq_restore(flags);
406 407 408 409 410 411
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
412
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
413 414
#endif

415
	return false;
416 417
}

C
Christoph Lameter 已提交
418
#ifdef CONFIG_SLUB_DEBUG
419 420 421
/*
 * Determine a map of object in use on a page.
 *
422
 * Node listlock must be held to guarantee that the page does
423 424 425 426 427 428 429 430 431 432 433
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

J
Joonsoo Kim 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
static inline int size_from_object(struct kmem_cache *s)
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

C
Christoph Lameter 已提交
450 451 452
/*
 * Debug settings:
 */
453
#if defined(CONFIG_SLUB_DEBUG_ON)
454 455
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
456
static int slub_debug;
457
#endif
C
Christoph Lameter 已提交
458 459

static char *slub_debug_slabs;
460
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
461

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
478 479 480
/*
 * Object debugging
 */
J
Joonsoo Kim 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

501 502
static void print_section(char *level, char *text, u8 *addr,
			  unsigned int length)
C
Christoph Lameter 已提交
503
{
504
	metadata_access_enable();
505
	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
506
			length, 1);
507
	metadata_access_disable();
C
Christoph Lameter 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
524
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
525
{
A
Akinobu Mita 已提交
526
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
527 528

	if (addr) {
529 530 531 532 533 534 535 536
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
537
		metadata_access_enable();
538
		save_stack_trace(&trace);
539
		metadata_access_disable();
540 541 542 543 544 545 546 547 548

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
549 550
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
551
		p->pid = current->pid;
C
Christoph Lameter 已提交
552 553 554 555 556 557 558
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
559 560 561
	if (!(s->flags & SLAB_STORE_USER))
		return;

562 563
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
564 565 566 567 568 569 570
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

571 572
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
573 574 575 576 577
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
578
				pr_err("\t%pS\n", (void *)t->addrs[i]);
579 580 581 582
			else
				break;
	}
#endif
583 584 585 586 587 588 589 590 591 592 593 594 595
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
596
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
597
	       page, page->objects, page->inuse, page->freelist, page->flags);
598 599 600 601 602

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
603
	struct va_format vaf;
604 605 606
	va_list args;

	va_start(args, fmt);
607 608
	vaf.fmt = fmt;
	vaf.va = &args;
609
	pr_err("=============================================================================\n");
610
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
611
	pr_err("-----------------------------------------------------------------------------\n\n");
612

613
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
614
	va_end(args);
C
Christoph Lameter 已提交
615 616
}

617 618
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
619
	struct va_format vaf;
620 621 622
	va_list args;

	va_start(args, fmt);
623 624 625
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
626 627 628 629
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
630 631
{
	unsigned int off;	/* Offset of last byte */
632
	u8 *addr = page_address(page);
633 634 635 636 637

	print_tracking(s, p);

	print_page_info(page);

638 639
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
640

J
Joonsoo Kim 已提交
641
	if (s->flags & SLAB_RED_ZONE)
642 643
		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
			      s->red_left_pad);
J
Joonsoo Kim 已提交
644
	else if (p > addr + 16)
645
		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
646

647 648
	print_section(KERN_ERR, "Object ", p,
		      min_t(unsigned long, s->object_size, PAGE_SIZE));
C
Christoph Lameter 已提交
649
	if (s->flags & SLAB_RED_ZONE)
650
		print_section(KERN_ERR, "Redzone ", p + s->object_size,
651
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
652 653 654 655 656 657

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

658
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
659 660
		off += 2 * sizeof(struct track);

661 662
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
663
	if (off != size_from_object(s))
C
Christoph Lameter 已提交
664
		/* Beginning of the filler is the free pointer */
665 666
		print_section(KERN_ERR, "Padding ", p + off,
			      size_from_object(s) - off);
667 668

	dump_stack();
C
Christoph Lameter 已提交
669 670
}

671
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
672 673
			u8 *object, char *reason)
{
674
	slab_bug(s, "%s", reason);
675
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
676 677
}

678 679
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
680 681 682 683
{
	va_list args;
	char buf[100];

684 685
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
686
	va_end(args);
687
	slab_bug(s, "%s", buf);
688
	print_page_info(page);
C
Christoph Lameter 已提交
689 690 691
	dump_stack();
}

692
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
693 694 695
{
	u8 *p = object;

J
Joonsoo Kim 已提交
696 697 698
	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

C
Christoph Lameter 已提交
699
	if (s->flags & __OBJECT_POISON) {
700 701
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
702 703 704
	}

	if (s->flags & SLAB_RED_ZONE)
705
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
706 707
}

708 709 710 711 712 713 714 715 716
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
717
			u8 *start, unsigned int value, unsigned int bytes)
718 719 720 721
{
	u8 *fault;
	u8 *end;

722
	metadata_access_enable();
723
	fault = memchr_inv(start, value, bytes);
724
	metadata_access_disable();
725 726 727 728 729 730 731 732
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
733
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
734 735 736 737 738
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
739 740 741 742 743 744 745 746 747
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
748
 *
C
Christoph Lameter 已提交
749 750 751
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
752
 * object + s->object_size
C
Christoph Lameter 已提交
753
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
754
 * 	Padding is extended by another word if Redzoning is enabled and
755
 * 	object_size == inuse.
C
Christoph Lameter 已提交
756
 *
C
Christoph Lameter 已提交
757 758 759 760
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
761 762
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
763 764
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
765
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
766
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
767 768 769
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
770 771
 *
 * object + s->size
C
Christoph Lameter 已提交
772
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
773
 *
774
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
775
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

791 792
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
793
	if (size_from_object(s) == off)
C
Christoph Lameter 已提交
794 795
		return 1;

796
	return check_bytes_and_report(s, page, p, "Object padding",
J
Joonsoo Kim 已提交
797
			p + off, POISON_INUSE, size_from_object(s) - off);
C
Christoph Lameter 已提交
798 799
}

800
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
801 802
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
803 804 805 806 807
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
808 809 810 811

	if (!(s->flags & SLAB_POISON))
		return 1;

812
	start = page_address(page);
813
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
814 815
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
816 817 818
	if (!remainder)
		return 1;

819
	metadata_access_enable();
820
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
821
	metadata_access_disable();
822 823 824 825 826 827
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
828
	print_section(KERN_ERR, "Padding ", end - remainder, remainder);
829

E
Eric Dumazet 已提交
830
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
831
	return 0;
C
Christoph Lameter 已提交
832 833 834
}

static int check_object(struct kmem_cache *s, struct page *page,
835
					void *object, u8 val)
C
Christoph Lameter 已提交
836 837
{
	u8 *p = object;
838
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
839 840

	if (s->flags & SLAB_RED_ZONE) {
J
Joonsoo Kim 已提交
841 842 843 844
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

845
		if (!check_bytes_and_report(s, page, object, "Redzone",
846
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
847 848
			return 0;
	} else {
849
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
850
			check_bytes_and_report(s, page, p, "Alignment padding",
851 852
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
853
		}
C
Christoph Lameter 已提交
854 855 856
	}

	if (s->flags & SLAB_POISON) {
857
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
858
			(!check_bytes_and_report(s, page, p, "Poison", p,
859
					POISON_FREE, s->object_size - 1) ||
860
			 !check_bytes_and_report(s, page, p, "Poison",
861
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
862 863 864 865 866 867 868
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

869
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
870 871 872 873 874 875 876 877 878 879
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
880
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
881
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
882
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
883
		 */
884
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
885 886 887 888 889 890 891
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
892 893
	int maxobj;

C
Christoph Lameter 已提交
894 895 896
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
897
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
898 899
		return 0;
	}
900

901
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
902 903
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
904
			page->objects, maxobj);
905 906 907
		return 0;
	}
	if (page->inuse > page->objects) {
908
		slab_err(s, page, "inuse %u > max %u",
909
			page->inuse, page->objects);
C
Christoph Lameter 已提交
910 911 912 913 914 915 916 917
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
918 919
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
920 921 922 923
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
924
	void *fp;
C
Christoph Lameter 已提交
925
	void *object = NULL;
926
	int max_objects;
C
Christoph Lameter 已提交
927

928
	fp = page->freelist;
929
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
930 931 932 933 934 935
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
936
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
937
			} else {
938
				slab_err(s, page, "Freepointer corrupt");
939
				page->freelist = NULL;
940
				page->inuse = page->objects;
941
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
942 943 944 945 946 947 948 949 950
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

951
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
952 953
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
954 955

	if (page->objects != max_objects) {
J
Joe Perches 已提交
956 957
		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
			 page->objects, max_objects);
958 959 960
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
961
	if (page->inuse != page->objects - nr) {
J
Joe Perches 已提交
962 963
		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
			 page->inuse, page->objects - nr);
964
		page->inuse = page->objects - nr;
965
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
966 967 968 969
	}
	return search == NULL;
}

970 971
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
972 973
{
	if (s->flags & SLAB_TRACE) {
974
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
975 976 977 978 979 980
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
981
			print_section(KERN_INFO, "Object ", (void *)object,
982
					s->object_size);
C
Christoph Lameter 已提交
983 984 985 986 987

		dump_stack();
	}
}

988
/*
C
Christoph Lameter 已提交
989
 * Tracking of fully allocated slabs for debugging purposes.
990
 */
991 992
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
993
{
994 995 996
	if (!(s->flags & SLAB_STORE_USER))
		return;

997
	lockdep_assert_held(&n->list_lock);
998 999 1000
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
1001
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1002 1003 1004 1005
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1006
	lockdep_assert_held(&n->list_lock);
1007 1008 1009
	list_del(&page->lru);
}

1010 1011 1012 1013 1014 1015 1016 1017
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1018 1019 1020 1021 1022
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1023
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1024 1025 1026 1027 1028 1029 1030 1031 1032
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1033
	if (likely(n)) {
1034
		atomic_long_inc(&n->nr_slabs);
1035 1036
		atomic_long_add(objects, &n->total_objects);
	}
1037
}
1038
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1039 1040 1041 1042
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1043
	atomic_long_sub(objects, &n->total_objects);
1044 1045 1046
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1047 1048 1049 1050 1051 1052
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1053
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1054 1055 1056
	init_tracking(s, object);
}

1057
static inline int alloc_consistency_checks(struct kmem_cache *s,
1058
					struct page *page,
1059
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1060 1061
{
	if (!check_slab(s, page))
1062
		return 0;
C
Christoph Lameter 已提交
1063 1064 1065

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1066
		return 0;
C
Christoph Lameter 已提交
1067 1068
	}

1069
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!alloc_consistency_checks(s, page, object, addr))
			goto bad;
	}
C
Christoph Lameter 已提交
1083

C
Christoph Lameter 已提交
1084 1085 1086 1087
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1088
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1089
	return 1;
C
Christoph Lameter 已提交
1090

C
Christoph Lameter 已提交
1091 1092 1093 1094 1095
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1096
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1097
		 */
1098
		slab_fix(s, "Marking all objects used");
1099
		page->inuse = page->objects;
1100
		page->freelist = NULL;
C
Christoph Lameter 已提交
1101 1102 1103 1104
	}
	return 0;
}

1105 1106
static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
C
Christoph Lameter 已提交
1107 1108
{
	if (!check_valid_pointer(s, page, object)) {
1109
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1110
		return 0;
C
Christoph Lameter 已提交
1111 1112 1113
	}

	if (on_freelist(s, page, object)) {
1114
		object_err(s, page, object, "Object already free");
1115
		return 0;
C
Christoph Lameter 已提交
1116 1117
	}

1118
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1119
		return 0;
C
Christoph Lameter 已提交
1120

1121
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1122
		if (!PageSlab(page)) {
J
Joe Perches 已提交
1123 1124
			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
				 object);
1125
		} else if (!page->slab_cache) {
1126 1127
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1128
			dump_stack();
P
Pekka Enberg 已提交
1129
		} else
1130 1131
			object_err(s, page, object,
					"page slab pointer corrupt.");
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
	unsigned long uninitialized_var(flags);
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
C
Christoph Lameter 已提交
1163
	}
C
Christoph Lameter 已提交
1164 1165 1166 1167

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1168
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1169
	init_object(s, object, SLUB_RED_INACTIVE);
1170 1171 1172 1173 1174 1175

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1176 1177
	ret = 1;

1178
out:
1179 1180 1181 1182
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1183
	slab_unlock(page);
1184
	spin_unlock_irqrestore(&n->list_lock, flags);
1185 1186 1187
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1188 1189
}

C
Christoph Lameter 已提交
1190 1191
static int __init setup_slub_debug(char *str)
{
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1216
	for (; *str && *str != ','; str++) {
1217 1218
		switch (tolower(*str)) {
		case 'f':
1219
			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1233 1234 1235
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1236 1237 1238 1239 1240 1241 1242
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1243
		default:
1244 1245
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1246
		}
C
Christoph Lameter 已提交
1247 1248
	}

1249
check_slabs:
C
Christoph Lameter 已提交
1250 1251
	if (*str == ',')
		slub_debug_slabs = str + 1;
1252
out:
C
Christoph Lameter 已提交
1253 1254 1255 1256 1257
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1258
unsigned long kmem_cache_flags(unsigned long object_size,
1259
	unsigned long flags, const char *name,
1260
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1261 1262
{
	/*
1263
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1264
	 */
1265 1266
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1267
		flags |= slub_debug;
1268 1269

	return flags;
C
Christoph Lameter 已提交
1270
}
1271
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1272 1273
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1274

C
Christoph Lameter 已提交
1275
static inline int alloc_debug_processing(struct kmem_cache *s,
1276
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1277

1278
static inline int free_debug_processing(
1279 1280
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1281
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1282 1283 1284 1285

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1286
			void *object, u8 val) { return 1; }
1287 1288
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1289 1290
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1291
unsigned long kmem_cache_flags(unsigned long object_size,
1292
	unsigned long flags, const char *name,
1293
	void (*ctor)(void *))
1294 1295 1296
{
	return flags;
}
C
Christoph Lameter 已提交
1297
#define slub_debug 0
1298

1299 1300
#define disable_higher_order_debug 0

1301 1302
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1303 1304
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1305 1306 1307 1308
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1309

1310 1311 1312 1313 1314 1315
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1316 1317 1318
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
1319
	kasan_kmalloc_large(ptr, size, flags);
1320 1321 1322 1323 1324
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
1325
	kasan_kfree_large(x);
1326 1327
}

1328
static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1329
{
1330 1331
	void *freeptr;

1332
	kmemleak_free_recursive(x, s->flags);
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1351

1352 1353 1354 1355 1356
	freeptr = get_freepointer(s, x);
	/*
	 * kasan_slab_free() may put x into memory quarantine, delaying its
	 * reuse. In this case the object's freelist pointer is changed.
	 */
1357
	kasan_slab_free(s, x);
1358
	return freeptr;
1359
}
1360

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static inline void slab_free_freelist_hook(struct kmem_cache *s,
					   void *head, void *tail)
{
/*
 * Compiler cannot detect this function can be removed if slab_free_hook()
 * evaluates to nothing.  Thus, catch all relevant config debug options here.
 */
#if defined(CONFIG_KMEMCHECK) ||		\
	defined(CONFIG_LOCKDEP)	||		\
	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
	defined(CONFIG_KASAN)

	void *object = head;
	void *tail_obj = tail ? : head;
1376
	void *freeptr;
1377 1378

	do {
1379 1380
		freeptr = slab_free_hook(s, object);
	} while ((object != tail_obj) && (object = freeptr));
1381 1382 1383
#endif
}

1384 1385 1386 1387
static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
	setup_object_debug(s, page, object);
1388
	kasan_init_slab_obj(s, object);
1389 1390 1391 1392 1393 1394 1395
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
}

C
Christoph Lameter 已提交
1396 1397 1398
/*
 * Slab allocation and freeing
 */
1399 1400
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1401
{
1402
	struct page *page;
1403 1404
	int order = oo_order(oo);

1405 1406
	flags |= __GFP_NOTRACK;

1407
	if (node == NUMA_NO_NODE)
1408
		page = alloc_pages(flags, order);
1409
	else
1410
		page = __alloc_pages_node(node, flags, order);
1411

1412 1413 1414 1415
	if (page && memcg_charge_slab(page, flags, order, s)) {
		__free_pages(page, order);
		page = NULL;
	}
1416 1417

	return page;
1418 1419
}

T
Thomas Garnier 已提交
1420 1421 1422 1423 1424 1425 1426
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
	int err;
	unsigned long i, count = oo_objects(s->oo);

1427 1428 1429 1430
	/* Bailout if already initialised */
	if (s->random_seq)
		return 0;

T
Thomas Garnier 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	err = cache_random_seq_create(s, count, GFP_KERNEL);
	if (err) {
		pr_err("SLUB: Unable to initialize free list for %s\n",
			s->name);
		return err;
	}

	/* Transform to an offset on the set of pages */
	if (s->random_seq) {
		for (i = 0; i < count; i++)
			s->random_seq[i] *= s->size;
	}
	return 0;
}

/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
	struct kmem_cache *s;

	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list)
		init_cache_random_seq(s);

	mutex_unlock(&slab_mutex);
}

/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
				unsigned long *pos, void *start,
				unsigned long page_limit,
				unsigned long freelist_count)
{
	unsigned int idx;

	/*
	 * If the target page allocation failed, the number of objects on the
	 * page might be smaller than the usual size defined by the cache.
	 */
	do {
		idx = s->random_seq[*pos];
		*pos += 1;
		if (*pos >= freelist_count)
			*pos = 0;
	} while (unlikely(idx >= page_limit));

	return (char *)start + idx;
}

/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	void *start;
	void *cur;
	void *next;
	unsigned long idx, pos, page_limit, freelist_count;

	if (page->objects < 2 || !s->random_seq)
		return false;

	freelist_count = oo_objects(s->oo);
	pos = get_random_int() % freelist_count;

	page_limit = page->objects * s->size;
	start = fixup_red_left(s, page_address(page));

	/* First entry is used as the base of the freelist */
	cur = next_freelist_entry(s, page, &pos, start, page_limit,
				freelist_count);
	page->freelist = cur;

	for (idx = 1; idx < page->objects; idx++) {
		setup_object(s, page, cur);
		next = next_freelist_entry(s, page, &pos, start, page_limit,
			freelist_count);
		set_freepointer(s, cur, next);
		cur = next;
	}
	setup_object(s, page, cur);
	set_freepointer(s, cur, NULL);

	return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
	return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

C
Christoph Lameter 已提交
1527 1528
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1529
	struct page *page;
1530
	struct kmem_cache_order_objects oo = s->oo;
1531
	gfp_t alloc_gfp;
1532 1533
	void *start, *p;
	int idx, order;
T
Thomas Garnier 已提交
1534
	bool shuffle;
C
Christoph Lameter 已提交
1535

1536 1537
	flags &= gfp_allowed_mask;

1538
	if (gfpflags_allow_blocking(flags))
1539 1540
		local_irq_enable();

1541
	flags |= s->allocflags;
1542

1543 1544 1545 1546 1547
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1548
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1549
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1550

1551
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1552 1553
	if (unlikely(!page)) {
		oo = s->min;
1554
		alloc_gfp = flags;
1555 1556 1557 1558
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1559
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1560 1561 1562
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1563
	}
V
Vegard Nossum 已提交
1564

1565 1566
	if (kmemcheck_enabled &&
	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1567 1568
		int pages = 1 << oo_order(oo);

1569
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1570 1571 1572 1573 1574 1575 1576 1577 1578

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1579 1580
	}

1581
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1582

G
Glauber Costa 已提交
1583
	order = compound_order(page);
1584
	page->slab_cache = s;
1585
	__SetPageSlab(page);
1586
	if (page_is_pfmemalloc(page))
1587
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1588 1589 1590 1591

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1592
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1593

1594 1595
	kasan_poison_slab(page);

T
Thomas Garnier 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
	shuffle = shuffle_freelist(s, page);

	if (!shuffle) {
		for_each_object_idx(p, idx, s, start, page->objects) {
			setup_object(s, page, p);
			if (likely(idx < page->objects))
				set_freepointer(s, p, p + s->size);
			else
				set_freepointer(s, p, NULL);
		}
		page->freelist = fixup_red_left(s, start);
C
Christoph Lameter 已提交
1607 1608
	}

1609
	page->inuse = page->objects;
1610
	page->frozen = 1;
1611

C
Christoph Lameter 已提交
1612
out:
1613
	if (gfpflags_allow_blocking(flags))
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		local_irq_disable();
	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		1 << oo_order(oo));

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1625 1626 1627
	return page;
}

1628 1629 1630
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1631
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1632 1633 1634
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
1635
		dump_stack();
1636 1637 1638 1639 1640 1641
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1642 1643
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1644 1645
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1646

1647
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
C
Christoph Lameter 已提交
1648 1649 1650
		void *p;

		slab_pad_check(s, page);
1651 1652
		for_each_object(p, s, page_address(page),
						page->objects)
1653
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1654 1655
	}

1656
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1657

C
Christoph Lameter 已提交
1658 1659 1660
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1661
		-pages);
C
Christoph Lameter 已提交
1662

1663
	__ClearPageSlabPfmemalloc(page);
1664
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1665

1666
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1667 1668
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1669 1670
	memcg_uncharge_slab(page, order, s);
	__free_pages(page, order);
C
Christoph Lameter 已提交
1671 1672
}

1673 1674 1675
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1676 1677 1678 1679
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1680 1681 1682 1683 1684
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1685
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1686 1687 1688 1689
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
1690
	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1691 1692 1693 1694 1695 1696 1697 1698 1699
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
1700
			head = &page->rcu_head;
1701
		}
C
Christoph Lameter 已提交
1702 1703 1704 1705 1706 1707 1708 1709

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1710
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1711 1712 1713 1714
	free_slab(s, page);
}

/*
1715
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1716
 */
1717 1718
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1719
{
C
Christoph Lameter 已提交
1720
	n->nr_partial++;
1721
	if (tail == DEACTIVATE_TO_TAIL)
1722 1723 1724
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1725 1726
}

1727 1728
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1729
{
P
Peter Zijlstra 已提交
1730
	lockdep_assert_held(&n->list_lock);
1731 1732
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1733

1734 1735 1736 1737
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1738 1739
	list_del(&page->lru);
	n->nr_partial--;
1740 1741
}

C
Christoph Lameter 已提交
1742
/*
1743 1744
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1745
 *
1746
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1747
 */
1748
static inline void *acquire_slab(struct kmem_cache *s,
1749
		struct kmem_cache_node *n, struct page *page,
1750
		int mode, int *objects)
C
Christoph Lameter 已提交
1751
{
1752 1753 1754 1755
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1756 1757
	lockdep_assert_held(&n->list_lock);

1758 1759 1760 1761 1762
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1763 1764 1765
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1766
	*objects = new.objects - new.inuse;
1767
	if (mode) {
1768
		new.inuse = page->objects;
1769 1770 1771 1772
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1773

1774
	VM_BUG_ON(new.frozen);
1775
	new.frozen = 1;
1776

1777
	if (!__cmpxchg_double_slab(s, page,
1778
			freelist, counters,
1779
			new.freelist, new.counters,
1780 1781
			"acquire_slab"))
		return NULL;
1782 1783

	remove_partial(n, page);
1784
	WARN_ON(!freelist);
1785
	return freelist;
C
Christoph Lameter 已提交
1786 1787
}

1788
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1789
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1790

C
Christoph Lameter 已提交
1791
/*
C
Christoph Lameter 已提交
1792
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1793
 */
1794 1795
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1796
{
1797 1798
	struct page *page, *page2;
	void *object = NULL;
1799 1800
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1801 1802 1803 1804

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1805 1806
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1807 1808 1809 1810 1811
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1812
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1813
		void *t;
1814

1815 1816 1817
		if (!pfmemalloc_match(page, flags))
			continue;

1818
		t = acquire_slab(s, n, page, object == NULL, &objects);
1819 1820 1821
		if (!t)
			break;

1822
		available += objects;
1823
		if (!object) {
1824 1825 1826 1827
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1828
			put_cpu_partial(s, page, 0);
1829
			stat(s, CPU_PARTIAL_NODE);
1830
		}
1831 1832
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1833 1834
			break;

1835
	}
C
Christoph Lameter 已提交
1836
	spin_unlock(&n->list_lock);
1837
	return object;
C
Christoph Lameter 已提交
1838 1839 1840
}

/*
C
Christoph Lameter 已提交
1841
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1842
 */
1843
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1844
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1845 1846 1847
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1848
	struct zoneref *z;
1849 1850
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1851
	void *object;
1852
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1853 1854

	/*
C
Christoph Lameter 已提交
1855 1856 1857 1858
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1859
	 *
C
Christoph Lameter 已提交
1860 1861 1862 1863
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1864
	 *
1865 1866 1867 1868 1869
	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
	 * (which makes defrag_ratio = 1000) then every (well almost)
	 * allocation will first attempt to defrag slab caches on other nodes.
	 * This means scanning over all nodes to look for partial slabs which
	 * may be expensive if we do it every time we are trying to find a slab
C
Christoph Lameter 已提交
1870
	 * with available objects.
C
Christoph Lameter 已提交
1871
	 */
1872 1873
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1874 1875
		return NULL;

1876
	do {
1877
		cpuset_mems_cookie = read_mems_allowed_begin();
1878
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1879 1880 1881 1882 1883
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1884
			if (n && cpuset_zone_allowed(zone, flags) &&
1885
					n->nr_partial > s->min_partial) {
1886
				object = get_partial_node(s, n, c, flags);
1887 1888
				if (object) {
					/*
1889 1890 1891 1892 1893
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1894 1895 1896
					 */
					return object;
				}
1897
			}
C
Christoph Lameter 已提交
1898
		}
1899
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1900 1901 1902 1903 1904 1905 1906
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1907
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1908
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1909
{
1910
	void *object;
1911 1912 1913 1914 1915 1916
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1917

1918
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1919 1920
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1921

1922
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1923 1924
}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1966
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1967 1968 1969

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1970
		pr_warn("due to cpu change %d -> %d\n",
1971 1972 1973 1974
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1975
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1976 1977
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1978
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1979 1980
			actual_tid, tid, next_tid(tid));
#endif
1981
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1982 1983
}

1984
static void init_kmem_cache_cpus(struct kmem_cache *s)
1985 1986 1987 1988 1989 1990
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1991

C
Christoph Lameter 已提交
1992 1993 1994
/*
 * Remove the cpu slab
 */
1995
static void deactivate_slab(struct kmem_cache *s, struct page *page,
1996
				void *freelist, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1997
{
1998 1999 2000 2001 2002
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
2003
	int tail = DEACTIVATE_TO_HEAD;
2004 2005 2006 2007
	struct page new;
	struct page old;

	if (page->freelist) {
2008
		stat(s, DEACTIVATE_REMOTE_FREES);
2009
		tail = DEACTIVATE_TO_TAIL;
2010 2011
	}

2012
	/*
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
2030
			VM_BUG_ON(!new.frozen);
2031

2032
		} while (!__cmpxchg_double_slab(s, page,
2033 2034 2035 2036 2037 2038 2039
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

2040
	/*
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
2053
	 */
2054
redo:
2055

2056 2057
	old.freelist = page->freelist;
	old.counters = page->counters;
2058
	VM_BUG_ON(!old.frozen);
2059

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

2071
	if (!new.inuse && n->nr_partial >= s->min_partial)
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
2104

P
Peter Zijlstra 已提交
2105
			remove_full(s, n, page);
2106 2107 2108 2109

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
2110
			stat(s, tail);
2111 2112

		} else if (m == M_FULL) {
2113

2114 2115 2116 2117 2118 2119 2120
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
2121
	if (!__cmpxchg_double_slab(s, page,
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2134
	}
2135 2136 2137

	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2138 2139
}

2140 2141 2142
/*
 * Unfreeze all the cpu partial slabs.
 *
2143 2144 2145
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2146
 */
2147 2148
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2149
{
2150
#ifdef CONFIG_SLUB_CPU_PARTIAL
2151
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2152
	struct page *page, *discard_page = NULL;
2153 2154 2155 2156 2157 2158

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
2159 2160 2161 2162 2163 2164 2165 2166 2167

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2168 2169 2170 2171 2172

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2173
			VM_BUG_ON(!old.frozen);
2174 2175 2176 2177 2178 2179

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2180
		} while (!__cmpxchg_double_slab(s, page,
2181 2182 2183 2184
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2185
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2186 2187
			page->next = discard_page;
			discard_page = page;
2188 2189 2190
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2191 2192 2193 2194 2195
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2196 2197 2198 2199 2200 2201 2202 2203 2204

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2205
#endif
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2217
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2218
{
2219
#ifdef CONFIG_SLUB_CPU_PARTIAL
2220 2221 2222 2223
	struct page *oldpage;
	int pages;
	int pobjects;

2224
	preempt_disable();
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2240
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2241
				local_irq_restore(flags);
2242
				oldpage = NULL;
2243 2244
				pobjects = 0;
				pages = 0;
2245
				stat(s, CPU_PARTIAL_DRAIN);
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2256 2257
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2258 2259 2260 2261 2262 2263 2264 2265
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2266
#endif
2267 2268
}

2269
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2270
{
2271
	stat(s, CPUSLAB_FLUSH);
2272
	deactivate_slab(s, c->page, c->freelist, c);
2273 2274

	c->tid = next_tid(c->tid);
C
Christoph Lameter 已提交
2275 2276 2277 2278
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2279
 *
C
Christoph Lameter 已提交
2280 2281
 * Called from IPI handler with interrupts disabled.
 */
2282
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2283
{
2284
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2285

2286 2287 2288 2289
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2290
		unfreeze_partials(s, c);
2291
	}
C
Christoph Lameter 已提交
2292 2293 2294 2295 2296 2297
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2298
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2299 2300
}

2301 2302 2303 2304 2305
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2306
	return c->page || c->partial;
2307 2308
}

C
Christoph Lameter 已提交
2309 2310
static void flush_all(struct kmem_cache *s)
{
2311
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2312 2313
}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
/*
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
 */
static int slub_cpu_dead(unsigned int cpu)
{
	struct kmem_cache *s;
	unsigned long flags;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		local_irq_save(flags);
		__flush_cpu_slab(s, cpu);
		local_irq_restore(flags);
	}
	mutex_unlock(&slab_mutex);
	return 0;
}

2333 2334 2335 2336
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2337
static inline int node_match(struct page *page, int node)
2338 2339
{
#ifdef CONFIG_NUMA
2340
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2341 2342 2343 2344 2345
		return 0;
#endif
	return 1;
}

2346
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2347 2348 2349 2350 2351
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2352 2353 2354 2355 2356 2357 2358
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2372
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2373

P
Pekka Enberg 已提交
2374 2375 2376
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2377 2378 2379
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2380
	int node;
C
Christoph Lameter 已提交
2381
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2382

2383 2384 2385
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2386 2387
	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
2388 2389 2390
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2391

2392
	if (oo_order(s->min) > get_order(s->object_size))
2393 2394
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2395

C
Christoph Lameter 已提交
2396
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2397 2398 2399 2400
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2401 2402 2403
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2404

2405
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2406 2407
			node, nr_slabs, nr_objs, nr_free);
	}
2408
#endif
P
Pekka Enberg 已提交
2409 2410
}

2411 2412 2413
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2414
	void *freelist;
2415 2416
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2417

2418
	freelist = get_partial(s, flags, node, c);
2419

2420 2421 2422 2423
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2424
	if (page) {
2425
		c = raw_cpu_ptr(s->cpu_slab);
2426 2427 2428 2429 2430 2431 2432
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2433
		freelist = page->freelist;
2434 2435 2436 2437 2438 2439
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2440
		freelist = NULL;
2441

2442
	return freelist;
2443 2444
}

2445 2446 2447 2448 2449 2450 2451 2452
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2453
/*
2454 2455
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2456 2457 2458 2459
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2460 2461
 *
 * This function must be called with interrupt disabled.
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2472

2473
		new.counters = counters;
2474
		VM_BUG_ON(!new.frozen);
2475 2476 2477 2478

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2479
	} while (!__cmpxchg_double_slab(s, page,
2480 2481 2482 2483 2484 2485 2486
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2487
/*
2488 2489 2490 2491 2492 2493
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2494
 *
2495 2496 2497
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2498
 *
2499
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2500 2501
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2502 2503 2504
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2505
 */
2506
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2507
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2508
{
2509
	void *freelist;
2510
	struct page *page;
C
Christoph Lameter 已提交
2511

2512 2513
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2514
		goto new_slab;
2515
redo:
2516

2517
	if (unlikely(!node_match(page, node))) {
2518 2519 2520 2521 2522 2523 2524
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
2525
			deactivate_slab(s, page, c->freelist, c);
2526 2527
			goto new_slab;
		}
2528
	}
C
Christoph Lameter 已提交
2529

2530 2531 2532 2533 2534 2535
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2536
		deactivate_slab(s, page, c->freelist, c);
2537 2538 2539
		goto new_slab;
	}

2540
	/* must check again c->freelist in case of cpu migration or IRQ */
2541 2542
	freelist = c->freelist;
	if (freelist)
2543
		goto load_freelist;
2544

2545
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2546

2547
	if (!freelist) {
2548 2549
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2550
		goto new_slab;
2551
	}
C
Christoph Lameter 已提交
2552

2553
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2554

2555
load_freelist:
2556 2557 2558 2559 2560
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2561
	VM_BUG_ON(!c->page->frozen);
2562
	c->freelist = get_freepointer(s, freelist);
2563
	c->tid = next_tid(c->tid);
2564
	return freelist;
C
Christoph Lameter 已提交
2565 2566

new_slab:
2567

2568
	if (c->partial) {
2569 2570
		page = c->page = c->partial;
		c->partial = page->next;
2571 2572
		stat(s, CPU_PARTIAL_ALLOC);
		goto redo;
C
Christoph Lameter 已提交
2573 2574
	}

2575
	freelist = new_slab_objects(s, gfpflags, node, &c);
2576

2577
	if (unlikely(!freelist)) {
2578
		slab_out_of_memory(s, gfpflags, node);
2579
		return NULL;
C
Christoph Lameter 已提交
2580
	}
2581

2582
	page = c->page;
2583
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2584
		goto load_freelist;
2585

2586
	/* Only entered in the debug case */
2587 2588
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2589
		goto new_slab;	/* Slab failed checks. Next slab needed */
2590

2591
	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2592
	return freelist;
2593 2594
}

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2630
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2631
		gfp_t gfpflags, int node, unsigned long addr)
2632
{
2633
	void *object;
2634
	struct kmem_cache_cpu *c;
2635
	struct page *page;
2636
	unsigned long tid;
2637

2638 2639
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2640
		return NULL;
2641 2642 2643 2644 2645 2646
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2647
	 *
2648 2649 2650
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2651
	 */
2652 2653 2654
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2655 2656
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2667 2668 2669 2670 2671 2672 2673 2674

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2675
	object = c->freelist;
2676
	page = c->page;
D
Dave Hansen 已提交
2677
	if (unlikely(!object || !node_match(page, node))) {
2678
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2679 2680
		stat(s, ALLOC_SLOWPATH);
	} else {
2681 2682
		void *next_object = get_freepointer_safe(s, object);

2683
		/*
L
Lucas De Marchi 已提交
2684
		 * The cmpxchg will only match if there was no additional
2685 2686
		 * operation and if we are on the right processor.
		 *
2687 2688
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2689 2690 2691 2692
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2693 2694 2695
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2696
		 */
2697
		if (unlikely(!this_cpu_cmpxchg_double(
2698 2699
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2700
				next_object, next_tid(tid)))) {
2701 2702 2703 2704

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2705
		prefetch_freepointer(s, next_object);
2706
		stat(s, ALLOC_FASTPATH);
2707
	}
2708

2709
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2710
		memset(object, 0, s->object_size);
2711

2712
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2713

2714
	return object;
C
Christoph Lameter 已提交
2715 2716
}

2717 2718 2719 2720 2721 2722
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2723 2724
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2725
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2726

2727 2728
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2729 2730

	return ret;
C
Christoph Lameter 已提交
2731 2732 2733
}
EXPORT_SYMBOL(kmem_cache_alloc);

2734
#ifdef CONFIG_TRACING
2735 2736
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2737
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2738
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2739
	kasan_kmalloc(s, ret, size, gfpflags);
2740 2741 2742
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2743 2744
#endif

C
Christoph Lameter 已提交
2745 2746 2747
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2748
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2749

2750
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2751
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2752 2753

	return ret;
C
Christoph Lameter 已提交
2754 2755 2756
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2757
#ifdef CONFIG_TRACING
2758
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2759
				    gfp_t gfpflags,
2760
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2761
{
2762
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2763 2764 2765

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2766

2767
	kasan_kmalloc(s, ret, size, gfpflags);
2768
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2769
}
2770
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2771
#endif
2772
#endif
E
Eduard - Gabriel Munteanu 已提交
2773

C
Christoph Lameter 已提交
2774
/*
K
Kim Phillips 已提交
2775
 * Slow path handling. This may still be called frequently since objects
2776
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2777
 *
2778 2779 2780
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2781
 */
2782
static void __slab_free(struct kmem_cache *s, struct page *page,
2783 2784 2785
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2786 2787
{
	void *prior;
2788 2789 2790 2791
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2792
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2793

2794
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2795

2796
	if (kmem_cache_debug(s) &&
2797
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2798
		return;
C
Christoph Lameter 已提交
2799

2800
	do {
2801 2802 2803 2804
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2805 2806
		prior = page->freelist;
		counters = page->counters;
2807
		set_freepointer(s, tail, prior);
2808 2809
		new.counters = counters;
		was_frozen = new.frozen;
2810
		new.inuse -= cnt;
2811
		if ((!new.inuse || !prior) && !was_frozen) {
2812

P
Peter Zijlstra 已提交
2813
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2814 2815

				/*
2816 2817 2818 2819
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2820 2821 2822
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2823
			} else { /* Needs to be taken off a list */
2824

2825
				n = get_node(s, page_to_nid(page));
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2837
		}
C
Christoph Lameter 已提交
2838

2839 2840
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
2841
		head, new.counters,
2842
		"__slab_free"));
C
Christoph Lameter 已提交
2843

2844
	if (likely(!n)) {
2845 2846 2847 2848 2849

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2850
		if (new.frozen && !was_frozen) {
2851
			put_cpu_partial(s, page, 1);
2852 2853
			stat(s, CPU_PARTIAL_FREE);
		}
2854
		/*
2855 2856 2857
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2858 2859 2860 2861
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2862

2863
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2864 2865
		goto slab_empty;

C
Christoph Lameter 已提交
2866
	/*
2867 2868
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2869
	 */
2870 2871
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2872
			remove_full(s, n, page);
2873 2874
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2875
	}
2876
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2877 2878 2879
	return;

slab_empty:
2880
	if (prior) {
C
Christoph Lameter 已提交
2881
		/*
2882
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2883
		 */
2884
		remove_partial(n, page);
2885
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2886
	} else {
2887
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2888 2889
		remove_full(s, n, page);
	}
2890

2891
	spin_unlock_irqrestore(&n->list_lock, flags);
2892
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2893 2894 2895
	discard_slab(s, page);
}

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
2906 2907 2908 2909
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
2910
 */
2911 2912 2913
static __always_inline void do_slab_free(struct kmem_cache *s,
				struct page *page, void *head, void *tail,
				int cnt, unsigned long addr)
2914
{
2915
	void *tail_obj = tail ? : head;
2916
	struct kmem_cache_cpu *c;
2917 2918 2919 2920 2921 2922
	unsigned long tid;
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2923
	 * during the cmpxchg then the free will succeed.
2924
	 */
2925 2926 2927
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2928 2929
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2930

2931 2932
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2933

2934
	if (likely(page == c->page)) {
2935
		set_freepointer(s, tail_obj, c->freelist);
2936

2937
		if (unlikely(!this_cpu_cmpxchg_double(
2938 2939
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
2940
				head, next_tid(tid)))) {
2941 2942 2943 2944

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2945
		stat(s, FREE_FASTPATH);
2946
	} else
2947
		__slab_free(s, page, head, tail_obj, cnt, addr);
2948 2949 2950

}

2951 2952 2953 2954 2955 2956 2957 2958 2959
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
{
	slab_free_freelist_hook(s, head, tail);
	/*
	 * slab_free_freelist_hook() could have put the items into quarantine.
	 * If so, no need to free them.
	 */
2960
	if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
		return;
	do_slab_free(s, page, head, tail, cnt, addr);
}

#ifdef CONFIG_KASAN
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
}
#endif

C
Christoph Lameter 已提交
2972 2973
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2974 2975
	s = cache_from_obj(s, x);
	if (!s)
2976
		return;
2977
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2978
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2979 2980 2981
}
EXPORT_SYMBOL(kmem_cache_free);

2982
struct detached_freelist {
2983
	struct page *page;
2984 2985 2986
	void *tail;
	void *freelist;
	int cnt;
2987
	struct kmem_cache *s;
2988
};
2989

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
3002 3003 3004
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
3005 3006 3007 3008
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
3009
	struct page *page;
3010

3011 3012
	/* Always re-init detached_freelist */
	df->page = NULL;
3013

3014 3015
	do {
		object = p[--size];
3016
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3017
	} while (!object && size);
3018

3019 3020
	if (!object)
		return 0;
3021

3022 3023 3024 3025 3026 3027
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
3028
			__free_pages(page, compound_order(page));
3029 3030 3031 3032 3033 3034 3035 3036
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
3037

3038
	/* Start new detached freelist */
3039
	df->page = page;
3040
	set_freepointer(df->s, object, NULL);
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
3054
			set_freepointer(df->s, object, df->freelist);
3055 3056 3057 3058 3059
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
3060
		}
3061 3062 3063 3064 3065 3066 3067

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
3068
	}
3069 3070 3071 3072 3073

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
3074
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3075 3076 3077 3078 3079 3080 3081 3082
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
A
Arnd Bergmann 已提交
3083
		if (!df.page)
3084 3085
			continue;

3086
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3087
	} while (likely(size));
3088 3089 3090
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

3091
/* Note that interrupts must be enabled when calling this function. */
3092 3093
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
3094
{
3095 3096 3097
	struct kmem_cache_cpu *c;
	int i;

3098 3099 3100 3101
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

3113 3114 3115 3116 3117
		if (unlikely(!object)) {
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
3118
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3119
					    _RET_IP_, c);
3120 3121 3122
			if (unlikely(!p[i]))
				goto error;

3123 3124 3125
			c = this_cpu_ptr(s->cpu_slab);
			continue; /* goto for-loop */
		}
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
		c->freelist = get_freepointer(s, object);
		p[i] = object;
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
	if (unlikely(flags & __GFP_ZERO)) {
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

3140 3141
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
3142
	return i;
3143 3144
error:
	local_irq_enable();
3145 3146
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
3147
	return 0;
3148 3149 3150 3151
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
3152
/*
C
Christoph Lameter 已提交
3153 3154 3155 3156
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
3157 3158 3159 3160
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
3161
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
3172
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3173
static int slub_min_objects;
C
Christoph Lameter 已提交
3174 3175 3176 3177

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3178 3179 3180 3181
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3182
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3183 3184 3185 3186 3187 3188
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3189
 *
C
Christoph Lameter 已提交
3190 3191 3192 3193
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3194
 *
C
Christoph Lameter 已提交
3195 3196 3197 3198
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3199
 */
3200
static inline int slab_order(int size, int min_objects,
3201
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
3202 3203 3204
{
	int order;
	int rem;
3205
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
3206

3207
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3208
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3209

3210
	for (order = max(min_order, get_order(min_objects * size + reserved));
3211
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3212

3213
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
3214

3215
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
3216

3217
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3218 3219
			break;
	}
C
Christoph Lameter 已提交
3220

C
Christoph Lameter 已提交
3221 3222 3223
	return order;
}

3224
static inline int calculate_order(int size, int reserved)
3225 3226 3227 3228
{
	int order;
	int min_objects;
	int fraction;
3229
	int max_objects;
3230 3231 3232 3233 3234 3235

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3236
	 * First we increase the acceptable waste in a slab. Then
3237 3238 3239
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3240 3241
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3242
	max_objects = order_objects(slub_max_order, size, reserved);
3243 3244
	min_objects = min(min_objects, max_objects);

3245
	while (min_objects > 1) {
C
Christoph Lameter 已提交
3246
		fraction = 16;
3247 3248
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3249
					slub_max_order, fraction, reserved);
3250 3251 3252 3253
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3254
		min_objects--;
3255 3256 3257 3258 3259 3260
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3261
	order = slab_order(size, 1, slub_max_order, 1, reserved);
3262 3263 3264 3265 3266 3267
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3268
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
3269
	if (order < MAX_ORDER)
3270 3271 3272 3273
		return order;
	return -ENOSYS;
}

3274
static void
3275
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3276 3277 3278 3279
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3280
#ifdef CONFIG_SLUB_DEBUG
3281
	atomic_long_set(&n->nr_slabs, 0);
3282
	atomic_long_set(&n->total_objects, 0);
3283
	INIT_LIST_HEAD(&n->full);
3284
#endif
C
Christoph Lameter 已提交
3285 3286
}

3287
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3288
{
3289
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3290
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3291

3292
	/*
3293 3294
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3295
	 */
3296 3297
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3298 3299 3300 3301 3302

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3303

3304
	return 1;
3305 3306
}

3307 3308
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3309 3310 3311 3312 3313
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3314 3315
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3316
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3317
 */
3318
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3319 3320 3321 3322
{
	struct page *page;
	struct kmem_cache_node *n;

3323
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3324

3325
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3326 3327

	BUG_ON(!page);
3328
	if (page_to_nid(page) != node) {
3329 3330
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3331 3332
	}

C
Christoph Lameter 已提交
3333 3334
	n = page->freelist;
	BUG_ON(!n);
3335
	page->freelist = get_freepointer(kmem_cache_node, n);
3336
	page->inuse = 1;
3337
	page->frozen = 0;
3338
	kmem_cache_node->node[node] = n;
3339
#ifdef CONFIG_SLUB_DEBUG
3340
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3341
	init_tracking(kmem_cache_node, n);
3342
#endif
3343 3344
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
		      GFP_KERNEL);
3345
	init_kmem_cache_node(n);
3346
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3347

3348
	/*
3349 3350
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3351
	 */
3352
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3353 3354 3355 3356 3357
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3358
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3359

C
Christoph Lameter 已提交
3360 3361
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3362 3363 3364 3365
		s->node[node] = NULL;
	}
}

3366 3367
void __kmem_cache_release(struct kmem_cache *s)
{
T
Thomas Garnier 已提交
3368
	cache_random_seq_destroy(s);
3369 3370 3371 3372
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3373
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3374 3375 3376
{
	int node;

C
Christoph Lameter 已提交
3377
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3378 3379
		struct kmem_cache_node *n;

3380
		if (slab_state == DOWN) {
3381
			early_kmem_cache_node_alloc(node);
3382 3383
			continue;
		}
3384
		n = kmem_cache_alloc_node(kmem_cache_node,
3385
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3386

3387 3388 3389
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3390
		}
3391

C
Christoph Lameter 已提交
3392
		s->node[node] = n;
3393
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
3394 3395 3396 3397
	}
	return 1;
}

3398
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3399 3400 3401 3402 3403 3404 3405 3406
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
3407 3408 3409 3410
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3411
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3412 3413
{
	unsigned long flags = s->flags;
3414
	size_t size = s->object_size;
3415
	int order;
C
Christoph Lameter 已提交
3416

3417 3418 3419 3420 3421 3422 3423 3424
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3425 3426 3427 3428 3429
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
3430
	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3431
			!s->ctor)
C
Christoph Lameter 已提交
3432 3433 3434 3435 3436 3437
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3438
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3439
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3440
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3441
	 */
3442
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3443
		size += sizeof(void *);
C
Christoph Lameter 已提交
3444
#endif
C
Christoph Lameter 已提交
3445 3446

	/*
C
Christoph Lameter 已提交
3447 3448
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3449 3450 3451
	 */
	s->inuse = size;

3452
	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3453
		s->ctor)) {
C
Christoph Lameter 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3466
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3467 3468 3469 3470 3471 3472
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);
3473
#endif
C
Christoph Lameter 已提交
3474

3475 3476
	kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
J
Joonsoo Kim 已提交
3477
	if (flags & SLAB_RED_ZONE) {
C
Christoph Lameter 已提交
3478 3479 3480 3481
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3482
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3483 3484 3485
		 * of the object.
		 */
		size += sizeof(void *);
J
Joonsoo Kim 已提交
3486 3487 3488 3489 3490

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
C
Christoph Lameter 已提交
3491
#endif
C
Christoph Lameter 已提交
3492

C
Christoph Lameter 已提交
3493 3494 3495 3496 3497
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3498
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3499
	s->size = size;
3500 3501 3502
	if (forced_order >= 0)
		order = forced_order;
	else
3503
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3504

3505
	if (order < 0)
C
Christoph Lameter 已提交
3506 3507
		return 0;

3508
	s->allocflags = 0;
3509
	if (order)
3510 3511 3512
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3513
		s->allocflags |= GFP_DMA;
3514 3515 3516 3517

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3518 3519 3520
	/*
	 * Determine the number of objects per slab
	 */
3521 3522
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3523 3524
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3525

3526
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3527 3528
}

3529
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3530
{
3531
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3532
	s->reserved = 0;
C
Christoph Lameter 已提交
3533

3534
	if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3535
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3536

3537
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3538
		goto error;
3539 3540 3541 3542 3543
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3544
		if (get_order(s->size) > get_order(s->object_size)) {
3545 3546 3547 3548 3549 3550
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3551

3552 3553
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3554
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3555 3556 3557 3558
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3559 3560 3561 3562
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3578
	 * B) The number of objects in cpu partial slabs to extract from the
3579 3580
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3581
	 */
3582
	if (!kmem_cache_has_cpu_partial(s))
3583 3584
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3585 3586 3587 3588 3589 3590 3591 3592
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3593
#ifdef CONFIG_NUMA
3594
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3595
#endif
T
Thomas Garnier 已提交
3596 3597 3598 3599 3600 3601 3602

	/* Initialize the pre-computed randomized freelist if slab is up */
	if (slab_state >= UP) {
		if (init_cache_random_seq(s))
			goto error;
	}

3603
	if (!init_kmem_cache_nodes(s))
3604
		goto error;
C
Christoph Lameter 已提交
3605

3606
	if (alloc_kmem_cache_cpus(s))
3607
		return 0;
3608

3609
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3610 3611
error:
	if (flags & SLAB_PANIC)
J
Joe Perches 已提交
3612 3613 3614
		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
		      s->name, (unsigned long)s->size, s->size,
		      oo_order(s->oo), s->offset, flags);
3615
	return -EINVAL;
C
Christoph Lameter 已提交
3616 3617
}

3618 3619 3620 3621 3622 3623
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3624 3625
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3626 3627
	if (!map)
		return;
3628
	slab_err(s, page, text, s->name);
3629 3630
	slab_lock(page);

3631
	get_map(s, page, map);
3632 3633 3634
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3635
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3636 3637 3638 3639
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3640
	kfree(map);
3641 3642 3643
#endif
}

C
Christoph Lameter 已提交
3644
/*
C
Christoph Lameter 已提交
3645
 * Attempt to free all partial slabs on a node.
3646 3647
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3648
 */
C
Christoph Lameter 已提交
3649
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3650
{
3651
	LIST_HEAD(discard);
C
Christoph Lameter 已提交
3652 3653
	struct page *page, *h;

3654 3655
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3656
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3657
		if (!page->inuse) {
3658
			remove_partial(n, page);
3659
			list_add(&page->lru, &discard);
3660 3661
		} else {
			list_slab_objects(s, page,
3662
			"Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3663
		}
3664
	}
3665
	spin_unlock_irq(&n->list_lock);
3666 3667 3668

	list_for_each_entry_safe(page, h, &discard, lru)
		discard_slab(s, page);
C
Christoph Lameter 已提交
3669 3670 3671
}

/*
C
Christoph Lameter 已提交
3672
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3673
 */
3674
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3675 3676
{
	int node;
C
Christoph Lameter 已提交
3677
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3678 3679 3680

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3681
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3682 3683
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3684 3685
			return 1;
	}
3686
	sysfs_slab_remove(s);
C
Christoph Lameter 已提交
3687 3688 3689 3690 3691 3692 3693 3694 3695
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3696
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3697 3698 3699 3700 3701 3702 3703 3704

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3705
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3706
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3707 3708 3709 3710 3711 3712 3713 3714

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3715
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3716 3717 3718 3719 3720 3721 3722 3723

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3724
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3725
	void *ret;
C
Christoph Lameter 已提交
3726

3727
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3728
		return kmalloc_large(size, flags);
3729

3730
	s = kmalloc_slab(size, flags);
3731 3732

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3733 3734
		return s;

3735
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3736

3737
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3738

3739
	kasan_kmalloc(s, ret, size, flags);
3740

E
Eduard - Gabriel Munteanu 已提交
3741
	return ret;
C
Christoph Lameter 已提交
3742 3743 3744
}
EXPORT_SYMBOL(__kmalloc);

3745
#ifdef CONFIG_NUMA
3746 3747
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3748
	struct page *page;
3749
	void *ptr = NULL;
3750

V
Vladimir Davydov 已提交
3751
	flags |= __GFP_COMP | __GFP_NOTRACK;
3752
	page = alloc_pages_node(node, flags, get_order(size));
3753
	if (page)
3754 3755
		ptr = page_address(page);

3756
	kmalloc_large_node_hook(ptr, size, flags);
3757
	return ptr;
3758 3759
}

C
Christoph Lameter 已提交
3760 3761
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3762
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3763
	void *ret;
C
Christoph Lameter 已提交
3764

3765
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3766 3767
		ret = kmalloc_large_node(size, flags, node);

3768 3769 3770
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3771 3772 3773

		return ret;
	}
3774

3775
	s = kmalloc_slab(size, flags);
3776 3777

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3778 3779
		return s;

3780
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3781

3782
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3783

3784
	kasan_kmalloc(s, ret, size, flags);
3785

E
Eduard - Gabriel Munteanu 已提交
3786
	return ret;
C
Christoph Lameter 已提交
3787 3788 3789 3790
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

K
Kees Cook 已提交
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
#ifdef CONFIG_HARDENED_USERCOPY
/*
 * Rejects objects that are incorrectly sized.
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
const char *__check_heap_object(const void *ptr, unsigned long n,
				struct page *page)
{
	struct kmem_cache *s;
	unsigned long offset;
	size_t object_size;

	/* Find object and usable object size. */
	s = page->slab_cache;
	object_size = slab_ksize(s);

	/* Reject impossible pointers. */
	if (ptr < page_address(page))
		return s->name;

	/* Find offset within object. */
	offset = (ptr - page_address(page)) % s->size;

	/* Adjust for redzone and reject if within the redzone. */
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
		if (offset < s->red_left_pad)
			return s->name;
		offset -= s->red_left_pad;
	}

	/* Allow address range falling entirely within object size. */
	if (offset <= object_size && n <= object_size - offset)
		return NULL;

	return s->name;
}
#endif /* CONFIG_HARDENED_USERCOPY */

3831
static size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3832
{
3833
	struct page *page;
C
Christoph Lameter 已提交
3834

3835
	if (unlikely(object == ZERO_SIZE_PTR))
3836 3837
		return 0;

3838 3839
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3840 3841
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3842
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3843
	}
C
Christoph Lameter 已提交
3844

3845
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3846
}
3847 3848 3849 3850 3851

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
3852 3853 3854
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(object, size);
3855 3856
	return size;
}
K
Kirill A. Shutemov 已提交
3857
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3858 3859 3860 3861

void kfree(const void *x)
{
	struct page *page;
3862
	void *object = (void *)x;
C
Christoph Lameter 已提交
3863

3864 3865
	trace_kfree(_RET_IP_, x);

3866
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3867 3868
		return;

3869
	page = virt_to_head_page(x);
3870
	if (unlikely(!PageSlab(page))) {
3871
		BUG_ON(!PageCompound(page));
3872
		kfree_hook(x);
3873
		__free_pages(page, compound_order(page));
3874 3875
		return;
	}
3876
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
3877 3878 3879
}
EXPORT_SYMBOL(kfree);

3880 3881
#define SHRINK_PROMOTE_MAX 32

3882
/*
3883 3884 3885
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3886 3887 3888 3889
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3890
 */
3891
int __kmem_cache_shrink(struct kmem_cache *s)
3892 3893 3894 3895 3896 3897
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3898 3899
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3900
	unsigned long flags;
3901
	int ret = 0;
3902 3903

	flush_all(s);
C
Christoph Lameter 已提交
3904
	for_each_kmem_cache_node(s, node, n) {
3905 3906 3907
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3908 3909 3910 3911

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3912
		 * Build lists of slabs to discard or promote.
3913
		 *
C
Christoph Lameter 已提交
3914 3915
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3916 3917
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3928
				n->nr_partial--;
3929 3930
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3931 3932 3933
		}

		/*
3934 3935
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3936
		 */
3937 3938
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3939 3940

		spin_unlock_irqrestore(&n->list_lock, flags);
3941 3942

		/* Release empty slabs */
3943
		list_for_each_entry_safe(page, t, &discard, lru)
3944
			discard_slab(s, page);
3945 3946 3947

		if (slabs_node(s, node))
			ret = 1;
3948 3949
	}

3950
	return ret;
3951 3952
}

3953
#ifdef CONFIG_MEMCG
3954 3955
static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
{
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
	/*
	 * Called with all the locks held after a sched RCU grace period.
	 * Even if @s becomes empty after shrinking, we can't know that @s
	 * doesn't have allocations already in-flight and thus can't
	 * destroy @s until the associated memcg is released.
	 *
	 * However, let's remove the sysfs files for empty caches here.
	 * Each cache has a lot of interface files which aren't
	 * particularly useful for empty draining caches; otherwise, we can
	 * easily end up with millions of unnecessary sysfs files on
	 * systems which have a lot of memory and transient cgroups.
	 */
	if (!__kmem_cache_shrink(s))
		sysfs_slab_remove(s);
3970 3971
}

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
void __kmemcg_cache_deactivate(struct kmem_cache *s)
{
	/*
	 * Disable empty slabs caching. Used to avoid pinning offline
	 * memory cgroups by kmem pages that can be freed.
	 */
	s->cpu_partial = 0;
	s->min_partial = 0;

	/*
	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
3983
	 * we have to make sure the change is visible before shrinking.
3984
	 */
3985
	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
3986 3987 3988
}
#endif

3989 3990 3991 3992
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3993
	mutex_lock(&slab_mutex);
3994
	list_for_each_entry(s, &slab_caches, list)
3995
		__kmem_cache_shrink(s);
3996
	mutex_unlock(&slab_mutex);
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

4008
	offline_node = marg->status_change_nid_normal;
4009 4010 4011 4012 4013 4014 4015 4016

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

4017
	mutex_lock(&slab_mutex);
4018 4019 4020 4021 4022 4023
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
4024
			 * and offline_pages() function shouldn't call this
4025 4026
			 * callback. So, we must fail.
			 */
4027
			BUG_ON(slabs_node(s, offline_node));
4028 4029

			s->node[offline_node] = NULL;
4030
			kmem_cache_free(kmem_cache_node, n);
4031 4032
		}
	}
4033
	mutex_unlock(&slab_mutex);
4034 4035 4036 4037 4038 4039 4040
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
4041
	int nid = marg->status_change_nid_normal;
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
4052
	 * We are bringing a node online. No memory is available yet. We must
4053 4054 4055
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
4056
	mutex_lock(&slab_mutex);
4057 4058 4059 4060 4061 4062
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
4063
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4064 4065 4066 4067
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
4068
		init_kmem_cache_node(n);
4069 4070 4071
		s->node[nid] = n;
	}
out:
4072
	mutex_unlock(&slab_mutex);
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
4096 4097 4098 4099
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
4100 4101 4102
	return ret;
}

4103 4104 4105 4106
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
4107

C
Christoph Lameter 已提交
4108 4109 4110 4111
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

4112 4113
/*
 * Used for early kmem_cache structures that were allocated using
4114 4115
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
4116 4117
 */

4118
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4119 4120
{
	int node;
4121
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
4122
	struct kmem_cache_node *n;
4123

4124
	memcpy(s, static_cache, kmem_cache->object_size);
4125

4126 4127 4128 4129 4130 4131
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
4132
	for_each_kmem_cache_node(s, node, n) {
4133 4134
		struct page *p;

C
Christoph Lameter 已提交
4135 4136
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
4137

L
Li Zefan 已提交
4138
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4139 4140
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
4141 4142
#endif
	}
4143
	slab_init_memcg_params(s);
4144
	list_add(&s->list, &slab_caches);
4145
	memcg_link_cache(s);
4146
	return s;
4147 4148
}

C
Christoph Lameter 已提交
4149 4150
void __init kmem_cache_init(void)
{
4151 4152
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
4153

4154 4155 4156
	if (debug_guardpage_minorder())
		slub_max_order = 0;

4157 4158
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
4159

4160 4161
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4162

4163
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
4164 4165 4166 4167

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

4168 4169 4170 4171
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
4172

4173
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
4174

4175 4176 4177 4178 4179
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
4180
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4181 4182

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4183
	setup_kmalloc_cache_index_table();
4184
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
4185

T
Thomas Garnier 已提交
4186 4187 4188
	/* Setup random freelists for each cache */
	init_freelist_randomization();

4189 4190
	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
				  slub_cpu_dead);
C
Christoph Lameter 已提交
4191

4192
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4193
		cache_line_size(),
C
Christoph Lameter 已提交
4194 4195 4196 4197
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

4198 4199 4200 4201
void __init kmem_cache_init_late(void)
{
}

4202
struct kmem_cache *
4203 4204
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
4205
{
4206
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
4207

4208
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
4209 4210
	if (s) {
		s->refcount++;
4211

C
Christoph Lameter 已提交
4212 4213 4214 4215
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
4216
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
4217
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
4218

4219
		for_each_memcg_cache(c, s) {
4220 4221 4222 4223 4224
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

4225 4226
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
4227
			s = NULL;
4228
		}
4229
	}
C
Christoph Lameter 已提交
4230

4231 4232
	return s;
}
P
Pekka Enberg 已提交
4233

4234
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4235
{
4236 4237 4238 4239 4240
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
4241

4242 4243 4244 4245
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

4246
	memcg_propagate_slab_attrs(s);
4247 4248
	err = sysfs_slab_add(s);
	if (err)
4249
		__kmem_cache_release(s);
4250

4251
	return err;
C
Christoph Lameter 已提交
4252 4253
}

4254
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4255
{
4256
	struct kmem_cache *s;
4257
	void *ret;
4258

4259
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4260 4261
		return kmalloc_large(size, gfpflags);

4262
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4263

4264
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4265
		return s;
C
Christoph Lameter 已提交
4266

4267
	ret = slab_alloc(s, gfpflags, caller);
4268

L
Lucas De Marchi 已提交
4269
	/* Honor the call site pointer we received. */
4270
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4271 4272

	return ret;
C
Christoph Lameter 已提交
4273 4274
}

4275
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4276
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4277
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4278
{
4279
	struct kmem_cache *s;
4280
	void *ret;
4281

4282
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4283 4284 4285 4286 4287 4288 4289 4290
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4291

4292
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4293

4294
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4295
		return s;
C
Christoph Lameter 已提交
4296

4297
	ret = slab_alloc_node(s, gfpflags, node, caller);
4298

L
Lucas De Marchi 已提交
4299
	/* Honor the call site pointer we received. */
4300
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4301 4302

	return ret;
C
Christoph Lameter 已提交
4303
}
4304
#endif
C
Christoph Lameter 已提交
4305

4306
#ifdef CONFIG_SYSFS
4307 4308 4309 4310 4311 4312 4313 4314 4315
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4316
#endif
4317

4318
#ifdef CONFIG_SLUB_DEBUG
4319 4320
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4321 4322
{
	void *p;
4323
	void *addr = page_address(page);
4324 4325 4326 4327 4328 4329

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
4330
	bitmap_zero(map, page->objects);
4331

4332 4333 4334 4335 4336
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
4337 4338
	}

4339
	for_each_object(p, s, addr, page->objects)
4340
		if (!test_bit(slab_index(p, s, addr), map))
4341
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4342 4343 4344 4345
				return 0;
	return 1;
}

4346 4347
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4348
{
4349 4350 4351
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4352 4353
}

4354 4355
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4356 4357 4358 4359 4360 4361 4362 4363
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
4364
		validate_slab_slab(s, page, map);
4365 4366 4367
		count++;
	}
	if (count != n->nr_partial)
4368 4369
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4370 4371 4372 4373 4374

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
4375
		validate_slab_slab(s, page, map);
4376 4377 4378
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4379 4380
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4381 4382 4383 4384 4385 4386

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4387
static long validate_slab_cache(struct kmem_cache *s)
4388 4389 4390
{
	int node;
	unsigned long count = 0;
4391
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4392
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4393
	struct kmem_cache_node *n;
4394 4395 4396

	if (!map)
		return -ENOMEM;
4397 4398

	flush_all(s);
C
Christoph Lameter 已提交
4399
	for_each_kmem_cache_node(s, node, n)
4400 4401
		count += validate_slab_node(s, n, map);
	kfree(map);
4402 4403
	return count;
}
4404
/*
C
Christoph Lameter 已提交
4405
 * Generate lists of code addresses where slabcache objects are allocated
4406 4407 4408 4409 4410
 * and freed.
 */

struct location {
	unsigned long count;
4411
	unsigned long addr;
4412 4413 4414 4415 4416
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4417
	DECLARE_BITMAP(cpus, NR_CPUS);
4418
	nodemask_t nodes;
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4434
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4435 4436 4437 4438 4439 4440
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4441
	l = (void *)__get_free_pages(flags, order);
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4455
				const struct track *track)
4456 4457 4458
{
	long start, end, pos;
	struct location *l;
4459
	unsigned long caddr;
4460
	unsigned long age = jiffies - track->when;
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4492 4493
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4494 4495
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4496 4497 4498
			return 1;
		}

4499
		if (track->addr < caddr)
4500 4501 4502 4503 4504 4505
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4506
	 * Not found. Insert new tracking element.
4507
	 */
4508
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4509 4510 4511 4512 4513 4514 4515 4516
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4517 4518 4519 4520 4521 4522
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4523 4524
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4525 4526
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4527 4528 4529 4530
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4531
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4532
		unsigned long *map)
4533
{
4534
	void *addr = page_address(page);
4535 4536
	void *p;

4537
	bitmap_zero(map, page->objects);
4538
	get_map(s, page, map);
4539

4540
	for_each_object(p, s, addr, page->objects)
4541 4542
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4543 4544 4545 4546 4547
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4548
	int len = 0;
4549
	unsigned long i;
4550
	struct loc_track t = { 0, 0, NULL };
4551
	int node;
E
Eric Dumazet 已提交
4552 4553
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4554
	struct kmem_cache_node *n;
4555

E
Eric Dumazet 已提交
4556 4557 4558
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4559
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4560
	}
4561 4562 4563
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4564
	for_each_kmem_cache_node(s, node, n) {
4565 4566 4567
		unsigned long flags;
		struct page *page;

4568
		if (!atomic_long_read(&n->nr_slabs))
4569 4570 4571 4572
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4573
			process_slab(&t, s, page, alloc, map);
4574
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4575
			process_slab(&t, s, page, alloc, map);
4576 4577 4578 4579
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4580
		struct location *l = &t.loc[i];
4581

H
Hugh Dickins 已提交
4582
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4583
			break;
4584
		len += sprintf(buf + len, "%7ld ", l->count);
4585 4586

		if (l->addr)
J
Joe Perches 已提交
4587
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4588
		else
4589
			len += sprintf(buf + len, "<not-available>");
4590 4591

		if (l->sum_time != l->min_time) {
4592
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4593 4594 4595
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4596
		} else
4597
			len += sprintf(buf + len, " age=%ld",
4598 4599 4600
				l->min_time);

		if (l->min_pid != l->max_pid)
4601
			len += sprintf(buf + len, " pid=%ld-%ld",
4602 4603
				l->min_pid, l->max_pid);
		else
4604
			len += sprintf(buf + len, " pid=%ld",
4605 4606
				l->min_pid);

R
Rusty Russell 已提交
4607 4608
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4609 4610 4611 4612
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4613

4614
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4615 4616 4617 4618
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4619

4620
		len += sprintf(buf + len, "\n");
4621 4622 4623
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4624
	kfree(map);
4625
	if (!t.count)
4626 4627
		len += sprintf(buf, "No data\n");
	return len;
4628
}
4629
#endif
4630

4631
#ifdef SLUB_RESILIENCY_TEST
4632
static void __init resiliency_test(void)
4633 4634 4635
{
	u8 *p;

4636
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4637

4638 4639 4640
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4641 4642 4643

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4644 4645
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4646 4647 4648 4649 4650 4651

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4652 4653 4654
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4655 4656 4657 4658 4659

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4660 4661 4662
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4663 4664
	validate_slab_cache(kmalloc_caches[6]);

4665
	pr_err("\nB. Corruption after free\n");
4666 4667 4668
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4669
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4670 4671 4672 4673 4674
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4675
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4676 4677 4678 4679 4680
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4681
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4682 4683 4684 4685 4686 4687 4688 4689
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4690
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4691
enum slab_stat_type {
4692 4693 4694 4695 4696
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4697 4698
};

4699
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4700 4701 4702
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4703
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4704

4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
#ifdef CONFIG_MEMCG
static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);

static int __init setup_slub_memcg_sysfs(char *str)
{
	int v;

	if (get_option(&str, &v) > 0)
		memcg_sysfs_enabled = v;

	return 1;
}

__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
#endif

4721 4722
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4723 4724 4725 4726 4727 4728
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4729
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4730 4731
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4732

4733 4734
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4735

4736
		for_each_possible_cpu(cpu) {
4737 4738
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4739
			int node;
4740
			struct page *page;
4741

4742
			page = READ_ONCE(c->page);
4743 4744
			if (!page)
				continue;
4745

4746 4747 4748 4749 4750 4751 4752
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4753

4754 4755 4756
			total += x;
			nodes[node] += x;

4757
			page = READ_ONCE(c->partial);
4758
			if (page) {
L
Li Zefan 已提交
4759 4760 4761 4762 4763 4764 4765
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4766 4767
				total += x;
				nodes[node] += x;
4768
			}
C
Christoph Lameter 已提交
4769 4770 4771
		}
	}

4772
	get_online_mems();
4773
#ifdef CONFIG_SLUB_DEBUG
4774
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4775 4776 4777
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4778

4779 4780 4781 4782 4783
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4784
			else
4785
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4786 4787 4788 4789
			total += x;
			nodes[node] += x;
		}

4790 4791 4792
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4793
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4794

C
Christoph Lameter 已提交
4795
		for_each_kmem_cache_node(s, node, n) {
4796 4797 4798 4799
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4800
			else
4801
				x = n->nr_partial;
C
Christoph Lameter 已提交
4802 4803 4804 4805 4806 4807
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4808
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4809 4810 4811 4812
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4813
	put_online_mems();
C
Christoph Lameter 已提交
4814 4815 4816 4817
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4818
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4819 4820 4821
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4822
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4823

C
Christoph Lameter 已提交
4824
	for_each_kmem_cache_node(s, node, n)
4825
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4826
			return 1;
C
Christoph Lameter 已提交
4827

C
Christoph Lameter 已提交
4828 4829
	return 0;
}
4830
#endif
C
Christoph Lameter 已提交
4831 4832

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4833
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4834 4835 4836 4837 4838 4839 4840 4841

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4842 4843
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4844 4845 4846

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4847
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4863
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4864 4865 4866 4867 4868
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4869
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4870 4871 4872
}
SLAB_ATTR_RO(objs_per_slab);

4873 4874 4875
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4876 4877 4878
	unsigned long order;
	int err;

4879
	err = kstrtoul(buf, 10, &order);
4880 4881
	if (err)
		return err;
4882 4883 4884 4885 4886 4887 4888 4889

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4890 4891
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4892
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4893
}
4894
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4895

4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4907
	err = kstrtoul(buf, 10, &min);
4908 4909 4910
	if (err)
		return err;

4911
	set_min_partial(s, min);
4912 4913 4914 4915
	return length;
}
SLAB_ATTR(min_partial);

4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4927
	err = kstrtoul(buf, 10, &objects);
4928 4929
	if (err)
		return err;
4930
	if (objects && !kmem_cache_has_cpu_partial(s))
4931
		return -EINVAL;
4932 4933 4934 4935 4936 4937 4938

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4939 4940
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4941 4942 4943
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4944 4945 4946 4947 4948
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4949
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4950 4951 4952 4953 4954
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4955
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4956 4957 4958 4959 4960
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4961
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4962 4963 4964 4965 4966
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4967
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4968 4969 4970
}
SLAB_ATTR_RO(objects);

4971 4972 4973 4974 4975 4976
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
5039
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5040 5041 5042
}
SLAB_ATTR_RO(destroy_by_rcu);

5043 5044 5045 5046 5047 5048
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

5049
#ifdef CONFIG_SLUB_DEBUG
5050 5051 5052 5053 5054 5055
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

5056 5057 5058 5059 5060 5061
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
5062 5063
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
5064
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
C
Christoph Lameter 已提交
5065 5066 5067 5068 5069
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
5070
	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5071 5072
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
5073
		s->flags |= SLAB_CONSISTENCY_CHECKS;
5074
	}
C
Christoph Lameter 已提交
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5087 5088 5089 5090 5091 5092 5093 5094
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
5095
	s->flags &= ~SLAB_TRACE;
5096 5097
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5098
		s->flags |= SLAB_TRACE;
5099
	}
C
Christoph Lameter 已提交
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
5116
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5117
		s->flags |= SLAB_RED_ZONE;
5118
	}
5119
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
5136
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5137
		s->flags |= SLAB_POISON;
5138
	}
5139
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
5156 5157
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5158
		s->flags |= SLAB_STORE_USER;
5159
	}
5160
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5161 5162 5163 5164
	return length;
}
SLAB_ATTR(store_user);

5165 5166 5167 5168 5169 5170 5171 5172
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5173 5174 5175 5176 5177 5178 5179 5180
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
5181 5182
}
SLAB_ATTR(validate);
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5210 5211 5212
	if (s->refcount > 1)
		return -EINVAL;

5213 5214 5215 5216 5217 5218
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
5219
#endif
5220

5221 5222 5223 5224 5225 5226 5227 5228
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5229 5230 5231
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
5232 5233 5234 5235 5236
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
5237
#ifdef CONFIG_NUMA
5238
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
5239
{
5240
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
5241 5242
}

5243
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5244 5245
				const char *buf, size_t length)
{
5246 5247 5248
	unsigned long ratio;
	int err;

5249
	err = kstrtoul(buf, 10, &ratio);
5250 5251 5252
	if (err)
		return err;

5253
	if (ratio <= 100)
5254
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5255 5256 5257

	return length;
}
5258
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5259 5260
#endif

5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5273
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5274 5275 5276 5277 5278 5279 5280

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

5281
#ifdef CONFIG_SMP
5282 5283
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
5284
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5285
	}
5286
#endif
5287 5288 5289 5290
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5291 5292 5293 5294 5295
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5296
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5297 5298
}

5299 5300 5301 5302 5303
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5304 5305 5306 5307 5308 5309 5310 5311 5312
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5324
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5325 5326 5327 5328 5329 5330 5331
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5332
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5333
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5334 5335
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5336 5337
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5338 5339
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5340 5341
#endif

P
Pekka Enberg 已提交
5342
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5343 5344 5345 5346
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5347
	&min_partial_attr.attr,
5348
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5349
	&objects_attr.attr,
5350
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5351 5352 5353 5354 5355 5356 5357 5358
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5359
	&shrink_attr.attr,
5360
	&reserved_attr.attr,
5361
	&slabs_cpu_partial_attr.attr,
5362
#ifdef CONFIG_SLUB_DEBUG
5363 5364 5365 5366
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5367 5368 5369
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5370
	&validate_attr.attr,
5371 5372
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5373
#endif
C
Christoph Lameter 已提交
5374 5375 5376 5377
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5378
	&remote_node_defrag_ratio_attr.attr,
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5391
	&alloc_node_mismatch_attr.attr,
5392 5393 5394 5395 5396 5397 5398
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5399
	&deactivate_bypass_attr.attr,
5400
	&order_fallback_attr.attr,
5401 5402
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5403 5404
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5405 5406
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5407
#endif
5408 5409 5410 5411
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5453
#ifdef CONFIG_MEMCG
5454
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5455
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5456

5457 5458 5459 5460
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5478 5479
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5480 5481 5482
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5483 5484 5485
	return err;
}

5486 5487
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5488
#ifdef CONFIG_MEMCG
5489 5490
	int i;
	char *buffer = NULL;
5491
	struct kmem_cache *root_cache;
5492

5493
	if (is_root_cache(s))
5494 5495
		return;

5496
	root_cache = s->memcg_params.root_cache;
5497

5498 5499 5500 5501
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5502
	if (!root_cache->max_attr_size)
5503 5504 5505 5506 5507 5508
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5509
		ssize_t len;
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5525
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5526 5527 5528 5529 5530 5531 5532 5533
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5534 5535 5536
		len = attr->show(root_cache, buf);
		if (len > 0)
			attr->store(s, buf, len);
5537 5538 5539 5540 5541 5542 5543
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5544 5545 5546 5547 5548
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5549
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5550 5551 5552 5553 5554 5555
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5556
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5568
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5569 5570 5571
	.filter = uevent_filter,
};

5572
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5573

5574 5575
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5576
#ifdef CONFIG_MEMCG
5577
	if (!is_root_cache(s))
5578
		return s->memcg_params.root_cache->memcg_kset;
5579 5580 5581 5582
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5583 5584 5585
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5586 5587
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
5608
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
C
Christoph Lameter 已提交
5609
		*p++ = 'F';
V
Vegard Nossum 已提交
5610 5611
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
V
Vladimir Davydov 已提交
5612 5613
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5614 5615 5616
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5617

C
Christoph Lameter 已提交
5618 5619 5620 5621
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
static void sysfs_slab_remove_workfn(struct work_struct *work)
{
	struct kmem_cache *s =
		container_of(work, struct kmem_cache, kobj_remove_work);

	if (!s->kobj.state_in_sysfs)
		/*
		 * For a memcg cache, this may be called during
		 * deactivation and again on shutdown.  Remove only once.
		 * A cache is never shut down before deactivation is
		 * complete, so no need to worry about synchronization.
		 */
		return;

#ifdef CONFIG_MEMCG
	kset_unregister(s->memcg_kset);
#endif
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
	kobject_put(&s->kobj);
}

C
Christoph Lameter 已提交
5644 5645 5646 5647
static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5648
	struct kset *kset = cache_kset(s);
5649
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5650

5651 5652
	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);

5653 5654 5655 5656 5657
	if (!kset) {
		kobject_init(&s->kobj, &slab_ktype);
		return 0;
	}

C
Christoph Lameter 已提交
5658 5659 5660 5661 5662 5663
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5664
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5665 5666 5667 5668 5669 5670 5671 5672 5673
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5674
	s->kobj.kset = kset;
5675
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5676
	if (err)
5677
		goto out;
C
Christoph Lameter 已提交
5678 5679

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5680 5681
	if (err)
		goto out_del_kobj;
5682

5683
#ifdef CONFIG_MEMCG
5684
	if (is_root_cache(s) && memcg_sysfs_enabled) {
5685 5686
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5687 5688
			err = -ENOMEM;
			goto out_del_kobj;
5689 5690 5691 5692
		}
	}
#endif

C
Christoph Lameter 已提交
5693 5694 5695 5696 5697
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5698 5699 5700 5701 5702 5703 5704
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5705 5706
}

5707
static void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5708
{
5709
	if (slab_state < FULL)
5710 5711 5712 5713 5714 5715
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5716 5717
	kobject_get(&s->kobj);
	schedule_work(&s->kobj_remove_work);
5718 5719 5720 5721 5722 5723
}

void sysfs_slab_release(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5724 5725 5726 5727
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5728
 * available lest we lose that information.
C
Christoph Lameter 已提交
5729 5730 5731 5732 5733 5734 5735
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5736
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5737 5738 5739 5740 5741

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5742
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5743 5744 5745
		/*
		 * If we have a leftover link then remove it.
		 */
5746 5747
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5763
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5764 5765
	int err;

5766
	mutex_lock(&slab_mutex);
5767

5768
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5769
	if (!slab_kset) {
5770
		mutex_unlock(&slab_mutex);
5771
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5772 5773 5774
		return -ENOSYS;
	}

5775
	slab_state = FULL;
5776

5777
	list_for_each_entry(s, &slab_caches, list) {
5778
		err = sysfs_slab_add(s);
5779
		if (err)
5780 5781
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5782
	}
C
Christoph Lameter 已提交
5783 5784 5785 5786 5787 5788

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5789
		if (err)
5790 5791
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5792 5793 5794
		kfree(al);
	}

5795
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5796 5797 5798 5799 5800
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5801
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5802 5803 5804 5805

/*
 * The /proc/slabinfo ABI
 */
5806
#ifdef CONFIG_SLABINFO
5807
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5808 5809
{
	unsigned long nr_slabs = 0;
5810 5811
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5812
	int node;
C
Christoph Lameter 已提交
5813
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5814

C
Christoph Lameter 已提交
5815
	for_each_kmem_cache_node(s, node, n) {
5816 5817
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5818
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5819 5820
	}

5821 5822 5823 5824 5825 5826
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5827 5828
}

5829
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5830 5831 5832
{
}

5833 5834
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5835
{
5836
	return -EIO;
5837
}
5838
#endif /* CONFIG_SLABINFO */