cppc_acpi.c 39.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
 *
 * (C) Copyright 2014, 2015 Linaro Ltd.
 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 *
 * CPPC describes a few methods for controlling CPU performance using
 * information from a per CPU table called CPC. This table is described in
 * the ACPI v5.0+ specification. The table consists of a list of
 * registers which may be memory mapped or hardware registers and also may
 * include some static integer values.
 *
 * CPU performance is on an abstract continuous scale as against a discretized
 * P-state scale which is tied to CPU frequency only. In brief, the basic
 * operation involves:
 *
 * - OS makes a CPU performance request. (Can provide min and max bounds)
 *
 * - Platform (such as BMC) is free to optimize request within requested bounds
 *   depending on power/thermal budgets etc.
 *
 * - Platform conveys its decision back to OS
 *
 * The communication between OS and platform occurs through another medium
 * called (PCC) Platform Communication Channel. This is a generic mailbox like
 * mechanism which includes doorbell semantics to indicate register updates.
 * See drivers/mailbox/pcc.c for details on PCC.
 *
 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
 * above specifications.
 */

#define pr_fmt(fmt)	"ACPI CPPC: " fmt

#include <linux/cpufreq.h>
#include <linux/delay.h>
42
#include <linux/iopoll.h>
43
#include <linux/ktime.h>
44 45
#include <linux/rwsem.h>
#include <linux/wait.h>
46 47

#include <acpi/cppc_acpi.h>
48

49 50 51 52
struct cppc_pcc_data {
	struct mbox_chan *pcc_channel;
	void __iomem *pcc_comm_addr;
	bool pcc_channel_acquired;
53
	unsigned int deadline_us;
54
	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55

56
	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
57
	bool platform_owns_pcc;		/* Ownership of PCC subspace */
58
	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
	/*
	 * Lock to provide controlled access to the PCC channel.
	 *
	 * For performance critical usecases(currently cppc_set_perf)
	 *	We need to take read_lock and check if channel belongs to OSPM
	 * before reading or writing to PCC subspace
	 *	We need to take write_lock before transferring the channel
	 * ownership to the platform via a Doorbell
	 *	This allows us to batch a number of CPPC requests if they happen
	 * to originate in about the same time
	 *
	 * For non-performance critical usecases(init)
	 *	Take write_lock for all purposes which gives exclusive access
	 */
	struct rw_semaphore pcc_lock;

	/* Wait queue for CPUs whose requests were batched */
	wait_queue_head_t pcc_write_wait_q;
78 79 80 81
	ktime_t last_cmd_cmpl_time;
	ktime_t last_mpar_reset;
	int mpar_count;
	int refcount;
82
};
83

84 85 86 87
/* Array  to represent the PCC channel per subspace id */
static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
/* The cpu_pcc_subspace_idx containsper CPU subspace id */
static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
88 89 90 91 92 93 94 95 96 97

/*
 * The cpc_desc structure contains the ACPI register details
 * as described in the per CPU _CPC tables. The details
 * include the type of register (e.g. PCC, System IO, FFH etc.)
 * and destination addresses which lets us READ/WRITE CPU performance
 * information using the appropriate I/O methods.
 */
static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);

98
/* pcc mapped address + header size + offset within PCC subspace */
99 100
#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
						0x8 + (offs))
101

102
/* Check if a CPC register is in PCC */
103 104 105 106
#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
				(cpc)->cpc_entry.reg.space_id ==	\
				ACPI_ADR_SPACE_PLATFORM_COMM)

107 108 109 110 111 112 113 114 115 116 117
/* Evalutes to True if reg is a NULL register descriptor */
#define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
				(reg)->address == 0 &&			\
				(reg)->bit_width == 0 &&		\
				(reg)->bit_offset == 0 &&		\
				(reg)->access_width == 0)

/* Evalutes to True if an optional cpc field is supported */
#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
				!!(cpc)->cpc_entry.int_value :		\
				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
118 119
/*
 * Arbitrary Retries in case the remote processor is slow to respond
120 121
 * to PCC commands. Keeping it high enough to cover emulators where
 * the processors run painfully slow.
122
 */
123
#define NUM_RETRIES 500ULL
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138
struct cppc_attr {
	struct attribute attr;
	ssize_t (*show)(struct kobject *kobj,
			struct attribute *attr, char *buf);
	ssize_t (*store)(struct kobject *kobj,
			struct attribute *attr, const char *c, ssize_t count);
};

#define define_one_cppc_ro(_name)		\
static struct cppc_attr _name =			\
__ATTR(_name, 0444, show_##_name, NULL)

#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
#define show_cppc_data(access_fn, struct_name, member_name)		\
	static ssize_t show_##member_name(struct kobject *kobj,		\
					struct attribute *attr,	char *buf) \
	{								\
		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
		struct struct_name st_name = {0};			\
		int ret;						\
									\
		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
		if (ret)						\
			return ret;					\
									\
		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
				(u64)st_name.member_name);		\
	}								\
	define_one_cppc_ro(member_name)

show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
160 161 162
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);

163 164 165
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);

166 167 168 169 170
static ssize_t show_feedback_ctrs(struct kobject *kobj,
		struct attribute *attr, char *buf)
{
	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
	struct cppc_perf_fb_ctrs fb_ctrs = {0};
171
	int ret;
172

173 174 175
	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
	if (ret)
		return ret;
176 177 178 179 180 181 182 183 184 185

	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
			fb_ctrs.reference, fb_ctrs.delivered);
}
define_one_cppc_ro(feedback_ctrs);

static struct attribute *cppc_attrs[] = {
	&feedback_ctrs.attr,
	&reference_perf.attr,
	&wraparound_time.attr,
186 187 188 189
	&highest_perf.attr,
	&lowest_perf.attr,
	&lowest_nonlinear_perf.attr,
	&nominal_perf.attr,
190 191
	&nominal_freq.attr,
	&lowest_freq.attr,
192 193 194 195 196 197 198 199
	NULL
};

static struct kobj_type cppc_ktype = {
	.sysfs_ops = &kobj_sysfs_ops,
	.default_attrs = cppc_attrs,
};

200
static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
201
{
202
	int ret, status;
203 204 205
	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
		pcc_ss_data->pcc_comm_addr;
206

207
	if (!pcc_ss_data->platform_owns_pcc)
208 209
		return 0;

210 211 212 213 214 215 216
	/*
	 * Poll PCC status register every 3us(delay_us) for maximum of
	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
	 */
	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
					status & PCC_CMD_COMPLETE_MASK, 3,
					pcc_ss_data->deadline_us);
217

218
	if (likely(!ret)) {
219
		pcc_ss_data->platform_owns_pcc = false;
220 221 222 223 224 225 226
		if (chk_err_bit && (status & PCC_ERROR_MASK))
			ret = -EIO;
	}

	if (unlikely(ret))
		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
		       pcc_ss_id, ret);
227

228 229 230
	return ret;
}

231 232 233 234
/*
 * This function transfers the ownership of the PCC to the platform
 * So it must be called while holding write_lock(pcc_lock)
 */
235
static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
236
{
237
	int ret = -EIO, i;
238
	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
239
	struct acpi_pcct_shared_memory *generic_comm_base =
240
		(struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
241
	unsigned int time_delta;
242

243 244 245 246 247
	/*
	 * For CMD_WRITE we know for a fact the caller should have checked
	 * the channel before writing to PCC space
	 */
	if (cmd == CMD_READ) {
248 249 250 251 252
		/*
		 * If there are pending cpc_writes, then we stole the channel
		 * before write completion, so first send a WRITE command to
		 * platform
		 */
253 254
		if (pcc_ss_data->pending_pcc_write_cmd)
			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
255

256
		ret = check_pcc_chan(pcc_ss_id, false);
257
		if (ret)
258 259
			goto end;
	} else /* CMD_WRITE */
260
		pcc_ss_data->pending_pcc_write_cmd = FALSE;
261

262 263 264 265 266
	/*
	 * Handle the Minimum Request Turnaround Time(MRTT)
	 * "The minimum amount of time that OSPM must wait after the completion
	 * of a command before issuing the next command, in microseconds"
	 */
267 268 269 270 271
	if (pcc_ss_data->pcc_mrtt) {
		time_delta = ktime_us_delta(ktime_get(),
					    pcc_ss_data->last_cmd_cmpl_time);
		if (pcc_ss_data->pcc_mrtt > time_delta)
			udelay(pcc_ss_data->pcc_mrtt - time_delta);
272 273 274 275 276 277 278 279 280 281 282 283 284
	}

	/*
	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
	 * "The maximum number of periodic requests that the subspace channel can
	 * support, reported in commands per minute. 0 indicates no limitation."
	 *
	 * This parameter should be ideally zero or large enough so that it can
	 * handle maximum number of requests that all the cores in the system can
	 * collectively generate. If it is not, we will follow the spec and just
	 * not send the request to the platform after hitting the MPAR limit in
	 * any 60s window
	 */
285 286 287 288 289
	if (pcc_ss_data->pcc_mpar) {
		if (pcc_ss_data->mpar_count == 0) {
			time_delta = ktime_ms_delta(ktime_get(),
						    pcc_ss_data->last_mpar_reset);
			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
290 291
				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
					 pcc_ss_id);
292 293
				ret = -EIO;
				goto end;
294
			}
295 296
			pcc_ss_data->last_mpar_reset = ktime_get();
			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
297
		}
298
		pcc_ss_data->mpar_count--;
299 300
	}

301
	/* Write to the shared comm region. */
302
	writew_relaxed(cmd, &generic_comm_base->command);
303 304

	/* Flip CMD COMPLETE bit */
305
	writew_relaxed(0, &generic_comm_base->status);
306

307
	pcc_ss_data->platform_owns_pcc = true;
308

309
	/* Ring doorbell */
310
	ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
311
	if (ret < 0) {
312 313
		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
		       pcc_ss_id, cmd, ret);
314
		goto end;
315 316
	}

317
	/* wait for completion and check for PCC errro bit */
318
	ret = check_pcc_chan(pcc_ss_id, true);
319

320 321
	if (pcc_ss_data->pcc_mrtt)
		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
322

323 324
	if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
		mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
325
	else
326
		mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
327 328 329 330 331 332 333 334 335

end:
	if (cmd == CMD_WRITE) {
		if (unlikely(ret)) {
			for_each_possible_cpu(i) {
				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
				if (!desc)
					continue;

336
				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
337 338 339
					desc->write_cmd_status = ret;
			}
		}
340 341
		pcc_ss_data->pcc_write_cnt++;
		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
342 343
	}

344
	return ret;
345 346 347 348
}

static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
{
349
	if (ret < 0)
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
	else
		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
}

struct mbox_client cppc_mbox_cl = {
	.tx_done = cppc_chan_tx_done,
	.knows_txdone = true,
};

static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
{
	int result = -EFAULT;
	acpi_status status = AE_OK;
	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
	struct acpi_buffer state = {0, NULL};
	union acpi_object  *psd = NULL;
	struct acpi_psd_package *pdomain;

372 373 374 375
	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
					    &buffer, ACPI_TYPE_PACKAGE);
	if (status == AE_NOT_FOUND)	/* _PSD is optional */
		return 0;
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	if (ACPI_FAILURE(status))
		return -ENODEV;

	psd = buffer.pointer;
	if (!psd || psd->package.count != 1) {
		pr_debug("Invalid _PSD data\n");
		goto end;
	}

	pdomain = &(cpc_ptr->domain_info);

	state.length = sizeof(struct acpi_psd_package);
	state.pointer = pdomain;

	status = acpi_extract_package(&(psd->package.elements[0]),
		&format, &state);
	if (ACPI_FAILURE(status)) {
		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	result = 0;
end:
	kfree(buffer.pointer);
	return result;
}

/**
 * acpi_get_psd_map - Map the CPUs in a common freq domain.
 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
 *
 *	Return: 0 for success or negative value for err.
 */
426
int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
427 428 429 430 431
{
	int count_target;
	int retval = 0;
	unsigned int i, j;
	cpumask_var_t covered_cpus;
432
	struct cppc_cpudata *pr, *match_pr;
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
	struct acpi_psd_package *pdomain;
	struct acpi_psd_package *match_pdomain;
	struct cpc_desc *cpc_ptr, *match_cpc_ptr;

	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
		return -ENOMEM;

	/*
	 * Now that we have _PSD data from all CPUs, lets setup P-state
	 * domain info.
	 */
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		if (cpumask_test_cpu(i, covered_cpus))
			continue;

		cpc_ptr = per_cpu(cpc_desc_ptr, i);
453 454 455 456
		if (!cpc_ptr) {
			retval = -EFAULT;
			goto err_ret;
		}
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

		pdomain = &(cpc_ptr->domain_info);
		cpumask_set_cpu(i, pr->shared_cpu_map);
		cpumask_set_cpu(i, covered_cpus);
		if (pdomain->num_processors <= 1)
			continue;

		/* Validate the Domain info */
		count_target = pdomain->num_processors;
		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
478 479 480 481
			if (!match_cpc_ptr) {
				retval = -EFAULT;
				goto err_ret;
			}
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			/* Here i and j are in the same domain */
			if (match_pdomain->num_processors != count_target) {
				retval = -EFAULT;
				goto err_ret;
			}

			if (pdomain->coord_type != match_pdomain->coord_type) {
				retval = -EFAULT;
				goto err_ret;
			}

			cpumask_set_cpu(j, covered_cpus);
			cpumask_set_cpu(j, pr->shared_cpu_map);
		}

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_pr = all_cpu_data[j];
			if (!match_pr)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
511 512 513 514
			if (!match_cpc_ptr) {
				retval = -EFAULT;
				goto err_ret;
			}
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			match_pr->shared_type = pr->shared_type;
			cpumask_copy(match_pr->shared_cpu_map,
				     pr->shared_cpu_map);
		}
	}

err_ret:
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		/* Assume no coordination on any error parsing domain info */
		if (retval) {
			cpumask_clear(pr->shared_cpu_map);
			cpumask_set_cpu(i, pr->shared_cpu_map);
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		}
	}

	free_cpumask_var(covered_cpus);
	return retval;
}
EXPORT_SYMBOL_GPL(acpi_get_psd_map);

545
static int register_pcc_channel(int pcc_ss_idx)
546
{
547
	struct acpi_pcct_hw_reduced *cppc_ss;
548
	u64 usecs_lat;
549

550 551 552
	if (pcc_ss_idx >= 0) {
		pcc_data[pcc_ss_idx]->pcc_channel =
			pcc_mbox_request_channel(&cppc_mbox_cl,	pcc_ss_idx);
553

554
		if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
555 556
			pr_err("Failed to find PCC channel for subspace %d\n",
			       pcc_ss_idx);
557 558 559 560 561 562 563 564 565
			return -ENODEV;
		}

		/*
		 * The PCC mailbox controller driver should
		 * have parsed the PCCT (global table of all
		 * PCC channels) and stored pointers to the
		 * subspace communication region in con_priv.
		 */
566
		cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
567 568

		if (!cppc_ss) {
569 570
			pr_err("No PCC subspace found for %d CPPC\n",
			       pcc_ss_idx);
571 572 573
			return -ENODEV;
		}

574 575 576 577 578 579
		/*
		 * cppc_ss->latency is just a Nominal value. In reality
		 * the remote processor could be much slower to reply.
		 * So add an arbitrary amount of wait on top of Nominal.
		 */
		usecs_lat = NUM_RETRIES * cppc_ss->latency;
580
		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
581 582 583 584 585 586 587
		pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
		pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
		pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;

		pcc_data[pcc_ss_idx]->pcc_comm_addr =
			acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
588 589
			pr_err("Failed to ioremap PCC comm region mem for %d\n",
			       pcc_ss_idx);
590 591 592 593
			return -ENOMEM;
		}

		/* Set flag so that we dont come here for each CPU. */
594
		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
595 596 597 598 599
	}

	return 0;
}

600 601 602 603 604 605 606 607 608 609 610 611 612
/**
 * cpc_ffh_supported() - check if FFH reading supported
 *
 * Check if the architecture has support for functional fixed hardware
 * read/write capability.
 *
 * Return: true for supported, false for not supported
 */
bool __weak cpc_ffh_supported(void)
{
	return false;
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
/**
 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
 *
 * Check and allocate the cppc_pcc_data memory.
 * In some processor configurations it is possible that same subspace
 * is shared between multiple CPU's. This is seen especially in CPU's
 * with hardware multi-threading support.
 *
 * Return: 0 for success, errno for failure
 */
int pcc_data_alloc(int pcc_ss_id)
{
	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
		return -EINVAL;

	if (pcc_data[pcc_ss_id]) {
		pcc_data[pcc_ss_id]->refcount++;
	} else {
		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
					      GFP_KERNEL);
		if (!pcc_data[pcc_ss_id])
			return -ENOMEM;
		pcc_data[pcc_ss_id]->refcount++;
	}

	return 0;
}
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

/* Check if CPPC revision + num_ent combination is supported */
static bool is_cppc_supported(int revision, int num_ent)
{
	int expected_num_ent;

	switch (revision) {
	case CPPC_V2_REV:
		expected_num_ent = CPPC_V2_NUM_ENT;
		break;
	case CPPC_V3_REV:
		expected_num_ent = CPPC_V3_NUM_ENT;
		break;
	default:
		pr_debug("Firmware exports unsupported CPPC revision: %d\n",
			revision);
		return false;
	}

	if (expected_num_ent != num_ent) {
		pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
			num_ent, expected_num_ent, revision);
		return false;
	}

	return true;
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
/*
 * An example CPC table looks like the following.
 *
 *	Name(_CPC, Package()
 *			{
 *			17,
 *			NumEntries
 *			1,
 *			// Revision
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
 *			// Highest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
 *			// Nominal Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
 *			// Lowest Nonlinear Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
 *			// Lowest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
 *			// Guaranteed Performance Register
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
 *			// Desired Performance Register
 *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
 *			..
 *			..
 *			..
 *
 *		}
 * Each Register() encodes how to access that specific register.
 * e.g. a sample PCC entry has the following encoding:
 *
 *	Register (
 *		PCC,
 *		AddressSpaceKeyword
 *		8,
 *		//RegisterBitWidth
 *		8,
 *		//RegisterBitOffset
 *		0x30,
 *		//RegisterAddress
 *		9
 *		//AccessSize (subspace ID)
 *		0
 *		)
 *	}
 */

/**
 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 *
 *	Return: 0 for success or negative value for err.
 */
int acpi_cppc_processor_probe(struct acpi_processor *pr)
{
	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
	union acpi_object *out_obj, *cpc_obj;
	struct cpc_desc *cpc_ptr;
	struct cpc_reg *gas_t;
726
	struct device *cpu_dev;
727 728
	acpi_handle handle = pr->handle;
	unsigned int num_ent, i, cpc_rev;
729
	int pcc_subspace_id = -1;
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
	acpi_status status;
	int ret = -EFAULT;

	/* Parse the ACPI _CPC table for this cpu. */
	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status)) {
		ret = -ENODEV;
		goto out_buf_free;
	}

	out_obj = (union acpi_object *) output.pointer;

	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
	if (!cpc_ptr) {
		ret = -ENOMEM;
		goto out_buf_free;
	}

	/* First entry is NumEntries. */
	cpc_obj = &out_obj->package.elements[0];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		num_ent = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for NumEntries\n",
				cpc_obj->type);
		goto out_free;
	}
758 759
	cpc_ptr->num_entries = num_ent;

760 761 762 763 764 765 766 767 768
	/* Second entry should be revision. */
	cpc_obj = &out_obj->package.elements[1];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		cpc_rev = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for Revision\n",
				cpc_obj->type);
		goto out_free;
	}
769
	cpc_ptr->version = cpc_rev;
770

771
	if (!is_cppc_supported(cpc_rev, num_ent))
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
		goto out_free;

	/* Iterate through remaining entries in _CPC */
	for (i = 2; i < num_ent; i++) {
		cpc_obj = &out_obj->package.elements[i];

		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
			gas_t = (struct cpc_reg *)
				cpc_obj->buffer.pointer;

			/*
			 * The PCC Subspace index is encoded inside
			 * the CPC table entries. The same PCC index
			 * will be used for all the PCC entries,
			 * so extract it only once.
			 */
			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
792 793 794 795 796
				if (pcc_subspace_id < 0) {
					pcc_subspace_id = gas_t->access_width;
					if (pcc_data_alloc(pcc_subspace_id))
						goto out_free;
				} else if (pcc_subspace_id != gas_t->access_width) {
797 798 799
					pr_debug("Mismatched PCC ids.\n");
					goto out_free;
				}
800 801 802 803 804 805 806 807 808 809
			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
				if (gas_t->address) {
					void __iomem *addr;

					addr = ioremap(gas_t->address, gas_t->bit_width/8);
					if (!addr)
						goto out_free;
					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
				}
			} else {
810 811 812 813 814
				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
					/* Support only PCC ,SYS MEM and FFH type regs */
					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
					goto out_free;
				}
815 816 817 818 819 820 821 822 823
			}

			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
		} else {
			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
			goto out_free;
		}
	}
824
	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
825 826 827 828 829 830 831 832 833 834 835 836

	/*
	 * Initialize the remaining cpc_regs as unsupported.
	 * Example: In case FW exposes CPPC v2, the below loop will initialize
	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
	 */
	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
	}


837 838 839 840 841 842 843 844
	/* Store CPU Logical ID */
	cpc_ptr->cpu_id = pr->id;

	/* Parse PSD data for this CPU */
	ret = acpi_get_psd(cpc_ptr, handle);
	if (ret)
		goto out_free;

845 846 847
	/* Register PCC channel once for all PCC subspace id. */
	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
		ret = register_pcc_channel(pcc_subspace_id);
848 849
		if (ret)
			goto out_free;
850

851 852
		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
853 854 855 856 857
	}

	/* Everything looks okay */
	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);

858 859
	/* Add per logical CPU nodes for reading its feedback counters. */
	cpu_dev = get_cpu_device(pr->id);
860 861
	if (!cpu_dev) {
		ret = -EINVAL;
862
		goto out_free;
863
	}
864

865 866 867
	/* Plug PSD data into this CPUs CPC descriptor. */
	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;

868 869
	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
			"acpi_cppc");
870 871
	if (ret) {
		per_cpu(cpc_desc_ptr, pr->id) = NULL;
872
		goto out_free;
873
	}
874

875 876 877 878
	kfree(output.pointer);
	return 0;

out_free:
879 880 881 882 883 884 885
	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;

		if (addr)
			iounmap(addr);
	}
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	kfree(cpc_ptr);

out_buf_free:
	kfree(output.pointer);
	return ret;
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);

/**
 * acpi_cppc_processor_exit - Cleanup CPC structs.
 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 *
 * Return: Void
 */
void acpi_cppc_processor_exit(struct acpi_processor *pr)
{
	struct cpc_desc *cpc_ptr;
903 904
	unsigned int i;
	void __iomem *addr;
905 906 907 908 909 910 911 912
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);

	if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
			pcc_data[pcc_ss_id]->refcount--;
			if (!pcc_data[pcc_ss_id]->refcount) {
				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
				kfree(pcc_data[pcc_ss_id]);
913
				pcc_data[pcc_ss_id] = NULL;
914 915 916
			}
		}
	}
917

918
	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
919 920
	if (!cpc_ptr)
		return;
921 922 923 924 925 926 927 928

	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
		if (addr)
			iounmap(addr);
	}

929
	kobject_put(&cpc_ptr->kobj);
930 931 932 933
	kfree(cpc_ptr);
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
/**
 * cpc_read_ffh() - Read FFH register
 * @cpunum:	cpu number to read
 * @reg:	cppc register information
 * @val:	place holder for return value
 *
 * Read bit_width bits from a specified address and bit_offset
 *
 * Return: 0 for success and error code
 */
int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
{
	return -ENOTSUPP;
}

/**
 * cpc_write_ffh() - Write FFH register
 * @cpunum:	cpu number to write
 * @reg:	cppc register information
 * @val:	value to write
 *
 * Write value of bit_width bits to a specified address and bit_offset
 *
 * Return: 0 for success and error code
 */
int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
{
	return -ENOTSUPP;
}

964 965 966 967 968
/*
 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
 * as fast as possible. We have already mapped the PCC subspace during init, so
 * we can directly write to it.
 */
969

970
static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
971
{
972
	int ret_val = 0;
973
	void __iomem *vaddr = 0;
974
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
975 976 977 978 979 980
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;

	if (reg_res->type == ACPI_TYPE_INTEGER) {
		*val = reg_res->cpc_entry.int_value;
		return ret_val;
	}
981 982

	*val = 0;
983
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
984
		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
985 986
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
987 988
	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
		return cpc_read_ffh(cpu, reg, val);
989 990 991
	else
		return acpi_os_read_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
992

993
	switch (reg->bit_width) {
994
		case 8:
995
			*val = readb_relaxed(vaddr);
996 997
			break;
		case 16:
998
			*val = readw_relaxed(vaddr);
999 1000
			break;
		case 32:
1001
			*val = readl_relaxed(vaddr);
1002 1003
			break;
		case 64:
1004
			*val = readq_relaxed(vaddr);
1005 1006
			break;
		default:
1007 1008
			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
				 reg->bit_width, pcc_ss_id);
1009
			ret_val = -EFAULT;
1010 1011
	}

1012
	return ret_val;
1013 1014
}

1015
static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1016
{
1017
	int ret_val = 0;
1018
	void __iomem *vaddr = 0;
1019
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1020
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1021

1022
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1023
		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1024 1025
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
1026 1027
	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
		return cpc_write_ffh(cpu, reg, val);
1028 1029 1030
	else
		return acpi_os_write_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
1031

1032
	switch (reg->bit_width) {
1033
		case 8:
1034
			writeb_relaxed(val, vaddr);
1035 1036
			break;
		case 16:
1037
			writew_relaxed(val, vaddr);
1038 1039
			break;
		case 32:
1040
			writel_relaxed(val, vaddr);
1041 1042
			break;
		case 64:
1043
			writeq_relaxed(val, vaddr);
1044 1045
			break;
		default:
1046 1047
			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
				 reg->bit_width, pcc_ss_id);
1048 1049
			ret_val = -EFAULT;
			break;
1050 1051
	}

1052
	return ret_val;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
}

/**
 * cppc_get_perf_caps - Get a CPUs performance capabilities.
 * @cpunum: CPU from which to get capabilities info.
 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
 *
 * Return: 0 for success with perf_caps populated else -ERRNO.
 */
int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1065
	struct cpc_register_resource *highest_reg, *lowest_reg,
1066 1067 1068
		*lowest_non_linear_reg, *nominal_reg,
		*low_freq_reg = NULL, *nom_freq_reg = NULL;
	u64 high, low, nom, min_nonlinear, low_f = 0, nom_f = 0;
1069
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1070
	struct cppc_pcc_data *pcc_ss_data = NULL;
1071
	int ret = 0, regs_in_pcc = 0;
1072

1073
	if (!cpc_desc) {
1074 1075 1076 1077 1078 1079
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1080 1081
	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1082 1083
	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1084 1085

	/* Are any of the regs PCC ?*/
1086
	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1087 1088
		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1089 1090 1091 1092 1093
		if (pcc_ss_id < 0) {
			pr_debug("Invalid pcc_ss_id\n");
			return -ENODEV;
		}
		pcc_ss_data = pcc_data[pcc_ss_id];
1094
		regs_in_pcc = 1;
1095
		down_write(&pcc_ss_data->pcc_lock);
1096
		/* Ring doorbell once to update PCC subspace */
1097
		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1098 1099 1100 1101 1102
			ret = -EIO;
			goto out_err;
		}
	}

1103
	cpc_read(cpunum, highest_reg, &high);
1104 1105
	perf_caps->highest_perf = high;

1106
	cpc_read(cpunum, lowest_reg, &low);
1107 1108
	perf_caps->lowest_perf = low;

1109
	cpc_read(cpunum, nominal_reg, &nom);
1110 1111
	perf_caps->nominal_perf = nom;

1112 1113 1114 1115
	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
	perf_caps->lowest_nonlinear_perf = min_nonlinear;

	if (!high || !low || !nom || !min_nonlinear)
1116 1117
		ret = -EFAULT;

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	/* Read optional lowest and nominal frequencies if present */
	if (CPC_SUPPORTED(low_freq_reg))
		cpc_read(cpunum, low_freq_reg, &low_f);

	if (CPC_SUPPORTED(nom_freq_reg))
		cpc_read(cpunum, nom_freq_reg, &nom_f);

	perf_caps->lowest_freq = low_f;
	perf_caps->nominal_freq = nom_f;


1129
out_err:
1130
	if (regs_in_pcc)
1131
		up_write(&pcc_ss_data->pcc_lock);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_caps);

/**
 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
 * @cpunum: CPU from which to read counters.
 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
 *
 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
 */
int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1146 1147
	struct cpc_register_resource *delivered_reg, *reference_reg,
		*ref_perf_reg, *ctr_wrap_reg;
1148
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1149
	struct cppc_pcc_data *pcc_ss_data = NULL;
1150
	u64 delivered, reference, ref_perf, ctr_wrap_time;
1151
	int ret = 0, regs_in_pcc = 0;
1152

1153
	if (!cpc_desc) {
1154 1155 1156 1157 1158 1159
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1160 1161 1162 1163 1164 1165 1166 1167 1168
	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];

	/*
	 * If refernce perf register is not supported then we should
	 * use the nominal perf value
	 */
	if (!CPC_SUPPORTED(ref_perf_reg))
		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1169 1170

	/* Are any of the regs PCC ?*/
1171 1172
	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1173 1174 1175 1176 1177
		if (pcc_ss_id < 0) {
			pr_debug("Invalid pcc_ss_id\n");
			return -ENODEV;
		}
		pcc_ss_data = pcc_data[pcc_ss_id];
1178
		down_write(&pcc_ss_data->pcc_lock);
1179
		regs_in_pcc = 1;
1180
		/* Ring doorbell once to update PCC subspace */
1181
		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1182 1183 1184 1185 1186
			ret = -EIO;
			goto out_err;
		}
	}

1187 1188 1189
	cpc_read(cpunum, delivered_reg, &delivered);
	cpc_read(cpunum, reference_reg, &reference);
	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1190 1191 1192 1193 1194 1195 1196 1197

	/*
	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
	 * performance counters are assumed to never wrap during the lifetime of
	 * platform
	 */
	ctr_wrap_time = (u64)(~((u64)0));
	if (CPC_SUPPORTED(ctr_wrap_reg))
1198
		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1199

1200
	if (!delivered || !reference ||	!ref_perf) {
1201 1202 1203 1204 1205 1206
		ret = -EFAULT;
		goto out_err;
	}

	perf_fb_ctrs->delivered = delivered;
	perf_fb_ctrs->reference = reference;
1207
	perf_fb_ctrs->reference_perf = ref_perf;
1208
	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1209
out_err:
1210
	if (regs_in_pcc)
1211
		up_write(&pcc_ss_data->pcc_lock);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);

/**
 * cppc_set_perf - Set a CPUs performance controls.
 * @cpu: CPU for which to set performance controls.
 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
 *
 * Return: 0 for success, -ERRNO otherwise.
 */
int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
	struct cpc_register_resource *desired_reg;
1227
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1228
	struct cppc_pcc_data *pcc_ss_data = NULL;
1229 1230
	int ret = 0;

1231
	if (!cpc_desc) {
1232 1233 1234 1235 1236 1237
		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
		return -ENODEV;
	}

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];

1238 1239 1240 1241 1242 1243 1244 1245
	/*
	 * This is Phase-I where we want to write to CPC registers
	 * -> We want all CPUs to be able to execute this phase in parallel
	 *
	 * Since read_lock can be acquired by multiple CPUs simultaneously we
	 * achieve that goal here
	 */
	if (CPC_IN_PCC(desired_reg)) {
1246 1247 1248 1249 1250
		if (pcc_ss_id < 0) {
			pr_debug("Invalid pcc_ss_id\n");
			return -ENODEV;
		}
		pcc_ss_data = pcc_data[pcc_ss_id];
1251 1252 1253
		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
		if (pcc_ss_data->platform_owns_pcc) {
			ret = check_pcc_chan(pcc_ss_id, false);
1254
			if (ret) {
1255
				up_read(&pcc_ss_data->pcc_lock);
1256 1257 1258
				return ret;
			}
		}
1259 1260 1261 1262
		/*
		 * Update the pending_write to make sure a PCC CMD_READ will not
		 * arrive and steal the channel during the switch to write lock
		 */
1263 1264
		pcc_ss_data->pending_pcc_write_cmd = true;
		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1265
		cpc_desc->write_cmd_status = 0;
1266 1267
	}

1268 1269 1270 1271
	/*
	 * Skip writing MIN/MAX until Linux knows how to come up with
	 * useful values.
	 */
1272
	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1273

1274
	if (CPC_IN_PCC(desired_reg))
1275
		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	/*
	 * This is Phase-II where we transfer the ownership of PCC to Platform
	 *
	 * Short Summary: Basically if we think of a group of cppc_set_perf
	 * requests that happened in short overlapping interval. The last CPU to
	 * come out of Phase-I will enter Phase-II and ring the doorbell.
	 *
	 * We have the following requirements for Phase-II:
	 *     1. We want to execute Phase-II only when there are no CPUs
	 * currently executing in Phase-I
	 *     2. Once we start Phase-II we want to avoid all other CPUs from
	 * entering Phase-I.
	 *     3. We want only one CPU among all those who went through Phase-I
	 * to run phase-II
	 *
	 * If write_trylock fails to get the lock and doesn't transfer the
	 * PCC ownership to the platform, then one of the following will be TRUE
	 *     1. There is at-least one CPU in Phase-I which will later execute
	 * write_trylock, so the CPUs in Phase-I will be responsible for
	 * executing the Phase-II.
	 *     2. Some other CPU has beaten this CPU to successfully execute the
	 * write_trylock and has already acquired the write_lock. We know for a
	 * fact it(other CPU acquiring the write_lock) couldn't have happened
	 * before this CPU's Phase-I as we held the read_lock.
	 *     3. Some other CPU executing pcc CMD_READ has stolen the
	 * down_write, in which case, send_pcc_cmd will check for pending
	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
	 * So this CPU can be certain that its request will be delivered
	 *    So in all cases, this CPU knows that its request will be delivered
	 * by another CPU and can return
	 *
	 * After getting the down_write we still need to check for
	 * pending_pcc_write_cmd to take care of the following scenario
	 *    The thread running this code could be scheduled out between
	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
	 * could have delivered the request to Platform by triggering the
	 * doorbell and transferred the ownership of PCC to platform. So this
	 * avoids triggering an unnecessary doorbell and more importantly before
	 * triggering the doorbell it makes sure that the PCC channel ownership
	 * is still with OSPM.
	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
	 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
	 * case during a CMD_READ and if there are pending writes it delivers
	 * the write command before servicing the read command
	 */
	if (CPC_IN_PCC(desired_reg)) {
1323
		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1324
			/* Update only if there are pending write commands */
1325 1326 1327
			if (pcc_ss_data->pending_pcc_write_cmd)
				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1328 1329
		} else
			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1330 1331
			wait_event(pcc_ss_data->pcc_write_wait_q,
				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1332 1333 1334

		/* send_pcc_cmd updates the status in case of failure */
		ret = cpc_desc->write_cmd_status;
1335 1336 1337 1338
	}
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_set_perf);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

/**
 * cppc_get_transition_latency - returns frequency transition latency in ns
 *
 * ACPI CPPC does not explicitly specifiy how a platform can specify the
 * transition latency for perfromance change requests. The closest we have
 * is the timing information from the PCCT tables which provides the info
 * on the number and frequency of PCC commands the platform can handle.
 */
unsigned int cppc_get_transition_latency(int cpu_num)
{
	/*
	 * Expected transition latency is based on the PCCT timing values
	 * Below are definition from ACPI spec:
	 * pcc_nominal- Expected latency to process a command, in microseconds
	 * pcc_mpar   - The maximum number of periodic requests that the subspace
	 *              channel can support, reported in commands per minute. 0
	 *              indicates no limitation.
	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
	 *              completion of a command before issuing the next command,
	 *              in microseconds.
	 */
	unsigned int latency_ns = 0;
	struct cpc_desc *cpc_desc;
	struct cpc_register_resource *desired_reg;
1364
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1365
	struct cppc_pcc_data *pcc_ss_data;
1366 1367 1368 1369 1370 1371 1372 1373 1374

	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
	if (!cpc_desc)
		return CPUFREQ_ETERNAL;

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
	if (!CPC_IN_PCC(desired_reg))
		return CPUFREQ_ETERNAL;

1375 1376 1377 1378
	if (pcc_ss_id < 0)
		return CPUFREQ_ETERNAL;

	pcc_ss_data = pcc_data[pcc_ss_id];
1379 1380
	if (pcc_ss_data->pcc_mpar)
		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1381

1382 1383
	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1384 1385 1386 1387

	return latency_ns;
}
EXPORT_SYMBOL_GPL(cppc_get_transition_latency);