cppc_acpi.c 28.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
 *
 * (C) Copyright 2014, 2015 Linaro Ltd.
 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 *
 * CPPC describes a few methods for controlling CPU performance using
 * information from a per CPU table called CPC. This table is described in
 * the ACPI v5.0+ specification. The table consists of a list of
 * registers which may be memory mapped or hardware registers and also may
 * include some static integer values.
 *
 * CPU performance is on an abstract continuous scale as against a discretized
 * P-state scale which is tied to CPU frequency only. In brief, the basic
 * operation involves:
 *
 * - OS makes a CPU performance request. (Can provide min and max bounds)
 *
 * - Platform (such as BMC) is free to optimize request within requested bounds
 *   depending on power/thermal budgets etc.
 *
 * - Platform conveys its decision back to OS
 *
 * The communication between OS and platform occurs through another medium
 * called (PCC) Platform Communication Channel. This is a generic mailbox like
 * mechanism which includes doorbell semantics to indicate register updates.
 * See drivers/mailbox/pcc.c for details on PCC.
 *
 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
 * above specifications.
 */

#define pr_fmt(fmt)	"ACPI CPPC: " fmt

#include <linux/cpufreq.h>
#include <linux/delay.h>
42
#include <linux/ktime.h>
43 44
#include <linux/rwsem.h>
#include <linux/wait.h>
45 46

#include <acpi/cppc_acpi.h>
47

48
/*
49 50 51 52 53 54 55 56 57 58 59 60
 * Lock to provide controlled access to the PCC channel.
 *
 * For performance critical usecases(currently cppc_set_perf)
 *	We need to take read_lock and check if channel belongs to OSPM before
 * reading or writing to PCC subspace
 *	We need to take write_lock before transferring the channel ownership to
 * the platform via a Doorbell
 *	This allows us to batch a number of CPPC requests if they happen to
 * originate in about the same time
 *
 * For non-performance critical usecases(init)
 *	Take write_lock for all purposes which gives exclusive access
61
 */
62 63 64 65 66 67 68 69 70 71
static DECLARE_RWSEM(pcc_lock);

/* Indicates if there are any pending/batched PCC write commands */
static bool pending_pcc_write_cmd;

/* Wait queue for CPUs whose requests were batched */
static DECLARE_WAIT_QUEUE_HEAD(pcc_write_wait_q);

/* Used to identify if a batched request is delivered to platform */
static unsigned int pcc_write_cnt;
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

/*
 * The cpc_desc structure contains the ACPI register details
 * as described in the per CPU _CPC tables. The details
 * include the type of register (e.g. PCC, System IO, FFH etc.)
 * and destination addresses which lets us READ/WRITE CPU performance
 * information using the appropriate I/O methods.
 */
static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);

/* This layer handles all the PCC specifics for CPPC. */
static struct mbox_chan *pcc_channel;
static void __iomem *pcc_comm_addr;
static int pcc_subspace_idx = -1;
static bool pcc_channel_acquired;
87
static ktime_t deadline;
88
static unsigned int pcc_mpar, pcc_mrtt;
89

90 91 92
/* pcc mapped address + header size + offset within PCC subspace */
#define GET_PCC_VADDR(offs) (pcc_comm_addr + 0x8 + (offs))

93 94 95 96 97
/* Check if a CPC regsiter is in PCC */
#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
				(cpc)->cpc_entry.reg.space_id ==	\
				ACPI_ADR_SPACE_PLATFORM_COMM)

98 99
/*
 * Arbitrary Retries in case the remote processor is slow to respond
100 101
 * to PCC commands. Keeping it high enough to cover emulators where
 * the processors run painfully slow.
102 103 104
 */
#define NUM_RETRIES 500

105 106 107 108 109 110 111 112
static int check_pcc_chan(void)
{
	int ret = -EIO;
	struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_comm_addr;
	ktime_t next_deadline = ktime_add(ktime_get(), deadline);

	/* Retry in case the remote processor was too slow to catch up. */
	while (!ktime_after(ktime_get(), next_deadline)) {
113 114 115 116 117
		/*
		 * Per spec, prior to boot the PCC space wil be initialized by
		 * platform and should have set the command completion bit when
		 * PCC can be used by OSPM
		 */
118 119 120 121 122 123 124 125 126 127 128 129 130 131
		if (readw_relaxed(&generic_comm_base->status) & PCC_CMD_COMPLETE) {
			ret = 0;
			break;
		}
		/*
		 * Reducing the bus traffic in case this loop takes longer than
		 * a few retries.
		 */
		udelay(3);
	}

	return ret;
}

132 133 134 135
/*
 * This function transfers the ownership of the PCC to the platform
 * So it must be called while holding write_lock(pcc_lock)
 */
136 137
static int send_pcc_cmd(u16 cmd)
{
138
	int ret = -EIO, i;
139 140
	struct acpi_pcct_shared_memory *generic_comm_base =
		(struct acpi_pcct_shared_memory *) pcc_comm_addr;
141 142 143
	static ktime_t last_cmd_cmpl_time, last_mpar_reset;
	static int mpar_count;
	unsigned int time_delta;
144

145 146 147 148 149
	/*
	 * For CMD_WRITE we know for a fact the caller should have checked
	 * the channel before writing to PCC space
	 */
	if (cmd == CMD_READ) {
150 151 152 153 154 155 156 157
		/*
		 * If there are pending cpc_writes, then we stole the channel
		 * before write completion, so first send a WRITE command to
		 * platform
		 */
		if (pending_pcc_write_cmd)
			send_pcc_cmd(CMD_WRITE);

158 159
		ret = check_pcc_chan();
		if (ret)
160 161 162
			goto end;
	} else /* CMD_WRITE */
		pending_pcc_write_cmd = FALSE;
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	/*
	 * Handle the Minimum Request Turnaround Time(MRTT)
	 * "The minimum amount of time that OSPM must wait after the completion
	 * of a command before issuing the next command, in microseconds"
	 */
	if (pcc_mrtt) {
		time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
		if (pcc_mrtt > time_delta)
			udelay(pcc_mrtt - time_delta);
	}

	/*
	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
	 * "The maximum number of periodic requests that the subspace channel can
	 * support, reported in commands per minute. 0 indicates no limitation."
	 *
	 * This parameter should be ideally zero or large enough so that it can
	 * handle maximum number of requests that all the cores in the system can
	 * collectively generate. If it is not, we will follow the spec and just
	 * not send the request to the platform after hitting the MPAR limit in
	 * any 60s window
	 */
	if (pcc_mpar) {
		if (mpar_count == 0) {
			time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
			if (time_delta < 60 * MSEC_PER_SEC) {
				pr_debug("PCC cmd not sent due to MPAR limit");
191 192
				ret = -EIO;
				goto end;
193 194 195 196 197 198 199
			}
			last_mpar_reset = ktime_get();
			mpar_count = pcc_mpar;
		}
		mpar_count--;
	}

200
	/* Write to the shared comm region. */
201
	writew_relaxed(cmd, &generic_comm_base->command);
202 203

	/* Flip CMD COMPLETE bit */
204
	writew_relaxed(0, &generic_comm_base->status);
205 206

	/* Ring doorbell */
207 208
	ret = mbox_send_message(pcc_channel, &cmd);
	if (ret < 0) {
209
		pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
210
				cmd, ret);
211
		goto end;
212 213
	}

214 215 216 217 218 219
	/*
	 * For READs we need to ensure the cmd completed to ensure
	 * the ensuing read()s can proceed. For WRITEs we dont care
	 * because the actual write()s are done before coming here
	 * and the next READ or WRITE will check if the channel
	 * is busy/free at the entry of this call.
220 221 222 223 224
	 *
	 * If Minimum Request Turnaround Time is non-zero, we need
	 * to record the completion time of both READ and WRITE
	 * command for proper handling of MRTT, so we need to check
	 * for pcc_mrtt in addition to CMD_READ
225
	 */
226
	if (cmd == CMD_READ || pcc_mrtt) {
227
		ret = check_pcc_chan();
228 229 230
		if (pcc_mrtt)
			last_cmd_cmpl_time = ktime_get();
	}
231

232
	mbox_client_txdone(pcc_channel, ret);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

end:
	if (cmd == CMD_WRITE) {
		if (unlikely(ret)) {
			for_each_possible_cpu(i) {
				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
				if (!desc)
					continue;

				if (desc->write_cmd_id == pcc_write_cnt)
					desc->write_cmd_status = ret;
			}
		}
		pcc_write_cnt++;
		wake_up_all(&pcc_write_wait_q);
	}

250
	return ret;
251 252 253 254
}

static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
{
255
	if (ret < 0)
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
	else
		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
}

struct mbox_client cppc_mbox_cl = {
	.tx_done = cppc_chan_tx_done,
	.knows_txdone = true,
};

static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
{
	int result = -EFAULT;
	acpi_status status = AE_OK;
	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
	struct acpi_buffer state = {0, NULL};
	union acpi_object  *psd = NULL;
	struct acpi_psd_package *pdomain;

	status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status))
		return -ENODEV;

	psd = buffer.pointer;
	if (!psd || psd->package.count != 1) {
		pr_debug("Invalid _PSD data\n");
		goto end;
	}

	pdomain = &(cpc_ptr->domain_info);

	state.length = sizeof(struct acpi_psd_package);
	state.pointer = pdomain;

	status = acpi_extract_package(&(psd->package.elements[0]),
		&format, &state);
	if (ACPI_FAILURE(status)) {
		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	result = 0;
end:
	kfree(buffer.pointer);
	return result;
}

/**
 * acpi_get_psd_map - Map the CPUs in a common freq domain.
 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
 *
 *	Return: 0 for success or negative value for err.
 */
int acpi_get_psd_map(struct cpudata **all_cpu_data)
{
	int count_target;
	int retval = 0;
	unsigned int i, j;
	cpumask_var_t covered_cpus;
	struct cpudata *pr, *match_pr;
	struct acpi_psd_package *pdomain;
	struct acpi_psd_package *match_pdomain;
	struct cpc_desc *cpc_ptr, *match_cpc_ptr;

	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
		return -ENOMEM;

	/*
	 * Now that we have _PSD data from all CPUs, lets setup P-state
	 * domain info.
	 */
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		if (cpumask_test_cpu(i, covered_cpus))
			continue;

		cpc_ptr = per_cpu(cpc_desc_ptr, i);
357 358 359 360
		if (!cpc_ptr) {
			retval = -EFAULT;
			goto err_ret;
		}
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

		pdomain = &(cpc_ptr->domain_info);
		cpumask_set_cpu(i, pr->shared_cpu_map);
		cpumask_set_cpu(i, covered_cpus);
		if (pdomain->num_processors <= 1)
			continue;

		/* Validate the Domain info */
		count_target = pdomain->num_processors;
		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
382 383 384 385
			if (!match_cpc_ptr) {
				retval = -EFAULT;
				goto err_ret;
			}
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			/* Here i and j are in the same domain */
			if (match_pdomain->num_processors != count_target) {
				retval = -EFAULT;
				goto err_ret;
			}

			if (pdomain->coord_type != match_pdomain->coord_type) {
				retval = -EFAULT;
				goto err_ret;
			}

			cpumask_set_cpu(j, covered_cpus);
			cpumask_set_cpu(j, pr->shared_cpu_map);
		}

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_pr = all_cpu_data[j];
			if (!match_pr)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
415 416 417 418
			if (!match_cpc_ptr) {
				retval = -EFAULT;
				goto err_ret;
			}
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			match_pr->shared_type = pr->shared_type;
			cpumask_copy(match_pr->shared_cpu_map,
				     pr->shared_cpu_map);
		}
	}

err_ret:
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		/* Assume no coordination on any error parsing domain info */
		if (retval) {
			cpumask_clear(pr->shared_cpu_map);
			cpumask_set_cpu(i, pr->shared_cpu_map);
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		}
	}

	free_cpumask_var(covered_cpus);
	return retval;
}
EXPORT_SYMBOL_GPL(acpi_get_psd_map);

449
static int register_pcc_channel(int pcc_subspace_idx)
450
{
451
	struct acpi_pcct_hw_reduced *cppc_ss;
452
	u64 usecs_lat;
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

	if (pcc_subspace_idx >= 0) {
		pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
				pcc_subspace_idx);

		if (IS_ERR(pcc_channel)) {
			pr_err("Failed to find PCC communication channel\n");
			return -ENODEV;
		}

		/*
		 * The PCC mailbox controller driver should
		 * have parsed the PCCT (global table of all
		 * PCC channels) and stored pointers to the
		 * subspace communication region in con_priv.
		 */
		cppc_ss = pcc_channel->con_priv;

		if (!cppc_ss) {
			pr_err("No PCC subspace found for CPPC\n");
			return -ENODEV;
		}

476 477 478 479 480 481 482 483

		/*
		 * cppc_ss->latency is just a Nominal value. In reality
		 * the remote processor could be much slower to reply.
		 * So add an arbitrary amount of wait on top of Nominal.
		 */
		usecs_lat = NUM_RETRIES * cppc_ss->latency;
		deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
484 485
		pcc_mrtt = cppc_ss->min_turnaround_time;
		pcc_mpar = cppc_ss->max_access_rate;
486

487
		pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
		if (!pcc_comm_addr) {
			pr_err("Failed to ioremap PCC comm region mem\n");
			return -ENOMEM;
		}

		/* Set flag so that we dont come here for each CPU. */
		pcc_channel_acquired = true;
	}

	return 0;
}

/*
 * An example CPC table looks like the following.
 *
 *	Name(_CPC, Package()
 *			{
 *			17,
 *			NumEntries
 *			1,
 *			// Revision
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
 *			// Highest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
 *			// Nominal Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
 *			// Lowest Nonlinear Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
 *			// Lowest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
 *			// Guaranteed Performance Register
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
 *			// Desired Performance Register
 *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
 *			..
 *			..
 *			..
 *
 *		}
 * Each Register() encodes how to access that specific register.
 * e.g. a sample PCC entry has the following encoding:
 *
 *	Register (
 *		PCC,
 *		AddressSpaceKeyword
 *		8,
 *		//RegisterBitWidth
 *		8,
 *		//RegisterBitOffset
 *		0x30,
 *		//RegisterAddress
 *		9
 *		//AccessSize (subspace ID)
 *		0
 *		)
 *	}
 */

/**
 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 *
 *	Return: 0 for success or negative value for err.
 */
int acpi_cppc_processor_probe(struct acpi_processor *pr)
{
	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
	union acpi_object *out_obj, *cpc_obj;
	struct cpc_desc *cpc_ptr;
	struct cpc_reg *gas_t;
	acpi_handle handle = pr->handle;
	unsigned int num_ent, i, cpc_rev;
	acpi_status status;
	int ret = -EFAULT;

	/* Parse the ACPI _CPC table for this cpu. */
	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status)) {
		ret = -ENODEV;
		goto out_buf_free;
	}

	out_obj = (union acpi_object *) output.pointer;

	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
	if (!cpc_ptr) {
		ret = -ENOMEM;
		goto out_buf_free;
	}

	/* First entry is NumEntries. */
	cpc_obj = &out_obj->package.elements[0];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		num_ent = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for NumEntries\n",
				cpc_obj->type);
		goto out_free;
	}

	/* Only support CPPCv2. Bail otherwise. */
	if (num_ent != CPPC_NUM_ENT) {
		pr_debug("Firmware exports %d entries. Expected: %d\n",
				num_ent, CPPC_NUM_ENT);
		goto out_free;
	}

596 597
	cpc_ptr->num_entries = num_ent;

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
	/* Second entry should be revision. */
	cpc_obj = &out_obj->package.elements[1];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		cpc_rev = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for Revision\n",
				cpc_obj->type);
		goto out_free;
	}

	if (cpc_rev != CPPC_REV) {
		pr_debug("Firmware exports revision:%d. Expected:%d\n",
				cpc_rev, CPPC_REV);
		goto out_free;
	}

	/* Iterate through remaining entries in _CPC */
	for (i = 2; i < num_ent; i++) {
		cpc_obj = &out_obj->package.elements[i];

		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
			gas_t = (struct cpc_reg *)
				cpc_obj->buffer.pointer;

			/*
			 * The PCC Subspace index is encoded inside
			 * the CPC table entries. The same PCC index
			 * will be used for all the PCC entries,
			 * so extract it only once.
			 */
			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
				if (pcc_subspace_idx < 0)
					pcc_subspace_idx = gas_t->access_width;
				else if (pcc_subspace_idx != gas_t->access_width) {
					pr_debug("Mismatched PCC ids.\n");
					goto out_free;
				}
638 639 640 641 642 643 644 645 646 647
			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
				if (gas_t->address) {
					void __iomem *addr;

					addr = ioremap(gas_t->address, gas_t->bit_width/8);
					if (!addr)
						goto out_free;
					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
				}
			} else {
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
				/* Support only PCC and SYS MEM type regs */
				pr_debug("Unsupported register type: %d\n", gas_t->space_id);
				goto out_free;
			}

			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
		} else {
			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
			goto out_free;
		}
	}
	/* Store CPU Logical ID */
	cpc_ptr->cpu_id = pr->id;

	/* Parse PSD data for this CPU */
	ret = acpi_get_psd(cpc_ptr, handle);
	if (ret)
		goto out_free;

	/* Register PCC channel once for all CPUs. */
	if (!pcc_channel_acquired) {
		ret = register_pcc_channel(pcc_subspace_idx);
		if (ret)
			goto out_free;
	}

675 676 677
	/* Plug PSD data into this CPUs CPC descriptor. */
	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;

678 679 680 681 682 683 684
	/* Everything looks okay */
	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);

	kfree(output.pointer);
	return 0;

out_free:
685 686 687 688 689 690 691
	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;

		if (addr)
			iounmap(addr);
	}
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
	kfree(cpc_ptr);

out_buf_free:
	kfree(output.pointer);
	return ret;
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);

/**
 * acpi_cppc_processor_exit - Cleanup CPC structs.
 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 *
 * Return: Void
 */
void acpi_cppc_processor_exit(struct acpi_processor *pr)
{
	struct cpc_desc *cpc_ptr;
709 710
	unsigned int i;
	void __iomem *addr;
711
	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
712 713 714 715 716 717 718 719

	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
		if (addr)
			iounmap(addr);
	}

720 721 722 723
	kfree(cpc_ptr);
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);

724 725 726 727 728
/*
 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
 * as fast as possible. We have already mapped the PCC subspace during init, so
 * we can directly write to it.
 */
729

730
static int cpc_read(struct cpc_register_resource *reg_res, u64 *val)
731
{
732
	int ret_val = 0;
733 734 735 736 737 738 739
	void __iomem *vaddr = 0;
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;

	if (reg_res->type == ACPI_TYPE_INTEGER) {
		*val = reg_res->cpc_entry.int_value;
		return ret_val;
	}
740 741

	*val = 0;
742 743 744 745 746 747 748
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
		vaddr = GET_PCC_VADDR(reg->address);
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
	else
		return acpi_os_read_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
749

750
	switch (reg->bit_width) {
751
		case 8:
752
			*val = readb_relaxed(vaddr);
753 754
			break;
		case 16:
755
			*val = readw_relaxed(vaddr);
756 757
			break;
		case 32:
758
			*val = readl_relaxed(vaddr);
759 760
			break;
		case 64:
761
			*val = readq_relaxed(vaddr);
762 763 764
			break;
		default:
			pr_debug("Error: Cannot read %u bit width from PCC\n",
765
					reg->bit_width);
766
			ret_val = -EFAULT;
767 768
	}

769
	return ret_val;
770 771
}

772
static int cpc_write(struct cpc_register_resource *reg_res, u64 val)
773
{
774
	int ret_val = 0;
775 776
	void __iomem *vaddr = 0;
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
777

778 779 780 781 782 783 784
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
		vaddr = GET_PCC_VADDR(reg->address);
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
	else
		return acpi_os_write_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
785

786
	switch (reg->bit_width) {
787
		case 8:
788
			writeb_relaxed(val, vaddr);
789 790
			break;
		case 16:
791
			writew_relaxed(val, vaddr);
792 793
			break;
		case 32:
794
			writel_relaxed(val, vaddr);
795 796
			break;
		case 64:
797
			writeq_relaxed(val, vaddr);
798 799 800
			break;
		default:
			pr_debug("Error: Cannot write %u bit width to PCC\n",
801
					reg->bit_width);
802 803
			ret_val = -EFAULT;
			break;
804 805
	}

806
	return ret_val;
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
}

/**
 * cppc_get_perf_caps - Get a CPUs performance capabilities.
 * @cpunum: CPU from which to get capabilities info.
 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
 *
 * Return: 0 for success with perf_caps populated else -ERRNO.
 */
int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
	struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
								 *nom_perf;
	u64 high, low, ref, nom;
822
	int ret = 0, regs_in_pcc = 0;
823 824 825 826 827 828 829 830 831 832 833 834

	if (!cpc_desc) {
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
	ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
	nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];

	/* Are any of the regs PCC ?*/
835 836
	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
		CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
837
		regs_in_pcc = 1;
838
		down_write(&pcc_lock);
839
		/* Ring doorbell once to update PCC subspace */
840
		if (send_pcc_cmd(CMD_READ) < 0) {
841 842 843 844 845
			ret = -EIO;
			goto out_err;
		}
	}

846
	cpc_read(highest_reg, &high);
847 848
	perf_caps->highest_perf = high;

849
	cpc_read(lowest_reg, &low);
850 851
	perf_caps->lowest_perf = low;

852
	cpc_read(ref_perf, &ref);
853 854
	perf_caps->reference_perf = ref;

855
	cpc_read(nom_perf, &nom);
856 857 858 859 860 861 862 863 864
	perf_caps->nominal_perf = nom;

	if (!ref)
		perf_caps->reference_perf = perf_caps->nominal_perf;

	if (!high || !low || !nom)
		ret = -EFAULT;

out_err:
865
	if (regs_in_pcc)
866
		up_write(&pcc_lock);
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_caps);

/**
 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
 * @cpunum: CPU from which to read counters.
 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
 *
 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
 */
int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
	struct cpc_register_resource *delivered_reg, *reference_reg;
	u64 delivered, reference;
883
	int ret = 0, regs_in_pcc = 0;
884 885 886 887 888 889 890 891 892 893

	if (!cpc_desc) {
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];

	/* Are any of the regs PCC ?*/
894 895
	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg)) {
		down_write(&pcc_lock);
896
		regs_in_pcc = 1;
897
		/* Ring doorbell once to update PCC subspace */
898
		if (send_pcc_cmd(CMD_READ) < 0) {
899 900 901 902 903
			ret = -EIO;
			goto out_err;
		}
	}

904 905
	cpc_read(delivered_reg, &delivered);
	cpc_read(reference_reg, &reference);
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

	if (!delivered || !reference) {
		ret = -EFAULT;
		goto out_err;
	}

	perf_fb_ctrs->delivered = delivered;
	perf_fb_ctrs->reference = reference;

	perf_fb_ctrs->delivered -= perf_fb_ctrs->prev_delivered;
	perf_fb_ctrs->reference -= perf_fb_ctrs->prev_reference;

	perf_fb_ctrs->prev_delivered = delivered;
	perf_fb_ctrs->prev_reference = reference;

out_err:
922
	if (regs_in_pcc)
923
		up_write(&pcc_lock);
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);

/**
 * cppc_set_perf - Set a CPUs performance controls.
 * @cpu: CPU for which to set performance controls.
 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
 *
 * Return: 0 for success, -ERRNO otherwise.
 */
int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
	struct cpc_register_resource *desired_reg;
	int ret = 0;

	if (!cpc_desc) {
		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
		return -ENODEV;
	}

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
	/*
	 * This is Phase-I where we want to write to CPC registers
	 * -> We want all CPUs to be able to execute this phase in parallel
	 *
	 * Since read_lock can be acquired by multiple CPUs simultaneously we
	 * achieve that goal here
	 */
	if (CPC_IN_PCC(desired_reg)) {
		down_read(&pcc_lock);	/* BEGIN Phase-I */
		/*
		 * If there are pending write commands i.e pending_pcc_write_cmd
		 * is TRUE, then we know OSPM owns the channel as another CPU
		 * has already checked for command completion bit and updated
		 * the corresponding CPC registers
		 */
		if (!pending_pcc_write_cmd) {
			ret = check_pcc_chan();
			if (ret) {
				up_read(&pcc_lock);
				return ret;
			}
			/*
			 * Update the pending_write to make sure a PCC CMD_READ
			 * will not arrive and steal the channel during the
			 * transition to write lock
			 */
			pending_pcc_write_cmd = TRUE;
		}
		cpc_desc->write_cmd_id = pcc_write_cnt;
		cpc_desc->write_cmd_status = 0;
978 979
	}

980 981 982 983
	/*
	 * Skip writing MIN/MAX until Linux knows how to come up with
	 * useful values.
	 */
984
	cpc_write(desired_reg, perf_ctrls->desired_perf);
985

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	if (CPC_IN_PCC(desired_reg))
		up_read(&pcc_lock);	/* END Phase-I */
	/*
	 * This is Phase-II where we transfer the ownership of PCC to Platform
	 *
	 * Short Summary: Basically if we think of a group of cppc_set_perf
	 * requests that happened in short overlapping interval. The last CPU to
	 * come out of Phase-I will enter Phase-II and ring the doorbell.
	 *
	 * We have the following requirements for Phase-II:
	 *     1. We want to execute Phase-II only when there are no CPUs
	 * currently executing in Phase-I
	 *     2. Once we start Phase-II we want to avoid all other CPUs from
	 * entering Phase-I.
	 *     3. We want only one CPU among all those who went through Phase-I
	 * to run phase-II
	 *
	 * If write_trylock fails to get the lock and doesn't transfer the
	 * PCC ownership to the platform, then one of the following will be TRUE
	 *     1. There is at-least one CPU in Phase-I which will later execute
	 * write_trylock, so the CPUs in Phase-I will be responsible for
	 * executing the Phase-II.
	 *     2. Some other CPU has beaten this CPU to successfully execute the
	 * write_trylock and has already acquired the write_lock. We know for a
	 * fact it(other CPU acquiring the write_lock) couldn't have happened
	 * before this CPU's Phase-I as we held the read_lock.
	 *     3. Some other CPU executing pcc CMD_READ has stolen the
	 * down_write, in which case, send_pcc_cmd will check for pending
	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
	 * So this CPU can be certain that its request will be delivered
	 *    So in all cases, this CPU knows that its request will be delivered
	 * by another CPU and can return
	 *
	 * After getting the down_write we still need to check for
	 * pending_pcc_write_cmd to take care of the following scenario
	 *    The thread running this code could be scheduled out between
	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
	 * could have delivered the request to Platform by triggering the
	 * doorbell and transferred the ownership of PCC to platform. So this
	 * avoids triggering an unnecessary doorbell and more importantly before
	 * triggering the doorbell it makes sure that the PCC channel ownership
	 * is still with OSPM.
	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
	 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
	 * case during a CMD_READ and if there are pending writes it delivers
	 * the write command before servicing the read command
	 */
	if (CPC_IN_PCC(desired_reg)) {
		if (down_write_trylock(&pcc_lock)) {		/* BEGIN Phase-II */
			/* Update only if there are pending write commands */
			if (pending_pcc_write_cmd)
				send_pcc_cmd(CMD_WRITE);
			up_write(&pcc_lock);			/* END Phase-II */
		} else
			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
			wait_event(pcc_write_wait_q,
				cpc_desc->write_cmd_id != pcc_write_cnt);

		/* send_pcc_cmd updates the status in case of failure */
		ret = cpc_desc->write_cmd_status;
1047 1048 1049 1050
	}
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_set_perf);