cppc_acpi.c 39.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
 *
 * (C) Copyright 2014, 2015 Linaro Ltd.
 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 *
 * CPPC describes a few methods for controlling CPU performance using
 * information from a per CPU table called CPC. This table is described in
 * the ACPI v5.0+ specification. The table consists of a list of
 * registers which may be memory mapped or hardware registers and also may
 * include some static integer values.
 *
 * CPU performance is on an abstract continuous scale as against a discretized
 * P-state scale which is tied to CPU frequency only. In brief, the basic
 * operation involves:
 *
 * - OS makes a CPU performance request. (Can provide min and max bounds)
 *
 * - Platform (such as BMC) is free to optimize request within requested bounds
 *   depending on power/thermal budgets etc.
 *
 * - Platform conveys its decision back to OS
 *
 * The communication between OS and platform occurs through another medium
 * called (PCC) Platform Communication Channel. This is a generic mailbox like
 * mechanism which includes doorbell semantics to indicate register updates.
 * See drivers/mailbox/pcc.c for details on PCC.
 *
 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
 * above specifications.
 */

#define pr_fmt(fmt)	"ACPI CPPC: " fmt

#include <linux/cpufreq.h>
#include <linux/delay.h>
42
#include <linux/ktime.h>
43 44
#include <linux/rwsem.h>
#include <linux/wait.h>
45 46

#include <acpi/cppc_acpi.h>
47

48 49 50 51 52 53
struct cppc_pcc_data {
	struct mbox_chan *pcc_channel;
	void __iomem *pcc_comm_addr;
	bool pcc_channel_acquired;
	ktime_t deadline;
	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54

55
	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
56
	bool platform_owns_pcc;		/* Ownership of PCC subspace */
57
	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
	/*
	 * Lock to provide controlled access to the PCC channel.
	 *
	 * For performance critical usecases(currently cppc_set_perf)
	 *	We need to take read_lock and check if channel belongs to OSPM
	 * before reading or writing to PCC subspace
	 *	We need to take write_lock before transferring the channel
	 * ownership to the platform via a Doorbell
	 *	This allows us to batch a number of CPPC requests if they happen
	 * to originate in about the same time
	 *
	 * For non-performance critical usecases(init)
	 *	Take write_lock for all purposes which gives exclusive access
	 */
	struct rw_semaphore pcc_lock;

	/* Wait queue for CPUs whose requests were batched */
	wait_queue_head_t pcc_write_wait_q;
77 78 79 80
	ktime_t last_cmd_cmpl_time;
	ktime_t last_mpar_reset;
	int mpar_count;
	int refcount;
81
};
82

83 84 85 86
/* Array  to represent the PCC channel per subspace id */
static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
/* The cpu_pcc_subspace_idx containsper CPU subspace id */
static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87 88 89 90 91 92 93 94 95 96

/*
 * The cpc_desc structure contains the ACPI register details
 * as described in the per CPU _CPC tables. The details
 * include the type of register (e.g. PCC, System IO, FFH etc.)
 * and destination addresses which lets us READ/WRITE CPU performance
 * information using the appropriate I/O methods.
 */
static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);

97
/* pcc mapped address + header size + offset within PCC subspace */
98 99
#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
						0x8 + (offs))
100

101
/* Check if a CPC register is in PCC */
102 103 104 105
#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
				(cpc)->cpc_entry.reg.space_id ==	\
				ACPI_ADR_SPACE_PLATFORM_COMM)

106 107 108 109 110 111 112 113 114 115 116
/* Evalutes to True if reg is a NULL register descriptor */
#define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
				(reg)->address == 0 &&			\
				(reg)->bit_width == 0 &&		\
				(reg)->bit_offset == 0 &&		\
				(reg)->access_width == 0)

/* Evalutes to True if an optional cpc field is supported */
#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
				!!(cpc)->cpc_entry.int_value :		\
				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
117 118
/*
 * Arbitrary Retries in case the remote processor is slow to respond
119 120
 * to PCC commands. Keeping it high enough to cover emulators where
 * the processors run painfully slow.
121
 */
122
#define NUM_RETRIES 500ULL
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137
struct cppc_attr {
	struct attribute attr;
	ssize_t (*show)(struct kobject *kobj,
			struct attribute *attr, char *buf);
	ssize_t (*store)(struct kobject *kobj,
			struct attribute *attr, const char *c, ssize_t count);
};

#define define_one_cppc_ro(_name)		\
static struct cppc_attr _name =			\
__ATTR(_name, 0444, show_##_name, NULL)

#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
#define show_cppc_data(access_fn, struct_name, member_name)		\
	static ssize_t show_##member_name(struct kobject *kobj,		\
					struct attribute *attr,	char *buf) \
	{								\
		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
		struct struct_name st_name = {0};			\
		int ret;						\
									\
		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
		if (ret)						\
			return ret;					\
									\
		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
				(u64)st_name.member_name);		\
	}								\
	define_one_cppc_ro(member_name)

show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
159 160 161
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);

162 163 164
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);

165 166 167 168 169
static ssize_t show_feedback_ctrs(struct kobject *kobj,
		struct attribute *attr, char *buf)
{
	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
	struct cppc_perf_fb_ctrs fb_ctrs = {0};
170
	int ret;
171

172 173 174
	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
	if (ret)
		return ret;
175 176 177 178 179 180 181 182 183 184

	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
			fb_ctrs.reference, fb_ctrs.delivered);
}
define_one_cppc_ro(feedback_ctrs);

static struct attribute *cppc_attrs[] = {
	&feedback_ctrs.attr,
	&reference_perf.attr,
	&wraparound_time.attr,
185 186 187 188
	&highest_perf.attr,
	&lowest_perf.attr,
	&lowest_nonlinear_perf.attr,
	&nominal_perf.attr,
189 190
	&nominal_freq.attr,
	&lowest_freq.attr,
191 192 193 194 195 196 197 198
	NULL
};

static struct kobj_type cppc_ktype = {
	.sysfs_ops = &kobj_sysfs_ops,
	.default_attrs = cppc_attrs,
};

199
static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
200
{
201
	int ret = -EIO, status = 0;
202 203 204 205 206
	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
		pcc_ss_data->pcc_comm_addr;
	ktime_t next_deadline = ktime_add(ktime_get(),
					  pcc_ss_data->deadline);
207

208
	if (!pcc_ss_data->platform_owns_pcc)
209 210
		return 0;

211 212
	/* Retry in case the remote processor was too slow to catch up. */
	while (!ktime_after(ktime_get(), next_deadline)) {
213 214 215 216 217
		/*
		 * Per spec, prior to boot the PCC space wil be initialized by
		 * platform and should have set the command completion bit when
		 * PCC can be used by OSPM
		 */
218 219
		status = readw_relaxed(&generic_comm_base->status);
		if (status & PCC_CMD_COMPLETE_MASK) {
220
			ret = 0;
221 222
			if (chk_err_bit && (status & PCC_ERROR_MASK))
				ret = -EIO;
223 224 225 226 227 228 229 230 231
			break;
		}
		/*
		 * Reducing the bus traffic in case this loop takes longer than
		 * a few retries.
		 */
		udelay(3);
	}

232
	if (likely(!ret))
233
		pcc_ss_data->platform_owns_pcc = false;
234
	else
235 236
		pr_err("PCC check channel failed for ss: %d. Status=%x\n",
		       pcc_ss_id, status);
237

238 239 240
	return ret;
}

241 242 243 244
/*
 * This function transfers the ownership of the PCC to the platform
 * So it must be called while holding write_lock(pcc_lock)
 */
245
static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
246
{
247
	int ret = -EIO, i;
248
	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
249
	struct acpi_pcct_shared_memory *generic_comm_base =
250
		(struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
251
	unsigned int time_delta;
252

253 254 255 256 257
	/*
	 * For CMD_WRITE we know for a fact the caller should have checked
	 * the channel before writing to PCC space
	 */
	if (cmd == CMD_READ) {
258 259 260 261 262
		/*
		 * If there are pending cpc_writes, then we stole the channel
		 * before write completion, so first send a WRITE command to
		 * platform
		 */
263 264
		if (pcc_ss_data->pending_pcc_write_cmd)
			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
265

266
		ret = check_pcc_chan(pcc_ss_id, false);
267
		if (ret)
268 269
			goto end;
	} else /* CMD_WRITE */
270
		pcc_ss_data->pending_pcc_write_cmd = FALSE;
271

272 273 274 275 276
	/*
	 * Handle the Minimum Request Turnaround Time(MRTT)
	 * "The minimum amount of time that OSPM must wait after the completion
	 * of a command before issuing the next command, in microseconds"
	 */
277 278 279 280 281
	if (pcc_ss_data->pcc_mrtt) {
		time_delta = ktime_us_delta(ktime_get(),
					    pcc_ss_data->last_cmd_cmpl_time);
		if (pcc_ss_data->pcc_mrtt > time_delta)
			udelay(pcc_ss_data->pcc_mrtt - time_delta);
282 283 284 285 286 287 288 289 290 291 292 293 294
	}

	/*
	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
	 * "The maximum number of periodic requests that the subspace channel can
	 * support, reported in commands per minute. 0 indicates no limitation."
	 *
	 * This parameter should be ideally zero or large enough so that it can
	 * handle maximum number of requests that all the cores in the system can
	 * collectively generate. If it is not, we will follow the spec and just
	 * not send the request to the platform after hitting the MPAR limit in
	 * any 60s window
	 */
295 296 297 298 299
	if (pcc_ss_data->pcc_mpar) {
		if (pcc_ss_data->mpar_count == 0) {
			time_delta = ktime_ms_delta(ktime_get(),
						    pcc_ss_data->last_mpar_reset);
			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
300 301
				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
					 pcc_ss_id);
302 303
				ret = -EIO;
				goto end;
304
			}
305 306
			pcc_ss_data->last_mpar_reset = ktime_get();
			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
307
		}
308
		pcc_ss_data->mpar_count--;
309 310
	}

311
	/* Write to the shared comm region. */
312
	writew_relaxed(cmd, &generic_comm_base->command);
313 314

	/* Flip CMD COMPLETE bit */
315
	writew_relaxed(0, &generic_comm_base->status);
316

317
	pcc_ss_data->platform_owns_pcc = true;
318

319
	/* Ring doorbell */
320
	ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
321
	if (ret < 0) {
322 323
		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
		       pcc_ss_id, cmd, ret);
324
		goto end;
325 326
	}

327
	/* wait for completion and check for PCC errro bit */
328
	ret = check_pcc_chan(pcc_ss_id, true);
329

330 331
	if (pcc_ss_data->pcc_mrtt)
		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
332

333 334
	if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
		mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
335
	else
336
		mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
337 338 339 340 341 342 343 344 345

end:
	if (cmd == CMD_WRITE) {
		if (unlikely(ret)) {
			for_each_possible_cpu(i) {
				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
				if (!desc)
					continue;

346
				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
347 348 349
					desc->write_cmd_status = ret;
			}
		}
350 351
		pcc_ss_data->pcc_write_cnt++;
		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
352 353
	}

354
	return ret;
355 356 357 358
}

static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
{
359
	if (ret < 0)
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
	else
		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
}

struct mbox_client cppc_mbox_cl = {
	.tx_done = cppc_chan_tx_done,
	.knows_txdone = true,
};

static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
{
	int result = -EFAULT;
	acpi_status status = AE_OK;
	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
	struct acpi_buffer state = {0, NULL};
	union acpi_object  *psd = NULL;
	struct acpi_psd_package *pdomain;

	status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status))
		return -ENODEV;

	psd = buffer.pointer;
	if (!psd || psd->package.count != 1) {
		pr_debug("Invalid _PSD data\n");
		goto end;
	}

	pdomain = &(cpc_ptr->domain_info);

	state.length = sizeof(struct acpi_psd_package);
	state.pointer = pdomain;

	status = acpi_extract_package(&(psd->package.elements[0]),
		&format, &state);
	if (ACPI_FAILURE(status)) {
		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	result = 0;
end:
	kfree(buffer.pointer);
	return result;
}

/**
 * acpi_get_psd_map - Map the CPUs in a common freq domain.
 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
 *
 *	Return: 0 for success or negative value for err.
 */
434
int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
435 436 437 438 439
{
	int count_target;
	int retval = 0;
	unsigned int i, j;
	cpumask_var_t covered_cpus;
440
	struct cppc_cpudata *pr, *match_pr;
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	struct acpi_psd_package *pdomain;
	struct acpi_psd_package *match_pdomain;
	struct cpc_desc *cpc_ptr, *match_cpc_ptr;

	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
		return -ENOMEM;

	/*
	 * Now that we have _PSD data from all CPUs, lets setup P-state
	 * domain info.
	 */
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		if (cpumask_test_cpu(i, covered_cpus))
			continue;

		cpc_ptr = per_cpu(cpc_desc_ptr, i);
461 462 463 464
		if (!cpc_ptr) {
			retval = -EFAULT;
			goto err_ret;
		}
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

		pdomain = &(cpc_ptr->domain_info);
		cpumask_set_cpu(i, pr->shared_cpu_map);
		cpumask_set_cpu(i, covered_cpus);
		if (pdomain->num_processors <= 1)
			continue;

		/* Validate the Domain info */
		count_target = pdomain->num_processors;
		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
486 487 488 489
			if (!match_cpc_ptr) {
				retval = -EFAULT;
				goto err_ret;
			}
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			/* Here i and j are in the same domain */
			if (match_pdomain->num_processors != count_target) {
				retval = -EFAULT;
				goto err_ret;
			}

			if (pdomain->coord_type != match_pdomain->coord_type) {
				retval = -EFAULT;
				goto err_ret;
			}

			cpumask_set_cpu(j, covered_cpus);
			cpumask_set_cpu(j, pr->shared_cpu_map);
		}

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_pr = all_cpu_data[j];
			if (!match_pr)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
519 520 521 522
			if (!match_cpc_ptr) {
				retval = -EFAULT;
				goto err_ret;
			}
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			match_pr->shared_type = pr->shared_type;
			cpumask_copy(match_pr->shared_cpu_map,
				     pr->shared_cpu_map);
		}
	}

err_ret:
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		/* Assume no coordination on any error parsing domain info */
		if (retval) {
			cpumask_clear(pr->shared_cpu_map);
			cpumask_set_cpu(i, pr->shared_cpu_map);
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		}
	}

	free_cpumask_var(covered_cpus);
	return retval;
}
EXPORT_SYMBOL_GPL(acpi_get_psd_map);

553
static int register_pcc_channel(int pcc_ss_idx)
554
{
555
	struct acpi_pcct_hw_reduced *cppc_ss;
556
	u64 usecs_lat;
557

558 559 560
	if (pcc_ss_idx >= 0) {
		pcc_data[pcc_ss_idx]->pcc_channel =
			pcc_mbox_request_channel(&cppc_mbox_cl,	pcc_ss_idx);
561

562
		if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
563 564
			pr_err("Failed to find PCC channel for subspace %d\n",
			       pcc_ss_idx);
565 566 567 568 569 570 571 572 573
			return -ENODEV;
		}

		/*
		 * The PCC mailbox controller driver should
		 * have parsed the PCCT (global table of all
		 * PCC channels) and stored pointers to the
		 * subspace communication region in con_priv.
		 */
574
		cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
575 576

		if (!cppc_ss) {
577 578
			pr_err("No PCC subspace found for %d CPPC\n",
			       pcc_ss_idx);
579 580 581
			return -ENODEV;
		}

582 583 584 585 586 587
		/*
		 * cppc_ss->latency is just a Nominal value. In reality
		 * the remote processor could be much slower to reply.
		 * So add an arbitrary amount of wait on top of Nominal.
		 */
		usecs_lat = NUM_RETRIES * cppc_ss->latency;
588 589 590 591 592 593 594 595
		pcc_data[pcc_ss_idx]->deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
		pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
		pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
		pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;

		pcc_data[pcc_ss_idx]->pcc_comm_addr =
			acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
596 597
			pr_err("Failed to ioremap PCC comm region mem for %d\n",
			       pcc_ss_idx);
598 599 600 601
			return -ENOMEM;
		}

		/* Set flag so that we dont come here for each CPU. */
602
		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
603 604 605 606 607
	}

	return 0;
}

608 609 610 611 612 613 614 615 616 617 618 619 620
/**
 * cpc_ffh_supported() - check if FFH reading supported
 *
 * Check if the architecture has support for functional fixed hardware
 * read/write capability.
 *
 * Return: true for supported, false for not supported
 */
bool __weak cpc_ffh_supported(void)
{
	return false;
}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
/**
 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
 *
 * Check and allocate the cppc_pcc_data memory.
 * In some processor configurations it is possible that same subspace
 * is shared between multiple CPU's. This is seen especially in CPU's
 * with hardware multi-threading support.
 *
 * Return: 0 for success, errno for failure
 */
int pcc_data_alloc(int pcc_ss_id)
{
	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
		return -EINVAL;

	if (pcc_data[pcc_ss_id]) {
		pcc_data[pcc_ss_id]->refcount++;
	} else {
		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
					      GFP_KERNEL);
		if (!pcc_data[pcc_ss_id])
			return -ENOMEM;
		pcc_data[pcc_ss_id]->refcount++;
	}

	return 0;
}
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675

/* Check if CPPC revision + num_ent combination is supported */
static bool is_cppc_supported(int revision, int num_ent)
{
	int expected_num_ent;

	switch (revision) {
	case CPPC_V2_REV:
		expected_num_ent = CPPC_V2_NUM_ENT;
		break;
	case CPPC_V3_REV:
		expected_num_ent = CPPC_V3_NUM_ENT;
		break;
	default:
		pr_debug("Firmware exports unsupported CPPC revision: %d\n",
			revision);
		return false;
	}

	if (expected_num_ent != num_ent) {
		pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
			num_ent, expected_num_ent, revision);
		return false;
	}

	return true;
}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
/*
 * An example CPC table looks like the following.
 *
 *	Name(_CPC, Package()
 *			{
 *			17,
 *			NumEntries
 *			1,
 *			// Revision
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
 *			// Highest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
 *			// Nominal Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
 *			// Lowest Nonlinear Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
 *			// Lowest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
 *			// Guaranteed Performance Register
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
 *			// Desired Performance Register
 *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
 *			..
 *			..
 *			..
 *
 *		}
 * Each Register() encodes how to access that specific register.
 * e.g. a sample PCC entry has the following encoding:
 *
 *	Register (
 *		PCC,
 *		AddressSpaceKeyword
 *		8,
 *		//RegisterBitWidth
 *		8,
 *		//RegisterBitOffset
 *		0x30,
 *		//RegisterAddress
 *		9
 *		//AccessSize (subspace ID)
 *		0
 *		)
 *	}
 */

/**
 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 *
 *	Return: 0 for success or negative value for err.
 */
int acpi_cppc_processor_probe(struct acpi_processor *pr)
{
	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
	union acpi_object *out_obj, *cpc_obj;
	struct cpc_desc *cpc_ptr;
	struct cpc_reg *gas_t;
734
	struct device *cpu_dev;
735 736
	acpi_handle handle = pr->handle;
	unsigned int num_ent, i, cpc_rev;
737
	int pcc_subspace_id = -1;
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	acpi_status status;
	int ret = -EFAULT;

	/* Parse the ACPI _CPC table for this cpu. */
	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status)) {
		ret = -ENODEV;
		goto out_buf_free;
	}

	out_obj = (union acpi_object *) output.pointer;

	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
	if (!cpc_ptr) {
		ret = -ENOMEM;
		goto out_buf_free;
	}

	/* First entry is NumEntries. */
	cpc_obj = &out_obj->package.elements[0];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		num_ent = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for NumEntries\n",
				cpc_obj->type);
		goto out_free;
	}
766 767
	cpc_ptr->num_entries = num_ent;

768 769 770 771 772 773 774 775 776
	/* Second entry should be revision. */
	cpc_obj = &out_obj->package.elements[1];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		cpc_rev = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for Revision\n",
				cpc_obj->type);
		goto out_free;
	}
777
	cpc_ptr->version = cpc_rev;
778

779
	if (!is_cppc_supported(cpc_rev, num_ent))
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
		goto out_free;

	/* Iterate through remaining entries in _CPC */
	for (i = 2; i < num_ent; i++) {
		cpc_obj = &out_obj->package.elements[i];

		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
			gas_t = (struct cpc_reg *)
				cpc_obj->buffer.pointer;

			/*
			 * The PCC Subspace index is encoded inside
			 * the CPC table entries. The same PCC index
			 * will be used for all the PCC entries,
			 * so extract it only once.
			 */
			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
800 801 802 803 804
				if (pcc_subspace_id < 0) {
					pcc_subspace_id = gas_t->access_width;
					if (pcc_data_alloc(pcc_subspace_id))
						goto out_free;
				} else if (pcc_subspace_id != gas_t->access_width) {
805 806 807
					pr_debug("Mismatched PCC ids.\n");
					goto out_free;
				}
808 809 810 811 812 813 814 815 816 817
			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
				if (gas_t->address) {
					void __iomem *addr;

					addr = ioremap(gas_t->address, gas_t->bit_width/8);
					if (!addr)
						goto out_free;
					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
				}
			} else {
818 819 820 821 822
				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
					/* Support only PCC ,SYS MEM and FFH type regs */
					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
					goto out_free;
				}
823 824 825 826 827 828 829 830 831
			}

			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
		} else {
			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
			goto out_free;
		}
	}
832
	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
833 834 835 836 837 838 839 840 841 842 843 844

	/*
	 * Initialize the remaining cpc_regs as unsupported.
	 * Example: In case FW exposes CPPC v2, the below loop will initialize
	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
	 */
	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
	}


845 846 847 848 849 850 851 852
	/* Store CPU Logical ID */
	cpc_ptr->cpu_id = pr->id;

	/* Parse PSD data for this CPU */
	ret = acpi_get_psd(cpc_ptr, handle);
	if (ret)
		goto out_free;

853 854 855
	/* Register PCC channel once for all PCC subspace id. */
	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
		ret = register_pcc_channel(pcc_subspace_id);
856 857
		if (ret)
			goto out_free;
858

859 860
		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
861 862 863 864 865
	}

	/* Everything looks okay */
	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);

866 867
	/* Add per logical CPU nodes for reading its feedback counters. */
	cpu_dev = get_cpu_device(pr->id);
868 869
	if (!cpu_dev) {
		ret = -EINVAL;
870
		goto out_free;
871
	}
872

873 874 875
	/* Plug PSD data into this CPUs CPC descriptor. */
	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;

876 877
	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
			"acpi_cppc");
878 879
	if (ret) {
		per_cpu(cpc_desc_ptr, pr->id) = NULL;
880
		goto out_free;
881
	}
882

883 884 885 886
	kfree(output.pointer);
	return 0;

out_free:
887 888 889 890 891 892 893
	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;

		if (addr)
			iounmap(addr);
	}
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	kfree(cpc_ptr);

out_buf_free:
	kfree(output.pointer);
	return ret;
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);

/**
 * acpi_cppc_processor_exit - Cleanup CPC structs.
 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 *
 * Return: Void
 */
void acpi_cppc_processor_exit(struct acpi_processor *pr)
{
	struct cpc_desc *cpc_ptr;
911 912
	unsigned int i;
	void __iomem *addr;
913 914 915 916 917 918 919 920 921 922 923 924
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);

	if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
			pcc_data[pcc_ss_id]->refcount--;
			if (!pcc_data[pcc_ss_id]->refcount) {
				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
				pcc_data[pcc_ss_id]->pcc_channel_acquired = 0;
				kfree(pcc_data[pcc_ss_id]);
			}
		}
	}
925

926
	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
927 928
	if (!cpc_ptr)
		return;
929 930 931 932 933 934 935 936

	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
		if (addr)
			iounmap(addr);
	}

937
	kobject_put(&cpc_ptr->kobj);
938 939 940 941
	kfree(cpc_ptr);
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
/**
 * cpc_read_ffh() - Read FFH register
 * @cpunum:	cpu number to read
 * @reg:	cppc register information
 * @val:	place holder for return value
 *
 * Read bit_width bits from a specified address and bit_offset
 *
 * Return: 0 for success and error code
 */
int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
{
	return -ENOTSUPP;
}

/**
 * cpc_write_ffh() - Write FFH register
 * @cpunum:	cpu number to write
 * @reg:	cppc register information
 * @val:	value to write
 *
 * Write value of bit_width bits to a specified address and bit_offset
 *
 * Return: 0 for success and error code
 */
int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
{
	return -ENOTSUPP;
}

972 973 974 975 976
/*
 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
 * as fast as possible. We have already mapped the PCC subspace during init, so
 * we can directly write to it.
 */
977

978
static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
979
{
980
	int ret_val = 0;
981
	void __iomem *vaddr = 0;
982
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
983 984 985 986 987 988
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;

	if (reg_res->type == ACPI_TYPE_INTEGER) {
		*val = reg_res->cpc_entry.int_value;
		return ret_val;
	}
989 990

	*val = 0;
991
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
992
		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
993 994
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
995 996
	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
		return cpc_read_ffh(cpu, reg, val);
997 998 999
	else
		return acpi_os_read_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
1000

1001
	switch (reg->bit_width) {
1002
		case 8:
1003
			*val = readb_relaxed(vaddr);
1004 1005
			break;
		case 16:
1006
			*val = readw_relaxed(vaddr);
1007 1008
			break;
		case 32:
1009
			*val = readl_relaxed(vaddr);
1010 1011
			break;
		case 64:
1012
			*val = readq_relaxed(vaddr);
1013 1014
			break;
		default:
1015 1016
			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
				 reg->bit_width, pcc_ss_id);
1017
			ret_val = -EFAULT;
1018 1019
	}

1020
	return ret_val;
1021 1022
}

1023
static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1024
{
1025
	int ret_val = 0;
1026
	void __iomem *vaddr = 0;
1027
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1028
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1029

1030
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1031
		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1032 1033
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
1034 1035
	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
		return cpc_write_ffh(cpu, reg, val);
1036 1037 1038
	else
		return acpi_os_write_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
1039

1040
	switch (reg->bit_width) {
1041
		case 8:
1042
			writeb_relaxed(val, vaddr);
1043 1044
			break;
		case 16:
1045
			writew_relaxed(val, vaddr);
1046 1047
			break;
		case 32:
1048
			writel_relaxed(val, vaddr);
1049 1050
			break;
		case 64:
1051
			writeq_relaxed(val, vaddr);
1052 1053
			break;
		default:
1054 1055
			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
				 reg->bit_width, pcc_ss_id);
1056 1057
			ret_val = -EFAULT;
			break;
1058 1059
	}

1060
	return ret_val;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
}

/**
 * cppc_get_perf_caps - Get a CPUs performance capabilities.
 * @cpunum: CPU from which to get capabilities info.
 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
 *
 * Return: 0 for success with perf_caps populated else -ERRNO.
 */
int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1073
	struct cpc_register_resource *highest_reg, *lowest_reg,
1074 1075 1076
		*lowest_non_linear_reg, *nominal_reg,
		*low_freq_reg = NULL, *nom_freq_reg = NULL;
	u64 high, low, nom, min_nonlinear, low_f = 0, nom_f = 0;
1077
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1078
	struct cppc_pcc_data *pcc_ss_data;
1079
	int ret = 0, regs_in_pcc = 0;
1080

1081
	if (!cpc_desc || pcc_ss_id < 0) {
1082 1083 1084 1085
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

1086
	pcc_ss_data = pcc_data[pcc_ss_id];
1087 1088
	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1089 1090
	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1091 1092
	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1093 1094

	/* Are any of the regs PCC ?*/
1095
	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1096 1097
		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1098
		regs_in_pcc = 1;
1099
		down_write(&pcc_ss_data->pcc_lock);
1100
		/* Ring doorbell once to update PCC subspace */
1101
		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1102 1103 1104 1105 1106
			ret = -EIO;
			goto out_err;
		}
	}

1107
	cpc_read(cpunum, highest_reg, &high);
1108 1109
	perf_caps->highest_perf = high;

1110
	cpc_read(cpunum, lowest_reg, &low);
1111 1112
	perf_caps->lowest_perf = low;

1113
	cpc_read(cpunum, nominal_reg, &nom);
1114 1115
	perf_caps->nominal_perf = nom;

1116 1117 1118 1119
	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
	perf_caps->lowest_nonlinear_perf = min_nonlinear;

	if (!high || !low || !nom || !min_nonlinear)
1120 1121
		ret = -EFAULT;

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	/* Read optional lowest and nominal frequencies if present */
	if (CPC_SUPPORTED(low_freq_reg))
		cpc_read(cpunum, low_freq_reg, &low_f);

	if (CPC_SUPPORTED(nom_freq_reg))
		cpc_read(cpunum, nom_freq_reg, &nom_f);

	perf_caps->lowest_freq = low_f;
	perf_caps->nominal_freq = nom_f;


1133
out_err:
1134
	if (regs_in_pcc)
1135
		up_write(&pcc_ss_data->pcc_lock);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_caps);

/**
 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
 * @cpunum: CPU from which to read counters.
 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
 *
 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
 */
int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1150 1151
	struct cpc_register_resource *delivered_reg, *reference_reg,
		*ref_perf_reg, *ctr_wrap_reg;
1152
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1153
	struct cppc_pcc_data *pcc_ss_data;
1154
	u64 delivered, reference, ref_perf, ctr_wrap_time;
1155
	int ret = 0, regs_in_pcc = 0;
1156

1157
	if (!cpc_desc || pcc_ss_id < 0) {
1158 1159 1160 1161
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

1162
	pcc_ss_data = pcc_data[pcc_ss_id];
1163 1164
	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1165 1166 1167 1168 1169 1170 1171 1172 1173
	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];

	/*
	 * If refernce perf register is not supported then we should
	 * use the nominal perf value
	 */
	if (!CPC_SUPPORTED(ref_perf_reg))
		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1174 1175

	/* Are any of the regs PCC ?*/
1176 1177
	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1178
		down_write(&pcc_ss_data->pcc_lock);
1179
		regs_in_pcc = 1;
1180
		/* Ring doorbell once to update PCC subspace */
1181
		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1182 1183 1184 1185 1186
			ret = -EIO;
			goto out_err;
		}
	}

1187 1188 1189
	cpc_read(cpunum, delivered_reg, &delivered);
	cpc_read(cpunum, reference_reg, &reference);
	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1190 1191 1192 1193 1194 1195 1196 1197

	/*
	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
	 * performance counters are assumed to never wrap during the lifetime of
	 * platform
	 */
	ctr_wrap_time = (u64)(~((u64)0));
	if (CPC_SUPPORTED(ctr_wrap_reg))
1198
		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1199

1200
	if (!delivered || !reference ||	!ref_perf) {
1201 1202 1203 1204 1205 1206
		ret = -EFAULT;
		goto out_err;
	}

	perf_fb_ctrs->delivered = delivered;
	perf_fb_ctrs->reference = reference;
1207
	perf_fb_ctrs->reference_perf = ref_perf;
1208
	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1209
out_err:
1210
	if (regs_in_pcc)
1211
		up_write(&pcc_ss_data->pcc_lock);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);

/**
 * cppc_set_perf - Set a CPUs performance controls.
 * @cpu: CPU for which to set performance controls.
 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
 *
 * Return: 0 for success, -ERRNO otherwise.
 */
int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
	struct cpc_register_resource *desired_reg;
1227
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1228
	struct cppc_pcc_data *pcc_ss_data;
1229 1230
	int ret = 0;

1231
	if (!cpc_desc || pcc_ss_id < 0) {
1232 1233 1234 1235
		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
		return -ENODEV;
	}

1236
	pcc_ss_data = pcc_data[pcc_ss_id];
1237 1238
	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];

1239 1240 1241 1242 1243 1244 1245 1246
	/*
	 * This is Phase-I where we want to write to CPC registers
	 * -> We want all CPUs to be able to execute this phase in parallel
	 *
	 * Since read_lock can be acquired by multiple CPUs simultaneously we
	 * achieve that goal here
	 */
	if (CPC_IN_PCC(desired_reg)) {
1247 1248 1249
		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
		if (pcc_ss_data->platform_owns_pcc) {
			ret = check_pcc_chan(pcc_ss_id, false);
1250
			if (ret) {
1251
				up_read(&pcc_ss_data->pcc_lock);
1252 1253 1254
				return ret;
			}
		}
1255 1256 1257 1258
		/*
		 * Update the pending_write to make sure a PCC CMD_READ will not
		 * arrive and steal the channel during the switch to write lock
		 */
1259 1260
		pcc_ss_data->pending_pcc_write_cmd = true;
		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1261
		cpc_desc->write_cmd_status = 0;
1262 1263
	}

1264 1265 1266 1267
	/*
	 * Skip writing MIN/MAX until Linux knows how to come up with
	 * useful values.
	 */
1268
	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1269

1270
	if (CPC_IN_PCC(desired_reg))
1271
		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	/*
	 * This is Phase-II where we transfer the ownership of PCC to Platform
	 *
	 * Short Summary: Basically if we think of a group of cppc_set_perf
	 * requests that happened in short overlapping interval. The last CPU to
	 * come out of Phase-I will enter Phase-II and ring the doorbell.
	 *
	 * We have the following requirements for Phase-II:
	 *     1. We want to execute Phase-II only when there are no CPUs
	 * currently executing in Phase-I
	 *     2. Once we start Phase-II we want to avoid all other CPUs from
	 * entering Phase-I.
	 *     3. We want only one CPU among all those who went through Phase-I
	 * to run phase-II
	 *
	 * If write_trylock fails to get the lock and doesn't transfer the
	 * PCC ownership to the platform, then one of the following will be TRUE
	 *     1. There is at-least one CPU in Phase-I which will later execute
	 * write_trylock, so the CPUs in Phase-I will be responsible for
	 * executing the Phase-II.
	 *     2. Some other CPU has beaten this CPU to successfully execute the
	 * write_trylock and has already acquired the write_lock. We know for a
	 * fact it(other CPU acquiring the write_lock) couldn't have happened
	 * before this CPU's Phase-I as we held the read_lock.
	 *     3. Some other CPU executing pcc CMD_READ has stolen the
	 * down_write, in which case, send_pcc_cmd will check for pending
	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
	 * So this CPU can be certain that its request will be delivered
	 *    So in all cases, this CPU knows that its request will be delivered
	 * by another CPU and can return
	 *
	 * After getting the down_write we still need to check for
	 * pending_pcc_write_cmd to take care of the following scenario
	 *    The thread running this code could be scheduled out between
	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
	 * could have delivered the request to Platform by triggering the
	 * doorbell and transferred the ownership of PCC to platform. So this
	 * avoids triggering an unnecessary doorbell and more importantly before
	 * triggering the doorbell it makes sure that the PCC channel ownership
	 * is still with OSPM.
	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
	 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
	 * case during a CMD_READ and if there are pending writes it delivers
	 * the write command before servicing the read command
	 */
	if (CPC_IN_PCC(desired_reg)) {
1319
		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1320
			/* Update only if there are pending write commands */
1321 1322 1323
			if (pcc_ss_data->pending_pcc_write_cmd)
				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1324 1325
		} else
			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1326 1327
			wait_event(pcc_ss_data->pcc_write_wait_q,
				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1328 1329 1330

		/* send_pcc_cmd updates the status in case of failure */
		ret = cpc_desc->write_cmd_status;
1331 1332 1333 1334
	}
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_set_perf);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

/**
 * cppc_get_transition_latency - returns frequency transition latency in ns
 *
 * ACPI CPPC does not explicitly specifiy how a platform can specify the
 * transition latency for perfromance change requests. The closest we have
 * is the timing information from the PCCT tables which provides the info
 * on the number and frequency of PCC commands the platform can handle.
 */
unsigned int cppc_get_transition_latency(int cpu_num)
{
	/*
	 * Expected transition latency is based on the PCCT timing values
	 * Below are definition from ACPI spec:
	 * pcc_nominal- Expected latency to process a command, in microseconds
	 * pcc_mpar   - The maximum number of periodic requests that the subspace
	 *              channel can support, reported in commands per minute. 0
	 *              indicates no limitation.
	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
	 *              completion of a command before issuing the next command,
	 *              in microseconds.
	 */
	unsigned int latency_ns = 0;
	struct cpc_desc *cpc_desc;
	struct cpc_register_resource *desired_reg;
1360
	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1361
	struct cppc_pcc_data *pcc_ss_data;
1362 1363 1364 1365 1366 1367 1368 1369 1370

	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
	if (!cpc_desc)
		return CPUFREQ_ETERNAL;

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
	if (!CPC_IN_PCC(desired_reg))
		return CPUFREQ_ETERNAL;

1371 1372 1373 1374
	if (pcc_ss_id < 0)
		return CPUFREQ_ETERNAL;

	pcc_ss_data = pcc_data[pcc_ss_id];
1375 1376
	if (pcc_ss_data->pcc_mpar)
		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1377

1378 1379
	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1380 1381 1382 1383

	return latency_ns;
}
EXPORT_SYMBOL_GPL(cppc_get_transition_latency);