cppc_acpi.c 35.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
 *
 * (C) Copyright 2014, 2015 Linaro Ltd.
 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 *
 * CPPC describes a few methods for controlling CPU performance using
 * information from a per CPU table called CPC. This table is described in
 * the ACPI v5.0+ specification. The table consists of a list of
 * registers which may be memory mapped or hardware registers and also may
 * include some static integer values.
 *
 * CPU performance is on an abstract continuous scale as against a discretized
 * P-state scale which is tied to CPU frequency only. In brief, the basic
 * operation involves:
 *
 * - OS makes a CPU performance request. (Can provide min and max bounds)
 *
 * - Platform (such as BMC) is free to optimize request within requested bounds
 *   depending on power/thermal budgets etc.
 *
 * - Platform conveys its decision back to OS
 *
 * The communication between OS and platform occurs through another medium
 * called (PCC) Platform Communication Channel. This is a generic mailbox like
 * mechanism which includes doorbell semantics to indicate register updates.
 * See drivers/mailbox/pcc.c for details on PCC.
 *
 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
 * above specifications.
 */

#define pr_fmt(fmt)	"ACPI CPPC: " fmt

#include <linux/cpufreq.h>
#include <linux/delay.h>
42
#include <linux/ktime.h>
43 44
#include <linux/rwsem.h>
#include <linux/wait.h>
45 46

#include <acpi/cppc_acpi.h>
47

48 49 50 51 52 53 54
struct cppc_pcc_data {
	struct mbox_chan *pcc_channel;
	void __iomem *pcc_comm_addr;
	int pcc_subspace_idx;
	bool pcc_channel_acquired;
	ktime_t deadline;
	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55

56
	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
57
	bool platform_owns_pcc;		/* Ownership of PCC subspace */
58
	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
	/*
	 * Lock to provide controlled access to the PCC channel.
	 *
	 * For performance critical usecases(currently cppc_set_perf)
	 *	We need to take read_lock and check if channel belongs to OSPM
	 * before reading or writing to PCC subspace
	 *	We need to take write_lock before transferring the channel
	 * ownership to the platform via a Doorbell
	 *	This allows us to batch a number of CPPC requests if they happen
	 * to originate in about the same time
	 *
	 * For non-performance critical usecases(init)
	 *	Take write_lock for all purposes which gives exclusive access
	 */
	struct rw_semaphore pcc_lock;

	/* Wait queue for CPUs whose requests were batched */
	wait_queue_head_t pcc_write_wait_q;
};
79

80 81 82
/* Structure to represent the single PCC channel */
static struct cppc_pcc_data pcc_data = {
	.pcc_subspace_idx = -1,
83
	.platform_owns_pcc = true,
84
};
85 86 87 88 89 90 91 92 93 94

/*
 * The cpc_desc structure contains the ACPI register details
 * as described in the per CPU _CPC tables. The details
 * include the type of register (e.g. PCC, System IO, FFH etc.)
 * and destination addresses which lets us READ/WRITE CPU performance
 * information using the appropriate I/O methods.
 */
static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);

95
/* pcc mapped address + header size + offset within PCC subspace */
96
#define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
97

98 99 100 101 102
/* Check if a CPC regsiter is in PCC */
#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
				(cpc)->cpc_entry.reg.space_id ==	\
				ACPI_ADR_SPACE_PLATFORM_COMM)

103 104 105 106 107 108 109 110 111 112 113
/* Evalutes to True if reg is a NULL register descriptor */
#define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
				(reg)->address == 0 &&			\
				(reg)->bit_width == 0 &&		\
				(reg)->bit_offset == 0 &&		\
				(reg)->access_width == 0)

/* Evalutes to True if an optional cpc field is supported */
#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
				!!(cpc)->cpc_entry.int_value :		\
				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 115
/*
 * Arbitrary Retries in case the remote processor is slow to respond
116 117
 * to PCC commands. Keeping it high enough to cover emulators where
 * the processors run painfully slow.
118 119 120
 */
#define NUM_RETRIES 500

121 122 123 124 125 126 127 128 129 130 131 132 133 134
struct cppc_attr {
	struct attribute attr;
	ssize_t (*show)(struct kobject *kobj,
			struct attribute *attr, char *buf);
	ssize_t (*store)(struct kobject *kobj,
			struct attribute *attr, const char *c, ssize_t count);
};

#define define_one_cppc_ro(_name)		\
static struct cppc_attr _name =			\
__ATTR(_name, 0444, show_##_name, NULL)

#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
#define show_cppc_data(access_fn, struct_name, member_name)		\
	static ssize_t show_##member_name(struct kobject *kobj,		\
					struct attribute *attr,	char *buf) \
	{								\
		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
		struct struct_name st_name = {0};			\
		int ret;						\
									\
		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
		if (ret)						\
			return ret;					\
									\
		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
				(u64)st_name.member_name);		\
	}								\
	define_one_cppc_ro(member_name)

show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);

159 160 161 162 163
static ssize_t show_feedback_ctrs(struct kobject *kobj,
		struct attribute *attr, char *buf)
{
	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
	struct cppc_perf_fb_ctrs fb_ctrs = {0};
164
	int ret;
165

166 167 168
	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
	if (ret)
		return ret;
169 170 171 172 173 174 175 176 177 178

	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
			fb_ctrs.reference, fb_ctrs.delivered);
}
define_one_cppc_ro(feedback_ctrs);

static struct attribute *cppc_attrs[] = {
	&feedback_ctrs.attr,
	&reference_perf.attr,
	&wraparound_time.attr,
179 180 181 182
	&highest_perf.attr,
	&lowest_perf.attr,
	&lowest_nonlinear_perf.attr,
	&nominal_perf.attr,
183 184 185 186 187 188 189 190
	NULL
};

static struct kobj_type cppc_ktype = {
	.sysfs_ops = &kobj_sysfs_ops,
	.default_attrs = cppc_attrs,
};

191
static int check_pcc_chan(bool chk_err_bit)
192
{
193
	int ret = -EIO, status = 0;
194 195
	struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
	ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
196

197 198 199
	if (!pcc_data.platform_owns_pcc)
		return 0;

200 201
	/* Retry in case the remote processor was too slow to catch up. */
	while (!ktime_after(ktime_get(), next_deadline)) {
202 203 204 205 206
		/*
		 * Per spec, prior to boot the PCC space wil be initialized by
		 * platform and should have set the command completion bit when
		 * PCC can be used by OSPM
		 */
207 208
		status = readw_relaxed(&generic_comm_base->status);
		if (status & PCC_CMD_COMPLETE_MASK) {
209
			ret = 0;
210 211
			if (chk_err_bit && (status & PCC_ERROR_MASK))
				ret = -EIO;
212 213 214 215 216 217 218 219 220
			break;
		}
		/*
		 * Reducing the bus traffic in case this loop takes longer than
		 * a few retries.
		 */
		udelay(3);
	}

221 222 223 224 225
	if (likely(!ret))
		pcc_data.platform_owns_pcc = false;
	else
		pr_err("PCC check channel failed. Status=%x\n", status);

226 227 228
	return ret;
}

229 230 231 232
/*
 * This function transfers the ownership of the PCC to the platform
 * So it must be called while holding write_lock(pcc_lock)
 */
233 234
static int send_pcc_cmd(u16 cmd)
{
235
	int ret = -EIO, i;
236
	struct acpi_pcct_shared_memory *generic_comm_base =
237
		(struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
238 239 240
	static ktime_t last_cmd_cmpl_time, last_mpar_reset;
	static int mpar_count;
	unsigned int time_delta;
241

242 243 244 245 246
	/*
	 * For CMD_WRITE we know for a fact the caller should have checked
	 * the channel before writing to PCC space
	 */
	if (cmd == CMD_READ) {
247 248 249 250 251
		/*
		 * If there are pending cpc_writes, then we stole the channel
		 * before write completion, so first send a WRITE command to
		 * platform
		 */
252
		if (pcc_data.pending_pcc_write_cmd)
253 254
			send_pcc_cmd(CMD_WRITE);

255
		ret = check_pcc_chan(false);
256
		if (ret)
257 258
			goto end;
	} else /* CMD_WRITE */
259
		pcc_data.pending_pcc_write_cmd = FALSE;
260

261 262 263 264 265
	/*
	 * Handle the Minimum Request Turnaround Time(MRTT)
	 * "The minimum amount of time that OSPM must wait after the completion
	 * of a command before issuing the next command, in microseconds"
	 */
266
	if (pcc_data.pcc_mrtt) {
267
		time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
268 269
		if (pcc_data.pcc_mrtt > time_delta)
			udelay(pcc_data.pcc_mrtt - time_delta);
270 271 272 273 274 275 276 277 278 279 280 281 282
	}

	/*
	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
	 * "The maximum number of periodic requests that the subspace channel can
	 * support, reported in commands per minute. 0 indicates no limitation."
	 *
	 * This parameter should be ideally zero or large enough so that it can
	 * handle maximum number of requests that all the cores in the system can
	 * collectively generate. If it is not, we will follow the spec and just
	 * not send the request to the platform after hitting the MPAR limit in
	 * any 60s window
	 */
283
	if (pcc_data.pcc_mpar) {
284 285 286 287
		if (mpar_count == 0) {
			time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
			if (time_delta < 60 * MSEC_PER_SEC) {
				pr_debug("PCC cmd not sent due to MPAR limit");
288 289
				ret = -EIO;
				goto end;
290 291
			}
			last_mpar_reset = ktime_get();
292
			mpar_count = pcc_data.pcc_mpar;
293 294 295 296
		}
		mpar_count--;
	}

297
	/* Write to the shared comm region. */
298
	writew_relaxed(cmd, &generic_comm_base->command);
299 300

	/* Flip CMD COMPLETE bit */
301
	writew_relaxed(0, &generic_comm_base->status);
302

303 304
	pcc_data.platform_owns_pcc = true;

305
	/* Ring doorbell */
306
	ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
307
	if (ret < 0) {
308
		pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
309
				cmd, ret);
310
		goto end;
311 312
	}

313 314 315 316 317
	/* wait for completion and check for PCC errro bit */
	ret = check_pcc_chan(true);

	if (pcc_data.pcc_mrtt)
		last_cmd_cmpl_time = ktime_get();
318

319 320 321 322
	if (pcc_data.pcc_channel->mbox->txdone_irq)
		mbox_chan_txdone(pcc_data.pcc_channel, ret);
	else
		mbox_client_txdone(pcc_data.pcc_channel, ret);
323 324 325 326 327 328 329 330 331

end:
	if (cmd == CMD_WRITE) {
		if (unlikely(ret)) {
			for_each_possible_cpu(i) {
				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
				if (!desc)
					continue;

332
				if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
333 334 335
					desc->write_cmd_status = ret;
			}
		}
336 337
		pcc_data.pcc_write_cnt++;
		wake_up_all(&pcc_data.pcc_write_wait_q);
338 339
	}

340
	return ret;
341 342 343 344
}

static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
{
345
	if (ret < 0)
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
	else
		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
}

struct mbox_client cppc_mbox_cl = {
	.tx_done = cppc_chan_tx_done,
	.knows_txdone = true,
};

static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
{
	int result = -EFAULT;
	acpi_status status = AE_OK;
	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
	struct acpi_buffer state = {0, NULL};
	union acpi_object  *psd = NULL;
	struct acpi_psd_package *pdomain;

	status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status))
		return -ENODEV;

	psd = buffer.pointer;
	if (!psd || psd->package.count != 1) {
		pr_debug("Invalid _PSD data\n");
		goto end;
	}

	pdomain = &(cpc_ptr->domain_info);

	state.length = sizeof(struct acpi_psd_package);
	state.pointer = pdomain;

	status = acpi_extract_package(&(psd->package.elements[0]),
		&format, &state);
	if (ACPI_FAILURE(status)) {
		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	result = 0;
end:
	kfree(buffer.pointer);
	return result;
}

/**
 * acpi_get_psd_map - Map the CPUs in a common freq domain.
 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
 *
 *	Return: 0 for success or negative value for err.
 */
420
int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
421 422 423 424 425
{
	int count_target;
	int retval = 0;
	unsigned int i, j;
	cpumask_var_t covered_cpus;
426
	struct cppc_cpudata *pr, *match_pr;
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	struct acpi_psd_package *pdomain;
	struct acpi_psd_package *match_pdomain;
	struct cpc_desc *cpc_ptr, *match_cpc_ptr;

	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
		return -ENOMEM;

	/*
	 * Now that we have _PSD data from all CPUs, lets setup P-state
	 * domain info.
	 */
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		if (cpumask_test_cpu(i, covered_cpus))
			continue;

		cpc_ptr = per_cpu(cpc_desc_ptr, i);
447 448 449 450
		if (!cpc_ptr) {
			retval = -EFAULT;
			goto err_ret;
		}
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

		pdomain = &(cpc_ptr->domain_info);
		cpumask_set_cpu(i, pr->shared_cpu_map);
		cpumask_set_cpu(i, covered_cpus);
		if (pdomain->num_processors <= 1)
			continue;

		/* Validate the Domain info */
		count_target = pdomain->num_processors;
		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
472 473 474 475
			if (!match_cpc_ptr) {
				retval = -EFAULT;
				goto err_ret;
			}
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			/* Here i and j are in the same domain */
			if (match_pdomain->num_processors != count_target) {
				retval = -EFAULT;
				goto err_ret;
			}

			if (pdomain->coord_type != match_pdomain->coord_type) {
				retval = -EFAULT;
				goto err_ret;
			}

			cpumask_set_cpu(j, covered_cpus);
			cpumask_set_cpu(j, pr->shared_cpu_map);
		}

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_pr = all_cpu_data[j];
			if (!match_pr)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
505 506 507 508
			if (!match_cpc_ptr) {
				retval = -EFAULT;
				goto err_ret;
			}
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			match_pr->shared_type = pr->shared_type;
			cpumask_copy(match_pr->shared_cpu_map,
				     pr->shared_cpu_map);
		}
	}

err_ret:
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		/* Assume no coordination on any error parsing domain info */
		if (retval) {
			cpumask_clear(pr->shared_cpu_map);
			cpumask_set_cpu(i, pr->shared_cpu_map);
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		}
	}

	free_cpumask_var(covered_cpus);
	return retval;
}
EXPORT_SYMBOL_GPL(acpi_get_psd_map);

539
static int register_pcc_channel(int pcc_subspace_idx)
540
{
541
	struct acpi_pcct_hw_reduced *cppc_ss;
542
	u64 usecs_lat;
543 544

	if (pcc_subspace_idx >= 0) {
545
		pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
546 547
				pcc_subspace_idx);

548
		if (IS_ERR(pcc_data.pcc_channel)) {
549 550 551 552 553 554 555 556 557 558
			pr_err("Failed to find PCC communication channel\n");
			return -ENODEV;
		}

		/*
		 * The PCC mailbox controller driver should
		 * have parsed the PCCT (global table of all
		 * PCC channels) and stored pointers to the
		 * subspace communication region in con_priv.
		 */
559
		cppc_ss = (pcc_data.pcc_channel)->con_priv;
560 561 562 563 564 565

		if (!cppc_ss) {
			pr_err("No PCC subspace found for CPPC\n");
			return -ENODEV;
		}

566 567 568 569 570 571
		/*
		 * cppc_ss->latency is just a Nominal value. In reality
		 * the remote processor could be much slower to reply.
		 * So add an arbitrary amount of wait on top of Nominal.
		 */
		usecs_lat = NUM_RETRIES * cppc_ss->latency;
572 573 574 575
		pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
		pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
		pcc_data.pcc_mpar = cppc_ss->max_access_rate;
		pcc_data.pcc_nominal = cppc_ss->latency;
576

577 578
		pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
		if (!pcc_data.pcc_comm_addr) {
579 580 581 582 583
			pr_err("Failed to ioremap PCC comm region mem\n");
			return -ENOMEM;
		}

		/* Set flag so that we dont come here for each CPU. */
584
		pcc_data.pcc_channel_acquired = true;
585 586 587 588 589
	}

	return 0;
}

590 591 592 593 594 595 596 597 598 599 600 601 602
/**
 * cpc_ffh_supported() - check if FFH reading supported
 *
 * Check if the architecture has support for functional fixed hardware
 * read/write capability.
 *
 * Return: true for supported, false for not supported
 */
bool __weak cpc_ffh_supported(void)
{
	return false;
}

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/*
 * An example CPC table looks like the following.
 *
 *	Name(_CPC, Package()
 *			{
 *			17,
 *			NumEntries
 *			1,
 *			// Revision
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
 *			// Highest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
 *			// Nominal Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
 *			// Lowest Nonlinear Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
 *			// Lowest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
 *			// Guaranteed Performance Register
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
 *			// Desired Performance Register
 *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
 *			..
 *			..
 *			..
 *
 *		}
 * Each Register() encodes how to access that specific register.
 * e.g. a sample PCC entry has the following encoding:
 *
 *	Register (
 *		PCC,
 *		AddressSpaceKeyword
 *		8,
 *		//RegisterBitWidth
 *		8,
 *		//RegisterBitOffset
 *		0x30,
 *		//RegisterAddress
 *		9
 *		//AccessSize (subspace ID)
 *		0
 *		)
 *	}
 */

/**
 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 *
 *	Return: 0 for success or negative value for err.
 */
int acpi_cppc_processor_probe(struct acpi_processor *pr)
{
	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
	union acpi_object *out_obj, *cpc_obj;
	struct cpc_desc *cpc_ptr;
	struct cpc_reg *gas_t;
661
	struct device *cpu_dev;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
	acpi_handle handle = pr->handle;
	unsigned int num_ent, i, cpc_rev;
	acpi_status status;
	int ret = -EFAULT;

	/* Parse the ACPI _CPC table for this cpu. */
	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status)) {
		ret = -ENODEV;
		goto out_buf_free;
	}

	out_obj = (union acpi_object *) output.pointer;

	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
	if (!cpc_ptr) {
		ret = -ENOMEM;
		goto out_buf_free;
	}

	/* First entry is NumEntries. */
	cpc_obj = &out_obj->package.elements[0];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		num_ent = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for NumEntries\n",
				cpc_obj->type);
		goto out_free;
	}

	/* Only support CPPCv2. Bail otherwise. */
	if (num_ent != CPPC_NUM_ENT) {
		pr_debug("Firmware exports %d entries. Expected: %d\n",
				num_ent, CPPC_NUM_ENT);
		goto out_free;
	}

700 701
	cpc_ptr->num_entries = num_ent;

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	/* Second entry should be revision. */
	cpc_obj = &out_obj->package.elements[1];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		cpc_rev = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for Revision\n",
				cpc_obj->type);
		goto out_free;
	}

	if (cpc_rev != CPPC_REV) {
		pr_debug("Firmware exports revision:%d. Expected:%d\n",
				cpc_rev, CPPC_REV);
		goto out_free;
	}

	/* Iterate through remaining entries in _CPC */
	for (i = 2; i < num_ent; i++) {
		cpc_obj = &out_obj->package.elements[i];

		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
			gas_t = (struct cpc_reg *)
				cpc_obj->buffer.pointer;

			/*
			 * The PCC Subspace index is encoded inside
			 * the CPC table entries. The same PCC index
			 * will be used for all the PCC entries,
			 * so extract it only once.
			 */
			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
736 737 738
				if (pcc_data.pcc_subspace_idx < 0)
					pcc_data.pcc_subspace_idx = gas_t->access_width;
				else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
739 740 741
					pr_debug("Mismatched PCC ids.\n");
					goto out_free;
				}
742 743 744 745 746 747 748 749 750 751
			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
				if (gas_t->address) {
					void __iomem *addr;

					addr = ioremap(gas_t->address, gas_t->bit_width/8);
					if (!addr)
						goto out_free;
					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
				}
			} else {
752 753 754 755 756
				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
					/* Support only PCC ,SYS MEM and FFH type regs */
					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
					goto out_free;
				}
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
			}

			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
		} else {
			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
			goto out_free;
		}
	}
	/* Store CPU Logical ID */
	cpc_ptr->cpu_id = pr->id;

	/* Parse PSD data for this CPU */
	ret = acpi_get_psd(cpc_ptr, handle);
	if (ret)
		goto out_free;

	/* Register PCC channel once for all CPUs. */
775 776
	if (!pcc_data.pcc_channel_acquired) {
		ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
777 778
		if (ret)
			goto out_free;
779 780 781

		init_rwsem(&pcc_data.pcc_lock);
		init_waitqueue_head(&pcc_data.pcc_write_wait_q);
782 783 784 785 786
	}

	/* Everything looks okay */
	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);

787 788
	/* Add per logical CPU nodes for reading its feedback counters. */
	cpu_dev = get_cpu_device(pr->id);
789 790
	if (!cpu_dev) {
		ret = -EINVAL;
791
		goto out_free;
792
	}
793

794 795 796
	/* Plug PSD data into this CPUs CPC descriptor. */
	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;

797 798
	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
			"acpi_cppc");
799 800
	if (ret) {
		per_cpu(cpc_desc_ptr, pr->id) = NULL;
801
		goto out_free;
802
	}
803

804 805 806 807
	kfree(output.pointer);
	return 0;

out_free:
808 809 810 811 812 813 814
	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;

		if (addr)
			iounmap(addr);
	}
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	kfree(cpc_ptr);

out_buf_free:
	kfree(output.pointer);
	return ret;
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);

/**
 * acpi_cppc_processor_exit - Cleanup CPC structs.
 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 *
 * Return: Void
 */
void acpi_cppc_processor_exit(struct acpi_processor *pr)
{
	struct cpc_desc *cpc_ptr;
832 833
	unsigned int i;
	void __iomem *addr;
834

835
	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
836 837
	if (!cpc_ptr)
		return;
838 839 840 841 842 843 844 845

	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
		if (addr)
			iounmap(addr);
	}

846
	kobject_put(&cpc_ptr->kobj);
847 848 849 850
	kfree(cpc_ptr);
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
/**
 * cpc_read_ffh() - Read FFH register
 * @cpunum:	cpu number to read
 * @reg:	cppc register information
 * @val:	place holder for return value
 *
 * Read bit_width bits from a specified address and bit_offset
 *
 * Return: 0 for success and error code
 */
int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
{
	return -ENOTSUPP;
}

/**
 * cpc_write_ffh() - Write FFH register
 * @cpunum:	cpu number to write
 * @reg:	cppc register information
 * @val:	value to write
 *
 * Write value of bit_width bits to a specified address and bit_offset
 *
 * Return: 0 for success and error code
 */
int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
{
	return -ENOTSUPP;
}

881 882 883 884 885
/*
 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
 * as fast as possible. We have already mapped the PCC subspace during init, so
 * we can directly write to it.
 */
886

887
static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
888
{
889
	int ret_val = 0;
890 891 892 893 894 895 896
	void __iomem *vaddr = 0;
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;

	if (reg_res->type == ACPI_TYPE_INTEGER) {
		*val = reg_res->cpc_entry.int_value;
		return ret_val;
	}
897 898

	*val = 0;
899 900 901 902
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
		vaddr = GET_PCC_VADDR(reg->address);
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
903 904
	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
		return cpc_read_ffh(cpu, reg, val);
905 906 907
	else
		return acpi_os_read_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
908

909
	switch (reg->bit_width) {
910
		case 8:
911
			*val = readb_relaxed(vaddr);
912 913
			break;
		case 16:
914
			*val = readw_relaxed(vaddr);
915 916
			break;
		case 32:
917
			*val = readl_relaxed(vaddr);
918 919
			break;
		case 64:
920
			*val = readq_relaxed(vaddr);
921 922 923
			break;
		default:
			pr_debug("Error: Cannot read %u bit width from PCC\n",
924
					reg->bit_width);
925
			ret_val = -EFAULT;
926 927
	}

928
	return ret_val;
929 930
}

931
static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
932
{
933
	int ret_val = 0;
934 935
	void __iomem *vaddr = 0;
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
936

937 938 939 940
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
		vaddr = GET_PCC_VADDR(reg->address);
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
941 942
	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
		return cpc_write_ffh(cpu, reg, val);
943 944 945
	else
		return acpi_os_write_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
946

947
	switch (reg->bit_width) {
948
		case 8:
949
			writeb_relaxed(val, vaddr);
950 951
			break;
		case 16:
952
			writew_relaxed(val, vaddr);
953 954
			break;
		case 32:
955
			writel_relaxed(val, vaddr);
956 957
			break;
		case 64:
958
			writeq_relaxed(val, vaddr);
959 960 961
			break;
		default:
			pr_debug("Error: Cannot write %u bit width to PCC\n",
962
					reg->bit_width);
963 964
			ret_val = -EFAULT;
			break;
965 966
	}

967
	return ret_val;
968 969 970 971 972 973 974 975 976 977 978 979
}

/**
 * cppc_get_perf_caps - Get a CPUs performance capabilities.
 * @cpunum: CPU from which to get capabilities info.
 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
 *
 * Return: 0 for success with perf_caps populated else -ERRNO.
 */
int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
980 981 982
	struct cpc_register_resource *highest_reg, *lowest_reg,
		*lowest_non_linear_reg, *nominal_reg;
	u64 high, low, nom, min_nonlinear;
983
	int ret = 0, regs_in_pcc = 0;
984 985 986 987 988 989 990 991

	if (!cpc_desc) {
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
992 993
	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
994 995

	/* Are any of the regs PCC ?*/
996
	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
997
		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) {
998
		regs_in_pcc = 1;
999
		down_write(&pcc_data.pcc_lock);
1000
		/* Ring doorbell once to update PCC subspace */
1001
		if (send_pcc_cmd(CMD_READ) < 0) {
1002 1003 1004 1005 1006
			ret = -EIO;
			goto out_err;
		}
	}

1007
	cpc_read(cpunum, highest_reg, &high);
1008 1009
	perf_caps->highest_perf = high;

1010
	cpc_read(cpunum, lowest_reg, &low);
1011 1012
	perf_caps->lowest_perf = low;

1013
	cpc_read(cpunum, nominal_reg, &nom);
1014 1015
	perf_caps->nominal_perf = nom;

1016 1017 1018 1019
	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
	perf_caps->lowest_nonlinear_perf = min_nonlinear;

	if (!high || !low || !nom || !min_nonlinear)
1020 1021 1022
		ret = -EFAULT;

out_err:
1023
	if (regs_in_pcc)
1024
		up_write(&pcc_data.pcc_lock);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_caps);

/**
 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
 * @cpunum: CPU from which to read counters.
 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
 *
 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
 */
int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1039 1040 1041
	struct cpc_register_resource *delivered_reg, *reference_reg,
		*ref_perf_reg, *ctr_wrap_reg;
	u64 delivered, reference, ref_perf, ctr_wrap_time;
1042
	int ret = 0, regs_in_pcc = 0;
1043 1044 1045 1046 1047 1048 1049 1050

	if (!cpc_desc) {
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1051 1052 1053 1054 1055 1056 1057 1058 1059
	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];

	/*
	 * If refernce perf register is not supported then we should
	 * use the nominal perf value
	 */
	if (!CPC_SUPPORTED(ref_perf_reg))
		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1060 1061

	/* Are any of the regs PCC ?*/
1062 1063
	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1064
		down_write(&pcc_data.pcc_lock);
1065
		regs_in_pcc = 1;
1066
		/* Ring doorbell once to update PCC subspace */
1067
		if (send_pcc_cmd(CMD_READ) < 0) {
1068 1069 1070 1071 1072
			ret = -EIO;
			goto out_err;
		}
	}

1073 1074 1075
	cpc_read(cpunum, delivered_reg, &delivered);
	cpc_read(cpunum, reference_reg, &reference);
	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1076 1077 1078 1079 1080 1081 1082 1083

	/*
	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
	 * performance counters are assumed to never wrap during the lifetime of
	 * platform
	 */
	ctr_wrap_time = (u64)(~((u64)0));
	if (CPC_SUPPORTED(ctr_wrap_reg))
1084
		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1085

1086
	if (!delivered || !reference ||	!ref_perf) {
1087 1088 1089 1090 1091 1092
		ret = -EFAULT;
		goto out_err;
	}

	perf_fb_ctrs->delivered = delivered;
	perf_fb_ctrs->reference = reference;
1093
	perf_fb_ctrs->reference_perf = ref_perf;
1094
	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1095
out_err:
1096
	if (regs_in_pcc)
1097
		up_write(&pcc_data.pcc_lock);
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);

/**
 * cppc_set_perf - Set a CPUs performance controls.
 * @cpu: CPU for which to set performance controls.
 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
 *
 * Return: 0 for success, -ERRNO otherwise.
 */
int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
	struct cpc_register_resource *desired_reg;
	int ret = 0;

	if (!cpc_desc) {
		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
		return -ENODEV;
	}

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];

1122 1123 1124 1125 1126 1127 1128 1129
	/*
	 * This is Phase-I where we want to write to CPC registers
	 * -> We want all CPUs to be able to execute this phase in parallel
	 *
	 * Since read_lock can be acquired by multiple CPUs simultaneously we
	 * achieve that goal here
	 */
	if (CPC_IN_PCC(desired_reg)) {
1130
		down_read(&pcc_data.pcc_lock);	/* BEGIN Phase-I */
1131 1132
		if (pcc_data.platform_owns_pcc) {
			ret = check_pcc_chan(false);
1133
			if (ret) {
1134
				up_read(&pcc_data.pcc_lock);
1135 1136 1137
				return ret;
			}
		}
1138 1139 1140 1141 1142
		/*
		 * Update the pending_write to make sure a PCC CMD_READ will not
		 * arrive and steal the channel during the switch to write lock
		 */
		pcc_data.pending_pcc_write_cmd = true;
1143
		cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1144
		cpc_desc->write_cmd_status = 0;
1145 1146
	}

1147 1148 1149 1150
	/*
	 * Skip writing MIN/MAX until Linux knows how to come up with
	 * useful values.
	 */
1151
	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1152

1153
	if (CPC_IN_PCC(desired_reg))
1154
		up_read(&pcc_data.pcc_lock);	/* END Phase-I */
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	/*
	 * This is Phase-II where we transfer the ownership of PCC to Platform
	 *
	 * Short Summary: Basically if we think of a group of cppc_set_perf
	 * requests that happened in short overlapping interval. The last CPU to
	 * come out of Phase-I will enter Phase-II and ring the doorbell.
	 *
	 * We have the following requirements for Phase-II:
	 *     1. We want to execute Phase-II only when there are no CPUs
	 * currently executing in Phase-I
	 *     2. Once we start Phase-II we want to avoid all other CPUs from
	 * entering Phase-I.
	 *     3. We want only one CPU among all those who went through Phase-I
	 * to run phase-II
	 *
	 * If write_trylock fails to get the lock and doesn't transfer the
	 * PCC ownership to the platform, then one of the following will be TRUE
	 *     1. There is at-least one CPU in Phase-I which will later execute
	 * write_trylock, so the CPUs in Phase-I will be responsible for
	 * executing the Phase-II.
	 *     2. Some other CPU has beaten this CPU to successfully execute the
	 * write_trylock and has already acquired the write_lock. We know for a
	 * fact it(other CPU acquiring the write_lock) couldn't have happened
	 * before this CPU's Phase-I as we held the read_lock.
	 *     3. Some other CPU executing pcc CMD_READ has stolen the
	 * down_write, in which case, send_pcc_cmd will check for pending
	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
	 * So this CPU can be certain that its request will be delivered
	 *    So in all cases, this CPU knows that its request will be delivered
	 * by another CPU and can return
	 *
	 * After getting the down_write we still need to check for
	 * pending_pcc_write_cmd to take care of the following scenario
	 *    The thread running this code could be scheduled out between
	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
	 * could have delivered the request to Platform by triggering the
	 * doorbell and transferred the ownership of PCC to platform. So this
	 * avoids triggering an unnecessary doorbell and more importantly before
	 * triggering the doorbell it makes sure that the PCC channel ownership
	 * is still with OSPM.
	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
	 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
	 * case during a CMD_READ and if there are pending writes it delivers
	 * the write command before servicing the read command
	 */
	if (CPC_IN_PCC(desired_reg)) {
1202
		if (down_write_trylock(&pcc_data.pcc_lock)) {	/* BEGIN Phase-II */
1203
			/* Update only if there are pending write commands */
1204
			if (pcc_data.pending_pcc_write_cmd)
1205
				send_pcc_cmd(CMD_WRITE);
1206
			up_write(&pcc_data.pcc_lock);		/* END Phase-II */
1207 1208
		} else
			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1209 1210
			wait_event(pcc_data.pcc_write_wait_q,
				cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1211 1212 1213

		/* send_pcc_cmd updates the status in case of failure */
		ret = cpc_desc->write_cmd_status;
1214 1215 1216 1217
	}
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_set_perf);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

/**
 * cppc_get_transition_latency - returns frequency transition latency in ns
 *
 * ACPI CPPC does not explicitly specifiy how a platform can specify the
 * transition latency for perfromance change requests. The closest we have
 * is the timing information from the PCCT tables which provides the info
 * on the number and frequency of PCC commands the platform can handle.
 */
unsigned int cppc_get_transition_latency(int cpu_num)
{
	/*
	 * Expected transition latency is based on the PCCT timing values
	 * Below are definition from ACPI spec:
	 * pcc_nominal- Expected latency to process a command, in microseconds
	 * pcc_mpar   - The maximum number of periodic requests that the subspace
	 *              channel can support, reported in commands per minute. 0
	 *              indicates no limitation.
	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
	 *              completion of a command before issuing the next command,
	 *              in microseconds.
	 */
	unsigned int latency_ns = 0;
	struct cpc_desc *cpc_desc;
	struct cpc_register_resource *desired_reg;

	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
	if (!cpc_desc)
		return CPUFREQ_ETERNAL;

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
	if (!CPC_IN_PCC(desired_reg))
		return CPUFREQ_ETERNAL;

1252 1253
	if (pcc_data.pcc_mpar)
		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1254

1255 1256
	latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
	latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1257 1258 1259 1260

	return latency_ns;
}
EXPORT_SYMBOL_GPL(cppc_get_transition_latency);