cppc_acpi.c 34.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
 *
 * (C) Copyright 2014, 2015 Linaro Ltd.
 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 *
 * CPPC describes a few methods for controlling CPU performance using
 * information from a per CPU table called CPC. This table is described in
 * the ACPI v5.0+ specification. The table consists of a list of
 * registers which may be memory mapped or hardware registers and also may
 * include some static integer values.
 *
 * CPU performance is on an abstract continuous scale as against a discretized
 * P-state scale which is tied to CPU frequency only. In brief, the basic
 * operation involves:
 *
 * - OS makes a CPU performance request. (Can provide min and max bounds)
 *
 * - Platform (such as BMC) is free to optimize request within requested bounds
 *   depending on power/thermal budgets etc.
 *
 * - Platform conveys its decision back to OS
 *
 * The communication between OS and platform occurs through another medium
 * called (PCC) Platform Communication Channel. This is a generic mailbox like
 * mechanism which includes doorbell semantics to indicate register updates.
 * See drivers/mailbox/pcc.c for details on PCC.
 *
 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
 * above specifications.
 */

#define pr_fmt(fmt)	"ACPI CPPC: " fmt

#include <linux/cpufreq.h>
#include <linux/delay.h>
42
#include <linux/ktime.h>
43 44
#include <linux/rwsem.h>
#include <linux/wait.h>
45 46

#include <acpi/cppc_acpi.h>
47

48 49 50 51 52 53 54
struct cppc_pcc_data {
	struct mbox_chan *pcc_channel;
	void __iomem *pcc_comm_addr;
	int pcc_subspace_idx;
	bool pcc_channel_acquired;
	ktime_t deadline;
	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55

56
	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
57
	bool platform_owns_pcc;		/* Ownership of PCC subspace */
58
	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
	/*
	 * Lock to provide controlled access to the PCC channel.
	 *
	 * For performance critical usecases(currently cppc_set_perf)
	 *	We need to take read_lock and check if channel belongs to OSPM
	 * before reading or writing to PCC subspace
	 *	We need to take write_lock before transferring the channel
	 * ownership to the platform via a Doorbell
	 *	This allows us to batch a number of CPPC requests if they happen
	 * to originate in about the same time
	 *
	 * For non-performance critical usecases(init)
	 *	Take write_lock for all purposes which gives exclusive access
	 */
	struct rw_semaphore pcc_lock;

	/* Wait queue for CPUs whose requests were batched */
	wait_queue_head_t pcc_write_wait_q;
};
79

80 81 82
/* Structure to represent the single PCC channel */
static struct cppc_pcc_data pcc_data = {
	.pcc_subspace_idx = -1,
83
	.platform_owns_pcc = true,
84
};
85 86 87 88 89 90 91 92 93 94

/*
 * The cpc_desc structure contains the ACPI register details
 * as described in the per CPU _CPC tables. The details
 * include the type of register (e.g. PCC, System IO, FFH etc.)
 * and destination addresses which lets us READ/WRITE CPU performance
 * information using the appropriate I/O methods.
 */
static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);

95
/* pcc mapped address + header size + offset within PCC subspace */
96
#define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
97

98 99 100 101 102
/* Check if a CPC regsiter is in PCC */
#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
				(cpc)->cpc_entry.reg.space_id ==	\
				ACPI_ADR_SPACE_PLATFORM_COMM)

103 104 105 106 107 108 109 110 111 112 113
/* Evalutes to True if reg is a NULL register descriptor */
#define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
				(reg)->address == 0 &&			\
				(reg)->bit_width == 0 &&		\
				(reg)->bit_offset == 0 &&		\
				(reg)->access_width == 0)

/* Evalutes to True if an optional cpc field is supported */
#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
				!!(cpc)->cpc_entry.int_value :		\
				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 115
/*
 * Arbitrary Retries in case the remote processor is slow to respond
116 117
 * to PCC commands. Keeping it high enough to cover emulators where
 * the processors run painfully slow.
118 119 120
 */
#define NUM_RETRIES 500

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
struct cppc_attr {
	struct attribute attr;
	ssize_t (*show)(struct kobject *kobj,
			struct attribute *attr, char *buf);
	ssize_t (*store)(struct kobject *kobj,
			struct attribute *attr, const char *c, ssize_t count);
};

#define define_one_cppc_ro(_name)		\
static struct cppc_attr _name =			\
__ATTR(_name, 0444, show_##_name, NULL)

#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)

static ssize_t show_feedback_ctrs(struct kobject *kobj,
		struct attribute *attr, char *buf)
{
	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
	struct cppc_perf_fb_ctrs fb_ctrs = {0};

	cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);

	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
			fb_ctrs.reference, fb_ctrs.delivered);
}
define_one_cppc_ro(feedback_ctrs);

static ssize_t show_reference_perf(struct kobject *kobj,
		struct attribute *attr, char *buf)
{
	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
	struct cppc_perf_fb_ctrs fb_ctrs = {0};

	cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);

	return scnprintf(buf, PAGE_SIZE, "%llu\n",
			fb_ctrs.reference_perf);
}
define_one_cppc_ro(reference_perf);

static ssize_t show_wraparound_time(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
	struct cppc_perf_fb_ctrs fb_ctrs = {0};

	cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);

	return scnprintf(buf, PAGE_SIZE, "%llu\n", fb_ctrs.ctr_wrap_time);

}
define_one_cppc_ro(wraparound_time);

static struct attribute *cppc_attrs[] = {
	&feedback_ctrs.attr,
	&reference_perf.attr,
	&wraparound_time.attr,
	NULL
};

static struct kobj_type cppc_ktype = {
	.sysfs_ops = &kobj_sysfs_ops,
	.default_attrs = cppc_attrs,
};

186
static int check_pcc_chan(bool chk_err_bit)
187
{
188
	int ret = -EIO, status = 0;
189 190
	struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
	ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
191

192 193 194
	if (!pcc_data.platform_owns_pcc)
		return 0;

195 196
	/* Retry in case the remote processor was too slow to catch up. */
	while (!ktime_after(ktime_get(), next_deadline)) {
197 198 199 200 201
		/*
		 * Per spec, prior to boot the PCC space wil be initialized by
		 * platform and should have set the command completion bit when
		 * PCC can be used by OSPM
		 */
202 203
		status = readw_relaxed(&generic_comm_base->status);
		if (status & PCC_CMD_COMPLETE_MASK) {
204
			ret = 0;
205 206
			if (chk_err_bit && (status & PCC_ERROR_MASK))
				ret = -EIO;
207 208 209 210 211 212 213 214 215
			break;
		}
		/*
		 * Reducing the bus traffic in case this loop takes longer than
		 * a few retries.
		 */
		udelay(3);
	}

216 217 218 219 220
	if (likely(!ret))
		pcc_data.platform_owns_pcc = false;
	else
		pr_err("PCC check channel failed. Status=%x\n", status);

221 222 223
	return ret;
}

224 225 226 227
/*
 * This function transfers the ownership of the PCC to the platform
 * So it must be called while holding write_lock(pcc_lock)
 */
228 229
static int send_pcc_cmd(u16 cmd)
{
230
	int ret = -EIO, i;
231
	struct acpi_pcct_shared_memory *generic_comm_base =
232
		(struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
233 234 235
	static ktime_t last_cmd_cmpl_time, last_mpar_reset;
	static int mpar_count;
	unsigned int time_delta;
236

237 238 239 240 241
	/*
	 * For CMD_WRITE we know for a fact the caller should have checked
	 * the channel before writing to PCC space
	 */
	if (cmd == CMD_READ) {
242 243 244 245 246
		/*
		 * If there are pending cpc_writes, then we stole the channel
		 * before write completion, so first send a WRITE command to
		 * platform
		 */
247
		if (pcc_data.pending_pcc_write_cmd)
248 249
			send_pcc_cmd(CMD_WRITE);

250
		ret = check_pcc_chan(false);
251
		if (ret)
252 253
			goto end;
	} else /* CMD_WRITE */
254
		pcc_data.pending_pcc_write_cmd = FALSE;
255

256 257 258 259 260
	/*
	 * Handle the Minimum Request Turnaround Time(MRTT)
	 * "The minimum amount of time that OSPM must wait after the completion
	 * of a command before issuing the next command, in microseconds"
	 */
261
	if (pcc_data.pcc_mrtt) {
262
		time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
263 264
		if (pcc_data.pcc_mrtt > time_delta)
			udelay(pcc_data.pcc_mrtt - time_delta);
265 266 267 268 269 270 271 272 273 274 275 276 277
	}

	/*
	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
	 * "The maximum number of periodic requests that the subspace channel can
	 * support, reported in commands per minute. 0 indicates no limitation."
	 *
	 * This parameter should be ideally zero or large enough so that it can
	 * handle maximum number of requests that all the cores in the system can
	 * collectively generate. If it is not, we will follow the spec and just
	 * not send the request to the platform after hitting the MPAR limit in
	 * any 60s window
	 */
278
	if (pcc_data.pcc_mpar) {
279 280 281 282
		if (mpar_count == 0) {
			time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
			if (time_delta < 60 * MSEC_PER_SEC) {
				pr_debug("PCC cmd not sent due to MPAR limit");
283 284
				ret = -EIO;
				goto end;
285 286
			}
			last_mpar_reset = ktime_get();
287
			mpar_count = pcc_data.pcc_mpar;
288 289 290 291
		}
		mpar_count--;
	}

292
	/* Write to the shared comm region. */
293
	writew_relaxed(cmd, &generic_comm_base->command);
294 295

	/* Flip CMD COMPLETE bit */
296
	writew_relaxed(0, &generic_comm_base->status);
297

298 299
	pcc_data.platform_owns_pcc = true;

300
	/* Ring doorbell */
301
	ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
302
	if (ret < 0) {
303
		pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
304
				cmd, ret);
305
		goto end;
306 307
	}

308 309 310 311 312
	/* wait for completion and check for PCC errro bit */
	ret = check_pcc_chan(true);

	if (pcc_data.pcc_mrtt)
		last_cmd_cmpl_time = ktime_get();
313

314
	mbox_client_txdone(pcc_data.pcc_channel, ret);
315 316 317 318 319 320 321 322 323

end:
	if (cmd == CMD_WRITE) {
		if (unlikely(ret)) {
			for_each_possible_cpu(i) {
				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
				if (!desc)
					continue;

324
				if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
325 326 327
					desc->write_cmd_status = ret;
			}
		}
328 329
		pcc_data.pcc_write_cnt++;
		wake_up_all(&pcc_data.pcc_write_wait_q);
330 331
	}

332
	return ret;
333 334 335 336
}

static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
{
337
	if (ret < 0)
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
	else
		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
}

struct mbox_client cppc_mbox_cl = {
	.tx_done = cppc_chan_tx_done,
	.knows_txdone = true,
};

static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
{
	int result = -EFAULT;
	acpi_status status = AE_OK;
	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
	struct acpi_buffer state = {0, NULL};
	union acpi_object  *psd = NULL;
	struct acpi_psd_package *pdomain;

	status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status))
		return -ENODEV;

	psd = buffer.pointer;
	if (!psd || psd->package.count != 1) {
		pr_debug("Invalid _PSD data\n");
		goto end;
	}

	pdomain = &(cpc_ptr->domain_info);

	state.length = sizeof(struct acpi_psd_package);
	state.pointer = pdomain;

	status = acpi_extract_package(&(psd->package.elements[0]),
		&format, &state);
	if (ACPI_FAILURE(status)) {
		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	result = 0;
end:
	kfree(buffer.pointer);
	return result;
}

/**
 * acpi_get_psd_map - Map the CPUs in a common freq domain.
 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
 *
 *	Return: 0 for success or negative value for err.
 */
412
int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
413 414 415 416 417
{
	int count_target;
	int retval = 0;
	unsigned int i, j;
	cpumask_var_t covered_cpus;
418
	struct cppc_cpudata *pr, *match_pr;
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	struct acpi_psd_package *pdomain;
	struct acpi_psd_package *match_pdomain;
	struct cpc_desc *cpc_ptr, *match_cpc_ptr;

	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
		return -ENOMEM;

	/*
	 * Now that we have _PSD data from all CPUs, lets setup P-state
	 * domain info.
	 */
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		if (cpumask_test_cpu(i, covered_cpus))
			continue;

		cpc_ptr = per_cpu(cpc_desc_ptr, i);
439 440 441 442
		if (!cpc_ptr) {
			retval = -EFAULT;
			goto err_ret;
		}
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

		pdomain = &(cpc_ptr->domain_info);
		cpumask_set_cpu(i, pr->shared_cpu_map);
		cpumask_set_cpu(i, covered_cpus);
		if (pdomain->num_processors <= 1)
			continue;

		/* Validate the Domain info */
		count_target = pdomain->num_processors;
		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
464 465 466 467
			if (!match_cpc_ptr) {
				retval = -EFAULT;
				goto err_ret;
			}
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			/* Here i and j are in the same domain */
			if (match_pdomain->num_processors != count_target) {
				retval = -EFAULT;
				goto err_ret;
			}

			if (pdomain->coord_type != match_pdomain->coord_type) {
				retval = -EFAULT;
				goto err_ret;
			}

			cpumask_set_cpu(j, covered_cpus);
			cpumask_set_cpu(j, pr->shared_cpu_map);
		}

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_pr = all_cpu_data[j];
			if (!match_pr)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
497 498 499 500
			if (!match_cpc_ptr) {
				retval = -EFAULT;
				goto err_ret;
			}
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			match_pr->shared_type = pr->shared_type;
			cpumask_copy(match_pr->shared_cpu_map,
				     pr->shared_cpu_map);
		}
	}

err_ret:
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		/* Assume no coordination on any error parsing domain info */
		if (retval) {
			cpumask_clear(pr->shared_cpu_map);
			cpumask_set_cpu(i, pr->shared_cpu_map);
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		}
	}

	free_cpumask_var(covered_cpus);
	return retval;
}
EXPORT_SYMBOL_GPL(acpi_get_psd_map);

531
static int register_pcc_channel(int pcc_subspace_idx)
532
{
533
	struct acpi_pcct_hw_reduced *cppc_ss;
534
	u64 usecs_lat;
535 536

	if (pcc_subspace_idx >= 0) {
537
		pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
538 539
				pcc_subspace_idx);

540
		if (IS_ERR(pcc_data.pcc_channel)) {
541 542 543 544 545 546 547 548 549 550
			pr_err("Failed to find PCC communication channel\n");
			return -ENODEV;
		}

		/*
		 * The PCC mailbox controller driver should
		 * have parsed the PCCT (global table of all
		 * PCC channels) and stored pointers to the
		 * subspace communication region in con_priv.
		 */
551
		cppc_ss = (pcc_data.pcc_channel)->con_priv;
552 553 554 555 556 557

		if (!cppc_ss) {
			pr_err("No PCC subspace found for CPPC\n");
			return -ENODEV;
		}

558 559 560 561 562 563
		/*
		 * cppc_ss->latency is just a Nominal value. In reality
		 * the remote processor could be much slower to reply.
		 * So add an arbitrary amount of wait on top of Nominal.
		 */
		usecs_lat = NUM_RETRIES * cppc_ss->latency;
564 565 566 567
		pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
		pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
		pcc_data.pcc_mpar = cppc_ss->max_access_rate;
		pcc_data.pcc_nominal = cppc_ss->latency;
568

569 570
		pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
		if (!pcc_data.pcc_comm_addr) {
571 572 573 574 575
			pr_err("Failed to ioremap PCC comm region mem\n");
			return -ENOMEM;
		}

		/* Set flag so that we dont come here for each CPU. */
576
		pcc_data.pcc_channel_acquired = true;
577 578 579 580 581
	}

	return 0;
}

582 583 584 585 586 587 588 589 590 591 592 593 594
/**
 * cpc_ffh_supported() - check if FFH reading supported
 *
 * Check if the architecture has support for functional fixed hardware
 * read/write capability.
 *
 * Return: true for supported, false for not supported
 */
bool __weak cpc_ffh_supported(void)
{
	return false;
}

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
/*
 * An example CPC table looks like the following.
 *
 *	Name(_CPC, Package()
 *			{
 *			17,
 *			NumEntries
 *			1,
 *			// Revision
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
 *			// Highest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
 *			// Nominal Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
 *			// Lowest Nonlinear Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
 *			// Lowest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
 *			// Guaranteed Performance Register
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
 *			// Desired Performance Register
 *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
 *			..
 *			..
 *			..
 *
 *		}
 * Each Register() encodes how to access that specific register.
 * e.g. a sample PCC entry has the following encoding:
 *
 *	Register (
 *		PCC,
 *		AddressSpaceKeyword
 *		8,
 *		//RegisterBitWidth
 *		8,
 *		//RegisterBitOffset
 *		0x30,
 *		//RegisterAddress
 *		9
 *		//AccessSize (subspace ID)
 *		0
 *		)
 *	}
 */

/**
 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 *
 *	Return: 0 for success or negative value for err.
 */
int acpi_cppc_processor_probe(struct acpi_processor *pr)
{
	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
	union acpi_object *out_obj, *cpc_obj;
	struct cpc_desc *cpc_ptr;
	struct cpc_reg *gas_t;
653
	struct device *cpu_dev;
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	acpi_handle handle = pr->handle;
	unsigned int num_ent, i, cpc_rev;
	acpi_status status;
	int ret = -EFAULT;

	/* Parse the ACPI _CPC table for this cpu. */
	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status)) {
		ret = -ENODEV;
		goto out_buf_free;
	}

	out_obj = (union acpi_object *) output.pointer;

	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
	if (!cpc_ptr) {
		ret = -ENOMEM;
		goto out_buf_free;
	}

	/* First entry is NumEntries. */
	cpc_obj = &out_obj->package.elements[0];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		num_ent = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for NumEntries\n",
				cpc_obj->type);
		goto out_free;
	}

	/* Only support CPPCv2. Bail otherwise. */
	if (num_ent != CPPC_NUM_ENT) {
		pr_debug("Firmware exports %d entries. Expected: %d\n",
				num_ent, CPPC_NUM_ENT);
		goto out_free;
	}

692 693
	cpc_ptr->num_entries = num_ent;

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	/* Second entry should be revision. */
	cpc_obj = &out_obj->package.elements[1];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		cpc_rev = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for Revision\n",
				cpc_obj->type);
		goto out_free;
	}

	if (cpc_rev != CPPC_REV) {
		pr_debug("Firmware exports revision:%d. Expected:%d\n",
				cpc_rev, CPPC_REV);
		goto out_free;
	}

	/* Iterate through remaining entries in _CPC */
	for (i = 2; i < num_ent; i++) {
		cpc_obj = &out_obj->package.elements[i];

		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
			gas_t = (struct cpc_reg *)
				cpc_obj->buffer.pointer;

			/*
			 * The PCC Subspace index is encoded inside
			 * the CPC table entries. The same PCC index
			 * will be used for all the PCC entries,
			 * so extract it only once.
			 */
			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
728 729 730
				if (pcc_data.pcc_subspace_idx < 0)
					pcc_data.pcc_subspace_idx = gas_t->access_width;
				else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
731 732 733
					pr_debug("Mismatched PCC ids.\n");
					goto out_free;
				}
734 735 736 737 738 739 740 741 742 743
			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
				if (gas_t->address) {
					void __iomem *addr;

					addr = ioremap(gas_t->address, gas_t->bit_width/8);
					if (!addr)
						goto out_free;
					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
				}
			} else {
744 745 746 747 748
				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
					/* Support only PCC ,SYS MEM and FFH type regs */
					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
					goto out_free;
				}
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
			}

			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
		} else {
			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
			goto out_free;
		}
	}
	/* Store CPU Logical ID */
	cpc_ptr->cpu_id = pr->id;

	/* Parse PSD data for this CPU */
	ret = acpi_get_psd(cpc_ptr, handle);
	if (ret)
		goto out_free;

	/* Register PCC channel once for all CPUs. */
767 768
	if (!pcc_data.pcc_channel_acquired) {
		ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
769 770
		if (ret)
			goto out_free;
771 772 773

		init_rwsem(&pcc_data.pcc_lock);
		init_waitqueue_head(&pcc_data.pcc_write_wait_q);
774 775
	}

776 777 778
	/* Plug PSD data into this CPUs CPC descriptor. */
	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;

779 780 781
	/* Everything looks okay */
	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);

782 783 784 785 786 787 788 789 790 791
	/* Add per logical CPU nodes for reading its feedback counters. */
	cpu_dev = get_cpu_device(pr->id);
	if (!cpu_dev)
		goto out_free;

	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
			"acpi_cppc");
	if (ret)
		goto out_free;

792 793 794 795
	kfree(output.pointer);
	return 0;

out_free:
796 797 798 799 800 801 802
	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;

		if (addr)
			iounmap(addr);
	}
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
	kfree(cpc_ptr);

out_buf_free:
	kfree(output.pointer);
	return ret;
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);

/**
 * acpi_cppc_processor_exit - Cleanup CPC structs.
 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 *
 * Return: Void
 */
void acpi_cppc_processor_exit(struct acpi_processor *pr)
{
	struct cpc_desc *cpc_ptr;
820 821
	unsigned int i;
	void __iomem *addr;
822

823
	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
824 825 826 827 828 829 830 831

	/* Free all the mapped sys mem areas for this CPU */
	for (i = 2; i < cpc_ptr->num_entries; i++) {
		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
		if (addr)
			iounmap(addr);
	}

832
	kobject_put(&cpc_ptr->kobj);
833 834 835 836
	kfree(cpc_ptr);
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
/**
 * cpc_read_ffh() - Read FFH register
 * @cpunum:	cpu number to read
 * @reg:	cppc register information
 * @val:	place holder for return value
 *
 * Read bit_width bits from a specified address and bit_offset
 *
 * Return: 0 for success and error code
 */
int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
{
	return -ENOTSUPP;
}

/**
 * cpc_write_ffh() - Write FFH register
 * @cpunum:	cpu number to write
 * @reg:	cppc register information
 * @val:	value to write
 *
 * Write value of bit_width bits to a specified address and bit_offset
 *
 * Return: 0 for success and error code
 */
int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
{
	return -ENOTSUPP;
}

867 868 869 870 871
/*
 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
 * as fast as possible. We have already mapped the PCC subspace during init, so
 * we can directly write to it.
 */
872

873
static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
874
{
875
	int ret_val = 0;
876 877 878 879 880 881 882
	void __iomem *vaddr = 0;
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;

	if (reg_res->type == ACPI_TYPE_INTEGER) {
		*val = reg_res->cpc_entry.int_value;
		return ret_val;
	}
883 884

	*val = 0;
885 886 887 888
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
		vaddr = GET_PCC_VADDR(reg->address);
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
889 890
	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
		return cpc_read_ffh(cpu, reg, val);
891 892 893
	else
		return acpi_os_read_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
894

895
	switch (reg->bit_width) {
896
		case 8:
897
			*val = readb_relaxed(vaddr);
898 899
			break;
		case 16:
900
			*val = readw_relaxed(vaddr);
901 902
			break;
		case 32:
903
			*val = readl_relaxed(vaddr);
904 905
			break;
		case 64:
906
			*val = readq_relaxed(vaddr);
907 908 909
			break;
		default:
			pr_debug("Error: Cannot read %u bit width from PCC\n",
910
					reg->bit_width);
911
			ret_val = -EFAULT;
912 913
	}

914
	return ret_val;
915 916
}

917
static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
918
{
919
	int ret_val = 0;
920 921
	void __iomem *vaddr = 0;
	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
922

923 924 925 926
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
		vaddr = GET_PCC_VADDR(reg->address);
	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		vaddr = reg_res->sys_mem_vaddr;
927 928
	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
		return cpc_write_ffh(cpu, reg, val);
929 930 931
	else
		return acpi_os_write_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
932

933
	switch (reg->bit_width) {
934
		case 8:
935
			writeb_relaxed(val, vaddr);
936 937
			break;
		case 16:
938
			writew_relaxed(val, vaddr);
939 940
			break;
		case 32:
941
			writel_relaxed(val, vaddr);
942 943
			break;
		case 64:
944
			writeq_relaxed(val, vaddr);
945 946 947
			break;
		default:
			pr_debug("Error: Cannot write %u bit width to PCC\n",
948
					reg->bit_width);
949 950
			ret_val = -EFAULT;
			break;
951 952
	}

953
	return ret_val;
954 955 956 957 958 959 960 961 962 963 964 965 966 967
}

/**
 * cppc_get_perf_caps - Get a CPUs performance capabilities.
 * @cpunum: CPU from which to get capabilities info.
 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
 *
 * Return: 0 for success with perf_caps populated else -ERRNO.
 */
int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
	struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
								 *nom_perf;
968
	u64 high, low, nom;
969
	int ret = 0, regs_in_pcc = 0;
970 971 972 973 974 975 976 977 978 979 980 981

	if (!cpc_desc) {
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
	ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
	nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];

	/* Are any of the regs PCC ?*/
982 983
	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
		CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
984
		regs_in_pcc = 1;
985
		down_write(&pcc_data.pcc_lock);
986
		/* Ring doorbell once to update PCC subspace */
987
		if (send_pcc_cmd(CMD_READ) < 0) {
988 989 990 991 992
			ret = -EIO;
			goto out_err;
		}
	}

993
	cpc_read(cpunum, highest_reg, &high);
994 995
	perf_caps->highest_perf = high;

996
	cpc_read(cpunum, lowest_reg, &low);
997 998
	perf_caps->lowest_perf = low;

999
	cpc_read(cpunum, nom_perf, &nom);
1000 1001 1002 1003 1004 1005
	perf_caps->nominal_perf = nom;

	if (!high || !low || !nom)
		ret = -EFAULT;

out_err:
1006
	if (regs_in_pcc)
1007
		up_write(&pcc_data.pcc_lock);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_caps);

/**
 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
 * @cpunum: CPU from which to read counters.
 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
 *
 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
 */
int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1022 1023 1024
	struct cpc_register_resource *delivered_reg, *reference_reg,
		*ref_perf_reg, *ctr_wrap_reg;
	u64 delivered, reference, ref_perf, ctr_wrap_time;
1025
	int ret = 0, regs_in_pcc = 0;
1026 1027 1028 1029 1030 1031 1032 1033

	if (!cpc_desc) {
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1034 1035 1036 1037 1038 1039 1040 1041 1042
	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];

	/*
	 * If refernce perf register is not supported then we should
	 * use the nominal perf value
	 */
	if (!CPC_SUPPORTED(ref_perf_reg))
		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1043 1044

	/* Are any of the regs PCC ?*/
1045 1046
	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1047
		down_write(&pcc_data.pcc_lock);
1048
		regs_in_pcc = 1;
1049
		/* Ring doorbell once to update PCC subspace */
1050
		if (send_pcc_cmd(CMD_READ) < 0) {
1051 1052 1053 1054 1055
			ret = -EIO;
			goto out_err;
		}
	}

1056 1057 1058
	cpc_read(cpunum, delivered_reg, &delivered);
	cpc_read(cpunum, reference_reg, &reference);
	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1059 1060 1061 1062 1063 1064 1065 1066

	/*
	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
	 * performance counters are assumed to never wrap during the lifetime of
	 * platform
	 */
	ctr_wrap_time = (u64)(~((u64)0));
	if (CPC_SUPPORTED(ctr_wrap_reg))
1067
		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1068

1069
	if (!delivered || !reference ||	!ref_perf) {
1070 1071 1072 1073 1074 1075
		ret = -EFAULT;
		goto out_err;
	}

	perf_fb_ctrs->delivered = delivered;
	perf_fb_ctrs->reference = reference;
1076 1077
	perf_fb_ctrs->reference_perf = ref_perf;
	perf_fb_ctrs->ctr_wrap_time = ctr_wrap_time;
1078
out_err:
1079
	if (regs_in_pcc)
1080
		up_write(&pcc_data.pcc_lock);
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);

/**
 * cppc_set_perf - Set a CPUs performance controls.
 * @cpu: CPU for which to set performance controls.
 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
 *
 * Return: 0 for success, -ERRNO otherwise.
 */
int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
	struct cpc_register_resource *desired_reg;
	int ret = 0;

	if (!cpc_desc) {
		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
		return -ENODEV;
	}

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];

1105 1106 1107 1108 1109 1110 1111 1112
	/*
	 * This is Phase-I where we want to write to CPC registers
	 * -> We want all CPUs to be able to execute this phase in parallel
	 *
	 * Since read_lock can be acquired by multiple CPUs simultaneously we
	 * achieve that goal here
	 */
	if (CPC_IN_PCC(desired_reg)) {
1113
		down_read(&pcc_data.pcc_lock);	/* BEGIN Phase-I */
1114 1115
		if (pcc_data.platform_owns_pcc) {
			ret = check_pcc_chan(false);
1116
			if (ret) {
1117
				up_read(&pcc_data.pcc_lock);
1118 1119 1120
				return ret;
			}
		}
1121 1122 1123 1124 1125
		/*
		 * Update the pending_write to make sure a PCC CMD_READ will not
		 * arrive and steal the channel during the switch to write lock
		 */
		pcc_data.pending_pcc_write_cmd = true;
1126
		cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1127
		cpc_desc->write_cmd_status = 0;
1128 1129
	}

1130 1131 1132 1133
	/*
	 * Skip writing MIN/MAX until Linux knows how to come up with
	 * useful values.
	 */
1134
	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1135

1136
	if (CPC_IN_PCC(desired_reg))
1137
		up_read(&pcc_data.pcc_lock);	/* END Phase-I */
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	/*
	 * This is Phase-II where we transfer the ownership of PCC to Platform
	 *
	 * Short Summary: Basically if we think of a group of cppc_set_perf
	 * requests that happened in short overlapping interval. The last CPU to
	 * come out of Phase-I will enter Phase-II and ring the doorbell.
	 *
	 * We have the following requirements for Phase-II:
	 *     1. We want to execute Phase-II only when there are no CPUs
	 * currently executing in Phase-I
	 *     2. Once we start Phase-II we want to avoid all other CPUs from
	 * entering Phase-I.
	 *     3. We want only one CPU among all those who went through Phase-I
	 * to run phase-II
	 *
	 * If write_trylock fails to get the lock and doesn't transfer the
	 * PCC ownership to the platform, then one of the following will be TRUE
	 *     1. There is at-least one CPU in Phase-I which will later execute
	 * write_trylock, so the CPUs in Phase-I will be responsible for
	 * executing the Phase-II.
	 *     2. Some other CPU has beaten this CPU to successfully execute the
	 * write_trylock and has already acquired the write_lock. We know for a
	 * fact it(other CPU acquiring the write_lock) couldn't have happened
	 * before this CPU's Phase-I as we held the read_lock.
	 *     3. Some other CPU executing pcc CMD_READ has stolen the
	 * down_write, in which case, send_pcc_cmd will check for pending
	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
	 * So this CPU can be certain that its request will be delivered
	 *    So in all cases, this CPU knows that its request will be delivered
	 * by another CPU and can return
	 *
	 * After getting the down_write we still need to check for
	 * pending_pcc_write_cmd to take care of the following scenario
	 *    The thread running this code could be scheduled out between
	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
	 * could have delivered the request to Platform by triggering the
	 * doorbell and transferred the ownership of PCC to platform. So this
	 * avoids triggering an unnecessary doorbell and more importantly before
	 * triggering the doorbell it makes sure that the PCC channel ownership
	 * is still with OSPM.
	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
	 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
	 * case during a CMD_READ and if there are pending writes it delivers
	 * the write command before servicing the read command
	 */
	if (CPC_IN_PCC(desired_reg)) {
1185
		if (down_write_trylock(&pcc_data.pcc_lock)) {	/* BEGIN Phase-II */
1186
			/* Update only if there are pending write commands */
1187
			if (pcc_data.pending_pcc_write_cmd)
1188
				send_pcc_cmd(CMD_WRITE);
1189
			up_write(&pcc_data.pcc_lock);		/* END Phase-II */
1190 1191
		} else
			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1192 1193
			wait_event(pcc_data.pcc_write_wait_q,
				cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1194 1195 1196

		/* send_pcc_cmd updates the status in case of failure */
		ret = cpc_desc->write_cmd_status;
1197 1198 1199 1200
	}
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_set_perf);
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

/**
 * cppc_get_transition_latency - returns frequency transition latency in ns
 *
 * ACPI CPPC does not explicitly specifiy how a platform can specify the
 * transition latency for perfromance change requests. The closest we have
 * is the timing information from the PCCT tables which provides the info
 * on the number and frequency of PCC commands the platform can handle.
 */
unsigned int cppc_get_transition_latency(int cpu_num)
{
	/*
	 * Expected transition latency is based on the PCCT timing values
	 * Below are definition from ACPI spec:
	 * pcc_nominal- Expected latency to process a command, in microseconds
	 * pcc_mpar   - The maximum number of periodic requests that the subspace
	 *              channel can support, reported in commands per minute. 0
	 *              indicates no limitation.
	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
	 *              completion of a command before issuing the next command,
	 *              in microseconds.
	 */
	unsigned int latency_ns = 0;
	struct cpc_desc *cpc_desc;
	struct cpc_register_resource *desired_reg;

	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
	if (!cpc_desc)
		return CPUFREQ_ETERNAL;

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
	if (!CPC_IN_PCC(desired_reg))
		return CPUFREQ_ETERNAL;

1235 1236
	if (pcc_data.pcc_mpar)
		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1237

1238 1239
	latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
	latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1240 1241 1242 1243

	return latency_ns;
}
EXPORT_SYMBOL_GPL(cppc_get_transition_latency);