cppc_acpi.c 23.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
 *
 * (C) Copyright 2014, 2015 Linaro Ltd.
 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 *
 * CPPC describes a few methods for controlling CPU performance using
 * information from a per CPU table called CPC. This table is described in
 * the ACPI v5.0+ specification. The table consists of a list of
 * registers which may be memory mapped or hardware registers and also may
 * include some static integer values.
 *
 * CPU performance is on an abstract continuous scale as against a discretized
 * P-state scale which is tied to CPU frequency only. In brief, the basic
 * operation involves:
 *
 * - OS makes a CPU performance request. (Can provide min and max bounds)
 *
 * - Platform (such as BMC) is free to optimize request within requested bounds
 *   depending on power/thermal budgets etc.
 *
 * - Platform conveys its decision back to OS
 *
 * The communication between OS and platform occurs through another medium
 * called (PCC) Platform Communication Channel. This is a generic mailbox like
 * mechanism which includes doorbell semantics to indicate register updates.
 * See drivers/mailbox/pcc.c for details on PCC.
 *
 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
 * above specifications.
 */

#define pr_fmt(fmt)	"ACPI CPPC: " fmt

#include <linux/cpufreq.h>
#include <linux/delay.h>
42
#include <linux/ktime.h>
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

#include <acpi/cppc_acpi.h>
/*
 * Lock to provide mutually exclusive access to the PCC
 * channel. e.g. When the remote updates the shared region
 * with new data, the reader needs to be protected from
 * other CPUs activity on the same channel.
 */
static DEFINE_SPINLOCK(pcc_lock);

/*
 * The cpc_desc structure contains the ACPI register details
 * as described in the per CPU _CPC tables. The details
 * include the type of register (e.g. PCC, System IO, FFH etc.)
 * and destination addresses which lets us READ/WRITE CPU performance
 * information using the appropriate I/O methods.
 */
static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);

/* This layer handles all the PCC specifics for CPPC. */
static struct mbox_chan *pcc_channel;
static void __iomem *pcc_comm_addr;
static u64 comm_base_addr;
static int pcc_subspace_idx = -1;
static bool pcc_channel_acquired;
68
static ktime_t deadline;
69
static unsigned int pcc_mpar, pcc_mrtt;
70

71 72 73
/* pcc mapped address + header size + offset within PCC subspace */
#define GET_PCC_VADDR(offs) (pcc_comm_addr + 0x8 + (offs))

74 75
/*
 * Arbitrary Retries in case the remote processor is slow to respond
76 77
 * to PCC commands. Keeping it high enough to cover emulators where
 * the processors run painfully slow.
78 79 80
 */
#define NUM_RETRIES 500

81 82 83 84 85 86 87 88
static int check_pcc_chan(void)
{
	int ret = -EIO;
	struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_comm_addr;
	ktime_t next_deadline = ktime_add(ktime_get(), deadline);

	/* Retry in case the remote processor was too slow to catch up. */
	while (!ktime_after(ktime_get(), next_deadline)) {
89 90 91 92 93
		/*
		 * Per spec, prior to boot the PCC space wil be initialized by
		 * platform and should have set the command completion bit when
		 * PCC can be used by OSPM
		 */
94 95 96 97 98 99 100 101 102 103 104 105 106 107
		if (readw_relaxed(&generic_comm_base->status) & PCC_CMD_COMPLETE) {
			ret = 0;
			break;
		}
		/*
		 * Reducing the bus traffic in case this loop takes longer than
		 * a few retries.
		 */
		udelay(3);
	}

	return ret;
}

108 109
static int send_pcc_cmd(u16 cmd)
{
110
	int ret = -EIO;
111 112
	struct acpi_pcct_shared_memory *generic_comm_base =
		(struct acpi_pcct_shared_memory *) pcc_comm_addr;
113 114 115
	static ktime_t last_cmd_cmpl_time, last_mpar_reset;
	static int mpar_count;
	unsigned int time_delta;
116

117 118 119 120 121 122 123 124 125
	/*
	 * For CMD_WRITE we know for a fact the caller should have checked
	 * the channel before writing to PCC space
	 */
	if (cmd == CMD_READ) {
		ret = check_pcc_chan();
		if (ret)
			return ret;
	}
126

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	/*
	 * Handle the Minimum Request Turnaround Time(MRTT)
	 * "The minimum amount of time that OSPM must wait after the completion
	 * of a command before issuing the next command, in microseconds"
	 */
	if (pcc_mrtt) {
		time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
		if (pcc_mrtt > time_delta)
			udelay(pcc_mrtt - time_delta);
	}

	/*
	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
	 * "The maximum number of periodic requests that the subspace channel can
	 * support, reported in commands per minute. 0 indicates no limitation."
	 *
	 * This parameter should be ideally zero or large enough so that it can
	 * handle maximum number of requests that all the cores in the system can
	 * collectively generate. If it is not, we will follow the spec and just
	 * not send the request to the platform after hitting the MPAR limit in
	 * any 60s window
	 */
	if (pcc_mpar) {
		if (mpar_count == 0) {
			time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
			if (time_delta < 60 * MSEC_PER_SEC) {
				pr_debug("PCC cmd not sent due to MPAR limit");
				return -EIO;
			}
			last_mpar_reset = ktime_get();
			mpar_count = pcc_mpar;
		}
		mpar_count--;
	}

162
	/* Write to the shared comm region. */
163
	writew_relaxed(cmd, &generic_comm_base->command);
164 165

	/* Flip CMD COMPLETE bit */
166
	writew_relaxed(0, &generic_comm_base->status);
167 168

	/* Ring doorbell */
169 170
	ret = mbox_send_message(pcc_channel, &cmd);
	if (ret < 0) {
171
		pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
172 173
				cmd, ret);
		return ret;
174 175
	}

176 177 178 179 180 181
	/*
	 * For READs we need to ensure the cmd completed to ensure
	 * the ensuing read()s can proceed. For WRITEs we dont care
	 * because the actual write()s are done before coming here
	 * and the next READ or WRITE will check if the channel
	 * is busy/free at the entry of this call.
182 183 184 185 186
	 *
	 * If Minimum Request Turnaround Time is non-zero, we need
	 * to record the completion time of both READ and WRITE
	 * command for proper handling of MRTT, so we need to check
	 * for pcc_mrtt in addition to CMD_READ
187
	 */
188
	if (cmd == CMD_READ || pcc_mrtt) {
189
		ret = check_pcc_chan();
190 191 192
		if (pcc_mrtt)
			last_cmd_cmpl_time = ktime_get();
	}
193

194 195
	mbox_client_txdone(pcc_channel, ret);
	return ret;
196 197 198 199
}

static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
{
200
	if (ret < 0)
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
	else
		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
				*(u16 *)msg, ret);
}

struct mbox_client cppc_mbox_cl = {
	.tx_done = cppc_chan_tx_done,
	.knows_txdone = true,
};

static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
{
	int result = -EFAULT;
	acpi_status status = AE_OK;
	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
	struct acpi_buffer state = {0, NULL};
	union acpi_object  *psd = NULL;
	struct acpi_psd_package *pdomain;

	status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status))
		return -ENODEV;

	psd = buffer.pointer;
	if (!psd || psd->package.count != 1) {
		pr_debug("Invalid _PSD data\n");
		goto end;
	}

	pdomain = &(cpc_ptr->domain_info);

	state.length = sizeof(struct acpi_psd_package);
	state.pointer = pdomain;

	status = acpi_extract_package(&(psd->package.elements[0]),
		&format, &state);
	if (ACPI_FAILURE(status)) {
		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
		goto end;
	}

	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
		goto end;
	}

	result = 0;
end:
	kfree(buffer.pointer);
	return result;
}

/**
 * acpi_get_psd_map - Map the CPUs in a common freq domain.
 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
 *
 *	Return: 0 for success or negative value for err.
 */
int acpi_get_psd_map(struct cpudata **all_cpu_data)
{
	int count_target;
	int retval = 0;
	unsigned int i, j;
	cpumask_var_t covered_cpus;
	struct cpudata *pr, *match_pr;
	struct acpi_psd_package *pdomain;
	struct acpi_psd_package *match_pdomain;
	struct cpc_desc *cpc_ptr, *match_cpc_ptr;

	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
		return -ENOMEM;

	/*
	 * Now that we have _PSD data from all CPUs, lets setup P-state
	 * domain info.
	 */
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		if (cpumask_test_cpu(i, covered_cpus))
			continue;

		cpc_ptr = per_cpu(cpc_desc_ptr, i);
		if (!cpc_ptr)
			continue;

		pdomain = &(cpc_ptr->domain_info);
		cpumask_set_cpu(i, pr->shared_cpu_map);
		cpumask_set_cpu(i, covered_cpus);
		if (pdomain->num_processors <= 1)
			continue;

		/* Validate the Domain info */
		count_target = pdomain->num_processors;
		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
			if (!match_cpc_ptr)
				continue;

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			/* Here i and j are in the same domain */
			if (match_pdomain->num_processors != count_target) {
				retval = -EFAULT;
				goto err_ret;
			}

			if (pdomain->coord_type != match_pdomain->coord_type) {
				retval = -EFAULT;
				goto err_ret;
			}

			cpumask_set_cpu(j, covered_cpus);
			cpumask_set_cpu(j, pr->shared_cpu_map);
		}

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_pr = all_cpu_data[j];
			if (!match_pr)
				continue;

			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
			if (!match_cpc_ptr)
				continue;

			match_pdomain = &(match_cpc_ptr->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			match_pr->shared_type = pr->shared_type;
			cpumask_copy(match_pr->shared_cpu_map,
				     pr->shared_cpu_map);
		}
	}

err_ret:
	for_each_possible_cpu(i) {
		pr = all_cpu_data[i];
		if (!pr)
			continue;

		/* Assume no coordination on any error parsing domain info */
		if (retval) {
			cpumask_clear(pr->shared_cpu_map);
			cpumask_set_cpu(i, pr->shared_cpu_map);
			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		}
	}

	free_cpumask_var(covered_cpus);
	return retval;
}
EXPORT_SYMBOL_GPL(acpi_get_psd_map);

388
static int register_pcc_channel(int pcc_subspace_idx)
389
{
390
	struct acpi_pcct_hw_reduced *cppc_ss;
391
	unsigned int len;
392
	u64 usecs_lat;
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	if (pcc_subspace_idx >= 0) {
		pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
				pcc_subspace_idx);

		if (IS_ERR(pcc_channel)) {
			pr_err("Failed to find PCC communication channel\n");
			return -ENODEV;
		}

		/*
		 * The PCC mailbox controller driver should
		 * have parsed the PCCT (global table of all
		 * PCC channels) and stored pointers to the
		 * subspace communication region in con_priv.
		 */
		cppc_ss = pcc_channel->con_priv;

		if (!cppc_ss) {
			pr_err("No PCC subspace found for CPPC\n");
			return -ENODEV;
		}

		/*
		 * This is the shared communication region
		 * for the OS and Platform to communicate over.
		 */
		comm_base_addr = cppc_ss->base_address;
		len = cppc_ss->length;
422 423 424 425 426 427 428 429

		/*
		 * cppc_ss->latency is just a Nominal value. In reality
		 * the remote processor could be much slower to reply.
		 * So add an arbitrary amount of wait on top of Nominal.
		 */
		usecs_lat = NUM_RETRIES * cppc_ss->latency;
		deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
430 431
		pcc_mrtt = cppc_ss->min_turnaround_time;
		pcc_mpar = cppc_ss->max_access_rate;
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641

		pcc_comm_addr = acpi_os_ioremap(comm_base_addr, len);
		if (!pcc_comm_addr) {
			pr_err("Failed to ioremap PCC comm region mem\n");
			return -ENOMEM;
		}

		/* Set flag so that we dont come here for each CPU. */
		pcc_channel_acquired = true;
	}

	return 0;
}

/*
 * An example CPC table looks like the following.
 *
 *	Name(_CPC, Package()
 *			{
 *			17,
 *			NumEntries
 *			1,
 *			// Revision
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
 *			// Highest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
 *			// Nominal Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
 *			// Lowest Nonlinear Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
 *			// Lowest Performance
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
 *			// Guaranteed Performance Register
 *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
 *			// Desired Performance Register
 *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
 *			..
 *			..
 *			..
 *
 *		}
 * Each Register() encodes how to access that specific register.
 * e.g. a sample PCC entry has the following encoding:
 *
 *	Register (
 *		PCC,
 *		AddressSpaceKeyword
 *		8,
 *		//RegisterBitWidth
 *		8,
 *		//RegisterBitOffset
 *		0x30,
 *		//RegisterAddress
 *		9
 *		//AccessSize (subspace ID)
 *		0
 *		)
 *	}
 */

/**
 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 *
 *	Return: 0 for success or negative value for err.
 */
int acpi_cppc_processor_probe(struct acpi_processor *pr)
{
	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
	union acpi_object *out_obj, *cpc_obj;
	struct cpc_desc *cpc_ptr;
	struct cpc_reg *gas_t;
	acpi_handle handle = pr->handle;
	unsigned int num_ent, i, cpc_rev;
	acpi_status status;
	int ret = -EFAULT;

	/* Parse the ACPI _CPC table for this cpu. */
	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
			ACPI_TYPE_PACKAGE);
	if (ACPI_FAILURE(status)) {
		ret = -ENODEV;
		goto out_buf_free;
	}

	out_obj = (union acpi_object *) output.pointer;

	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
	if (!cpc_ptr) {
		ret = -ENOMEM;
		goto out_buf_free;
	}

	/* First entry is NumEntries. */
	cpc_obj = &out_obj->package.elements[0];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		num_ent = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for NumEntries\n",
				cpc_obj->type);
		goto out_free;
	}

	/* Only support CPPCv2. Bail otherwise. */
	if (num_ent != CPPC_NUM_ENT) {
		pr_debug("Firmware exports %d entries. Expected: %d\n",
				num_ent, CPPC_NUM_ENT);
		goto out_free;
	}

	/* Second entry should be revision. */
	cpc_obj = &out_obj->package.elements[1];
	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
		cpc_rev = cpc_obj->integer.value;
	} else {
		pr_debug("Unexpected entry type(%d) for Revision\n",
				cpc_obj->type);
		goto out_free;
	}

	if (cpc_rev != CPPC_REV) {
		pr_debug("Firmware exports revision:%d. Expected:%d\n",
				cpc_rev, CPPC_REV);
		goto out_free;
	}

	/* Iterate through remaining entries in _CPC */
	for (i = 2; i < num_ent; i++) {
		cpc_obj = &out_obj->package.elements[i];

		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
			gas_t = (struct cpc_reg *)
				cpc_obj->buffer.pointer;

			/*
			 * The PCC Subspace index is encoded inside
			 * the CPC table entries. The same PCC index
			 * will be used for all the PCC entries,
			 * so extract it only once.
			 */
			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
				if (pcc_subspace_idx < 0)
					pcc_subspace_idx = gas_t->access_width;
				else if (pcc_subspace_idx != gas_t->access_width) {
					pr_debug("Mismatched PCC ids.\n");
					goto out_free;
				}
			} else if (gas_t->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) {
				/* Support only PCC and SYS MEM type regs */
				pr_debug("Unsupported register type: %d\n", gas_t->space_id);
				goto out_free;
			}

			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
		} else {
			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
			goto out_free;
		}
	}
	/* Store CPU Logical ID */
	cpc_ptr->cpu_id = pr->id;

	/* Plug it into this CPUs CPC descriptor. */
	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;

	/* Parse PSD data for this CPU */
	ret = acpi_get_psd(cpc_ptr, handle);
	if (ret)
		goto out_free;

	/* Register PCC channel once for all CPUs. */
	if (!pcc_channel_acquired) {
		ret = register_pcc_channel(pcc_subspace_idx);
		if (ret)
			goto out_free;
	}

	/* Everything looks okay */
	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);

	kfree(output.pointer);
	return 0;

out_free:
	kfree(cpc_ptr);

out_buf_free:
	kfree(output.pointer);
	return ret;
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);

/**
 * acpi_cppc_processor_exit - Cleanup CPC structs.
 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 *
 * Return: Void
 */
void acpi_cppc_processor_exit(struct acpi_processor *pr)
{
	struct cpc_desc *cpc_ptr;
	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
	kfree(cpc_ptr);
}
EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);

642 643 644 645 646
/*
 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
 * as fast as possible. We have already mapped the PCC subspace during init, so
 * we can directly write to it.
 */
647

648
static int cpc_read(struct cpc_reg *reg, u64 *val)
649
{
650 651 652 653 654
	int ret_val = 0;

	*val = 0;
	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
		void __iomem *vaddr = GET_PCC_VADDR(reg->address);
655

656 657
		switch (reg->bit_width) {
		case 8:
658
			*val = readb_relaxed(vaddr);
659 660
			break;
		case 16:
661
			*val = readw_relaxed(vaddr);
662 663
			break;
		case 32:
664
			*val = readl_relaxed(vaddr);
665 666
			break;
		case 64:
667
			*val = readq_relaxed(vaddr);
668 669 670 671 672 673 674 675 676 677
			break;
		default:
			pr_debug("Error: Cannot read %u bit width from PCC\n",
				reg->bit_width);
			ret_val = -EFAULT;
		}
	} else
		ret_val = acpi_os_read_memory((acpi_physical_address)reg->address,
					val, reg->bit_width);
	return ret_val;
678 679
}

680
static int cpc_write(struct cpc_reg *reg, u64 val)
681
{
682 683 684 685
	int ret_val = 0;

	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
		void __iomem *vaddr = GET_PCC_VADDR(reg->address);
686

687 688
		switch (reg->bit_width) {
		case 8:
689
			writeb_relaxed(val, vaddr);
690 691
			break;
		case 16:
692
			writew_relaxed(val, vaddr);
693 694
			break;
		case 32:
695
			writel_relaxed(val, vaddr);
696 697
			break;
		case 64:
698
			writeq_relaxed(val, vaddr);
699 700 701 702 703 704 705 706 707 708 709
			break;
		default:
			pr_debug("Error: Cannot write %u bit width to PCC\n",
				reg->bit_width);
			ret_val = -EFAULT;
			break;
		}
	} else
		ret_val = acpi_os_write_memory((acpi_physical_address)reg->address,
				val, reg->bit_width);
	return ret_val;
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
}

/**
 * cppc_get_perf_caps - Get a CPUs performance capabilities.
 * @cpunum: CPU from which to get capabilities info.
 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
 *
 * Return: 0 for success with perf_caps populated else -ERRNO.
 */
int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
	struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
								 *nom_perf;
	u64 high, low, ref, nom;
	int ret = 0;

	if (!cpc_desc) {
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
	ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
	nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];

	spin_lock(&pcc_lock);

	/* Are any of the regs PCC ?*/
	if ((highest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
			(lowest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
			(ref_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
			(nom_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) {
		/* Ring doorbell once to update PCC subspace */
745
		if (send_pcc_cmd(CMD_READ) < 0) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
			ret = -EIO;
			goto out_err;
		}
	}

	cpc_read(&highest_reg->cpc_entry.reg, &high);
	perf_caps->highest_perf = high;

	cpc_read(&lowest_reg->cpc_entry.reg, &low);
	perf_caps->lowest_perf = low;

	cpc_read(&ref_perf->cpc_entry.reg, &ref);
	perf_caps->reference_perf = ref;

	cpc_read(&nom_perf->cpc_entry.reg, &nom);
	perf_caps->nominal_perf = nom;

	if (!ref)
		perf_caps->reference_perf = perf_caps->nominal_perf;

	if (!high || !low || !nom)
		ret = -EFAULT;

out_err:
	spin_unlock(&pcc_lock);
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_caps);

/**
 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
 * @cpunum: CPU from which to read counters.
 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
 *
 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
 */
int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
	struct cpc_register_resource *delivered_reg, *reference_reg;
	u64 delivered, reference;
	int ret = 0;

	if (!cpc_desc) {
		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
		return -ENODEV;
	}

	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];

	spin_lock(&pcc_lock);

	/* Are any of the regs PCC ?*/
	if ((delivered_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
			(reference_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) {
		/* Ring doorbell once to update PCC subspace */
803
		if (send_pcc_cmd(CMD_READ) < 0) {
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
			ret = -EIO;
			goto out_err;
		}
	}

	cpc_read(&delivered_reg->cpc_entry.reg, &delivered);
	cpc_read(&reference_reg->cpc_entry.reg, &reference);

	if (!delivered || !reference) {
		ret = -EFAULT;
		goto out_err;
	}

	perf_fb_ctrs->delivered = delivered;
	perf_fb_ctrs->reference = reference;

	perf_fb_ctrs->delivered -= perf_fb_ctrs->prev_delivered;
	perf_fb_ctrs->reference -= perf_fb_ctrs->prev_reference;

	perf_fb_ctrs->prev_delivered = delivered;
	perf_fb_ctrs->prev_reference = reference;

out_err:
	spin_unlock(&pcc_lock);
	return ret;
}
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);

/**
 * cppc_set_perf - Set a CPUs performance controls.
 * @cpu: CPU for which to set performance controls.
 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
 *
 * Return: 0 for success, -ERRNO otherwise.
 */
int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
{
	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
	struct cpc_register_resource *desired_reg;
	int ret = 0;

	if (!cpc_desc) {
		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
		return -ENODEV;
	}

	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];

	spin_lock(&pcc_lock);

854 855 856 857 858 859 860
	/* If this is PCC reg, check if channel is free before writing */
	if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
		ret = check_pcc_chan();
		if (ret)
			goto busy_channel;
	}

861 862 863 864 865 866 867 868 869
	/*
	 * Skip writing MIN/MAX until Linux knows how to come up with
	 * useful values.
	 */
	cpc_write(&desired_reg->cpc_entry.reg, perf_ctrls->desired_perf);

	/* Is this a PCC reg ?*/
	if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
		/* Ring doorbell so Remote can get our perf request. */
870
		if (send_pcc_cmd(CMD_WRITE) < 0)
871 872
			ret = -EIO;
	}
873
busy_channel:
874 875 876 877 878
	spin_unlock(&pcc_lock);

	return ret;
}
EXPORT_SYMBOL_GPL(cppc_set_perf);