amd64_edac.c 77.2 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3

4
static struct edac_pci_ctl_info *pci_ctl;
5 6 7 8 9 10 11 12 13 14 15

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23
/* Per-node stuff */
24
static struct ecc_settings **ecc_stngs;
25

26 27 28 29 30 31 32
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
33
static const struct scrubrate {
34 35 36
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

62 63
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

101 102 103 104
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
105
 * K8: has a single DCT only and no address offsets >= 0x100
106 107 108 109 110
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
111
 * F16h: has only 1 DCT
112 113
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
114
 */
115 116
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
117
{
118 119 120 121 122
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
123

124 125 126 127 128 129 130 131 132
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
133

134 135 136
			offset += 0x100;
		}
		break;
137

138 139 140 141 142 143 144 145
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
146

147 148 149 150
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
151

152 153
	default:
		break;
154
	}
155
	return amd64_read_pci_cfg(pvt->F2, offset, val);
156 157
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
176
static int __set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
177 178 179 180 181 182 183 184 185
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
186 187 188
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
189
	 */
190
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
191 192 193 194
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
195
		if (scrubrates[i].scrubval < min_rate)
196 197 198 199 200 201 202 203
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

204
	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
205

206 207 208
	if (scrubval)
		return scrubrates[i].bandwidth;

209 210 211
	return 0;
}

212
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
213 214
{
	struct amd64_pvt *pvt = mci->pvt_info;
215
	u32 min_scrubrate = 0x5;
216

217
	if (pvt->fam == 0xf)
218 219
		min_scrubrate = 0x0;

220 221
	/* Erratum #505 */
	if (pvt->fam == 0x15 && pvt->model < 0x10)
222 223
		f15h_select_dct(pvt, 0);

224
	return __set_scrub_rate(pvt->F3, bw, min_scrubrate);
225 226
}

227
static int get_scrub_rate(struct mem_ctl_info *mci)
228 229 230
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
231
	int i, retval = -EINVAL;
232

233 234
	/* Erratum #505 */
	if (pvt->fam == 0x15 && pvt->model < 0x10)
235 236
		f15h_select_dct(pvt, 0);

237
	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
238 239 240

	scrubval = scrubval & 0x001F;

241
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
242
		if (scrubrates[i].scrubval == scrubval) {
243
			retval = scrubrates[i].bandwidth;
244 245 246
			break;
		}
	}
247
	return retval;
248 249
}

250
/*
251 252
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
253
 */
254
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
255
{
256
	u64 addr;
257 258 259 260 261 262 263 264 265

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

266 267
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
268 269 270 271 272 273 274 275 276 277 278 279
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
280
	u8 node_id;
281 282 283 284 285 286 287 288 289 290 291 292 293
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
294
	intlv_en = dram_intlv_en(pvt, 0);
295 296

	if (intlv_en == 0) {
297
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
298
			if (base_limit_match(pvt, sys_addr, node_id))
299
				goto found;
300
		}
301
		goto err_no_match;
302 303
	}

304 305 306
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
307
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
308 309 310 311 312 313
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
314
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
315 316
			break;	/* intlv_sel field matches */

317
		if (++node_id >= DRAM_RANGES)
318 319 320 321
			goto err_no_match;
	}

	/* sanity test for sys_addr */
322
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
323 324 325
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
326 327 328 329
		return NULL;
	}

found:
330
	return edac_mc_find((int)node_id);
331 332

err_no_match:
333 334
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
335 336 337

	return NULL;
}
338 339

/*
340 341
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
342
 */
343 344
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
345
{
346 347
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
348

349
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
350 351
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
352 353
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
354
		addr_shift	= 4;
355 356

	/*
357 358 359 360 361
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
362 363 364
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

365 366
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
367 368 369

		*mask = ~0ULL;
		/* poke holes for the csmask */
370 371
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
372

373 374
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
375 376

		return;
377 378 379 380
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
381

382
		if (pvt->fam == 0x15)
383 384
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
385
		else
386 387
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
388
	}
389

390
	*base  = (csbase & base_bits) << addr_shift;
391

392 393 394 395 396
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
397 398
}

399 400 401
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

402 403 404
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

405 406 407
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

408 409 410 411 412 413 414 415 416 417 418 419
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

420 421
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
422 423
			continue;

424 425 426
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
427 428

		if ((input_addr & mask) == (base & mask)) {
429 430 431
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
432 433 434 435

			return csrow;
		}
	}
436 437
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
464
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
465 466
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
467 468 469
		return 1;
	}

470
	/* valid for Fam10h and above */
471
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
472
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
473 474 475
		return 1;
	}

476
	if (!dhar_valid(pvt)) {
477 478
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

500 501
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
502

503 504
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
505

506 507 508
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
509 510 511 512 513

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
545
	struct amd64_pvt *pvt = mci->pvt_info;
546
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
547
	int ret;
548

549
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
550 551 552 553

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
554 555
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
556 557 558
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

559 560 561
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
562 563 564 565 566 567 568 569 570 571 572 573 574 575

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
576
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
577

578 579
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
611
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
612
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
613
		      (dram_addr & 0xfff);
614

615 616 617
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

633 634
	edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)input_addr);
635 636 637 638 639 640

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
641
						    struct err_info *err)
642
{
643 644
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
662 663
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
664 665
	return csrow;
}
666

667
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
668 669 670 671 672

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
673
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
674
{
675
	u8 bit;
676
	unsigned long edac_cap = EDAC_FLAG_NONE;
677

678
	bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
679 680 681
		? 19
		: 17;

682
	if (pvt->dclr0 & BIT(bit))
683 684 685 686 687
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}

688
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
689

690
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
691
{
692
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
693

694 695 696 697 698 699 700 701 702 703 704 705 706
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

707

708 709
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
710

711
	if (pvt->fam == 0x10)
712 713
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
714

715 716 717 718 719
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
720 721
}

722
/* Display and decode various NB registers for debug purposes. */
723
static void dump_misc_regs(struct amd64_pvt *pvt)
724
{
725
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
726

727 728
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
729

730 731 732
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
733

734
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
735

736
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
737

738 739
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
740 741
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
742

743
	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
744

745
	debug_display_dimm_sizes(pvt, 0);
746

747
	/* everything below this point is Fam10h and above */
748
	if (pvt->fam == 0xf)
749
		return;
750

751
	debug_display_dimm_sizes(pvt, 1);
752

753
	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
754

755
	/* Only if NOT ganged does dclr1 have valid info */
756
	if (!dct_ganging_enabled(pvt))
757
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
758 759
}

760
/*
761
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
762
 */
763
static void prep_chip_selects(struct amd64_pvt *pvt)
764
{
765
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
766 767
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
768
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
769 770
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
771
	} else {
772 773
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
774 775 776 777
	}
}

/*
778
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
779
 */
780
static void read_dct_base_mask(struct amd64_pvt *pvt)
781
{
782
	int cs;
783

784
	prep_chip_selects(pvt);
785

786
	for_each_chip_select(cs, 0, pvt) {
787 788
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
789 790
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
791

792
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
793 794
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
795

796
		if (pvt->fam == 0xf)
797
			continue;
798

799
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
800
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
801 802
				 cs, *base1, (pvt->fam == 0x10) ? reg1
								: reg0);
803 804
	}

805
	for_each_chip_select_mask(cs, 0, pvt) {
806 807
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
808 809
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
810

811
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
812 813
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
814

815
		if (pvt->fam == 0xf)
816
			continue;
817

818
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
819
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
820 821
				 cs, *mask1, (pvt->fam == 0x10) ? reg1
								: reg0);
822 823 824
	}
}

825
static void determine_memory_type(struct amd64_pvt *pvt)
826
{
827
	u32 dram_ctrl, dcsm;
828

829 830 831 832 833 834 835 836 837
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
838
		if (pvt->dchr0 & DDR3_MODE)
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
866
		else
867
			pvt->dram_type = MEM_RDDR3;
868

869 870 871 872 873 874 875 876 877 878
		return;

	case 0x16:
		goto ddr3;

	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
879

880 881
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
882 883
}

884
/* Get the number of DCT channels the memory controller is using. */
885 886
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
887
	int flag;
888

889
	if (pvt->ext_model >= K8_REV_F)
890
		/* RevF (NPT) and later */
891
		flag = pvt->dclr0 & WIDTH_128;
892
	else
893 894 895 896 897 898 899 900 901
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

902
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
903
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
904
{
905 906
	u16 mce_nid = amd_get_nb_id(m->extcpu);
	struct mem_ctl_info *mci;
907 908
	u8 start_bit = 1;
	u8 end_bit   = 47;
909 910 911 912 913 914 915
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
916

917
	if (pvt->fam == 0xf) {
918 919 920 921
		start_bit = 3;
		end_bit   = 39;
	}

922
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
923 924 925 926

	/*
	 * Erratum 637 workaround
	 */
927
	if (pvt->fam == 0x15) {
928 929
		u64 cc6_base, tmp_addr;
		u32 tmp;
930
		u8 intlv_en;
931

932
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
933 934 935 936 937 938 939
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
940
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
941 942 943 944 945 946 947 948

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
949
			return cc6_base | (addr & GENMASK_ULL(23, 0));
950 951 952 953

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
954
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
955 956

		/* OR DramIntlvSel into bits [14:12] */
957
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
958 959

		/* add remaining [11:0] bits from original MC4_ADDR */
960
		tmp_addr |= addr & GENMASK_ULL(11, 0);
961 962 963 964 965

		return cc6_base | tmp_addr;
	}

	return addr;
966 967
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

984
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
985
{
986
	struct amd_northbridge *nb;
987 988
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
989
	int off = range << 3;
990
	u32 llim;
991

992 993
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
994

995
	if (pvt->fam == 0xf)
996
		return;
997

998 999
	if (!dram_rw(pvt, range))
		return;
1000

1001 1002
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1003

1004
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1005
	if (pvt->fam != 0x15)
1006
		return;
1007

1008 1009 1010
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1011

1012 1013 1014 1015 1016 1017
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1018 1019

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1020 1021
	if (WARN_ON(!f1))
		return;
1022

1023
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1024

1025
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1026

1027 1028
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1029

1030
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1031

1032 1033 1034 1035
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1036 1037
}

1038
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1039
				    struct err_info *err)
1040
{
1041
	struct amd64_pvt *pvt = mci->pvt_info;
1042

1043
	error_address_to_page_and_offset(sys_addr, err);
1044 1045 1046 1047 1048

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1049 1050
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1051 1052
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1053
		err->err_code = ERR_NODE;
1054 1055 1056 1057
		return;
	}

	/* Now map the sys_addr to a CSROW */
1058 1059 1060
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1061 1062 1063
		return;
	}

1064
	/* CHIPKILL enabled */
1065
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1066 1067
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1068 1069 1070 1071 1072
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1073
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1074
				      "possible error reporting race\n",
1075 1076
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1088
		err->channel = ((sys_addr & BIT(3)) != 0);
1089 1090 1091
	}
}

1092
static int ddr2_cs_size(unsigned i, bool dct_width)
1093
{
1094
	unsigned shift = 0;
1095

1096 1097 1098 1099
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1100
	else
1101
		shift = (i + 1) >> 1;
1102

1103 1104 1105 1106
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1107
				  unsigned cs_mode, int cs_mask_nr)
1108 1109 1110 1111 1112 1113 1114 1115
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1116
		unsigned diff;
1117 1118
		WARN_ON(cs_mode > 10);

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1146 1147 1148 1149 1150
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1161
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1162
{
1163
	int i, j, channels = 0;
1164

1165
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1166
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1167
		return 2;
1168 1169

	/*
1170 1171 1172
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1173 1174 1175 1176
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1177
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1178

1179 1180 1181 1182 1183
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1184 1185
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1186

1187 1188 1189 1190 1191 1192
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1193 1194
	}

1195 1196 1197
	if (channels > 2)
		channels = 2;

1198
	amd64_info("MCT channel count: %d\n", channels);
1199 1200 1201 1202

	return channels;
}

1203
static int ddr3_cs_size(unsigned i, bool dct_width)
1204
{
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1260
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1261
				   unsigned cs_mode, int cs_mask_nr)
1262 1263 1264 1265
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1266 1267

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1268
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1269
	else
1270 1271 1272 1273 1274 1275 1276
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1277
				   unsigned cs_mode, int cs_mask_nr)
1278 1279
{
	WARN_ON(cs_mode > 12);
1280

1281
	return ddr3_cs_size(cs_mode, false);
1282 1283
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1315
/*
1316
 * F16h and F15h model 30h have only limited cs_modes.
1317 1318
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1319
				unsigned cs_mode, int cs_mask_nr)
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1330
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1331 1332
{

1333
	if (pvt->fam == 0xf)
1334 1335
		return;

1336
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1337 1338
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1339

1340 1341
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1342 1343

		if (!dct_ganging_enabled(pvt))
1344 1345
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1346

1347 1348 1349
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1350

1351 1352 1353 1354
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1355 1356
	}

1357
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1358 1359
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1388 1389 1390
	return channel;
}

1391
/*
1392
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1393 1394
 * Interleaving Modes.
 */
1395
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1396
				bool hi_range_sel, u8 intlv_en)
1397
{
1398
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1399 1400

	if (dct_ganging_enabled(pvt))
1401
		return 0;
1402

1403 1404
	if (hi_range_sel)
		return dct_sel_high;
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1428 1429 1430 1431

	return 0;
}

1432
/* Convert the sys_addr to the normalized DCT address */
1433
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1434 1435
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1436 1437
{
	u64 chan_off;
1438 1439 1440
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1456
		    dhar_valid(pvt) &&
1457
		    (sys_addr >= BIT_64(32)))
1458
			chan_off = hole_off;
1459 1460 1461
		else
			chan_off = dct_sel_base_off;
	} else {
1462 1463 1464 1465 1466 1467 1468 1469 1470
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1471
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1472
			chan_off = hole_off;
1473
		else
1474
			chan_off = dram_base;
1475 1476
	}

1477
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1478 1479 1480 1481 1482 1483
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1484
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1485
{
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1509
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1510 1511 1512
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1513
	u64 cs_base, cs_mask;
1514 1515 1516
	int cs_found = -EINVAL;
	int csrow;

1517
	mci = edac_mc_find(nid);
1518 1519 1520 1521 1522
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1523
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1524

1525 1526
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1527 1528
			continue;

1529
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1530

1531 1532
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1533

1534
		cs_mask = ~cs_mask;
1535

1536 1537
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1538

1539
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1540 1541 1542 1543
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1544
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1545

1546
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1547 1548 1549 1550 1551 1552
			break;
		}
	}
	return cs_found;
}

1553 1554 1555 1556 1557
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1558
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1559 1560 1561
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1562
	if (pvt->fam == 0x10) {
1563
		/* only revC3 and revE have that feature */
1564
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1565 1566 1567
			return sys_addr;
	}

1568
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1587
/* For a given @dram_range, check if @sys_addr falls within it. */
1588
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1589
				  u64 sys_addr, int *chan_sel)
1590
{
1591
	int cs_found = -EINVAL;
1592
	u64 chan_addr;
1593
	u32 dct_sel_base;
1594
	u8 channel;
1595
	bool high_range = false;
1596

1597
	u8 node_id    = dram_dst_node(pvt, range);
1598
	u8 intlv_en   = dram_intlv_en(pvt, range);
1599
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1600

1601 1602
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1603

1604 1605 1606 1607 1608 1609 1610 1611
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1612
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1613 1614
		return -EINVAL;

1615
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1616

1617 1618 1619 1620 1621 1622 1623 1624 1625
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1626
		high_range = true;
1627

1628
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1629

1630
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1631
					  high_range, dct_sel_base);
1632

1633 1634 1635 1636
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1637

1638
	/* remove channel interleave */
1639 1640 1641
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1656 1657
	}

1658
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1659

1660
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1661

1662
	if (cs_found >= 0)
1663
		*chan_sel = channel;
1664

1665 1666 1667
	return cs_found;
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
1705 1706
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1707 1708

	if (!(dct_cont_base_reg & BIT(0)) &&
1709 1710
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

	channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
					     num_dcts_intlv, dct_sel);

	/* Verify we stay within the MAX number of channels allowed */
1723
	if (channel > 3)
1724 1725 1726 1727 1728 1729 1730 1731
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
1732
		chan_offset = dct_base << 27;
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
1762
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
1790
{
1791 1792
	int cs_found = -EINVAL;
	unsigned range;
1793

1794 1795
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
1796 1797
			continue;

1798 1799 1800 1801
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
1802

1803 1804
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
1805
			cs_found = f1x_match_to_this_node(pvt, range,
1806
							  sys_addr, chan_sel);
1807 1808 1809 1810 1811 1812 1813 1814
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1815 1816
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1817
 *
1818 1819
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1820
 */
1821
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1822
				     struct err_info *err)
1823 1824 1825
{
	struct amd64_pvt *pvt = mci->pvt_info;

1826
	error_address_to_page_and_offset(sys_addr, err);
1827

1828 1829 1830
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1831 1832 1833 1834 1835 1836 1837 1838
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1839
	if (dct_ganging_enabled(pvt))
1840
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1841 1842 1843
}

/*
1844
 * debug routine to display the memory sizes of all logical DIMMs and its
1845
 * CSROWs
1846
 */
1847
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1848
{
1849
	int dimm, size0, size1;
1850 1851
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1852

1853
	if (pvt->fam == 0xf) {
1854
		/* K8 families < revF not supported yet */
1855
	       if (pvt->ext_model < K8_REV_F)
1856 1857 1858 1859 1860
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
1871 1872
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
1873

1874 1875
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1876 1877 1878 1879
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1880
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1881 1882 1883 1884 1885
			/* For f15m60h, need multiplier for LRDIMM cs_size
			 * calculation. We pass 'dimm' value to the dbam_to_cs
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
1886
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1887 1888
						     DBAM_DIMM(dimm, dbam),
						     dimm);
1889 1890

		size1 = 0;
1891
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1892
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1893 1894
						     DBAM_DIMM(dimm, dbam),
						     dimm);
1895

1896
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1897 1898
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
1899 1900 1901
	}
}

1902
static struct amd64_family_type family_types[] = {
1903
	[K8_CPUS] = {
1904
		.ctl_name = "K8",
1905 1906
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1907
		.ops = {
1908 1909 1910
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1911 1912 1913
		}
	},
	[F10_CPUS] = {
1914
		.ctl_name = "F10h",
1915 1916
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1917
		.ops = {
1918
			.early_channel_count	= f1x_early_channel_count,
1919
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1920
			.dbam_to_cs		= f10_dbam_to_chip_select,
1921 1922 1923 1924
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
1925 1926
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1927
		.ops = {
1928
			.early_channel_count	= f1x_early_channel_count,
1929
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1930
			.dbam_to_cs		= f15_dbam_to_chip_select,
1931 1932
		}
	},
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F3,
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F3,
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
1973 1974
};

1975
/*
1976 1977 1978
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1979
 *
1980
 * Algorithm courtesy of Ross LaFetra from AMD.
1981
 */
1982
static const u16 x4_vectors[] = {
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2019 2020
};

2021
static const u16 x8_vectors[] = {
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2043
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2044
			   unsigned v_dim)
2045
{
2046 2047 2048 2049
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2050 2051
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2064

2065 2066 2067
					if (!s)
						return err_sym;
				}
2068

2069 2070 2071 2072
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2073 2074
	}

2075
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2076 2077
	return -1;
}
2078

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2121 2122
	int err_sym = -1;

2123
	if (pvt->ecc_sym_sz == 8)
2124 2125
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2126 2127
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2128 2129
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2130
					  pvt->ecc_sym_sz);
2131
	else {
2132
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2133
		return err_sym;
2134
	}
2135

2136
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2137 2138
}

2139 2140
static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
			    u8 ecc_type)
2141
{
2142 2143
	enum hw_event_mc_err_type err_type;
	const char *string;
2144

2145 2146 2147 2148 2149 2150
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2151 2152 2153
		return;
	}

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
		string = "unknown syndrome - possible error reporting race";
		break;
	default:
		string = "WTF error";
		break;
2170
	}
2171 2172 2173 2174 2175

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2176 2177
}

2178
static inline void decode_bus_error(int node_id, struct mce *m)
2179
{
2180 2181
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2182
	u8 ecc_type = (m->status >> 45) & 0x3;
2183 2184
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2185 2186
	u64 sys_addr;
	struct err_info err;
2187

2188 2189 2190 2191 2192 2193
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2194
	/* Bail out early if this was an 'observed' error */
2195
	if (PP(ec) == NBSL_PP_OBS)
2196
		return;
2197

2198 2199
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2200 2201
		return;

2202 2203
	memset(&err, 0, sizeof(err));

2204
	sys_addr = get_error_address(pvt, m);
2205

2206
	if (ecc_type == 2)
2207 2208 2209 2210 2211
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

	__log_bus_error(mci, &err, ecc_type);
2212 2213
}

2214
/*
2215
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2216
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2217
 */
2218
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2219 2220
{
	/* Reserve the ADDRESS MAP Device */
2221 2222
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
2223 2224 2225
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
2226
		return -ENODEV;
2227 2228 2229
	}

	/* Reserve the MISC Device */
2230 2231 2232 2233
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2234

2235 2236 2237
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
2238

2239
		return -ENODEV;
2240
	}
2241 2242 2243
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2244 2245 2246 2247

	return 0;
}

2248
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2249
{
2250 2251
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
2252 2253 2254 2255 2256 2257
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2258
static void read_mc_regs(struct amd64_pvt *pvt)
2259
{
2260
	unsigned range;
2261
	u64 msr_val;
2262
	u32 tmp;
2263 2264 2265 2266 2267

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
2268
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2269
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2270 2271 2272 2273

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
2274
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2275
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2276
	} else
2277
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2278

2279
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2280

2281
	read_dram_ctl_register(pvt);
2282

2283 2284
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2285

2286 2287 2288 2289 2290 2291 2292
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2293 2294 2295 2296
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2297

2298 2299 2300 2301 2302 2303
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2304 2305
	}

2306
	read_dct_base_mask(pvt);
2307

2308
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2309
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2310

2311
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2312

2313 2314
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2315

2316
	if (!dct_ganging_enabled(pvt)) {
2317 2318
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2319
	}
2320

2321
	pvt->ecc_sym_sz = 4;
2322 2323
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2324

2325
	if (pvt->fam >= 0x10) {
2326
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2327
		/* F16h has only DCT0, so no need to read dbam1 */
2328
		if (pvt->fam != 0x16)
2329
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
2330

2331
		/* F10h, revD and later can do x8 ECC too */
2332
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
2333 2334
			pvt->ecc_sym_sz = 8;
	}
2335
	dump_misc_regs(pvt);
2336 2337 2338 2339 2340 2341
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2342
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2372
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2373
{
2374
	u32 cs_mode, nr_pages;
2375
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2376

2377

2378 2379 2380 2381 2382 2383 2384
	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
B
Borislav Petkov 已提交
2385
	cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2386

2387 2388
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
							   << (20 - PAGE_SHIFT);
2389

2390 2391 2392
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
		    csrow_nr, dct,  cs_mode);
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2393 2394 2395 2396 2397 2398 2399 2400

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2401
static int init_csrows(struct mem_ctl_info *mci)
2402
{
2403
	struct amd64_pvt *pvt = mci->pvt_info;
2404
	struct csrow_info *csrow;
2405
	struct dimm_info *dimm;
2406
	enum edac_type edac_mode;
2407
	int i, j, empty = 1;
2408
	int nr_pages = 0;
2409
	u32 val;
2410

2411
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2412

2413
	pvt->nbcfg = val;
2414

2415 2416 2417
	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2418

2419 2420 2421
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2422
	for_each_chip_select(i, 0, pvt) {
2423 2424
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2425

2426
		if (pvt->fam != 0xf)
2427 2428 2429
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2430 2431
			continue;

2432
		csrow = mci->csrows[i];
2433
		empty = 0;
2434 2435 2436 2437

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2438
		if (row_dct0) {
2439
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2440 2441
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
2442

2443
		/* K8 has only one DCT */
2444
		if (pvt->fam != 0xf && row_dct1) {
2445
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2446 2447 2448 2449

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
2450

2451
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2452 2453 2454 2455

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2456
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2457 2458
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
				    EDAC_S4ECD4ED : EDAC_SECDED;
2459
		else
2460 2461 2462
			edac_mode = EDAC_NONE;

		for (j = 0; j < pvt->channel_count; j++) {
2463
			dimm = csrow->channels[j]->dimm;
2464
			dimm->mtype = pvt->dram_type;
2465
			dimm->edac_mode = edac_mode;
2466
		}
2467 2468 2469 2470
	}

	return empty;
}
2471

2472
/* get all cores on this DCT */
2473
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2474 2475 2476 2477 2478 2479 2480 2481 2482
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2483
static bool nb_mce_bank_enabled_on_node(u16 nid)
2484 2485
{
	cpumask_var_t mask;
2486
	int cpu, nbe;
2487 2488 2489
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2490
		amd64_warn("%s: Error allocating mask\n", __func__);
2491 2492 2493 2494 2495 2496 2497 2498
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2499
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2500
		nbe = reg->l & MSR_MCGCTL_NBE;
2501

2502 2503 2504
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2516
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2517 2518
{
	cpumask_var_t cmask;
2519
	int cpu;
2520 2521

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2522
		amd64_warn("%s: error allocating mask\n", __func__);
2523 2524 2525
		return false;
	}

2526
	get_cpus_on_this_dct_cpumask(cmask, nid);
2527 2528 2529 2530 2531

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2532 2533
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2534
		if (on) {
2535
			if (reg->l & MSR_MCGCTL_NBE)
2536
				s->flags.nb_mce_enable = 1;
2537

2538
			reg->l |= MSR_MCGCTL_NBE;
2539 2540
		} else {
			/*
2541
			 * Turn off NB MCE reporting only when it was off before
2542
			 */
2543
			if (!s->flags.nb_mce_enable)
2544
				reg->l &= ~MSR_MCGCTL_NBE;
2545 2546 2547 2548 2549 2550 2551 2552 2553
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2554
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2555
				       struct pci_dev *F3)
2556
{
2557
	bool ret = true;
B
Borislav Petkov 已提交
2558
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2559

2560 2561 2562 2563 2564
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2565
	amd64_read_pci_cfg(F3, NBCTL, &value);
2566

2567 2568
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2569 2570

	value |= mask;
B
Borislav Petkov 已提交
2571
	amd64_write_pci_cfg(F3, NBCTL, value);
2572

2573
	amd64_read_pci_cfg(F3, NBCFG, &value);
2574

2575 2576
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2577

2578
	if (!(value & NBCFG_ECC_ENABLE)) {
2579
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2580

2581
		s->flags.nb_ecc_prev = 0;
2582

2583
		/* Attempt to turn on DRAM ECC Enable */
2584 2585
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2586

2587
		amd64_read_pci_cfg(F3, NBCFG, &value);
2588

2589
		if (!(value & NBCFG_ECC_ENABLE)) {
2590 2591
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2592
			ret = false;
2593
		} else {
2594
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2595
		}
2596
	} else {
2597
		s->flags.nb_ecc_prev = 1;
2598
	}
2599

2600 2601
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2602

2603
	return ret;
2604 2605
}

2606
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2607
					struct pci_dev *F3)
2608
{
B
Borislav Petkov 已提交
2609 2610
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2611

2612
	if (!s->nbctl_valid)
2613 2614
		return;

B
Borislav Petkov 已提交
2615
	amd64_read_pci_cfg(F3, NBCTL, &value);
2616
	value &= ~mask;
2617
	value |= s->old_nbctl;
2618

B
Borislav Petkov 已提交
2619
	amd64_write_pci_cfg(F3, NBCTL, value);
2620

2621 2622
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2623 2624 2625
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2626 2627 2628
	}

	/* restore the NB Enable MCGCTL bit */
2629
	if (toggle_ecc_err_reporting(s, nid, OFF))
2630
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2631 2632 2633
}

/*
2634 2635 2636 2637
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2638
 */
2639 2640 2641 2642 2643
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2644

2645
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2646 2647
{
	u32 value;
2648
	u8 ecc_en = 0;
2649
	bool nb_mce_en = false;
2650

2651
	amd64_read_pci_cfg(F3, NBCFG, &value);
2652

2653
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2654
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2655

2656
	nb_mce_en = nb_mce_bank_enabled_on_node(nid);
2657
	if (!nb_mce_en)
2658 2659 2660
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2661

2662 2663 2664 2665 2666
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2667 2668
}

2669 2670
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
2671 2672 2673 2674 2675 2676
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2677
	if (pvt->nbcap & NBCAP_SECDED)
2678 2679
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2680
	if (pvt->nbcap & NBCAP_CHIPKILL)
2681 2682
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

2683
	mci->edac_cap		= determine_edac_cap(pvt);
2684 2685
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2686
	mci->ctl_name		= fam->ctl_name;
2687
	mci->dev_name		= pci_name(pvt->F2);
2688 2689 2690
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
2691 2692
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
2693 2694
}

2695 2696 2697
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
2698
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
2699
{
2700 2701
	struct amd64_family_type *fam_type = NULL;

2702
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
2703
	pvt->stepping	= boot_cpu_data.x86_mask;
2704 2705 2706 2707
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
2708
	case 0xf:
2709 2710
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
2711
		break;
2712

2713
	case 0x10:
2714 2715
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
2716 2717 2718
		break;

	case 0x15:
2719
		if (pvt->model == 0x30) {
2720 2721
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
2722
			break;
2723 2724 2725 2726
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
2727 2728
		}

2729 2730
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
2731 2732
		break;

2733
	case 0x16:
2734 2735 2736 2737 2738
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
2739 2740
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
2741 2742
		break;

2743
	default:
2744
		amd64_err("Unsupported family!\n");
2745
		return NULL;
2746
	}
2747

2748
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2749
		     (pvt->fam == 0xf ?
2750 2751 2752
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2753
	return fam_type;
2754 2755
}

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

2766
static int init_one_instance(struct pci_dev *F2)
2767 2768
{
	struct amd64_pvt *pvt = NULL;
2769
	struct amd64_family_type *fam_type = NULL;
2770
	struct mem_ctl_info *mci = NULL;
2771
	struct edac_mc_layer layers[2];
2772
	int err = 0, ret;
2773
	u16 nid = amd_get_node_id(F2);
2774 2775 2776 2777

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2778
		goto err_ret;
2779

2780
	pvt->mc_node_id	= nid;
2781
	pvt->F2 = F2;
2782

2783
	ret = -EINVAL;
2784
	fam_type = per_family_init(pvt);
2785
	if (!fam_type)
2786 2787
		goto err_free;

2788
	ret = -ENODEV;
2789
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2790 2791 2792
	if (err)
		goto err_free;

2793
	read_mc_regs(pvt);
2794 2795 2796 2797

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2798
	 * tables in the 'mci' structure.
2799
	 */
2800
	ret = -EINVAL;
2801 2802
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2803
		goto err_siblings;
2804 2805

	ret = -ENOMEM;
2806 2807 2808 2809
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
2810 2811 2812 2813 2814 2815 2816

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
	layers[1].size = 2;
2817
	layers[1].is_virt_csrow = false;
2818

2819
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2820
	if (!mci)
2821
		goto err_siblings;
2822 2823

	mci->pvt_info = pvt;
2824
	mci->pdev = &pvt->F2->dev;
2825

2826
	setup_mci_misc_attrs(mci, fam_type);
2827 2828

	if (init_csrows(mci))
2829 2830 2831
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
2832
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
2833
		edac_dbg(1, "failed edac_mc_add_mc()\n");
2834 2835 2836
		goto err_add_mc;
	}

2837 2838 2839 2840
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

2841
	amd_register_ecc_decoder(decode_bus_error);
2842

2843 2844
	atomic_inc(&drv_instances);

2845 2846 2847 2848 2849
	return 0;

err_add_mc:
	edac_mc_free(mci);

2850 2851
err_siblings:
	free_mc_sibling_devs(pvt);
2852

2853 2854
err_free:
	kfree(pvt);
2855

2856
err_ret:
2857 2858 2859
	return ret;
}

2860 2861
static int probe_one_instance(struct pci_dev *pdev,
			      const struct pci_device_id *mc_type)
2862
{
2863
	u16 nid = amd_get_node_id(pdev);
2864
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2865
	struct ecc_settings *s;
2866
	int ret = 0;
2867 2868

	ret = pci_enable_device(pdev);
2869
	if (ret < 0) {
2870
		edac_dbg(0, "ret=%d\n", ret);
2871 2872
		return -EIO;
	}
2873

2874 2875 2876
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2877
		goto err_out;
2878 2879 2880

	ecc_stngs[nid] = s;

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

2893
	ret = init_one_instance(pdev);
2894
	if (ret < 0) {
2895
		amd64_err("Error probing instance: %d\n", nid);
2896 2897
		restore_ecc_error_reporting(s, nid, F3);
	}
2898 2899

	return ret;
2900 2901 2902 2903 2904 2905 2906

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2907 2908
}

2909
static void remove_one_instance(struct pci_dev *pdev)
2910 2911 2912
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2913
	u16 nid = amd_get_node_id(pdev);
2914 2915
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2916

2917
	mci = find_mci_by_dev(&pdev->dev);
2918 2919
	WARN_ON(!mci);

2920 2921 2922 2923 2924 2925 2926
	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2927
	restore_ecc_error_reporting(s, nid, F3);
2928

2929
	free_mc_sibling_devs(pvt);
2930

2931 2932
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
2933
	amd_unregister_ecc_decoder(decode_bus_error);
2934

2935 2936
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2937

2938
	/* Free the EDAC CORE resources */
2939 2940 2941
	mci->pvt_info = NULL;

	kfree(pvt);
2942 2943 2944 2945 2946 2947 2948 2949
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
2950
static const struct pci_device_id amd64_pci_table[] = {
2951 2952 2953 2954 2955 2956 2957
	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_K8_NB_MEMCTL) },
	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_10H_NB_DRAM) },
	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F2) },
	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F2) },
	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F2) },
	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F2) },
	{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F2) },
2958 2959 2960 2961 2962 2963
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2964 2965
	.probe		= probe_one_instance,
	.remove		= remove_one_instance,
2966
	.id_table	= amd64_pci_table,
2967
	.driver.probe_type = PROBE_FORCE_SYNCHRONOUS,
2968 2969
};

2970
static void setup_pci_device(void)
2971 2972 2973 2974
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

2975
	if (pci_ctl)
2976 2977
		return;

2978
	mci = edac_mc_find(0);
2979 2980
	if (!mci)
		return;
2981

2982 2983 2984 2985 2986
	pvt = mci->pvt_info;
	pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
2987 2988 2989 2990 2991
	}
}

static int __init amd64_edac_init(void)
{
2992
	int err = -ENODEV;
2993

2994
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2995 2996 2997

	opstate_init();

2998
	if (amd_cache_northbridges() < 0)
2999
		goto err_ret;
3000

3001
	err = -ENOMEM;
3002
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
3003
	if (!ecc_stngs)
3004
		goto err_free;
3005

3006
	msrs = msrs_alloc();
3007
	if (!msrs)
3008
		goto err_free;
3009

3010 3011
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
3012
		goto err_pci;
3013

3014
	err = -ENODEV;
3015 3016
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
3017

3018
	setup_pci_device();
T
Tomasz Pala 已提交
3019 3020 3021 3022 3023

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3024
	return 0;
3025

3026
err_no_instances:
3027
	pci_unregister_driver(&amd64_pci_driver);
3028

3029 3030 3031
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3032

3033 3034 3035 3036
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3037
err_ret:
3038 3039 3040 3041 3042
	return err;
}

static void __exit amd64_edac_exit(void)
{
3043 3044
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3045 3046

	pci_unregister_driver(&amd64_pci_driver);
3047

3048 3049 3050
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3051 3052
	msrs_free(msrs);
	msrs = NULL;
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");