amd64_edac.c 74.8 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27 28 29 30 31 32 33
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
34
static const struct scrubrate {
35 36 37
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

63 64
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
 * K8: has a single DCT only
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 *
101
 * F16h: has only 1 DCT
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
 */
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
			       const char *func)
{
	if (addr >= 0x100)
		return -EINVAL;

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

118 119 120 121 122 123 124 125
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
126
	reg &= (pvt->model >= 0x30) ? ~3 : ~1;
127 128 129 130
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

131 132 133 134 135
static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	u8 dct  = 0;

136
	/* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */
137
	if (addr >= 0x140 && addr <= 0x1a0) {
138
		dct   = (pvt->model >= 0x30) ? 3 : 1;
139 140 141
		addr -= 0x100;
	}

142
	f15h_select_dct(pvt, dct);
143 144 145 146

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
165
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
166 167 168 169 170 171 172 173 174
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
175 176 177
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
178
	 */
179
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
180 181 182 183
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
184
		if (scrubrates[i].scrubval < min_rate)
185 186 187 188 189 190 191 192
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

193
	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
194

195 196 197
	if (scrubval)
		return scrubrates[i].bandwidth;

198 199 200
	return 0;
}

201
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
202 203
{
	struct amd64_pvt *pvt = mci->pvt_info;
204
	u32 min_scrubrate = 0x5;
205

206
	if (pvt->fam == 0xf)
207 208
		min_scrubrate = 0x0;

209
	/* Erratum #505 for F15h Model 0x00 - Model 0x01, Stepping 0 */
210
	if (pvt->fam == 0x15 && pvt->model <= 0x01 && pvt->stepping < 0x1)
211 212
		f15h_select_dct(pvt, 0);

213
	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
214 215
}

216
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
217 218 219
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
220
	int i, retval = -EINVAL;
221

222
	/* Erratum #505 for F15h Model 0x00 - Model 0x01, Stepping 0 */
223
	if (pvt->fam == 0x15 && pvt->model <= 0x01 && pvt->stepping < 0x1)
224 225
		f15h_select_dct(pvt, 0);

226
	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
227 228 229

	scrubval = scrubval & 0x001F;

230
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
231
		if (scrubrates[i].scrubval == scrubval) {
232
			retval = scrubrates[i].bandwidth;
233 234 235
			break;
		}
	}
236
	return retval;
237 238
}

239
/*
240 241
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
242
 */
243
static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
244
				   u8 nid)
245
{
246
	u64 addr;
247 248 249 250 251 252 253 254 255

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

256 257
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
258 259 260 261 262 263 264 265 266 267 268 269
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
270
	u8 node_id;
271 272 273 274 275 276 277 278 279 280 281 282 283
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
284
	intlv_en = dram_intlv_en(pvt, 0);
285 286

	if (intlv_en == 0) {
287
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
288
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
289
				goto found;
290
		}
291
		goto err_no_match;
292 293
	}

294 295 296
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
297
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
298 299 300 301 302 303
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
304
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
305 306
			break;	/* intlv_sel field matches */

307
		if (++node_id >= DRAM_RANGES)
308 309 310 311 312
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
313 314 315
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
316 317 318 319
		return NULL;
	}

found:
320
	return edac_mc_find((int)node_id);
321 322

err_no_match:
323 324
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
325 326 327

	return NULL;
}
328 329

/*
330 331
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
332
 */
333 334
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
335
{
336 337
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
338

339
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
340 341 342 343 344
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
		addr_shift	= 4;
345 346

	/*
347 348 349 350 351
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

		*base  = (csbase & GENMASK(5,  15)) << 6;
		*base |= (csbase & GENMASK(19, 30)) << 8;

		*mask = ~0ULL;
		/* poke holes for the csmask */
		*mask &= ~((GENMASK(5, 15)  << 6) |
			   (GENMASK(19, 30) << 8));

		*mask |= (csmask & GENMASK(5, 15))  << 6;
		*mask |= (csmask & GENMASK(19, 30)) << 8;

		return;
367 368 369 370
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
371

372
		if (pvt->fam == 0x15)
373 374 375 376
			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
		else
			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
	}
377

378
	*base  = (csbase & base_bits) << addr_shift;
379

380 381 382 383 384
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
385 386
}

387 388 389
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

390 391 392
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

393 394 395
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

396 397 398 399 400 401 402 403 404 405 406 407
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

408 409
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
410 411
			continue;

412 413 414
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
415 416

		if ((input_addr & mask) == (base & mask)) {
417 418 419
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
420 421 422 423

			return csrow;
		}
	}
424 425
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
452
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
453 454
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
455 456 457
		return 1;
	}

458
	/* valid for Fam10h and above */
459
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
460
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
461 462 463
		return 1;
	}

464
	if (!dhar_valid(pvt)) {
465 466
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

488 489
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
490

491 492
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
493

494 495 496
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
497 498 499 500 501

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
533
	struct amd64_pvt *pvt = mci->pvt_info;
534
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
535
	int ret;
536

537
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
538 539 540 541

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
542 543
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
544 545 546
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

547 548 549
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
550 551 552 553 554 555 556 557 558 559 560 561 562 563

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
564
	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
565

566 567
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
599
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
600 601
	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
		      (dram_addr & 0xfff);
602

603 604 605
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

621 622
	edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)input_addr);
623 624 625 626 627 628

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
629
						    struct err_info *err)
630
{
631 632
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
650 651
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
652 653
	return csrow;
}
654

655
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
656 657 658 659 660

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
661
static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
662
{
663
	u8 bit;
664
	unsigned long edac_cap = EDAC_FLAG_NONE;
665

666
	bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
667 668 669
		? 19
		: 17;

670
	if (pvt->dclr0 & BIT(bit))
671 672 673 674 675
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}

676
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
677

678
static void amd64_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
679
{
680
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
681

682 683 684
	edac_dbg(1, "  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		 (dclr & BIT(16)) ?  "un" : "",
		 (dclr & BIT(19)) ? "yes" : "no");
685

686 687
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
688

689
	if (pvt->fam == 0x10)
690 691
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
692

693 694 695 696 697
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
698 699
}

700
/* Display and decode various NB registers for debug purposes. */
701
static void dump_misc_regs(struct amd64_pvt *pvt)
702
{
703
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
704

705 706
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
707

708 709 710
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
711

712
	amd64_dump_dramcfg_low(pvt, pvt->dclr0, 0);
713

714
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
715

716 717
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
718 719
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
720

721
	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
722

723
	amd64_debug_display_dimm_sizes(pvt, 0);
724

725
	/* everything below this point is Fam10h and above */
726
	if (pvt->fam == 0xf)
727
		return;
728

729
	amd64_debug_display_dimm_sizes(pvt, 1);
730

731
	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
732

733
	/* Only if NOT ganged does dclr1 have valid info */
734
	if (!dct_ganging_enabled(pvt))
735
		amd64_dump_dramcfg_low(pvt, pvt->dclr1, 1);
736 737
}

738
/*
739
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
740
 */
741
static void prep_chip_selects(struct amd64_pvt *pvt)
742
{
743
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
744 745
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
746 747 748
	} else if (pvt->fam == 0x15 && pvt->model >= 0x30) {
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
749
	} else {
750 751
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
752 753 754 755
	}
}

/*
756
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
757
 */
758
static void read_dct_base_mask(struct amd64_pvt *pvt)
759
{
760
	int cs;
761

762
	prep_chip_selects(pvt);
763

764
	for_each_chip_select(cs, 0, pvt) {
765 766
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
767 768
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
769

770
		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
771 772
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
773

774
		if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
775
			continue;
776

777
		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
778 779
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
				 cs, *base1, reg1);
780 781
	}

782
	for_each_chip_select_mask(cs, 0, pvt) {
783 784
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
785 786
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
787

788
		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
789 790
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
791

792
		if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
793
			continue;
794

795
		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
796 797
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask1, reg1);
798 799 800
	}
}

801
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
802 803 804
{
	enum mem_type type;

805
	/* F15h supports only DDR3 */
806
	if (pvt->fam >= 0x15)
807
		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
808
	else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) {
809 810 811 812
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
813 814 815 816
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

817
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
818 819 820 821

	return type;
}

822
/* Get the number of DCT channels the memory controller is using. */
823 824
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
825
	int flag;
826

827
	if (pvt->ext_model >= K8_REV_F)
828
		/* RevF (NPT) and later */
829
		flag = pvt->dclr0 & WIDTH_128;
830
	else
831 832 833 834 835 836 837 838 839
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

840
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
841
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
842
{
843
	u64 addr;
844 845 846
	u8 start_bit = 1;
	u8 end_bit   = 47;

847
	if (pvt->fam == 0xf) {
848 849 850 851
		start_bit = 3;
		end_bit   = 39;
	}

852 853 854 855 856
	addr = m->addr & GENMASK(start_bit, end_bit);

	/*
	 * Erratum 637 workaround
	 */
857
	if (pvt->fam == 0x15) {
858 859 860
		struct amd64_pvt *pvt;
		u64 cc6_base, tmp_addr;
		u32 tmp;
861 862
		u16 mce_nid;
		u8 intlv_en;
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

		if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
			return addr;

		mce_nid	= amd_get_nb_id(m->extcpu);
		pvt	= mcis[mce_nid]->pvt_info;

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
		cc6_base  = (tmp & GENMASK(0, 20)) << 3;

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
			return cc6_base | (addr & GENMASK(0, 23));

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
		tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);

		/* OR DramIntlvSel into bits [14:12] */
		tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;

		/* add remaining [11:0] bits from original MC4_ADDR */
		tmp_addr |= addr & GENMASK(0, 11);

		return cc6_base | tmp_addr;
	}

	return addr;
900 901
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

918
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
919
{
920
	struct amd_northbridge *nb;
921 922
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
923
	int off = range << 3;
924
	u32 llim;
925

926 927
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
928

929
	if (pvt->fam == 0xf)
930
		return;
931

932 933
	if (!dram_rw(pvt, range))
		return;
934

935 936
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
937

938
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
939
	if (pvt->fam != 0x15)
940
		return;
941

942 943 944
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
945

946 947 948 949
	pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
					: PCI_DEVICE_ID_AMD_15H_NB_F1;

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
950 951
	if (WARN_ON(!f1))
		return;
952

953
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
954

955
	pvt->ranges[range].lim.lo &= GENMASK(0, 15);
956

957 958
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
959

960
	pvt->ranges[range].lim.hi &= GENMASK(0, 7);
961

962 963 964 965
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
966 967
}

968
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
969
				    struct err_info *err)
970
{
971
	struct amd64_pvt *pvt = mci->pvt_info;
972

973
	error_address_to_page_and_offset(sys_addr, err);
974 975 976 977 978

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
979 980
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
981 982
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
983
		err->err_code = ERR_NODE;
984 985 986 987
		return;
	}

	/* Now map the sys_addr to a CSROW */
988 989 990
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
991 992 993
		return;
	}

994
	/* CHIPKILL enabled */
995
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
996 997
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
998 999 1000 1001 1002
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1003
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1004
				      "possible error reporting race\n",
1005 1006
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1018
		err->channel = ((sys_addr & BIT(3)) != 0);
1019 1020 1021
	}
}

1022
static int ddr2_cs_size(unsigned i, bool dct_width)
1023
{
1024
	unsigned shift = 0;
1025

1026 1027 1028 1029
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1030
	else
1031
		shift = (i + 1) >> 1;
1032

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				  unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1046
		unsigned diff;
1047 1048
		WARN_ON(cs_mode > 10);

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1076 1077 1078 1079 1080
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1081 1082
}

1083 1084 1085 1086 1087 1088 1089 1090
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1091
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1092
{
1093
	int i, j, channels = 0;
1094

1095
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1096
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1097
		return 2;
1098 1099

	/*
1100 1101 1102
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1103 1104 1105 1106
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1107
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1108

1109 1110 1111 1112 1113
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1114 1115
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1116

1117 1118 1119 1120 1121 1122
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1123 1124
	}

1125 1126 1127
	if (channels > 2)
		channels = 2;

1128
	amd64_info("MCT channel count: %d\n", channels);
1129 1130 1131 1132

	return channels;
}

1133
static int ddr3_cs_size(unsigned i, bool dct_width)
1134
{
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1161 1162

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1163
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1164
	else
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	WARN_ON(cs_mode > 12);
1175

1176
	return ddr3_cs_size(cs_mode, false);
1177 1178
}

1179
/*
1180
 * F16h and F15h model 30h have only limited cs_modes.
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				unsigned cs_mode)
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1194
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1195 1196
{

1197
	if (pvt->fam == 0xf)
1198 1199
		return;

1200
	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1201 1202
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1203

1204 1205
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1206 1207

		if (!dct_ganging_enabled(pvt))
1208 1209
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1210

1211 1212 1213
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1214

1215 1216 1217 1218
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1219 1220
	}

1221
	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1222 1223
}

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
	} else if (num_dcts_intlv == 4)
		channel = (sys_addr >> 8) & 0x7;

	return channel;
}

1247
/*
1248
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1249 1250
 * Interleaving Modes.
 */
1251
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1252
				bool hi_range_sel, u8 intlv_en)
1253
{
1254
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1255 1256

	if (dct_ganging_enabled(pvt))
1257
		return 0;
1258

1259 1260
	if (hi_range_sel)
		return dct_sel_high;
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1284 1285 1286 1287

	return 0;
}

1288
/* Convert the sys_addr to the normalized DCT address */
1289
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1290 1291
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1292 1293
{
	u64 chan_off;
1294 1295 1296
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1297

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1312
		    dhar_valid(pvt) &&
1313
		    (sys_addr >= BIT_64(32)))
1314
			chan_off = hole_off;
1315 1316 1317
		else
			chan_off = dct_sel_base_off;
	} else {
1318 1319 1320 1321 1322 1323 1324 1325 1326
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1327
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1328
			chan_off = hole_off;
1329
		else
1330
			chan_off = dram_base;
1331 1332
	}

1333
	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1334 1335 1336 1337 1338 1339
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1340
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1341
{
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1365
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1366 1367 1368
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1369
	u64 cs_base, cs_mask;
1370 1371 1372
	int cs_found = -EINVAL;
	int csrow;

1373
	mci = mcis[nid];
1374 1375 1376 1377 1378
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1379
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1380

1381 1382
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1383 1384
			continue;

1385
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1386

1387 1388
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1389

1390
		cs_mask = ~cs_mask;
1391

1392 1393
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1394

1395
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1396 1397 1398 1399
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1400
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1401

1402
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1403 1404 1405 1406 1407 1408
			break;
		}
	}
	return cs_found;
}

1409 1410 1411 1412 1413
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1414
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1415 1416 1417
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1418
	if (pvt->fam == 0x10) {
1419
		/* only revC3 and revE have that feature */
1420
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
			return sys_addr;
	}

	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1443
/* For a given @dram_range, check if @sys_addr falls within it. */
1444
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1445
				  u64 sys_addr, int *chan_sel)
1446
{
1447
	int cs_found = -EINVAL;
1448
	u64 chan_addr;
1449
	u32 dct_sel_base;
1450
	u8 channel;
1451
	bool high_range = false;
1452

1453
	u8 node_id    = dram_dst_node(pvt, range);
1454
	u8 intlv_en   = dram_intlv_en(pvt, range);
1455
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1456

1457 1458
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1459

1460 1461 1462 1463 1464 1465 1466 1467
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1468
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1469 1470
		return -EINVAL;

1471
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1472

1473 1474 1475 1476 1477 1478 1479 1480 1481
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1482
		high_range = true;
1483

1484
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1485

1486
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1487
					  high_range, dct_sel_base);
1488

1489 1490 1491 1492
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1493

1494
	/* remove channel interleave */
1495 1496 1497
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1512 1513
	}

1514
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1515

1516
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1517

1518
	if (cs_found >= 0)
1519
		*chan_sel = channel;
1520

1521 1522 1523
	return cs_found;
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
	dct_base = (dct_sel_baseaddr(pvt) << 27);
	dct_limit = (((dct_cont_limit_reg >> 11) & 0x1FFF) << 27) | 0x7FFFFFF;

	if (!(dct_cont_base_reg & BIT(0)) &&
	    !(dct_base <= sys_addr && dct_limit >= sys_addr))
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

	channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
					     num_dcts_intlv, dct_sel);

	/* Verify we stay within the MAX number of channels allowed */
	if (channel > 4 || channel < 0)
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
		chan_offset = dct_base;

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
		chan_addr +=  ((tmp >> 11) & 0xfff) << 27;
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
1645
{
1646 1647
	int cs_found = -EINVAL;
	unsigned range;
1648

1649 1650
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
1651 1652
			continue;

1653 1654 1655 1656
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
1657

1658 1659
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
1660
			cs_found = f1x_match_to_this_node(pvt, range,
1661
							  sys_addr, chan_sel);
1662 1663 1664 1665 1666 1667 1668 1669
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1670 1671
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1672
 *
1673 1674
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1675
 */
1676
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1677
				     struct err_info *err)
1678 1679 1680
{
	struct amd64_pvt *pvt = mci->pvt_info;

1681
	error_address_to_page_and_offset(sys_addr, err);
1682

1683 1684 1685
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1686 1687 1688 1689 1690 1691 1692 1693
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1694
	if (dct_ganging_enabled(pvt))
1695
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1696 1697 1698
}

/*
1699
 * debug routine to display the memory sizes of all logical DIMMs and its
1700
 * CSROWs
1701
 */
1702
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1703
{
1704
	int dimm, size0, size1;
1705 1706
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1707

1708
	if (pvt->fam == 0xf) {
1709
		/* K8 families < revF not supported yet */
1710
	       if (pvt->ext_model < K8_REV_F)
1711 1712 1713 1714 1715
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1716
	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1717 1718
	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
						   : pvt->csels[0].csbases;
1719

1720 1721
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
1722

1723 1724
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1725 1726 1727 1728
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1729
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1730 1731
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1732 1733

		size1 = 0;
1734
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1735 1736
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1737

1738
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1739 1740
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
1741 1742 1743
	}
}

1744 1745
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
1746
		.ctl_name = "K8",
1747 1748
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1749
		.ops = {
1750 1751 1752
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1753
			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1754 1755 1756
		}
	},
	[F10_CPUS] = {
1757
		.ctl_name = "F10h",
1758 1759
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1760
		.ops = {
1761
			.early_channel_count	= f1x_early_channel_count,
1762
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1763
			.dbam_to_cs		= f10_dbam_to_chip_select,
1764 1765 1766 1767 1768
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
1769 1770
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1771
		.ops = {
1772
			.early_channel_count	= f1x_early_channel_count,
1773
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1774
			.dbam_to_cs		= f15_dbam_to_chip_select,
1775
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1776 1777
		}
	},
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
		}
	},
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
1800 1801
};

1802
/*
1803 1804 1805
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1806
 *
1807
 * Algorithm courtesy of Ross LaFetra from AMD.
1808
 */
1809
static const u16 x4_vectors[] = {
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1846 1847
};

1848
static const u16 x8_vectors[] = {
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

1870
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
1871
			   unsigned v_dim)
1872
{
1873 1874 1875 1876
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
1877 1878
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1891

1892 1893 1894
					if (!s)
						return err_sym;
				}
1895

1896 1897 1898 1899
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1900 1901
	}

1902
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
1903 1904
	return -1;
}
1905

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1948 1949
	int err_sym = -1;

1950
	if (pvt->ecc_sym_sz == 8)
1951 1952
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
1953 1954
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
1955 1956
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
1957
					  pvt->ecc_sym_sz);
1958
	else {
1959
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1960
		return err_sym;
1961
	}
1962

1963
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1964 1965
}

1966 1967
static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
			    u8 ecc_type)
1968
{
1969 1970
	enum hw_event_mc_err_type err_type;
	const char *string;
1971

1972 1973 1974 1975 1976 1977
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
1978 1979 1980
		return;
	}

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
		string = "unknown syndrome - possible error reporting race";
		break;
	default:
		string = "WTF error";
		break;
1997
	}
1998 1999 2000 2001 2002

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2003 2004
}

2005
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2006
					    struct mce *m)
2007
{
2008
	struct amd64_pvt *pvt = mci->pvt_info;
2009
	u8 ecc_type = (m->status >> 45) & 0x3;
2010 2011
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2012 2013
	u64 sys_addr;
	struct err_info err;
2014

2015
	/* Bail out early if this was an 'observed' error */
2016
	if (PP(ec) == NBSL_PP_OBS)
2017
		return;
2018

2019 2020
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2021 2022
		return;

2023 2024
	memset(&err, 0, sizeof(err));

2025
	sys_addr = get_error_address(pvt, m);
2026

2027
	if (ecc_type == 2)
2028 2029 2030 2031 2032
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

	__log_bus_error(mci, &err, ecc_type);
2033 2034
}

2035
void amd64_decode_bus_error(int node_id, struct mce *m)
2036
{
2037
	__amd64_decode_bus_error(mcis[node_id], m);
2038 2039
}

2040
/*
2041
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2042
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2043
 */
2044
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2045 2046
{
	/* Reserve the ADDRESS MAP Device */
2047 2048
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
2049 2050 2051
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
2052
		return -ENODEV;
2053 2054 2055
	}

	/* Reserve the MISC Device */
2056 2057 2058 2059
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2060

2061 2062 2063
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
2064

2065
		return -ENODEV;
2066
	}
2067 2068 2069
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2070 2071 2072 2073

	return 0;
}

2074
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2075
{
2076 2077
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
2078 2079 2080 2081 2082 2083
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2084
static void read_mc_regs(struct amd64_pvt *pvt)
2085
{
2086
	unsigned range;
2087
	u64 msr_val;
2088
	u32 tmp;
2089 2090 2091 2092 2093

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
2094
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2095
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2096 2097 2098 2099

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
2100
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2101
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2102
	} else
2103
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2104

2105
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2106

2107
	read_dram_ctl_register(pvt);
2108

2109 2110
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2111

2112 2113 2114 2115 2116 2117 2118
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2119 2120 2121 2122
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2123

2124 2125 2126 2127 2128 2129
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2130 2131
	}

2132
	read_dct_base_mask(pvt);
2133

2134
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2135
	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2136

2137
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2138

2139 2140
	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2141

2142
	if (!dct_ganging_enabled(pvt)) {
2143 2144
		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2145
	}
2146

2147 2148
	pvt->ecc_sym_sz = 4;

2149
	if (pvt->fam >= 0x10) {
2150
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2151
		if (pvt->fam != 0x16)
2152 2153
			/* F16h has only DCT0 */
			amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2154

2155
		/* F10h, revD and later can do x8 ECC too */
2156
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
2157 2158
			pvt->ecc_sym_sz = 8;
	}
2159
	dump_misc_regs(pvt);
2160 2161 2162 2163 2164 2165
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2166
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2196
static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2197
{
2198
	u32 cs_mode, nr_pages;
2199
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2200

2201

2202 2203 2204 2205 2206 2207 2208
	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
B
Borislav Petkov 已提交
2209
	cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2210

2211
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2212

2213 2214 2215
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
		    csrow_nr, dct,  cs_mode);
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2216 2217 2218 2219 2220 2221 2222 2223

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2224
static int init_csrows(struct mem_ctl_info *mci)
2225
{
2226
	struct amd64_pvt *pvt = mci->pvt_info;
2227
	struct csrow_info *csrow;
2228
	struct dimm_info *dimm;
2229
	enum edac_type edac_mode;
2230 2231
	enum mem_type mtype;
	int i, j, empty = 1;
2232
	int nr_pages = 0;
2233
	u32 val;
2234

2235
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2236

2237
	pvt->nbcfg = val;
2238

2239 2240 2241
	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2242

2243 2244 2245
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2246
	for_each_chip_select(i, 0, pvt) {
2247 2248
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2249

2250
		if (pvt->fam != 0xf)
2251 2252 2253
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2254 2255
			continue;

2256
		csrow = mci->csrows[i];
2257
		empty = 0;
2258 2259 2260 2261

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2262
		if (row_dct0) {
2263
			nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2264 2265
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
2266

2267
		/* K8 has only one DCT */
2268
		if (pvt->fam != 0xf && row_dct1) {
2269 2270 2271 2272 2273
			int row_dct1_pages = amd64_csrow_nr_pages(pvt, 1, i);

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
2274

2275
		mtype = amd64_determine_memory_type(pvt, i);
2276

2277
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2278 2279 2280 2281

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2282
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2283 2284
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
				    EDAC_S4ECD4ED : EDAC_SECDED;
2285
		else
2286 2287 2288
			edac_mode = EDAC_NONE;

		for (j = 0; j < pvt->channel_count; j++) {
2289 2290 2291
			dimm = csrow->channels[j]->dimm;
			dimm->mtype = mtype;
			dimm->edac_mode = edac_mode;
2292
		}
2293 2294 2295 2296
	}

	return empty;
}
2297

2298
/* get all cores on this DCT */
2299
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2300 2301 2302 2303 2304 2305 2306 2307 2308
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2309
static bool amd64_nb_mce_bank_enabled_on_node(u16 nid)
2310 2311
{
	cpumask_var_t mask;
2312
	int cpu, nbe;
2313 2314 2315
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2316
		amd64_warn("%s: Error allocating mask\n", __func__);
2317 2318 2319 2320 2321 2322 2323 2324
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2325
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2326
		nbe = reg->l & MSR_MCGCTL_NBE;
2327

2328 2329 2330
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2342
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2343 2344
{
	cpumask_var_t cmask;
2345
	int cpu;
2346 2347

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2348
		amd64_warn("%s: error allocating mask\n", __func__);
2349 2350 2351
		return false;
	}

2352
	get_cpus_on_this_dct_cpumask(cmask, nid);
2353 2354 2355 2356 2357

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2358 2359
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2360
		if (on) {
2361
			if (reg->l & MSR_MCGCTL_NBE)
2362
				s->flags.nb_mce_enable = 1;
2363

2364
			reg->l |= MSR_MCGCTL_NBE;
2365 2366
		} else {
			/*
2367
			 * Turn off NB MCE reporting only when it was off before
2368
			 */
2369
			if (!s->flags.nb_mce_enable)
2370
				reg->l &= ~MSR_MCGCTL_NBE;
2371 2372 2373 2374 2375 2376 2377 2378 2379
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2380
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2381
				       struct pci_dev *F3)
2382
{
2383
	bool ret = true;
B
Borislav Petkov 已提交
2384
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2385

2386 2387 2388 2389 2390
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2391
	amd64_read_pci_cfg(F3, NBCTL, &value);
2392

2393 2394
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2395 2396

	value |= mask;
B
Borislav Petkov 已提交
2397
	amd64_write_pci_cfg(F3, NBCTL, value);
2398

2399
	amd64_read_pci_cfg(F3, NBCFG, &value);
2400

2401 2402
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2403

2404
	if (!(value & NBCFG_ECC_ENABLE)) {
2405
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2406

2407
		s->flags.nb_ecc_prev = 0;
2408

2409
		/* Attempt to turn on DRAM ECC Enable */
2410 2411
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2412

2413
		amd64_read_pci_cfg(F3, NBCFG, &value);
2414

2415
		if (!(value & NBCFG_ECC_ENABLE)) {
2416 2417
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2418
			ret = false;
2419
		} else {
2420
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2421
		}
2422
	} else {
2423
		s->flags.nb_ecc_prev = 1;
2424
	}
2425

2426 2427
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2428

2429
	return ret;
2430 2431
}

2432
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2433
					struct pci_dev *F3)
2434
{
B
Borislav Petkov 已提交
2435 2436
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2437

2438
	if (!s->nbctl_valid)
2439 2440
		return;

B
Borislav Petkov 已提交
2441
	amd64_read_pci_cfg(F3, NBCTL, &value);
2442
	value &= ~mask;
2443
	value |= s->old_nbctl;
2444

B
Borislav Petkov 已提交
2445
	amd64_write_pci_cfg(F3, NBCTL, value);
2446

2447 2448
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2449 2450 2451
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2452 2453 2454
	}

	/* restore the NB Enable MCGCTL bit */
2455
	if (toggle_ecc_err_reporting(s, nid, OFF))
2456
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2457 2458 2459
}

/*
2460 2461 2462 2463
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2464
 */
2465 2466 2467 2468 2469
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2470

2471
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2472 2473
{
	u32 value;
2474
	u8 ecc_en = 0;
2475
	bool nb_mce_en = false;
2476

2477
	amd64_read_pci_cfg(F3, NBCFG, &value);
2478

2479
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2480
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2481

2482
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2483
	if (!nb_mce_en)
2484 2485 2486
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2487

2488 2489 2490 2491 2492
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2493 2494
}

2495
static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2496
{
2497
	struct amd64_pvt *pvt = mci->pvt_info;
2498
	int rc;
2499

2500 2501 2502
	rc = amd64_create_sysfs_dbg_files(mci);
	if (rc < 0)
		return rc;
2503

2504
	if (pvt->fam >= 0x10) {
2505 2506 2507 2508 2509 2510 2511
		rc = amd64_create_sysfs_inject_files(mci);
		if (rc < 0)
			return rc;
	}

	return 0;
}
2512

2513 2514
static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
{
2515 2516
	struct amd64_pvt *pvt = mci->pvt_info;

2517
	amd64_remove_sysfs_dbg_files(mci);
2518

2519
	if (pvt->fam >= 0x10)
2520
		amd64_remove_sysfs_inject_files(mci);
2521 2522
}

2523 2524
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
2525 2526 2527 2528 2529 2530
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2531
	if (pvt->nbcap & NBCAP_SECDED)
2532 2533
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2534
	if (pvt->nbcap & NBCAP_CHIPKILL)
2535 2536 2537 2538 2539
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2540
	mci->ctl_name		= fam->ctl_name;
2541
	mci->dev_name		= pci_name(pvt->F2);
2542 2543 2544 2545 2546 2547 2548
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

2549 2550 2551 2552
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2553
{
2554 2555
	struct amd64_family_type *fam_type = NULL;

2556
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
2557
	pvt->stepping	= boot_cpu_data.x86_mask;
2558 2559 2560 2561
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
2562
	case 0xf:
2563
		fam_type		= &amd64_family_types[K8_CPUS];
2564
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2565
		break;
2566

2567
	case 0x10:
2568
		fam_type		= &amd64_family_types[F10_CPUS];
2569
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2570 2571 2572
		break;

	case 0x15:
2573 2574 2575 2576 2577 2578
		if (pvt->model == 0x30) {
			fam_type	= &amd64_family_types[F15_M30H_CPUS];
			pvt->ops	= &amd64_family_types[F15_M30H_CPUS].ops;
			break;
		}

2579 2580
		fam_type		= &amd64_family_types[F15_CPUS];
		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
2581 2582
		break;

2583 2584 2585 2586 2587
	case 0x16:
		fam_type		= &amd64_family_types[F16_CPUS];
		pvt->ops		= &amd64_family_types[F16_CPUS].ops;
		break;

2588
	default:
2589
		amd64_err("Unsupported family!\n");
2590
		return NULL;
2591
	}
2592

2593
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2594
		     (pvt->fam == 0xf ?
2595 2596 2597
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2598
	return fam_type;
2599 2600
}

2601
static int amd64_init_one_instance(struct pci_dev *F2)
2602 2603
{
	struct amd64_pvt *pvt = NULL;
2604
	struct amd64_family_type *fam_type = NULL;
2605
	struct mem_ctl_info *mci = NULL;
2606
	struct edac_mc_layer layers[2];
2607
	int err = 0, ret;
2608
	u16 nid = amd_get_node_id(F2);
2609 2610 2611 2612

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2613
		goto err_ret;
2614

2615
	pvt->mc_node_id	= nid;
2616
	pvt->F2 = F2;
2617

2618
	ret = -EINVAL;
2619 2620
	fam_type = amd64_per_family_init(pvt);
	if (!fam_type)
2621 2622
		goto err_free;

2623
	ret = -ENODEV;
2624
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2625 2626 2627
	if (err)
		goto err_free;

2628
	read_mc_regs(pvt);
2629 2630 2631 2632

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2633
	 * tables in the 'mci' structure.
2634
	 */
2635
	ret = -EINVAL;
2636 2637
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2638
		goto err_siblings;
2639 2640

	ret = -ENOMEM;
2641 2642 2643 2644
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
2645 2646 2647 2648 2649 2650 2651

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
	layers[1].size = 2;
2652
	layers[1].is_virt_csrow = false;
2653

2654
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2655
	if (!mci)
2656
		goto err_siblings;
2657 2658

	mci->pvt_info = pvt;
2659
	mci->pdev = &pvt->F2->dev;
2660

2661
	setup_mci_misc_attrs(mci, fam_type);
2662 2663

	if (init_csrows(mci))
2664 2665 2666 2667
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
2668
		edac_dbg(1, "failed edac_mc_add_mc()\n");
2669 2670
		goto err_add_mc;
	}
2671
	if (set_mc_sysfs_attrs(mci)) {
2672
		edac_dbg(1, "failed edac_mc_add_mc()\n");
2673 2674
		goto err_add_sysfs;
	}
2675

2676 2677 2678 2679 2680 2681
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2682 2683 2684 2685
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2686 2687
	return 0;

2688 2689
err_add_sysfs:
	edac_mc_del_mc(mci->pdev);
2690 2691 2692
err_add_mc:
	edac_mc_free(mci);

2693 2694
err_siblings:
	free_mc_sibling_devs(pvt);
2695

2696 2697
err_free:
	kfree(pvt);
2698

2699
err_ret:
2700 2701 2702
	return ret;
}

2703 2704
static int amd64_probe_one_instance(struct pci_dev *pdev,
				    const struct pci_device_id *mc_type)
2705
{
2706
	u16 nid = amd_get_node_id(pdev);
2707
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2708
	struct ecc_settings *s;
2709
	int ret = 0;
2710 2711

	ret = pci_enable_device(pdev);
2712
	if (ret < 0) {
2713
		edac_dbg(0, "ret=%d\n", ret);
2714 2715
		return -EIO;
	}
2716

2717 2718 2719
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2720
		goto err_out;
2721 2722 2723

	ecc_stngs[nid] = s;

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

	ret = amd64_init_one_instance(pdev);
2737
	if (ret < 0) {
2738
		amd64_err("Error probing instance: %d\n", nid);
2739 2740
		restore_ecc_error_reporting(s, nid, F3);
	}
2741 2742

	return ret;
2743 2744 2745 2746 2747 2748 2749

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2750 2751
}

2752
static void amd64_remove_one_instance(struct pci_dev *pdev)
2753 2754 2755
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2756
	u16 nid = amd_get_node_id(pdev);
2757 2758
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2759

2760
	mci = find_mci_by_dev(&pdev->dev);
2761 2762
	WARN_ON(!mci);

2763
	del_mc_sysfs_attrs(mci);
2764 2765 2766 2767 2768 2769 2770
	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2771
	restore_ecc_error_reporting(s, nid, F3);
2772

2773
	free_mc_sibling_devs(pvt);
2774

2775 2776 2777 2778
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2779 2780
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2781

2782
	/* Free the EDAC CORE resources */
2783
	mci->pvt_info = NULL;
2784
	mcis[nid] = NULL;
2785 2786

	kfree(pvt);
2787 2788 2789 2790 2791 2792 2793 2794
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
2795
static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2812 2813 2814 2815 2816 2817 2818 2819
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2820 2821 2822 2823 2824 2825 2826 2827
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2828 2829 2830 2831 2832 2833 2834 2835
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_16H_NB_F2,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2836

2837 2838 2839 2840 2841 2842
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2843
	.probe		= amd64_probe_one_instance,
2844
	.remove		= amd64_remove_one_instance,
2845 2846 2847
	.id_table	= amd64_pci_table,
};

2848
static void setup_pci_device(void)
2849 2850 2851 2852 2853 2854 2855
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

2856
	mci = mcis[0];
2857 2858 2859 2860
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
2861
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
2875
	int err = -ENODEV;
2876

2877
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2878 2879 2880

	opstate_init();

2881
	if (amd_cache_northbridges() < 0)
2882
		goto err_ret;
2883

2884
	err = -ENOMEM;
2885 2886
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2887
	if (!(mcis && ecc_stngs))
2888
		goto err_free;
2889

2890
	msrs = msrs_alloc();
2891
	if (!msrs)
2892
		goto err_free;
2893

2894 2895
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2896
		goto err_pci;
2897

2898
	err = -ENODEV;
2899 2900
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
2901

2902 2903
	setup_pci_device();
	return 0;
2904

2905
err_no_instances:
2906
	pci_unregister_driver(&amd64_pci_driver);
2907

2908 2909 2910
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2911

2912 2913 2914 2915 2916 2917 2918
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

2919
err_ret:
2920 2921 2922 2923 2924 2925 2926 2927 2928
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
2929

2930 2931 2932
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2933 2934 2935
	kfree(mcis);
	mcis = NULL;

2936 2937
	msrs_free(msrs);
	msrs = NULL;
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");