rt.c 48.4 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#include "sched.h"

#include <linux/slab.h>

10 11
int sched_rr_timeslice = RR_TIMESLICE;

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

struct rt_bandwidth def_rt_bandwidth;

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

	raw_spin_lock_init(&rt_b->rt_runtime_lock);

	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	raw_spin_lock(&rt_b->rt_runtime_lock);
	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
	raw_spin_unlock(&rt_b->rt_runtime_lock);
}

void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

#if defined CONFIG_SMP
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
	plist_head_init(&rt_rq->pushable_tasks);
#endif
82 83
	/* We start is dequeued state, because no RT tasks are queued */
	rt_rq->rt_queued = 0;
84 85 86 87 88 89 90

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
	rt_rq->rt_runtime = 0;
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}

91
#ifdef CONFIG_RT_GROUP_SCHED
92 93 94 95
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
96 97 98

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

99 100
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
101 102 103
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
104 105 106 107 108 109 110 111 112 113 114 115 116
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

117 118 119 120 121 122 123
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = rt_se->rt_rq;

	return rt_rq->rq;
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
void free_rt_sched_group(struct task_group *tg)
{
	int i;

	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
	rt_rq->tg = tg;

	tg->rt_rq[cpu] = rt_rq;
	tg->rt_se[cpu] = rt_se;

	if (!rt_se)
		return;

	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

	rt_se->my_q = rt_rq;
	rt_se->parent = parent;
	INIT_LIST_HEAD(&rt_se->run_list);
}

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);

	for_each_possible_cpu(i) {
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_rq)
			goto err;

		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_se)
			goto err_free_rq;

		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
	}

	return 1;

err_free_rq:
	kfree(rt_rq);
err:
	return 0;
}

209 210
#else /* CONFIG_RT_GROUP_SCHED */

211 212
#define rt_entity_is_task(rt_se) (1)

213 214 215 216 217
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

218 219 220 221 222
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

223
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
224 225
{
	struct task_struct *p = rt_task_of(rt_se);
226 227 228 229 230 231 232

	return task_rq(p);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct rq *rq = rq_of_rt_se(rt_se);
233 234 235 236

	return &rq->rt;
}

237 238 239 240 241 242
void free_rt_sched_group(struct task_group *tg) { }

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}
243 244
#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
245
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
246

247 248
static int pull_rt_task(struct rq *this_rq);

P
Peter Zijlstra 已提交
249 250 251 252 253 254
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
	/* Try to pull RT tasks here if we lower this rq's prio */
	return rq->rt.highest_prio.curr > prev->prio;
}

255
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
256
{
257
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
258
}
I
Ingo Molnar 已提交
259

S
Steven Rostedt 已提交
260 261
static inline void rt_set_overload(struct rq *rq)
{
262 263 264
	if (!rq->online)
		return;

265
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
266 267 268 269 270 271
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
P
Peter Zijlstra 已提交
272 273
	 *
	 * Matched by the barrier in pull_rt_task().
S
Steven Rostedt 已提交
274
	 */
P
Peter Zijlstra 已提交
275
	smp_wmb();
276
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
277
}
I
Ingo Molnar 已提交
278

S
Steven Rostedt 已提交
279 280
static inline void rt_clear_overload(struct rq *rq)
{
281 282 283
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
284
	/* the order here really doesn't matter */
285
	atomic_dec(&rq->rd->rto_count);
286
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
287
}
288

289
static void update_rt_migration(struct rt_rq *rt_rq)
290
{
291
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
292 293 294
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
295
		}
296 297 298
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
299
	}
300
}
S
Steven Rostedt 已提交
301

302 303
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
304 305
	struct task_struct *p;

306 307 308
	if (!rt_entity_is_task(rt_se))
		return;

309
	p = rt_task_of(rt_se);
310 311 312
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
313
	if (p->nr_cpus_allowed > 1)
314 315 316 317 318 319 320
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
321 322
	struct task_struct *p;

323 324 325
	if (!rt_entity_is_task(rt_se))
		return;

326
	p = rt_task_of(rt_se);
327 328 329
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
330
	if (p->nr_cpus_allowed > 1)
331 332 333 334 335
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

336 337 338 339 340
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

P
Peter Zijlstra 已提交
341 342 343 344 345 346 347 348 349
static inline void set_post_schedule(struct rq *rq)
{
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
}

350 351 352 353 354
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
355 356 357 358

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
359 360 361 362 363 364
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

365 366 367 368 369 370 371
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
372 373
}

374 375
#else

376
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
377
{
P
Peter Zijlstra 已提交
378 379
}

380 381 382 383
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

384
static inline
385 386 387 388
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

389
static inline
390 391 392
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
393

P
Peter Zijlstra 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
	return false;
}

static inline int pull_rt_task(struct rq *this_rq)
{
	return 0;
}

static inline void set_post_schedule(struct rq *rq)
{
}
S
Steven Rostedt 已提交
407 408
#endif /* CONFIG_SMP */

409 410 411
static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
static void dequeue_top_rt_rq(struct rt_rq *rt_rq);

P
Peter Zijlstra 已提交
412 413 414 415 416
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

417
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
418

P
Peter Zijlstra 已提交
419
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
420 421
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
422
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
423

P
Peter Zijlstra 已提交
424 425 426 427 428 429
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
430 431
}

C
Cheng Xu 已提交
432 433
typedef struct task_group *rt_rq_iter_t;

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
451

P
Peter Zijlstra 已提交
452 453 454 455 456 457 458 459
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

460
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
461 462
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
463
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
464
{
465
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
466
	struct rq *rq = rq_of_rt_rq(rt_rq);
467 468
	struct sched_rt_entity *rt_se;

469
	int cpu = cpu_of(rq);
470 471

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
472

473
	if (rt_rq->rt_nr_running) {
474 475 476
		if (!rt_se)
			enqueue_top_rt_rq(rt_rq);
		else if (!on_rt_rq(rt_se))
477
			enqueue_rt_entity(rt_se, false);
478

479
		if (rt_rq->highest_prio.curr < curr->prio)
480
			resched_curr(rq);
P
Peter Zijlstra 已提交
481 482 483
	}
}

P
Peter Zijlstra 已提交
484
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
485
{
486
	struct sched_rt_entity *rt_se;
487
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
488

489
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
490

491 492 493
	if (!rt_se)
		dequeue_top_rt_rq(rt_rq);
	else if (on_rt_rq(rt_se))
P
Peter Zijlstra 已提交
494 495 496
		dequeue_rt_entity(rt_se);
}

497 498 499 500 501
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

P
Peter Zijlstra 已提交
502 503 504 505 506 507 508 509 510 511 512 513
static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

514
#ifdef CONFIG_SMP
515
static inline const struct cpumask *sched_rt_period_mask(void)
516
{
N
Nathan Zimmer 已提交
517
	return this_rq()->rd->span;
518
}
P
Peter Zijlstra 已提交
519
#else
520
static inline const struct cpumask *sched_rt_period_mask(void)
521
{
522
	return cpu_online_mask;
523 524
}
#endif
P
Peter Zijlstra 已提交
525

526 527
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
528
{
529 530
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
531

P
Peter Zijlstra 已提交
532 533 534 535 536
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

537
#else /* !CONFIG_RT_GROUP_SCHED */
538 539 540

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
541 542 543 544 545 546
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
547 548
}

C
Cheng Xu 已提交
549 550 551 552 553
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

P
Peter Zijlstra 已提交
554 555 556 557 558 559 560 561
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
562
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
563
{
564 565 566 567 568 569
	struct rq *rq = rq_of_rt_rq(rt_rq);

	if (!rt_rq->rt_nr_running)
		return;

	enqueue_top_rt_rq(rt_rq);
570
	resched_curr(rq);
P
Peter Zijlstra 已提交
571 572
}

P
Peter Zijlstra 已提交
573
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
574
{
575
	dequeue_top_rt_rq(rt_rq);
P
Peter Zijlstra 已提交
576 577
}

578 579 580 581 582
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}

583
static inline const struct cpumask *sched_rt_period_mask(void)
584
{
585
	return cpu_online_mask;
586 587 588 589 590 591 592 593
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
594 595 596 597 598
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

599
#endif /* CONFIG_RT_GROUP_SCHED */
600

601 602 603 604 605 606 607 608
bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

	return (hrtimer_active(&rt_b->rt_period_timer) ||
		rt_rq->rt_time < rt_b->rt_runtime);
}

P
Peter Zijlstra 已提交
609
#ifdef CONFIG_SMP
610 611 612
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
613
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
614 615
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
616
	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
P
Peter Zijlstra 已提交
617 618 619
	int i, weight, more = 0;
	u64 rt_period;

620
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
621

622
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
623
	rt_period = ktime_to_ns(rt_b->rt_period);
624
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
625 626 627 628 629 630
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

631
		raw_spin_lock(&iter->rt_runtime_lock);
632 633 634 635 636
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
637 638 639
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

640 641 642 643
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
644 645
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
646
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
647 648 649 650 651 652
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
653
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
654 655 656
				break;
			}
		}
P
Peter Zijlstra 已提交
657
next:
658
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
659
	}
660
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
661 662 663

	return more;
}
P
Peter Zijlstra 已提交
664

665 666 667
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
668 669 670
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
671
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
672 673 674 675 676
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
677
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
678 679 680 681
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

682 683
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
684 685 686 687 688
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
689 690 691
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
692
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
693

694 695 696 697 698
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
699 700
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

701 702 703
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
704
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
705 706 707
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

708 709 710
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
711
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
712 713
				continue;

714
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
715 716 717 718 719 720 721 722
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
723
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
724 725 726 727 728

			if (!want)
				break;
		}

729
		raw_spin_lock(&rt_rq->rt_runtime_lock);
730 731 732 733
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
734 735
		BUG_ON(want);
balanced:
736 737 738 739
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
740
		rt_rq->rt_runtime = RUNTIME_INF;
741
		rt_rq->rt_throttled = 0;
742 743
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
744 745 746

		/* Make rt_rq available for pick_next_task() */
		sched_rt_rq_enqueue(rt_rq);
P
Peter Zijlstra 已提交
747 748 749 750 751
	}
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
752
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
753 754 755 756 757
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

758 759 760
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
761
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
762 763
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

764 765
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
766 767
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
768
		rt_rq->rt_throttled = 0;
769 770
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
771 772 773
	}
}

774 775 776 777
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

778 779 780
	if (!sched_feat(RT_RUNTIME_SHARE))
		return more;

781
	if (rt_rq->rt_time > rt_rq->rt_runtime) {
782
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
783
		more = do_balance_runtime(rt_rq);
784
		raw_spin_lock(&rt_rq->rt_runtime_lock);
785 786 787 788
	}

	return more;
}
789
#else /* !CONFIG_SMP */
790 791 792 793
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
794
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
795

796 797
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
798
	int i, idle = 1, throttled = 0;
799
	const struct cpumask *span;
800 801

	span = sched_rt_period_mask();
802 803 804 805 806 807 808 809 810 811 812 813 814
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * FIXME: isolated CPUs should really leave the root task group,
	 * whether they are isolcpus or were isolated via cpusets, lest
	 * the timer run on a CPU which does not service all runqueues,
	 * potentially leaving other CPUs indefinitely throttled.  If
	 * isolation is really required, the user will turn the throttle
	 * off to kill the perturbations it causes anyway.  Meanwhile,
	 * this maintains functionality for boot and/or troubleshooting.
	 */
	if (rt_b == &root_task_group.rt_bandwidth)
		span = cpu_online_mask;
#endif
815
	for_each_cpu(i, span) {
816 817 818 819
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

820
		raw_spin_lock(&rq->lock);
821 822 823
		if (rt_rq->rt_time) {
			u64 runtime;

824
			raw_spin_lock(&rt_rq->rt_runtime_lock);
825 826 827 828 829 830 831
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
832 833 834 835 836 837 838

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
839 840 841
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
842
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
843
		} else if (rt_rq->rt_nr_running) {
844
			idle = 0;
845 846 847
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
848 849
		if (rt_rq->rt_throttled)
			throttled = 1;
850 851 852

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
853
		raw_spin_unlock(&rq->lock);
854 855
	}

856 857 858
	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
		return 1;

859 860
	return idle;
}
P
Peter Zijlstra 已提交
861

P
Peter Zijlstra 已提交
862 863
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
864
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
865 866 867
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
868
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
869 870 871 872 873
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
874
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
875
{
P
Peter Zijlstra 已提交
876
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
877 878

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
879
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
880

881
	if (runtime >= sched_rt_period(rt_rq))
P
Peter Zijlstra 已提交
882 883
		return 0;

884 885 886 887
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
888

P
Peter Zijlstra 已提交
889
	if (rt_rq->rt_time > runtime) {
890 891 892 893 894 895 896 897
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		/*
		 * Don't actually throttle groups that have no runtime assigned
		 * but accrue some time due to boosting.
		 */
		if (likely(rt_b->rt_runtime)) {
			rt_rq->rt_throttled = 1;
J
John Stultz 已提交
898
			printk_deferred_once("sched: RT throttling activated\n");
899 900 901 902 903 904 905 906 907
		} else {
			/*
			 * In case we did anyway, make it go away,
			 * replenishment is a joke, since it will replenish us
			 * with exactly 0 ns.
			 */
			rt_rq->rt_time = 0;
		}

P
Peter Zijlstra 已提交
908
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
909
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
910 911
			return 1;
		}
P
Peter Zijlstra 已提交
912 913 914 915 916
	}

	return 0;
}

I
Ingo Molnar 已提交
917 918 919 920
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
921
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
922 923
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
924
	struct sched_rt_entity *rt_se = &curr->rt;
I
Ingo Molnar 已提交
925 926
	u64 delta_exec;

P
Peter Zijlstra 已提交
927
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
928 929
		return;

930
	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
931 932
	if (unlikely((s64)delta_exec <= 0))
		return;
I
Ingo Molnar 已提交
933

934 935
	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
936 937

	curr->se.sum_exec_runtime += delta_exec;
938 939
	account_group_exec_runtime(curr, delta_exec);

940
	curr->se.exec_start = rq_clock_task(rq);
941
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
942

943 944
	sched_rt_avg_update(rq, delta_exec);

945 946 947
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
948
	for_each_sched_rt_entity(rt_se) {
949
		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
D
Dhaval Giani 已提交
950

951
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
952
			raw_spin_lock(&rt_rq->rt_runtime_lock);
953 954
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
955
				resched_curr(rq);
956
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
957
		}
D
Dhaval Giani 已提交
958
	}
I
Ingo Molnar 已提交
959 960
}

961 962 963 964 965 966 967 968 969 970 971 972
static void
dequeue_top_rt_rq(struct rt_rq *rt_rq)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);

	BUG_ON(&rq->rt != rt_rq);

	if (!rt_rq->rt_queued)
		return;

	BUG_ON(!rq->nr_running);

973
	sub_nr_running(rq, rt_rq->rt_nr_running);
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	rt_rq->rt_queued = 0;
}

static void
enqueue_top_rt_rq(struct rt_rq *rt_rq)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);

	BUG_ON(&rq->rt != rt_rq);

	if (rt_rq->rt_queued)
		return;
	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
		return;

989
	add_nr_running(rq, rt_rq->rt_nr_running);
990 991 992
	rt_rq->rt_queued = 1;
}

993
#if defined CONFIG_SMP
994

995 996
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
997
{
G
Gregory Haskins 已提交
998
	struct rq *rq = rq_of_rt_rq(rt_rq);
999

1000 1001 1002 1003 1004 1005 1006
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Change rq's cpupri only if rt_rq is the top queue.
	 */
	if (&rq->rt != rt_rq)
		return;
#endif
1007 1008
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1009
}
1010

1011 1012 1013 1014
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
1015

1016 1017 1018 1019 1020 1021 1022
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Change rq's cpupri only if rt_rq is the top queue.
	 */
	if (&rq->rt != rt_rq)
		return;
#endif
1023 1024
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1025 1026
}

1027 1028
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1029
static inline
1030 1031 1032 1033 1034
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
1035

1036
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
1053
	if (rt_rq->rt_nr_running) {
1054

1055
		WARN_ON(prio < prev_prio);
1056

1057
		/*
1058 1059
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
1060
		 */
1061
		if (prio == prev_prio) {
1062 1063 1064
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
1065
				sched_find_first_bit(array->bitmap);
1066 1067
		}

1068
	} else
1069
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1070

1071 1072
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
1073

1074 1075 1076 1077 1078 1079
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1080

1081
#ifdef CONFIG_RT_GROUP_SCHED
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
1096 1097 1098 1099
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
static inline
unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
{
	struct rt_rq *group_rq = group_rt_rq(rt_se);

	if (group_rq)
		return group_rq->rt_nr_running;
	else
		return 1;
}

1126 1127 1128 1129 1130 1131
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
1132
	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
1144
	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1145 1146 1147 1148

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
1149 1150
}

1151
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
1152
{
P
Peter Zijlstra 已提交
1153 1154 1155
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
1156
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
1157

1158 1159 1160 1161 1162 1163 1164
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
1165
		return;
1166

1167 1168 1169 1170
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
1171
	__set_bit(rt_se_prio(rt_se), array->bitmap);
1172

P
Peter Zijlstra 已提交
1173 1174 1175
	inc_rt_tasks(rt_se, rt_rq);
}

1176
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
1192
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1193
{
1194
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
1195

1196 1197 1198 1199 1200
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

1201 1202
	dequeue_top_rt_rq(rt_rq_of_se(back));

1203 1204
	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
1205 1206 1207 1208
			__dequeue_rt_entity(rt_se);
	}
}

1209
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1210
{
1211 1212
	struct rq *rq = rq_of_rt_se(rt_se);

1213 1214
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
1215
		__enqueue_rt_entity(rt_se, head);
1216
	enqueue_top_rt_rq(&rq->rt);
1217 1218 1219 1220
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
1221 1222
	struct rq *rq = rq_of_rt_se(rt_se);

1223 1224 1225 1226 1227 1228
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
1229
			__enqueue_rt_entity(rt_se, false);
1230
	}
1231
	enqueue_top_rt_rq(&rq->rt);
I
Ingo Molnar 已提交
1232 1233 1234 1235 1236
}

/*
 * Adding/removing a task to/from a priority array:
 */
1237
static void
1238
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
1239 1240 1241
{
	struct sched_rt_entity *rt_se = &p->rt;

1242
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
1243 1244
		rt_se->timeout = 0;

1245
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1246

1247
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1248
		enqueue_pushable_task(rq, p);
P
Peter Zijlstra 已提交
1249 1250
}

1251
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1252
{
P
Peter Zijlstra 已提交
1253
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
1254

1255
	update_curr_rt(rq);
1256
	dequeue_rt_entity(rt_se);
1257

1258
	dequeue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1259 1260 1261
}

/*
1262 1263
 * Put task to the head or the end of the run list without the overhead of
 * dequeue followed by enqueue.
I
Ingo Molnar 已提交
1264
 */
1265 1266
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
1267
{
1268
	if (on_rt_rq(rt_se)) {
1269 1270 1271 1272 1273 1274 1275
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
1276
	}
P
Peter Zijlstra 已提交
1277 1278
}

1279
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
1280
{
P
Peter Zijlstra 已提交
1281 1282
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1283

P
Peter Zijlstra 已提交
1284 1285
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
1286
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
1287
	}
I
Ingo Molnar 已提交
1288 1289
}

P
Peter Zijlstra 已提交
1290
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
1291
{
1292
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
1293 1294
}

1295
#ifdef CONFIG_SMP
1296 1297
static int find_lowest_rq(struct task_struct *task);

1298
static int
1299
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1300
{
1301 1302
	struct task_struct *curr;
	struct rq *rq;
1303 1304 1305 1306 1307

	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1308 1309 1310 1311 1312
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1313
	/*
1314
	 * If the current task on @p's runqueue is an RT task, then
1315 1316 1317 1318
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1319 1320 1321 1322 1323 1324 1325 1326 1327
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1328 1329 1330 1331 1332 1333
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1334
	 */
1335
	if (curr && unlikely(rt_task(curr)) &&
1336
	    (curr->nr_cpus_allowed < 2 ||
1337
	     curr->prio <= p->prio)) {
1338
		int target = find_lowest_rq(p);
1339

1340 1341
		if (target != -1)
			cpu = target;
1342
	}
1343
	rcu_read_unlock();
1344

1345
out:
1346
	return cpu;
1347
}
1348 1349 1350

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
1351 1352 1353 1354 1355 1356
	/*
	 * Current can't be migrated, useless to reschedule,
	 * let's hope p can move out.
	 */
	if (rq->curr->nr_cpus_allowed == 1 ||
	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1357 1358
		return;

1359 1360 1361 1362
	/*
	 * p is migratable, so let's not schedule it and
	 * see if it is pushed or pulled somewhere else.
	 */
1363
	if (p->nr_cpus_allowed != 1
1364 1365
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1366

1367 1368 1369 1370 1371 1372
	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
1373
	resched_curr(rq);
1374 1375
}

1376 1377
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1378 1379 1380
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1381
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1382
{
1383
	if (p->prio < rq->curr->prio) {
1384
		resched_curr(rq);
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1401
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1402
		check_preempt_equal_prio(rq, p);
1403
#endif
I
Ingo Molnar 已提交
1404 1405
}

P
Peter Zijlstra 已提交
1406 1407
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1408
{
P
Peter Zijlstra 已提交
1409 1410
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1411 1412 1413 1414
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1415
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1416 1417

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1418
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1419

P
Peter Zijlstra 已提交
1420 1421
	return next;
}
I
Ingo Molnar 已提交
1422

1423
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1424 1425 1426
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
1427
	struct rt_rq *rt_rq  = &rq->rt;
P
Peter Zijlstra 已提交
1428 1429 1430

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1431
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1432 1433 1434 1435
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1436
	p->se.exec_start = rq_clock_task(rq);
1437 1438 1439 1440

	return p;
}

1441 1442
static struct task_struct *
pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1443
{
1444 1445 1446
	struct task_struct *p;
	struct rt_rq *rt_rq = &rq->rt;

1447
	if (need_pull_rt_task(rq, prev)) {
1448
		pull_rt_task(rq);
1449 1450
		/*
		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1451 1452
		 * means a dl or stop task can slip in, in which case we need
		 * to re-start task selection.
1453
		 */
1454
		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1455
			     rq->dl.dl_nr_running))
1456 1457
			return RETRY_TASK;
	}
1458

1459 1460 1461 1462 1463 1464 1465
	/*
	 * We may dequeue prev's rt_rq in put_prev_task().
	 * So, we update time before rt_nr_running check.
	 */
	if (prev->sched_class == &rt_sched_class)
		update_curr_rt(rq);

1466
	if (!rt_rq->rt_queued)
1467 1468
		return NULL;

1469
	put_prev_task(rq, prev);
1470 1471

	p = _pick_next_task_rt(rq);
1472 1473

	/* The running task is never eligible for pushing */
1474
	dequeue_pushable_task(rq, p);
1475

P
Peter Zijlstra 已提交
1476
	set_post_schedule(rq);
1477

P
Peter Zijlstra 已提交
1478
	return p;
I
Ingo Molnar 已提交
1479 1480
}

1481
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1482
{
1483
	update_curr_rt(rq);
1484 1485 1486 1487 1488

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
1489
	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1490
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1491 1492
}

1493
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1494

S
Steven Rostedt 已提交
1495 1496 1497
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

1498 1499 1500
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1501
	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1502 1503 1504 1505
		return 1;
	return 0;
}

1506 1507 1508 1509 1510
/*
 * Return the highest pushable rq's task, which is suitable to be executed
 * on the cpu, NULL otherwise
 */
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1511
{
1512 1513
	struct plist_head *head = &rq->rt.pushable_tasks;
	struct task_struct *p;
1514

1515 1516
	if (!has_pushable_tasks(rq))
		return NULL;
1517

1518 1519 1520
	plist_for_each_entry(p, head, pushable_tasks) {
		if (pick_rt_task(rq, p, cpu))
			return p;
1521 1522
	}

1523
	return NULL;
S
Steven Rostedt 已提交
1524 1525
}

1526
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1527

G
Gregory Haskins 已提交
1528 1529 1530
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1531
	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
G
Gregory Haskins 已提交
1532 1533
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1534

1535 1536 1537 1538
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1539
	if (task->nr_cpus_allowed == 1)
1540
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1541

1542 1543
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1553
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1554 1555 1556 1557 1558 1559
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1560 1561
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1562

1563
	rcu_read_lock();
R
Rusty Russell 已提交
1564 1565 1566
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1567

R
Rusty Russell 已提交
1568 1569 1570 1571 1572
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1573 1574
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1575
				return this_cpu;
1576
			}
R
Rusty Russell 已提交
1577 1578 1579

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1580 1581
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1582
				return best_cpu;
1583
			}
G
Gregory Haskins 已提交
1584 1585
		}
	}
1586
	rcu_read_unlock();
G
Gregory Haskins 已提交
1587 1588 1589 1590 1591 1592

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1593 1594 1595 1596 1597 1598 1599
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1600 1601 1602
}

/* Will lock the rq it finds */
1603
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1604 1605 1606
{
	struct rq *lowest_rq = NULL;
	int tries;
1607
	int cpu;
S
Steven Rostedt 已提交
1608

1609 1610 1611
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1612
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1613 1614
			break;

1615 1616
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1617
		/* if the prio of this runqueue changed, try again */
1618
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1619 1620 1621 1622 1623 1624
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1625
			if (unlikely(task_rq(task) != rq ||
1626
				     !cpumask_test_cpu(lowest_rq->cpu,
1627
						       tsk_cpus_allowed(task)) ||
1628
				     task_running(rq, task) ||
1629
				     !task_on_rq_queued(task))) {
1630

1631
				double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1632 1633 1634 1635 1636 1637
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1638
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1639 1640 1641
			break;

		/* try again */
1642
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1643 1644 1645 1646 1647 1648
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
1661
	BUG_ON(p->nr_cpus_allowed <= 1);
1662

1663
	BUG_ON(!task_on_rq_queued(p));
1664 1665 1666 1667 1668
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1669 1670 1671 1672 1673
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1674
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1675 1676 1677
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1678
	int ret = 0;
S
Steven Rostedt 已提交
1679

G
Gregory Haskins 已提交
1680 1681 1682
	if (!rq->rt.overloaded)
		return 0;

1683
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1684 1685 1686
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1687
retry:
1688
	if (unlikely(next_task == rq->curr)) {
1689
		WARN_ON(1);
S
Steven Rostedt 已提交
1690
		return 0;
1691
	}
S
Steven Rostedt 已提交
1692 1693 1694 1695 1696 1697

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1698
	if (unlikely(next_task->prio < rq->curr->prio)) {
1699
		resched_curr(rq);
S
Steven Rostedt 已提交
1700 1701 1702
		return 0;
	}

1703
	/* We might release rq lock */
S
Steven Rostedt 已提交
1704 1705 1706
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1707
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1708 1709 1710
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1711
		 * find_lock_lowest_rq releases rq->lock
1712 1713 1714 1715 1716
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1717
		 */
1718
		task = pick_next_pushable_task(rq);
1719 1720
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1721 1722 1723 1724
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1725 1726
			 */
			goto out;
S
Steven Rostedt 已提交
1727
		}
1728

1729 1730 1731 1732
		if (!task)
			/* No more tasks, just exit */
			goto out;

1733
		/*
1734
		 * Something has shifted, try again.
1735
		 */
1736 1737 1738
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1739 1740
	}

1741
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1742 1743
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1744
	ret = 1;
S
Steven Rostedt 已提交
1745

1746
	resched_curr(lowest_rq);
S
Steven Rostedt 已提交
1747

1748
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1749 1750 1751 1752

out:
	put_task_struct(next_task);

1753
	return ret;
S
Steven Rostedt 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1763 1764
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1765
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1766
	struct task_struct *p;
1767 1768
	struct rq *src_rq;

1769
	if (likely(!rt_overloaded(this_rq)))
1770 1771
		return 0;

P
Peter Zijlstra 已提交
1772 1773 1774 1775 1776 1777
	/*
	 * Match the barrier from rt_set_overloaded; this guarantees that if we
	 * see overloaded we must also see the rto_mask bit.
	 */
	smp_rmb();

1778
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1779 1780 1781 1782
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1795 1796 1797
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1798
		 * alter this_rq
1799
		 */
1800
		double_lock_balance(this_rq, src_rq);
1801 1802

		/*
1803 1804
		 * We can pull only a task, which is pushable
		 * on its rq, and no others.
1805
		 */
1806
		p = pick_highest_pushable_task(src_rq, this_cpu);
1807 1808 1809 1810 1811

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1812
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1813
			WARN_ON(p == src_rq->curr);
1814
			WARN_ON(!task_on_rq_queued(p));
1815 1816 1817 1818 1819 1820 1821

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1822
			 * current task on the run queue
1823
			 */
1824
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1825
				goto skip;
1826 1827 1828 1829 1830 1831 1832 1833 1834

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1835
			 * in another runqueue. (low likelihood
1836 1837 1838
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1839
skip:
1840
		double_unlock_balance(this_rq, src_rq);
1841 1842 1843 1844 1845
	}

	return ret;
}

1846
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1847
{
1848
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1849 1850
}

1851 1852 1853 1854
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1855
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1856
{
1857
	if (!task_running(rq, p) &&
1858
	    !test_tsk_need_resched(rq->curr) &&
1859
	    has_pushable_tasks(rq) &&
1860
	    p->nr_cpus_allowed > 1 &&
1861
	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
1862
	    (rq->curr->nr_cpus_allowed < 2 ||
1863
	     rq->curr->prio <= p->prio))
1864 1865 1866
		push_rt_tasks(rq);
}

1867
static void set_cpus_allowed_rt(struct task_struct *p,
1868
				const struct cpumask *new_mask)
1869
{
1870 1871
	struct rq *rq;
	int weight;
1872 1873 1874

	BUG_ON(!rt_task(p));

1875
	if (!task_on_rq_queued(p))
1876
		return;
1877

1878
	weight = cpumask_weight(new_mask);
1879

1880 1881 1882 1883
	/*
	 * Only update if the process changes its state from whether it
	 * can migrate or not.
	 */
1884
	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1885
		return;
1886

1887
	rq = task_rq(p);
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	/*
	 * The process used to be able to migrate OR it can now migrate
	 */
	if (weight <= 1) {
		if (!task_current(rq, p))
			dequeue_pushable_task(rq, p);
		BUG_ON(!rq->rt.rt_nr_migratory);
		rq->rt.rt_nr_migratory--;
	} else {
		if (!task_current(rq, p))
			enqueue_pushable_task(rq, p);
		rq->rt.rt_nr_migratory++;
1901
	}
1902 1903

	update_rt_migration(&rq->rt);
1904
}
1905

1906
/* Assumes rq->lock is held */
1907
static void rq_online_rt(struct rq *rq)
1908 1909 1910
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1911

P
Peter Zijlstra 已提交
1912 1913
	__enable_runtime(rq);

1914
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1915 1916 1917
}

/* Assumes rq->lock is held */
1918
static void rq_offline_rt(struct rq *rq)
1919 1920 1921
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1922

P
Peter Zijlstra 已提交
1923 1924
	__disable_runtime(rq);

1925
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1926
}
1927 1928 1929 1930 1931

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1932
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1933 1934 1935 1936 1937 1938 1939 1940
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
1941
	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
1942 1943 1944
		return;

	if (pull_rt_task(rq))
1945
		resched_curr(rq);
1946
}
1947

1948
void __init init_sched_rt_class(void)
1949 1950 1951
{
	unsigned int i;

1952
	for_each_possible_cpu(i) {
1953
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1954
					GFP_KERNEL, cpu_to_node(i));
1955
	}
1956
}
1957 1958 1959 1960 1961 1962 1963
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1964
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
1975
	if (task_on_rq_queued(p) && rq->curr != p) {
1976
#ifdef CONFIG_SMP
1977
		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
1978
		    /* Don't resched if we changed runqueues */
1979
		    push_rt_task(rq) && rq != task_rq(p))
1980 1981 1982
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
1983
			resched_curr(rq);
1984 1985 1986 1987 1988 1989 1990
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1991 1992
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1993
{
1994
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
1995 1996 1997
		return;

	if (rq->curr == p) {
1998 1999 2000 2001 2002 2003 2004 2005 2006
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
2007 2008 2009
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
2010
		 */
2011
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2012
			resched_curr(rq);
2013 2014 2015
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
2016
			resched_curr(rq);
S
Steven Rostedt 已提交
2017
#endif /* CONFIG_SMP */
2018 2019 2020 2021 2022 2023 2024
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
2025
			resched_curr(rq);
2026 2027 2028
	}
}

2029 2030 2031 2032
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

2033 2034 2035
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2036 2037 2038 2039

	if (soft != RLIM_INFINITY) {
		unsigned long next;

2040 2041 2042 2043 2044
		if (p->rt.watchdog_stamp != jiffies) {
			p->rt.timeout++;
			p->rt.watchdog_stamp = jiffies;
		}

2045
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2046
		if (p->rt.timeout > next)
2047
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2048 2049
	}
}
I
Ingo Molnar 已提交
2050

P
Peter Zijlstra 已提交
2051
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
2052
{
2053 2054
	struct sched_rt_entity *rt_se = &p->rt;

2055 2056
	update_curr_rt(rq);

2057 2058
	watchdog(rq, p);

I
Ingo Molnar 已提交
2059 2060 2061 2062 2063 2064 2065
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
2066
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
2067 2068
		return;

2069
	p->rt.time_slice = sched_rr_timeslice;
I
Ingo Molnar 已提交
2070

2071
	/*
L
Li Bin 已提交
2072 2073
	 * Requeue to the end of queue if we (and all of our ancestors) are not
	 * the only element on the queue
2074
	 */
2075 2076 2077
	for_each_sched_rt_entity(rt_se) {
		if (rt_se->run_list.prev != rt_se->run_list.next) {
			requeue_task_rt(rq, p, 0);
2078
			resched_curr(rq);
2079 2080
			return;
		}
2081
	}
I
Ingo Molnar 已提交
2082 2083
}

2084 2085 2086 2087
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

2088
	p->se.exec_start = rq_clock_task(rq);
2089 2090 2091

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
2092 2093
}

2094
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2095 2096 2097 2098 2099
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
2100
		return sched_rr_timeslice;
2101 2102 2103 2104
	else
		return 0;
}

2105
const struct sched_class rt_sched_class = {
2106
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

2116
#ifdef CONFIG_SMP
L
Li Zefan 已提交
2117 2118
	.select_task_rq		= select_task_rq_rt,

2119
	.set_cpus_allowed       = set_cpus_allowed_rt,
2120 2121
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
2122
	.post_schedule		= post_schedule_rt,
2123
	.task_woken		= task_woken_rt,
2124
	.switched_from		= switched_from_rt,
2125
#endif
I
Ingo Molnar 已提交
2126

2127
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
2128
	.task_tick		= task_tick_rt,
2129

2130 2131
	.get_rr_interval	= get_rr_interval_rt,

2132 2133
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
2134 2135

	.update_curr		= update_curr_rt,
I
Ingo Molnar 已提交
2136
};
2137 2138 2139 2140

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

2141
void print_rt_stats(struct seq_file *m, int cpu)
2142
{
C
Cheng Xu 已提交
2143
	rt_rq_iter_t iter;
2144 2145 2146
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
2147
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2148 2149 2150
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
2151
#endif /* CONFIG_SCHED_DEBUG */