rt.c 47.1 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#include "sched.h"

#include <linux/slab.h>

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

struct rt_bandwidth def_rt_bandwidth;

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

	raw_spin_lock_init(&rt_b->rt_runtime_lock);

	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	raw_spin_lock(&rt_b->rt_runtime_lock);
	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
	raw_spin_unlock(&rt_b->rt_runtime_lock);
}

void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

#if defined CONFIG_SMP
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
	plist_head_init(&rt_rq->pushable_tasks);
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
	rt_rq->rt_runtime = 0;
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}

87
#ifdef CONFIG_RT_GROUP_SCHED
88 89 90 91
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
92 93 94

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

95 96
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
97 98 99
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
100 101 102 103 104 105 106 107 108 109 110 111 112
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
void free_rt_sched_group(struct task_group *tg)
{
	int i;

	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
	rt_rq->tg = tg;

	tg->rt_rq[cpu] = rt_rq;
	tg->rt_se[cpu] = rt_se;

	if (!rt_se)
		return;

	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

	rt_se->my_q = rt_rq;
	rt_se->parent = parent;
	INIT_LIST_HEAD(&rt_se->run_list);
}

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);

	for_each_possible_cpu(i) {
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_rq)
			goto err;

		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_se)
			goto err_free_rq;

		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
	}

	return 1;

err_free_rq:
	kfree(rt_rq);
err:
	return 0;
}

198 199
#else /* CONFIG_RT_GROUP_SCHED */

200 201
#define rt_entity_is_task(rt_se) (1)

202 203 204 205 206
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

207 208 209 210 211 212 213 214 215 216 217 218 219
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

220 221 222 223 224 225
void free_rt_sched_group(struct task_group *tg) { }

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}
226 227
#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
228
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
229

230
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
231
{
232
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
233
}
I
Ingo Molnar 已提交
234

S
Steven Rostedt 已提交
235 236
static inline void rt_set_overload(struct rq *rq)
{
237 238 239
	if (!rq->online)
		return;

240
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
241 242 243 244 245 246 247 248
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
249
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
250
}
I
Ingo Molnar 已提交
251

S
Steven Rostedt 已提交
252 253
static inline void rt_clear_overload(struct rq *rq)
{
254 255 256
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
257
	/* the order here really doesn't matter */
258
	atomic_dec(&rq->rd->rto_count);
259
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
260
}
261

262
static void update_rt_migration(struct rt_rq *rt_rq)
263
{
264
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
265 266 267
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
268
		}
269 270 271
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
272
	}
273
}
S
Steven Rostedt 已提交
274

275 276
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
277 278
	struct task_struct *p;

279 280 281
	if (!rt_entity_is_task(rt_se))
		return;

282
	p = rt_task_of(rt_se);
283 284 285
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
286
	if (p->nr_cpus_allowed > 1)
287 288 289 290 291 292 293
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
294 295
	struct task_struct *p;

296 297 298
	if (!rt_entity_is_task(rt_se))
		return;

299
	p = rt_task_of(rt_se);
300 301 302
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
303
	if (p->nr_cpus_allowed > 1)
304 305 306 307 308
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

309 310 311 312 313
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

314 315 316 317 318
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
319 320 321 322

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
323 324 325 326 327 328
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

329 330 331 332 333 334 335
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
336 337
}

338 339
#else

340
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
341
{
P
Peter Zijlstra 已提交
342 343
}

344 345 346 347
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

348
static inline
349 350 351 352
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

353
static inline
354 355 356
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
357

S
Steven Rostedt 已提交
358 359
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
360 361 362 363 364
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

365
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
366

P
Peter Zijlstra 已提交
367
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
368 369
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
370
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
371

P
Peter Zijlstra 已提交
372 373 374 375 376 377
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
378 379
}

C
Cheng Xu 已提交
380 381
typedef struct task_group *rt_rq_iter_t;

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
399

400 401 402 403 404 405 406 407 408 409 410
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_add_rcu(&rt_rq->leaf_rt_rq_list,
			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_del_rcu(&rt_rq->leaf_rt_rq_list);
}

P
Peter Zijlstra 已提交
411
#define for_each_leaf_rt_rq(rt_rq, rq) \
412
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
413 414 415 416 417 418 419 420 421

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

422
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
423 424
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
425
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
426
{
427
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
428 429
	struct sched_rt_entity *rt_se;

430 431 432
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
433

434 435
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
436
			enqueue_rt_entity(rt_se, false);
437
		if (rt_rq->highest_prio.curr < curr->prio)
438
			resched_task(curr);
P
Peter Zijlstra 已提交
439 440 441
	}
}

P
Peter Zijlstra 已提交
442
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
443
{
444
	struct sched_rt_entity *rt_se;
445
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
446

447
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
448 449 450 451 452

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

470
#ifdef CONFIG_SMP
471
static inline const struct cpumask *sched_rt_period_mask(void)
472 473 474
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
475
#else
476
static inline const struct cpumask *sched_rt_period_mask(void)
477
{
478
	return cpu_online_mask;
479 480
}
#endif
P
Peter Zijlstra 已提交
481

482 483
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
484
{
485 486
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
487

P
Peter Zijlstra 已提交
488 489 490 491 492
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

493
#else /* !CONFIG_RT_GROUP_SCHED */
494 495 496

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
497 498 499 500 501 502
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
503 504
}

C
Cheng Xu 已提交
505 506 507 508 509
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

510 511 512 513 514 515 516 517
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

P
Peter Zijlstra 已提交
518 519 520 521 522 523 524 525 526 527 528
#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
529
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
530
{
531 532
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
533 534
}

P
Peter Zijlstra 已提交
535
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
536 537 538
{
}

P
Peter Zijlstra 已提交
539 540 541 542
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
543

544
static inline const struct cpumask *sched_rt_period_mask(void)
545
{
546
	return cpu_online_mask;
547 548 549 550 551 552 553 554
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
555 556 557 558 559
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

560
#endif /* CONFIG_RT_GROUP_SCHED */
561

P
Peter Zijlstra 已提交
562
#ifdef CONFIG_SMP
563 564 565
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
566
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
567 568 569 570 571 572
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

573
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
574

575
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
576
	rt_period = ktime_to_ns(rt_b->rt_period);
577
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
578 579 580 581 582 583
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

584
		raw_spin_lock(&iter->rt_runtime_lock);
585 586 587 588 589
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
590 591 592
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

593 594 595 596
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
597 598
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
599
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
600 601 602 603 604 605
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
606
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
607 608 609
				break;
			}
		}
P
Peter Zijlstra 已提交
610
next:
611
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
612
	}
613
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
614 615 616

	return more;
}
P
Peter Zijlstra 已提交
617

618 619 620
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
621 622 623
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
624
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
625 626 627 628 629
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
630
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
631 632 633 634
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

635 636
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
637 638 639 640 641
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
642 643 644
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
645
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
646

647 648 649 650 651
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
652 653
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

654 655 656
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
657
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
658 659 660
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

661 662 663
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
664
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
665 666
				continue;

667
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
668 669 670 671 672 673 674 675
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
676
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
677 678 679 680 681

			if (!want)
				break;
		}

682
		raw_spin_lock(&rt_rq->rt_runtime_lock);
683 684 685 686
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
687 688
		BUG_ON(want);
balanced:
689 690 691 692
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
693
		rt_rq->rt_runtime = RUNTIME_INF;
694
		rt_rq->rt_throttled = 0;
695 696
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
697 698 699 700 701 702 703
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

704
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
705
	__disable_runtime(rq);
706
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
707 708 709 710
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
711
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
712 713 714 715 716
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

717 718 719
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
720
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
721 722
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

723 724
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
725 726
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
727
		rt_rq->rt_throttled = 0;
728 729
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
730 731 732 733 734 735 736
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

737
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
738
	__enable_runtime(rq);
739
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
740 741
}

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
		disable_runtime(cpu_rq(cpu));
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		enable_runtime(cpu_rq(cpu));
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}

764 765 766 767
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

768 769 770
	if (!sched_feat(RT_RUNTIME_SHARE))
		return more;

771
	if (rt_rq->rt_time > rt_rq->rt_runtime) {
772
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
773
		more = do_balance_runtime(rt_rq);
774
		raw_spin_lock(&rt_rq->rt_runtime_lock);
775 776 777 778
	}

	return more;
}
779
#else /* !CONFIG_SMP */
780 781 782 783
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
784
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
785

786 787
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
788
	int i, idle = 1, throttled = 0;
789
	const struct cpumask *span;
790 791

	span = sched_rt_period_mask();
792 793 794 795 796 797 798 799 800 801 802 803 804
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * FIXME: isolated CPUs should really leave the root task group,
	 * whether they are isolcpus or were isolated via cpusets, lest
	 * the timer run on a CPU which does not service all runqueues,
	 * potentially leaving other CPUs indefinitely throttled.  If
	 * isolation is really required, the user will turn the throttle
	 * off to kill the perturbations it causes anyway.  Meanwhile,
	 * this maintains functionality for boot and/or troubleshooting.
	 */
	if (rt_b == &root_task_group.rt_bandwidth)
		span = cpu_online_mask;
#endif
805
	for_each_cpu(i, span) {
806 807 808 809
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

810
		raw_spin_lock(&rq->lock);
811 812 813
		if (rt_rq->rt_time) {
			u64 runtime;

814
			raw_spin_lock(&rt_rq->rt_runtime_lock);
815 816 817 818 819 820 821
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
822 823 824 825 826 827 828

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
829 830 831
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
832
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
833
		} else if (rt_rq->rt_nr_running) {
834
			idle = 0;
835 836 837
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
838 839
		if (rt_rq->rt_throttled)
			throttled = 1;
840 841 842

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
843
		raw_spin_unlock(&rq->lock);
844 845
	}

846 847 848
	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
		return 1;

849 850
	return idle;
}
P
Peter Zijlstra 已提交
851

P
Peter Zijlstra 已提交
852 853
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
854
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
855 856 857
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
858
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
859 860 861 862 863
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
864
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
865
{
P
Peter Zijlstra 已提交
866
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
867 868

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
869
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
870

871
	if (runtime >= sched_rt_period(rt_rq))
P
Peter Zijlstra 已提交
872 873
		return 0;

874 875 876 877
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
878

P
Peter Zijlstra 已提交
879
	if (rt_rq->rt_time > runtime) {
880 881 882 883 884 885 886
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		/*
		 * Don't actually throttle groups that have no runtime assigned
		 * but accrue some time due to boosting.
		 */
		if (likely(rt_b->rt_runtime)) {
887 888
			static bool once = false;

889
			rt_rq->rt_throttled = 1;
890 891 892 893 894

			if (!once) {
				once = true;
				printk_sched("sched: RT throttling activated\n");
			}
895 896 897 898 899 900 901 902 903
		} else {
			/*
			 * In case we did anyway, make it go away,
			 * replenishment is a joke, since it will replenish us
			 * with exactly 0 ns.
			 */
			rt_rq->rt_time = 0;
		}

P
Peter Zijlstra 已提交
904
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
905
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
906 907
			return 1;
		}
P
Peter Zijlstra 已提交
908 909 910 911 912
	}

	return 0;
}

I
Ingo Molnar 已提交
913 914 915 916
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
917
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
918 919
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
920 921
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
922 923
	u64 delta_exec;

P
Peter Zijlstra 已提交
924
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
925 926
		return;

927
	delta_exec = rq->clock_task - curr->se.exec_start;
I
Ingo Molnar 已提交
928 929
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
930

931 932
	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
933 934

	curr->se.sum_exec_runtime += delta_exec;
935 936
	account_group_exec_runtime(curr, delta_exec);

937
	curr->se.exec_start = rq->clock_task;
938
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
939

940 941
	sched_rt_avg_update(rq, delta_exec);

942 943 944
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
945 946 947
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

948
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
949
			raw_spin_lock(&rt_rq->rt_runtime_lock);
950 951 952
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
953
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
954
		}
D
Dhaval Giani 已提交
955
	}
I
Ingo Molnar 已提交
956 957
}

958
#if defined CONFIG_SMP
959

960 961
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
962
{
G
Gregory Haskins 已提交
963
	struct rq *rq = rq_of_rt_rq(rt_rq);
964

965 966
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
967
}
968

969 970 971 972
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
973

974 975
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
976 977
}

978 979
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
980
static inline
981 982 983 984 985
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
986

987
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
1004
	if (rt_rq->rt_nr_running) {
1005

1006
		WARN_ON(prio < prev_prio);
1007

1008
		/*
1009 1010
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
1011
		 */
1012
		if (prio == prev_prio) {
1013 1014 1015
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
1016
				sched_find_first_bit(array->bitmap);
1017 1018
		}

1019
	} else
1020
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1021

1022 1023
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
1024

1025 1026 1027 1028 1029 1030
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1031

1032
#ifdef CONFIG_RT_GROUP_SCHED
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
1047 1048 1049 1050
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
1089 1090
}

1091
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
1092
{
P
Peter Zijlstra 已提交
1093 1094 1095
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
1096
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
1097

1098 1099 1100 1101 1102 1103 1104
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
1105
		return;
1106

1107 1108 1109
	if (!rt_rq->rt_nr_running)
		list_add_leaf_rt_rq(rt_rq);

1110 1111 1112 1113
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
1114
	__set_bit(rt_se_prio(rt_se), array->bitmap);
1115

P
Peter Zijlstra 已提交
1116 1117 1118
	inc_rt_tasks(rt_se, rt_rq);
}

1119
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
1129 1130
	if (!rt_rq->rt_nr_running)
		list_del_leaf_rt_rq(rt_rq);
P
Peter Zijlstra 已提交
1131 1132 1133 1134 1135 1136
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
1137
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1138
{
1139
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
1140

1141 1142 1143 1144 1145 1146 1147
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
1148 1149 1150 1151
			__dequeue_rt_entity(rt_se);
	}
}

1152
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1153 1154 1155
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
1156
		__enqueue_rt_entity(rt_se, head);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
1167
			__enqueue_rt_entity(rt_se, false);
1168
	}
I
Ingo Molnar 已提交
1169 1170 1171 1172 1173
}

/*
 * Adding/removing a task to/from a priority array:
 */
1174
static void
1175
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
1176 1177 1178
{
	struct sched_rt_entity *rt_se = &p->rt;

1179
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
1180 1181
		rt_se->timeout = 0;

1182
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1183

1184
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1185
		enqueue_pushable_task(rq, p);
1186 1187

	inc_nr_running(rq);
P
Peter Zijlstra 已提交
1188 1189
}

1190
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1191
{
P
Peter Zijlstra 已提交
1192
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
1193

1194
	update_curr_rt(rq);
1195
	dequeue_rt_entity(rt_se);
1196

1197
	dequeue_pushable_task(rq, p);
1198 1199

	dec_nr_running(rq);
I
Ingo Molnar 已提交
1200 1201 1202
}

/*
1203 1204
 * Put task to the head or the end of the run list without the overhead of
 * dequeue followed by enqueue.
I
Ingo Molnar 已提交
1205
 */
1206 1207
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
1208
{
1209
	if (on_rt_rq(rt_se)) {
1210 1211 1212 1213 1214 1215 1216
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
1217
	}
P
Peter Zijlstra 已提交
1218 1219
}

1220
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
1221
{
P
Peter Zijlstra 已提交
1222 1223
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1224

P
Peter Zijlstra 已提交
1225 1226
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
1227
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
1228
	}
I
Ingo Molnar 已提交
1229 1230
}

P
Peter Zijlstra 已提交
1231
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
1232
{
1233
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
1234 1235
}

1236
#ifdef CONFIG_SMP
1237 1238
static int find_lowest_rq(struct task_struct *task);

1239
static int
1240
select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1241
{
1242 1243 1244 1245 1246
	struct task_struct *curr;
	struct rq *rq;
	int cpu;

	cpu = task_cpu(p);
1247

1248
	if (p->nr_cpus_allowed == 1)
1249 1250
		goto out;

1251 1252 1253 1254
	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1255 1256 1257 1258 1259
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1260
	/*
1261
	 * If the current task on @p's runqueue is an RT task, then
1262 1263 1264 1265
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1266 1267 1268 1269 1270 1271 1272 1273 1274
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1275 1276 1277 1278 1279 1280
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1281
	 */
1282
	if (curr && unlikely(rt_task(curr)) &&
1283
	    (curr->nr_cpus_allowed < 2 ||
1284
	     curr->prio <= p->prio) &&
1285
	    (p->nr_cpus_allowed > 1)) {
1286
		int target = find_lowest_rq(p);
1287

1288 1289
		if (target != -1)
			cpu = target;
1290
	}
1291
	rcu_read_unlock();
1292

1293
out:
1294
	return cpu;
1295
}
1296 1297 1298

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
1299
	if (rq->curr->nr_cpus_allowed == 1)
1300 1301
		return;

1302
	if (p->nr_cpus_allowed != 1
1303 1304
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1305

1306 1307
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1318 1319
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1320 1321 1322
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1323
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1324
{
1325
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1326
		resched_task(rq->curr);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1343
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1344
		check_preempt_equal_prio(rq, p);
1345
#endif
I
Ingo Molnar 已提交
1346 1347
}

P
Peter Zijlstra 已提交
1348 1349
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1350
{
P
Peter Zijlstra 已提交
1351 1352
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1353 1354 1355 1356
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1357
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1358 1359

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1360
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1361

P
Peter Zijlstra 已提交
1362 1363
	return next;
}
I
Ingo Molnar 已提交
1364

1365
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1366 1367 1368 1369
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1370

P
Peter Zijlstra 已提交
1371 1372
	rt_rq = &rq->rt;

1373
	if (!rt_rq->rt_nr_running)
P
Peter Zijlstra 已提交
1374 1375
		return NULL;

P
Peter Zijlstra 已提交
1376
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1377 1378 1379 1380
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1381
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1382 1383 1384 1385
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1386
	p->se.exec_start = rq->clock_task;
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1399
#ifdef CONFIG_SMP
1400 1401 1402 1403 1404
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1405
#endif
1406

P
Peter Zijlstra 已提交
1407
	return p;
I
Ingo Molnar 已提交
1408 1409
}

1410
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1411
{
1412
	update_curr_rt(rq);
1413 1414 1415 1416 1417

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
1418
	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1419
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1420 1421
}

1422
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1423

S
Steven Rostedt 已提交
1424 1425 1426
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

1427 1428 1429
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1430
	    (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1431
	    (p->nr_cpus_allowed > 1))
1432 1433 1434 1435
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1436
/* Return the second highest RT task, NULL otherwise */
1437
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1438
{
P
Peter Zijlstra 已提交
1439 1440 1441 1442
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1443 1444
	int idx;

P
Peter Zijlstra 已提交
1445 1446 1447
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1448
next_idx:
P
Peter Zijlstra 已提交
1449 1450
		if (idx >= MAX_RT_PRIO)
			continue;
1451
		if (next && next->prio <= idx)
P
Peter Zijlstra 已提交
1452 1453
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1454 1455 1456 1457 1458 1459
			struct task_struct *p;

			if (!rt_entity_is_task(rt_se))
				continue;

			p = rt_task_of(rt_se);
P
Peter Zijlstra 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1469 1470
	}

S
Steven Rostedt 已提交
1471 1472 1473
	return next;
}

1474
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1475

G
Gregory Haskins 已提交
1476 1477 1478
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1479
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1480 1481
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1482

1483 1484 1485 1486
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1487
	if (task->nr_cpus_allowed == 1)
1488
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1489

1490 1491
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1501
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1502 1503 1504 1505 1506 1507
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1508 1509
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1510

1511
	rcu_read_lock();
R
Rusty Russell 已提交
1512 1513 1514
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1515

R
Rusty Russell 已提交
1516 1517 1518 1519 1520
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1521 1522
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1523
				return this_cpu;
1524
			}
R
Rusty Russell 已提交
1525 1526 1527

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1528 1529
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1530
				return best_cpu;
1531
			}
G
Gregory Haskins 已提交
1532 1533
		}
	}
1534
	rcu_read_unlock();
G
Gregory Haskins 已提交
1535 1536 1537 1538 1539 1540

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1541 1542 1543 1544 1545 1546 1547
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1548 1549 1550
}

/* Will lock the rq it finds */
1551
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1552 1553 1554
{
	struct rq *lowest_rq = NULL;
	int tries;
1555
	int cpu;
S
Steven Rostedt 已提交
1556

1557 1558 1559
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1560
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1561 1562
			break;

1563 1564
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1565
		/* if the prio of this runqueue changed, try again */
1566
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1567 1568 1569 1570 1571 1572
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1573
			if (unlikely(task_rq(task) != rq ||
1574
				     !cpumask_test_cpu(lowest_rq->cpu,
1575
						       tsk_cpus_allowed(task)) ||
1576
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1577
				     !task->on_rq)) {
1578

1579
				double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1580 1581 1582 1583 1584 1585
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1586
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1587 1588 1589
			break;

		/* try again */
1590
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1591 1592 1593 1594 1595 1596
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
1609
	BUG_ON(p->nr_cpus_allowed <= 1);
1610

P
Peter Zijlstra 已提交
1611
	BUG_ON(!p->on_rq);
1612 1613 1614 1615 1616
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1617 1618 1619 1620 1621
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1622
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1623 1624 1625
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1626
	int ret = 0;
S
Steven Rostedt 已提交
1627

G
Gregory Haskins 已提交
1628 1629 1630
	if (!rq->rt.overloaded)
		return 0;

1631
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1632 1633 1634
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1635
retry:
1636
	if (unlikely(next_task == rq->curr)) {
1637
		WARN_ON(1);
S
Steven Rostedt 已提交
1638
		return 0;
1639
	}
S
Steven Rostedt 已提交
1640 1641 1642 1643 1644 1645

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1646 1647
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1648 1649 1650
		return 0;
	}

1651
	/* We might release rq lock */
S
Steven Rostedt 已提交
1652 1653 1654
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1655
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1656 1657 1658
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1659
		 * find_lock_lowest_rq releases rq->lock
1660 1661 1662 1663 1664
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1665
		 */
1666
		task = pick_next_pushable_task(rq);
1667 1668
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1669 1670 1671 1672
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1673 1674
			 */
			goto out;
S
Steven Rostedt 已提交
1675
		}
1676

1677 1678 1679 1680
		if (!task)
			/* No more tasks, just exit */
			goto out;

1681
		/*
1682
		 * Something has shifted, try again.
1683
		 */
1684 1685 1686
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1687 1688
	}

1689
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1690 1691
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1692
	ret = 1;
S
Steven Rostedt 已提交
1693 1694 1695

	resched_task(lowest_rq->curr);

1696
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1697 1698 1699 1700

out:
	put_task_struct(next_task);

1701
	return ret;
S
Steven Rostedt 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1711 1712
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1713
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1714
	struct task_struct *p;
1715 1716
	struct rq *src_rq;

1717
	if (likely(!rt_overloaded(this_rq)))
1718 1719
		return 0;

1720
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1721 1722 1723 1724
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1737 1738 1739
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1740
		 * alter this_rq
1741
		 */
1742
		double_lock_balance(this_rq, src_rq);
1743 1744 1745 1746

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1747 1748
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1749 1750 1751 1752 1753 1754 1755

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1756
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1757
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1758
			WARN_ON(!p->on_rq);
1759 1760 1761 1762 1763 1764 1765

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1766
			 * current task on the run queue
1767
			 */
1768
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1769
				goto skip;
1770 1771 1772 1773 1774 1775 1776 1777 1778

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1779
			 * in another runqueue. (low likelihood
1780 1781 1782
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1783
skip:
1784
		double_unlock_balance(this_rq, src_rq);
1785 1786 1787 1788 1789
	}

	return ret;
}

1790
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1791 1792
{
	/* Try to pull RT tasks here if we lower this rq's prio */
Y
Yong Zhang 已提交
1793
	if (rq->rt.highest_prio.curr > prev->prio)
1794 1795 1796
		pull_rt_task(rq);
}

1797
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1798
{
1799
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1800 1801
}

1802 1803 1804 1805
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1806
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1807
{
1808
	if (!task_running(rq, p) &&
1809
	    !test_tsk_need_resched(rq->curr) &&
1810
	    has_pushable_tasks(rq) &&
1811
	    p->nr_cpus_allowed > 1 &&
1812
	    rt_task(rq->curr) &&
1813
	    (rq->curr->nr_cpus_allowed < 2 ||
1814
	     rq->curr->prio <= p->prio))
1815 1816 1817
		push_rt_tasks(rq);
}

1818
static void set_cpus_allowed_rt(struct task_struct *p,
1819
				const struct cpumask *new_mask)
1820
{
1821 1822
	struct rq *rq;
	int weight;
1823 1824 1825

	BUG_ON(!rt_task(p));

1826 1827
	if (!p->on_rq)
		return;
1828

1829
	weight = cpumask_weight(new_mask);
1830

1831 1832 1833 1834
	/*
	 * Only update if the process changes its state from whether it
	 * can migrate or not.
	 */
1835
	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1836
		return;
1837

1838
	rq = task_rq(p);
1839

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	/*
	 * The process used to be able to migrate OR it can now migrate
	 */
	if (weight <= 1) {
		if (!task_current(rq, p))
			dequeue_pushable_task(rq, p);
		BUG_ON(!rq->rt.rt_nr_migratory);
		rq->rt.rt_nr_migratory--;
	} else {
		if (!task_current(rq, p))
			enqueue_pushable_task(rq, p);
		rq->rt.rt_nr_migratory++;
1852
	}
1853 1854

	update_rt_migration(&rq->rt);
1855
}
1856

1857
/* Assumes rq->lock is held */
1858
static void rq_online_rt(struct rq *rq)
1859 1860 1861
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1862

P
Peter Zijlstra 已提交
1863 1864
	__enable_runtime(rq);

1865
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1866 1867 1868
}

/* Assumes rq->lock is held */
1869
static void rq_offline_rt(struct rq *rq)
1870 1871 1872
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1873

P
Peter Zijlstra 已提交
1874 1875
	__disable_runtime(rq);

1876
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1877
}
1878 1879 1880 1881 1882

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1883
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1884 1885 1886 1887 1888 1889 1890 1891
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
1892 1893 1894 1895 1896
	if (!p->on_rq || rq->rt.rt_nr_running)
		return;

	if (pull_rt_task(rq))
		resched_task(rq->curr);
1897
}
1898

1899
void init_sched_rt_class(void)
1900 1901 1902
{
	unsigned int i;

1903
	for_each_possible_cpu(i) {
1904
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1905
					GFP_KERNEL, cpu_to_node(i));
1906
	}
1907
}
1908 1909 1910 1911 1912 1913 1914
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1915
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1926
	if (p->on_rq && rq->curr != p) {
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1942 1943
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1944
{
P
Peter Zijlstra 已提交
1945
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1946 1947 1948
		return;

	if (rq->curr == p) {
1949 1950 1951 1952 1953 1954 1955 1956 1957
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1958 1959 1960
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1961
		 */
1962
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1963 1964 1965 1966 1967
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1968
#endif /* CONFIG_SMP */
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1980 1981 1982 1983
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1984 1985 1986
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1987 1988 1989 1990

	if (soft != RLIM_INFINITY) {
		unsigned long next;

1991 1992 1993 1994 1995
		if (p->rt.watchdog_stamp != jiffies) {
			p->rt.timeout++;
			p->rt.watchdog_stamp = jiffies;
		}

1996
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1997
		if (p->rt.timeout > next)
1998
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1999 2000
	}
}
I
Ingo Molnar 已提交
2001

P
Peter Zijlstra 已提交
2002
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
2003
{
2004 2005
	struct sched_rt_entity *rt_se = &p->rt;

2006 2007
	update_curr_rt(rq);

2008 2009
	watchdog(rq, p);

I
Ingo Molnar 已提交
2010 2011 2012 2013 2014 2015 2016
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
2017
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
2018 2019
		return;

2020
	p->rt.time_slice = RR_TIMESLICE;
I
Ingo Molnar 已提交
2021

2022
	/*
2023 2024
	 * Requeue to the end of queue if we (and all of our ancestors) are the
	 * only element on the queue
2025
	 */
2026 2027 2028 2029 2030 2031
	for_each_sched_rt_entity(rt_se) {
		if (rt_se->run_list.prev != rt_se->run_list.next) {
			requeue_task_rt(rq, p, 0);
			set_tsk_need_resched(p);
			return;
		}
2032
	}
I
Ingo Molnar 已提交
2033 2034
}

2035 2036 2037 2038
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

2039
	p->se.exec_start = rq->clock_task;
2040 2041 2042

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
2043 2044
}

2045
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2046 2047 2048 2049 2050
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
2051
		return RR_TIMESLICE;
2052 2053 2054 2055
	else
		return 0;
}

2056
const struct sched_class rt_sched_class = {
2057
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

2067
#ifdef CONFIG_SMP
L
Li Zefan 已提交
2068 2069
	.select_task_rq		= select_task_rq_rt,

2070
	.set_cpus_allowed       = set_cpus_allowed_rt,
2071 2072
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
2073 2074
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
2075
	.task_woken		= task_woken_rt,
2076
	.switched_from		= switched_from_rt,
2077
#endif
I
Ingo Molnar 已提交
2078

2079
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
2080
	.task_tick		= task_tick_rt,
2081

2082 2083
	.get_rr_interval	= get_rr_interval_rt,

2084 2085
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
2086
};
2087 2088 2089 2090

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

2091
void print_rt_stats(struct seq_file *m, int cpu)
2092
{
C
Cheng Xu 已提交
2093
	rt_rq_iter_t iter;
2094 2095 2096
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
2097
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2098 2099 2100
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
2101
#endif /* CONFIG_SCHED_DEBUG */