rt.c 48.2 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#include "sched.h"

#include <linux/slab.h>

10 11
int sched_rr_timeslice = RR_TIMESLICE;

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

struct rt_bandwidth def_rt_bandwidth;

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

	raw_spin_lock_init(&rt_b->rt_runtime_lock);

	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	raw_spin_lock(&rt_b->rt_runtime_lock);
	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
	raw_spin_unlock(&rt_b->rt_runtime_lock);
}

void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

#if defined CONFIG_SMP
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
	plist_head_init(&rt_rq->pushable_tasks);
#endif
82 83
	/* We start is dequeued state, because no RT tasks are queued */
	rt_rq->rt_queued = 0;
84 85 86 87 88 89 90

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
	rt_rq->rt_runtime = 0;
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}

91
#ifdef CONFIG_RT_GROUP_SCHED
92 93 94 95
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
96 97 98

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

99 100
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
101 102 103
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
104 105 106 107 108 109 110 111 112 113 114 115 116
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

117 118 119 120 121 122 123
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = rt_se->rt_rq;

	return rt_rq->rq;
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
void free_rt_sched_group(struct task_group *tg)
{
	int i;

	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
	rt_rq->tg = tg;

	tg->rt_rq[cpu] = rt_rq;
	tg->rt_se[cpu] = rt_se;

	if (!rt_se)
		return;

	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

	rt_se->my_q = rt_rq;
	rt_se->parent = parent;
	INIT_LIST_HEAD(&rt_se->run_list);
}

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);

	for_each_possible_cpu(i) {
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_rq)
			goto err;

		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_se)
			goto err_free_rq;

		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
	}

	return 1;

err_free_rq:
	kfree(rt_rq);
err:
	return 0;
}

209 210
#else /* CONFIG_RT_GROUP_SCHED */

211 212
#define rt_entity_is_task(rt_se) (1)

213 214 215 216 217
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

218 219 220 221 222
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

223
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
224 225
{
	struct task_struct *p = rt_task_of(rt_se);
226 227 228 229 230 231 232

	return task_rq(p);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct rq *rq = rq_of_rt_se(rt_se);
233 234 235 236

	return &rq->rt;
}

237 238 239 240 241 242
void free_rt_sched_group(struct task_group *tg) { }

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}
243 244
#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
245
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
246

247 248
static int pull_rt_task(struct rq *this_rq);

P
Peter Zijlstra 已提交
249 250 251 252 253 254
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
	/* Try to pull RT tasks here if we lower this rq's prio */
	return rq->rt.highest_prio.curr > prev->prio;
}

255
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
256
{
257
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
258
}
I
Ingo Molnar 已提交
259

S
Steven Rostedt 已提交
260 261
static inline void rt_set_overload(struct rq *rq)
{
262 263 264
	if (!rq->online)
		return;

265
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
266 267 268 269 270 271
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
P
Peter Zijlstra 已提交
272 273
	 *
	 * Matched by the barrier in pull_rt_task().
S
Steven Rostedt 已提交
274
	 */
P
Peter Zijlstra 已提交
275
	smp_wmb();
276
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
277
}
I
Ingo Molnar 已提交
278

S
Steven Rostedt 已提交
279 280
static inline void rt_clear_overload(struct rq *rq)
{
281 282 283
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
284
	/* the order here really doesn't matter */
285
	atomic_dec(&rq->rd->rto_count);
286
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
287
}
288

289
static void update_rt_migration(struct rt_rq *rt_rq)
290
{
291
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
292 293 294
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
295
		}
296 297 298
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
299
	}
300
}
S
Steven Rostedt 已提交
301

302 303
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
304 305
	struct task_struct *p;

306 307 308
	if (!rt_entity_is_task(rt_se))
		return;

309
	p = rt_task_of(rt_se);
310 311 312
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
313
	if (p->nr_cpus_allowed > 1)
314 315 316 317 318 319 320
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
321 322
	struct task_struct *p;

323 324 325
	if (!rt_entity_is_task(rt_se))
		return;

326
	p = rt_task_of(rt_se);
327 328 329
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
330
	if (p->nr_cpus_allowed > 1)
331 332 333 334 335
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

336 337 338 339 340
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

P
Peter Zijlstra 已提交
341 342 343 344 345 346 347 348 349
static inline void set_post_schedule(struct rq *rq)
{
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
}

350 351 352 353 354
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
355 356 357 358

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
359 360 361 362 363 364
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

365 366 367 368 369 370 371
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
372 373
}

374 375
#else

376
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
377
{
P
Peter Zijlstra 已提交
378 379
}

380 381 382 383
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

384
static inline
385 386 387 388
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

389
static inline
390 391 392
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
393

P
Peter Zijlstra 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
	return false;
}

static inline int pull_rt_task(struct rq *this_rq)
{
	return 0;
}

static inline void set_post_schedule(struct rq *rq)
{
}
S
Steven Rostedt 已提交
407 408
#endif /* CONFIG_SMP */

409 410 411
static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
static void dequeue_top_rt_rq(struct rt_rq *rt_rq);

P
Peter Zijlstra 已提交
412 413 414 415 416
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

417
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
418

P
Peter Zijlstra 已提交
419
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
420 421
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
422
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
423

P
Peter Zijlstra 已提交
424 425 426 427 428 429
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
430 431
}

C
Cheng Xu 已提交
432 433
typedef struct task_group *rt_rq_iter_t;

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
451

P
Peter Zijlstra 已提交
452 453 454 455 456 457 458 459
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

460
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
461 462
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
463
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
464
{
465
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
466 467
	struct sched_rt_entity *rt_se;

468 469 470
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
471

472
	if (rt_rq->rt_nr_running) {
473 474 475
		if (!rt_se)
			enqueue_top_rt_rq(rt_rq);
		else if (!on_rt_rq(rt_se))
476
			enqueue_rt_entity(rt_se, false);
477

478
		if (rt_rq->highest_prio.curr < curr->prio)
479
			resched_task(curr);
P
Peter Zijlstra 已提交
480 481 482
	}
}

P
Peter Zijlstra 已提交
483
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
484
{
485
	struct sched_rt_entity *rt_se;
486
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
487

488
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
489

490 491 492
	if (!rt_se)
		dequeue_top_rt_rq(rt_rq);
	else if (on_rt_rq(rt_se))
P
Peter Zijlstra 已提交
493 494 495
		dequeue_rt_entity(rt_se);
}

496 497 498 499 500
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

P
Peter Zijlstra 已提交
501 502 503 504 505 506 507 508 509 510 511 512
static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

513
#ifdef CONFIG_SMP
514
static inline const struct cpumask *sched_rt_period_mask(void)
515
{
N
Nathan Zimmer 已提交
516
	return this_rq()->rd->span;
517
}
P
Peter Zijlstra 已提交
518
#else
519
static inline const struct cpumask *sched_rt_period_mask(void)
520
{
521
	return cpu_online_mask;
522 523
}
#endif
P
Peter Zijlstra 已提交
524

525 526
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
527
{
528 529
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
530

P
Peter Zijlstra 已提交
531 532 533 534 535
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

536
#else /* !CONFIG_RT_GROUP_SCHED */
537 538 539

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
540 541 542 543 544 545
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
546 547
}

C
Cheng Xu 已提交
548 549 550 551 552
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

P
Peter Zijlstra 已提交
553 554 555 556 557 558 559 560
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
561
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
562
{
563 564 565 566 567 568 569
	struct rq *rq = rq_of_rt_rq(rt_rq);

	if (!rt_rq->rt_nr_running)
		return;

	enqueue_top_rt_rq(rt_rq);
	resched_task(rq->curr);
P
Peter Zijlstra 已提交
570 571
}

P
Peter Zijlstra 已提交
572
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
573
{
574
	dequeue_top_rt_rq(rt_rq);
P
Peter Zijlstra 已提交
575 576
}

577 578 579 580 581
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}

582
static inline const struct cpumask *sched_rt_period_mask(void)
583
{
584
	return cpu_online_mask;
585 586 587 588 589 590 591 592
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
593 594 595 596 597
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

598
#endif /* CONFIG_RT_GROUP_SCHED */
599

600 601 602 603 604 605 606 607
bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

	return (hrtimer_active(&rt_b->rt_period_timer) ||
		rt_rq->rt_time < rt_b->rt_runtime);
}

P
Peter Zijlstra 已提交
608
#ifdef CONFIG_SMP
609 610 611
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
612
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
613 614
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
615
	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
P
Peter Zijlstra 已提交
616 617 618
	int i, weight, more = 0;
	u64 rt_period;

619
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
620

621
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
622
	rt_period = ktime_to_ns(rt_b->rt_period);
623
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
624 625 626 627 628 629
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

630
		raw_spin_lock(&iter->rt_runtime_lock);
631 632 633 634 635
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
636 637 638
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

639 640 641 642
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
643 644
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
645
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
646 647 648 649 650 651
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
652
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
653 654 655
				break;
			}
		}
P
Peter Zijlstra 已提交
656
next:
657
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
658
	}
659
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
660 661 662

	return more;
}
P
Peter Zijlstra 已提交
663

664 665 666
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
667 668 669
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
670
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
671 672 673 674 675
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
676
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
677 678 679 680
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

681 682
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
683 684 685 686 687
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
688 689 690
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
691
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
692

693 694 695 696 697
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
698 699
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

700 701 702
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
703
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
704 705 706
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

707 708 709
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
710
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
711 712
				continue;

713
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
714 715 716 717 718 719 720 721
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
722
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
723 724 725 726 727

			if (!want)
				break;
		}

728
		raw_spin_lock(&rt_rq->rt_runtime_lock);
729 730 731 732
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
733 734
		BUG_ON(want);
balanced:
735 736 737 738
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
739
		rt_rq->rt_runtime = RUNTIME_INF;
740
		rt_rq->rt_throttled = 0;
741 742
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
743 744 745

		/* Make rt_rq available for pick_next_task() */
		sched_rt_rq_enqueue(rt_rq);
P
Peter Zijlstra 已提交
746 747 748 749 750
	}
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
751
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
752 753 754 755 756
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

757 758 759
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
760
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
761 762
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

763 764
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
765 766
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
767
		rt_rq->rt_throttled = 0;
768 769
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
770 771 772
	}
}

773 774 775 776
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

777 778 779
	if (!sched_feat(RT_RUNTIME_SHARE))
		return more;

780
	if (rt_rq->rt_time > rt_rq->rt_runtime) {
781
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
782
		more = do_balance_runtime(rt_rq);
783
		raw_spin_lock(&rt_rq->rt_runtime_lock);
784 785 786 787
	}

	return more;
}
788
#else /* !CONFIG_SMP */
789 790 791 792
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
793
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
794

795 796
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
797
	int i, idle = 1, throttled = 0;
798
	const struct cpumask *span;
799 800

	span = sched_rt_period_mask();
801 802 803 804 805 806 807 808 809 810 811 812 813
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * FIXME: isolated CPUs should really leave the root task group,
	 * whether they are isolcpus or were isolated via cpusets, lest
	 * the timer run on a CPU which does not service all runqueues,
	 * potentially leaving other CPUs indefinitely throttled.  If
	 * isolation is really required, the user will turn the throttle
	 * off to kill the perturbations it causes anyway.  Meanwhile,
	 * this maintains functionality for boot and/or troubleshooting.
	 */
	if (rt_b == &root_task_group.rt_bandwidth)
		span = cpu_online_mask;
#endif
814
	for_each_cpu(i, span) {
815 816 817 818
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

819
		raw_spin_lock(&rq->lock);
820 821 822
		if (rt_rq->rt_time) {
			u64 runtime;

823
			raw_spin_lock(&rt_rq->rt_runtime_lock);
824 825 826 827 828 829 830
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
831 832 833 834 835 836 837

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
838 839 840
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
841
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
842
		} else if (rt_rq->rt_nr_running) {
843
			idle = 0;
844 845 846
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
847 848
		if (rt_rq->rt_throttled)
			throttled = 1;
849 850 851

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
852
		raw_spin_unlock(&rq->lock);
853 854
	}

855 856 857
	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
		return 1;

858 859
	return idle;
}
P
Peter Zijlstra 已提交
860

P
Peter Zijlstra 已提交
861 862
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
863
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
864 865 866
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
867
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
868 869 870 871 872
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
873
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
874
{
P
Peter Zijlstra 已提交
875
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
876 877

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
878
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
879

880
	if (runtime >= sched_rt_period(rt_rq))
P
Peter Zijlstra 已提交
881 882
		return 0;

883 884 885 886
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
887

P
Peter Zijlstra 已提交
888
	if (rt_rq->rt_time > runtime) {
889 890 891 892 893 894 895 896
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		/*
		 * Don't actually throttle groups that have no runtime assigned
		 * but accrue some time due to boosting.
		 */
		if (likely(rt_b->rt_runtime)) {
			rt_rq->rt_throttled = 1;
J
John Stultz 已提交
897
			printk_deferred_once("sched: RT throttling activated\n");
898 899 900 901 902 903 904 905 906
		} else {
			/*
			 * In case we did anyway, make it go away,
			 * replenishment is a joke, since it will replenish us
			 * with exactly 0 ns.
			 */
			rt_rq->rt_time = 0;
		}

P
Peter Zijlstra 已提交
907
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
908
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
909 910
			return 1;
		}
P
Peter Zijlstra 已提交
911 912 913 914 915
	}

	return 0;
}

I
Ingo Molnar 已提交
916 917 918 919
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
920
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
921 922
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
923
	struct sched_rt_entity *rt_se = &curr->rt;
I
Ingo Molnar 已提交
924 925
	u64 delta_exec;

P
Peter Zijlstra 已提交
926
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
927 928
		return;

929
	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
930 931
	if (unlikely((s64)delta_exec <= 0))
		return;
I
Ingo Molnar 已提交
932

933 934
	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
935 936

	curr->se.sum_exec_runtime += delta_exec;
937 938
	account_group_exec_runtime(curr, delta_exec);

939
	curr->se.exec_start = rq_clock_task(rq);
940
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
941

942 943
	sched_rt_avg_update(rq, delta_exec);

944 945 946
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
947
	for_each_sched_rt_entity(rt_se) {
948
		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
D
Dhaval Giani 已提交
949

950
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
951
			raw_spin_lock(&rt_rq->rt_runtime_lock);
952 953 954
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
955
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
956
		}
D
Dhaval Giani 已提交
957
	}
I
Ingo Molnar 已提交
958 959
}

960 961 962 963 964 965 966 967 968 969 970 971
static void
dequeue_top_rt_rq(struct rt_rq *rt_rq)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);

	BUG_ON(&rq->rt != rt_rq);

	if (!rt_rq->rt_queued)
		return;

	BUG_ON(!rq->nr_running);

972
	sub_nr_running(rq, rt_rq->rt_nr_running);
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	rt_rq->rt_queued = 0;
}

static void
enqueue_top_rt_rq(struct rt_rq *rt_rq)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);

	BUG_ON(&rq->rt != rt_rq);

	if (rt_rq->rt_queued)
		return;
	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
		return;

988
	add_nr_running(rq, rt_rq->rt_nr_running);
989 990 991
	rt_rq->rt_queued = 1;
}

992
#if defined CONFIG_SMP
993

994 995
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
996
{
G
Gregory Haskins 已提交
997
	struct rq *rq = rq_of_rt_rq(rt_rq);
998

999 1000 1001 1002 1003 1004 1005
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Change rq's cpupri only if rt_rq is the top queue.
	 */
	if (&rq->rt != rt_rq)
		return;
#endif
1006 1007
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1008
}
1009

1010 1011 1012 1013
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
1014

1015 1016 1017 1018 1019 1020 1021
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Change rq's cpupri only if rt_rq is the top queue.
	 */
	if (&rq->rt != rt_rq)
		return;
#endif
1022 1023
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1024 1025
}

1026 1027
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1028
static inline
1029 1030 1031 1032 1033
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
1034

1035
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
1052
	if (rt_rq->rt_nr_running) {
1053

1054
		WARN_ON(prio < prev_prio);
1055

1056
		/*
1057 1058
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
1059
		 */
1060
		if (prio == prev_prio) {
1061 1062 1063
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
1064
				sched_find_first_bit(array->bitmap);
1065 1066
		}

1067
	} else
1068
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1069

1070 1071
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
1072

1073 1074 1075 1076 1077 1078
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1079

1080
#ifdef CONFIG_RT_GROUP_SCHED
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
1095 1096 1097 1098
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
static inline
unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
{
	struct rt_rq *group_rq = group_rt_rq(rt_se);

	if (group_rq)
		return group_rq->rt_nr_running;
	else
		return 1;
}

1125 1126 1127 1128 1129 1130
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
1131
	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
1143
	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1144 1145 1146 1147

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
1148 1149
}

1150
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
1151
{
P
Peter Zijlstra 已提交
1152 1153 1154
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
1155
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
1156

1157 1158 1159 1160 1161 1162 1163
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
1164
		return;
1165

1166 1167 1168 1169
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
1170
	__set_bit(rt_se_prio(rt_se), array->bitmap);
1171

P
Peter Zijlstra 已提交
1172 1173 1174
	inc_rt_tasks(rt_se, rt_rq);
}

1175
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
1191
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1192
{
1193
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
1194

1195 1196 1197 1198 1199
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

1200 1201
	dequeue_top_rt_rq(rt_rq_of_se(back));

1202 1203
	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
1204 1205 1206 1207
			__dequeue_rt_entity(rt_se);
	}
}

1208
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1209
{
1210 1211
	struct rq *rq = rq_of_rt_se(rt_se);

1212 1213
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
1214
		__enqueue_rt_entity(rt_se, head);
1215
	enqueue_top_rt_rq(&rq->rt);
1216 1217 1218 1219
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
1220 1221
	struct rq *rq = rq_of_rt_se(rt_se);

1222 1223 1224 1225 1226 1227
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
1228
			__enqueue_rt_entity(rt_se, false);
1229
	}
1230
	enqueue_top_rt_rq(&rq->rt);
I
Ingo Molnar 已提交
1231 1232 1233 1234 1235
}

/*
 * Adding/removing a task to/from a priority array:
 */
1236
static void
1237
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
1238 1239 1240
{
	struct sched_rt_entity *rt_se = &p->rt;

1241
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
1242 1243
		rt_se->timeout = 0;

1244
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1245

1246
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1247
		enqueue_pushable_task(rq, p);
P
Peter Zijlstra 已提交
1248 1249
}

1250
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1251
{
P
Peter Zijlstra 已提交
1252
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
1253

1254
	update_curr_rt(rq);
1255
	dequeue_rt_entity(rt_se);
1256

1257
	dequeue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1258 1259 1260
}

/*
1261 1262
 * Put task to the head or the end of the run list without the overhead of
 * dequeue followed by enqueue.
I
Ingo Molnar 已提交
1263
 */
1264 1265
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
1266
{
1267
	if (on_rt_rq(rt_se)) {
1268 1269 1270 1271 1272 1273 1274
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
1275
	}
P
Peter Zijlstra 已提交
1276 1277
}

1278
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
1279
{
P
Peter Zijlstra 已提交
1280 1281
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1282

P
Peter Zijlstra 已提交
1283 1284
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
1285
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
1286
	}
I
Ingo Molnar 已提交
1287 1288
}

P
Peter Zijlstra 已提交
1289
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
1290
{
1291
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
1292 1293
}

1294
#ifdef CONFIG_SMP
1295 1296
static int find_lowest_rq(struct task_struct *task);

1297
static int
1298
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1299
{
1300 1301
	struct task_struct *curr;
	struct rq *rq;
1302

1303
	if (p->nr_cpus_allowed == 1)
1304 1305
		goto out;

1306 1307 1308 1309
	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1310 1311 1312 1313 1314
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1315
	/*
1316
	 * If the current task on @p's runqueue is an RT task, then
1317 1318 1319 1320
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1321 1322 1323 1324 1325 1326 1327 1328 1329
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1330 1331 1332 1333 1334 1335
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1336
	 */
1337
	if (curr && unlikely(rt_task(curr)) &&
1338
	    (curr->nr_cpus_allowed < 2 ||
1339
	     curr->prio <= p->prio)) {
1340
		int target = find_lowest_rq(p);
1341

1342 1343
		if (target != -1)
			cpu = target;
1344
	}
1345
	rcu_read_unlock();
1346

1347
out:
1348
	return cpu;
1349
}
1350 1351 1352

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
1353
	if (rq->curr->nr_cpus_allowed == 1)
1354 1355
		return;

1356
	if (p->nr_cpus_allowed != 1
1357 1358
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1359

1360 1361
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1372 1373
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1374 1375 1376
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1377
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1378
{
1379
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1380
		resched_task(rq->curr);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1397
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1398
		check_preempt_equal_prio(rq, p);
1399
#endif
I
Ingo Molnar 已提交
1400 1401
}

P
Peter Zijlstra 已提交
1402 1403
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1404
{
P
Peter Zijlstra 已提交
1405 1406
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1407 1408 1409 1410
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1411
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1412 1413

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1414
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1415

P
Peter Zijlstra 已提交
1416 1417
	return next;
}
I
Ingo Molnar 已提交
1418

1419
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1420 1421 1422
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
1423
	struct rt_rq *rt_rq  = &rq->rt;
P
Peter Zijlstra 已提交
1424 1425 1426

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1427
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1428 1429 1430 1431
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1432
	p->se.exec_start = rq_clock_task(rq);
1433 1434 1435 1436

	return p;
}

1437 1438
static struct task_struct *
pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1439
{
1440 1441 1442
	struct task_struct *p;
	struct rt_rq *rt_rq = &rq->rt;

1443
	if (need_pull_rt_task(rq, prev)) {
1444
		pull_rt_task(rq);
1445 1446
		/*
		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1447 1448
		 * means a dl or stop task can slip in, in which case we need
		 * to re-start task selection.
1449
		 */
1450 1451
		if (unlikely((rq->stop && rq->stop->on_rq) ||
			     rq->dl.dl_nr_running))
1452 1453
			return RETRY_TASK;
	}
1454

1455 1456 1457 1458 1459 1460 1461
	/*
	 * We may dequeue prev's rt_rq in put_prev_task().
	 * So, we update time before rt_nr_running check.
	 */
	if (prev->sched_class == &rt_sched_class)
		update_curr_rt(rq);

1462
	if (!rt_rq->rt_queued)
1463 1464
		return NULL;

1465
	put_prev_task(rq, prev);
1466 1467

	p = _pick_next_task_rt(rq);
1468 1469 1470 1471 1472

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

P
Peter Zijlstra 已提交
1473
	set_post_schedule(rq);
1474

P
Peter Zijlstra 已提交
1475
	return p;
I
Ingo Molnar 已提交
1476 1477
}

1478
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1479
{
1480
	update_curr_rt(rq);
1481 1482 1483 1484 1485

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
1486
	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1487
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1488 1489
}

1490
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1491

S
Steven Rostedt 已提交
1492 1493 1494
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

1495 1496 1497
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1498
	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1499 1500 1501 1502
		return 1;
	return 0;
}

1503 1504 1505 1506 1507
/*
 * Return the highest pushable rq's task, which is suitable to be executed
 * on the cpu, NULL otherwise
 */
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1508
{
1509 1510
	struct plist_head *head = &rq->rt.pushable_tasks;
	struct task_struct *p;
1511

1512 1513
	if (!has_pushable_tasks(rq))
		return NULL;
1514

1515 1516 1517
	plist_for_each_entry(p, head, pushable_tasks) {
		if (pick_rt_task(rq, p, cpu))
			return p;
1518 1519
	}

1520
	return NULL;
S
Steven Rostedt 已提交
1521 1522
}

1523
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1524

G
Gregory Haskins 已提交
1525 1526 1527
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1528
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1529 1530
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1531

1532 1533 1534 1535
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1536
	if (task->nr_cpus_allowed == 1)
1537
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1538

1539 1540
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1550
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1551 1552 1553 1554 1555 1556
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1557 1558
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1559

1560
	rcu_read_lock();
R
Rusty Russell 已提交
1561 1562 1563
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1564

R
Rusty Russell 已提交
1565 1566 1567 1568 1569
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1570 1571
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1572
				return this_cpu;
1573
			}
R
Rusty Russell 已提交
1574 1575 1576

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1577 1578
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1579
				return best_cpu;
1580
			}
G
Gregory Haskins 已提交
1581 1582
		}
	}
1583
	rcu_read_unlock();
G
Gregory Haskins 已提交
1584 1585 1586 1587 1588 1589

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1590 1591 1592 1593 1594 1595 1596
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1597 1598 1599
}

/* Will lock the rq it finds */
1600
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1601 1602 1603
{
	struct rq *lowest_rq = NULL;
	int tries;
1604
	int cpu;
S
Steven Rostedt 已提交
1605

1606 1607 1608
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1609
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1610 1611
			break;

1612 1613
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1614
		/* if the prio of this runqueue changed, try again */
1615
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1616 1617 1618 1619 1620 1621
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1622
			if (unlikely(task_rq(task) != rq ||
1623
				     !cpumask_test_cpu(lowest_rq->cpu,
1624
						       tsk_cpus_allowed(task)) ||
1625
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1626
				     !task->on_rq)) {
1627

1628
				double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1629 1630 1631 1632 1633 1634
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1635
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1636 1637 1638
			break;

		/* try again */
1639
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1640 1641 1642 1643 1644 1645
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
1658
	BUG_ON(p->nr_cpus_allowed <= 1);
1659

P
Peter Zijlstra 已提交
1660
	BUG_ON(!p->on_rq);
1661 1662 1663 1664 1665
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1666 1667 1668 1669 1670
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1671
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1672 1673 1674
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1675
	int ret = 0;
S
Steven Rostedt 已提交
1676

G
Gregory Haskins 已提交
1677 1678 1679
	if (!rq->rt.overloaded)
		return 0;

1680
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1681 1682 1683
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1684
retry:
1685
	if (unlikely(next_task == rq->curr)) {
1686
		WARN_ON(1);
S
Steven Rostedt 已提交
1687
		return 0;
1688
	}
S
Steven Rostedt 已提交
1689 1690 1691 1692 1693 1694

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1695 1696
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1697 1698 1699
		return 0;
	}

1700
	/* We might release rq lock */
S
Steven Rostedt 已提交
1701 1702 1703
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1704
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1705 1706 1707
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1708
		 * find_lock_lowest_rq releases rq->lock
1709 1710 1711 1712 1713
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1714
		 */
1715
		task = pick_next_pushable_task(rq);
1716 1717
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1718 1719 1720 1721
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1722 1723
			 */
			goto out;
S
Steven Rostedt 已提交
1724
		}
1725

1726 1727 1728 1729
		if (!task)
			/* No more tasks, just exit */
			goto out;

1730
		/*
1731
		 * Something has shifted, try again.
1732
		 */
1733 1734 1735
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1736 1737
	}

1738
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1739 1740
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1741
	ret = 1;
S
Steven Rostedt 已提交
1742 1743 1744

	resched_task(lowest_rq->curr);

1745
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1746 1747 1748 1749

out:
	put_task_struct(next_task);

1750
	return ret;
S
Steven Rostedt 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1760 1761
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1762
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1763
	struct task_struct *p;
1764 1765
	struct rq *src_rq;

1766
	if (likely(!rt_overloaded(this_rq)))
1767 1768
		return 0;

P
Peter Zijlstra 已提交
1769 1770 1771 1772 1773 1774
	/*
	 * Match the barrier from rt_set_overloaded; this guarantees that if we
	 * see overloaded we must also see the rto_mask bit.
	 */
	smp_rmb();

1775
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1776 1777 1778 1779
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1792 1793 1794
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1795
		 * alter this_rq
1796
		 */
1797
		double_lock_balance(this_rq, src_rq);
1798 1799

		/*
1800 1801
		 * We can pull only a task, which is pushable
		 * on its rq, and no others.
1802
		 */
1803
		p = pick_highest_pushable_task(src_rq, this_cpu);
1804 1805 1806 1807 1808

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1809
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1810
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1811
			WARN_ON(!p->on_rq);
1812 1813 1814 1815 1816 1817 1818

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1819
			 * current task on the run queue
1820
			 */
1821
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1822
				goto skip;
1823 1824 1825 1826 1827 1828 1829 1830 1831

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1832
			 * in another runqueue. (low likelihood
1833 1834 1835
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1836
skip:
1837
		double_unlock_balance(this_rq, src_rq);
1838 1839 1840 1841 1842
	}

	return ret;
}

1843
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1844
{
1845
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1846 1847
}

1848 1849 1850 1851
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1852
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1853
{
1854
	if (!task_running(rq, p) &&
1855
	    !test_tsk_need_resched(rq->curr) &&
1856
	    has_pushable_tasks(rq) &&
1857
	    p->nr_cpus_allowed > 1 &&
1858
	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
1859
	    (rq->curr->nr_cpus_allowed < 2 ||
1860
	     rq->curr->prio <= p->prio))
1861 1862 1863
		push_rt_tasks(rq);
}

1864
static void set_cpus_allowed_rt(struct task_struct *p,
1865
				const struct cpumask *new_mask)
1866
{
1867 1868
	struct rq *rq;
	int weight;
1869 1870 1871

	BUG_ON(!rt_task(p));

1872 1873
	if (!p->on_rq)
		return;
1874

1875
	weight = cpumask_weight(new_mask);
1876

1877 1878 1879 1880
	/*
	 * Only update if the process changes its state from whether it
	 * can migrate or not.
	 */
1881
	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1882
		return;
1883

1884
	rq = task_rq(p);
1885

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	/*
	 * The process used to be able to migrate OR it can now migrate
	 */
	if (weight <= 1) {
		if (!task_current(rq, p))
			dequeue_pushable_task(rq, p);
		BUG_ON(!rq->rt.rt_nr_migratory);
		rq->rt.rt_nr_migratory--;
	} else {
		if (!task_current(rq, p))
			enqueue_pushable_task(rq, p);
		rq->rt.rt_nr_migratory++;
1898
	}
1899 1900

	update_rt_migration(&rq->rt);
1901
}
1902

1903
/* Assumes rq->lock is held */
1904
static void rq_online_rt(struct rq *rq)
1905 1906 1907
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1908

P
Peter Zijlstra 已提交
1909 1910
	__enable_runtime(rq);

1911
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1912 1913 1914
}

/* Assumes rq->lock is held */
1915
static void rq_offline_rt(struct rq *rq)
1916 1917 1918
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1919

P
Peter Zijlstra 已提交
1920 1921
	__disable_runtime(rq);

1922
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1923
}
1924 1925 1926 1927 1928

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1929
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1930 1931 1932 1933 1934 1935 1936 1937
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
1938 1939 1940 1941 1942
	if (!p->on_rq || rq->rt.rt_nr_running)
		return;

	if (pull_rt_task(rq))
		resched_task(rq->curr);
1943
}
1944

1945
void __init init_sched_rt_class(void)
1946 1947 1948
{
	unsigned int i;

1949
	for_each_possible_cpu(i) {
1950
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1951
					GFP_KERNEL, cpu_to_node(i));
1952
	}
1953
}
1954 1955 1956 1957 1958 1959 1960
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1961
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1972
	if (p->on_rq && rq->curr != p) {
1973
#ifdef CONFIG_SMP
1974
		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
1975
		    /* Don't resched if we changed runqueues */
1976
		    push_rt_task(rq) && rq != task_rq(p))
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1988 1989
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1990
{
P
Peter Zijlstra 已提交
1991
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1992 1993 1994
		return;

	if (rq->curr == p) {
1995 1996 1997 1998 1999 2000 2001 2002 2003
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
2004 2005 2006
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
2007
		 */
2008
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2009 2010 2011 2012 2013
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
2014
#endif /* CONFIG_SMP */
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

2026 2027 2028 2029
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

2030 2031 2032
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2033 2034 2035 2036

	if (soft != RLIM_INFINITY) {
		unsigned long next;

2037 2038 2039 2040 2041
		if (p->rt.watchdog_stamp != jiffies) {
			p->rt.timeout++;
			p->rt.watchdog_stamp = jiffies;
		}

2042
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2043
		if (p->rt.timeout > next)
2044
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2045 2046
	}
}
I
Ingo Molnar 已提交
2047

P
Peter Zijlstra 已提交
2048
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
2049
{
2050 2051
	struct sched_rt_entity *rt_se = &p->rt;

2052 2053
	update_curr_rt(rq);

2054 2055
	watchdog(rq, p);

I
Ingo Molnar 已提交
2056 2057 2058 2059 2060 2061 2062
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
2063
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
2064 2065
		return;

2066
	p->rt.time_slice = sched_rr_timeslice;
I
Ingo Molnar 已提交
2067

2068
	/*
L
Li Bin 已提交
2069 2070
	 * Requeue to the end of queue if we (and all of our ancestors) are not
	 * the only element on the queue
2071
	 */
2072 2073 2074 2075 2076 2077
	for_each_sched_rt_entity(rt_se) {
		if (rt_se->run_list.prev != rt_se->run_list.next) {
			requeue_task_rt(rq, p, 0);
			set_tsk_need_resched(p);
			return;
		}
2078
	}
I
Ingo Molnar 已提交
2079 2080
}

2081 2082 2083 2084
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

2085
	p->se.exec_start = rq_clock_task(rq);
2086 2087 2088

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
2089 2090
}

2091
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2092 2093 2094 2095 2096
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
2097
		return sched_rr_timeslice;
2098 2099 2100 2101
	else
		return 0;
}

2102
const struct sched_class rt_sched_class = {
2103
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

2113
#ifdef CONFIG_SMP
L
Li Zefan 已提交
2114 2115
	.select_task_rq		= select_task_rq_rt,

2116
	.set_cpus_allowed       = set_cpus_allowed_rt,
2117 2118
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
2119
	.post_schedule		= post_schedule_rt,
2120
	.task_woken		= task_woken_rt,
2121
	.switched_from		= switched_from_rt,
2122
#endif
I
Ingo Molnar 已提交
2123

2124
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
2125
	.task_tick		= task_tick_rt,
2126

2127 2128
	.get_rr_interval	= get_rr_interval_rt,

2129 2130
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
2131
};
2132 2133 2134 2135

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

2136
void print_rt_stats(struct seq_file *m, int cpu)
2137
{
C
Cheng Xu 已提交
2138
	rt_rq_iter_t iter;
2139 2140 2141
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
2142
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2143 2144 2145
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
2146
#endif /* CONFIG_SCHED_DEBUG */