rt.c 45.7 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#include "sched.h"

#include <linux/slab.h>

10 11
int sched_rr_timeslice = RR_TIMESLICE;

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

struct rt_bandwidth def_rt_bandwidth;

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

	raw_spin_lock_init(&rt_b->rt_runtime_lock);

	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	raw_spin_lock(&rt_b->rt_runtime_lock);
	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
	raw_spin_unlock(&rt_b->rt_runtime_lock);
}

void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

#if defined CONFIG_SMP
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
	plist_head_init(&rt_rq->pushable_tasks);
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
	rt_rq->rt_runtime = 0;
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}

89
#ifdef CONFIG_RT_GROUP_SCHED
90 91 92 93
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
94 95 96

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

97 98
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
99 100 101
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
102 103 104 105 106 107 108 109 110 111 112 113 114
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
void free_rt_sched_group(struct task_group *tg)
{
	int i;

	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
	rt_rq->tg = tg;

	tg->rt_rq[cpu] = rt_rq;
	tg->rt_se[cpu] = rt_se;

	if (!rt_se)
		return;

	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

	rt_se->my_q = rt_rq;
	rt_se->parent = parent;
	INIT_LIST_HEAD(&rt_se->run_list);
}

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);

	for_each_possible_cpu(i) {
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_rq)
			goto err;

		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_se)
			goto err_free_rq;

		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
	}

	return 1;

err_free_rq:
	kfree(rt_rq);
err:
	return 0;
}

200 201
#else /* CONFIG_RT_GROUP_SCHED */

202 203
#define rt_entity_is_task(rt_se) (1)

204 205 206 207 208
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

209 210 211 212 213 214 215 216 217 218 219 220 221
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

222 223 224 225 226 227
void free_rt_sched_group(struct task_group *tg) { }

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}
228 229
#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
230
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
231

232
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
233
{
234
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
235
}
I
Ingo Molnar 已提交
236

S
Steven Rostedt 已提交
237 238
static inline void rt_set_overload(struct rq *rq)
{
239 240 241
	if (!rq->online)
		return;

242
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
243 244 245 246 247 248
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
P
Peter Zijlstra 已提交
249 250
	 *
	 * Matched by the barrier in pull_rt_task().
S
Steven Rostedt 已提交
251
	 */
P
Peter Zijlstra 已提交
252
	smp_wmb();
253
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
254
}
I
Ingo Molnar 已提交
255

S
Steven Rostedt 已提交
256 257
static inline void rt_clear_overload(struct rq *rq)
{
258 259 260
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
261
	/* the order here really doesn't matter */
262
	atomic_dec(&rq->rd->rto_count);
263
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
264
}
265

266
static void update_rt_migration(struct rt_rq *rt_rq)
267
{
268
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
269 270 271
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
272
		}
273 274 275
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
276
	}
277
}
S
Steven Rostedt 已提交
278

279 280
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
281 282
	struct task_struct *p;

283 284 285
	if (!rt_entity_is_task(rt_se))
		return;

286
	p = rt_task_of(rt_se);
287 288 289
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
290
	if (p->nr_cpus_allowed > 1)
291 292 293 294 295 296 297
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
298 299
	struct task_struct *p;

300 301 302
	if (!rt_entity_is_task(rt_se))
		return;

303
	p = rt_task_of(rt_se);
304 305 306
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
307
	if (p->nr_cpus_allowed > 1)
308 309 310 311 312
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

313 314 315 316 317
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

318 319 320 321 322
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
323 324 325 326

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
327 328 329 330 331 332
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

333 334 335 336 337 338 339
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
340 341
}

342 343
#else

344
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
345
{
P
Peter Zijlstra 已提交
346 347
}

348 349 350 351
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

352
static inline
353 354 355 356
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

357
static inline
358 359 360
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
361

S
Steven Rostedt 已提交
362 363
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
364 365 366 367 368
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

369
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
370

P
Peter Zijlstra 已提交
371
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
372 373
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
374
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
375

P
Peter Zijlstra 已提交
376 377 378 379 380 381
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
382 383
}

C
Cheng Xu 已提交
384 385
typedef struct task_group *rt_rq_iter_t;

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
403

P
Peter Zijlstra 已提交
404 405 406 407 408 409 410 411
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

412
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
413 414
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
415
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
416
{
417
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
418 419
	struct sched_rt_entity *rt_se;

420 421 422
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
423

424 425
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
426
			enqueue_rt_entity(rt_se, false);
427
		if (rt_rq->highest_prio.curr < curr->prio)
428
			resched_task(curr);
P
Peter Zijlstra 已提交
429 430 431
	}
}

P
Peter Zijlstra 已提交
432
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
433
{
434
	struct sched_rt_entity *rt_se;
435
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
436

437
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
438 439 440 441 442

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

460
#ifdef CONFIG_SMP
461
static inline const struct cpumask *sched_rt_period_mask(void)
462
{
N
Nathan Zimmer 已提交
463
	return this_rq()->rd->span;
464
}
P
Peter Zijlstra 已提交
465
#else
466
static inline const struct cpumask *sched_rt_period_mask(void)
467
{
468
	return cpu_online_mask;
469 470
}
#endif
P
Peter Zijlstra 已提交
471

472 473
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
474
{
475 476
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
477

P
Peter Zijlstra 已提交
478 479 480 481 482
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

483
#else /* !CONFIG_RT_GROUP_SCHED */
484 485 486

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
487 488 489 490 491 492
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
493 494
}

C
Cheng Xu 已提交
495 496 497 498 499
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

P
Peter Zijlstra 已提交
500 501 502 503 504 505 506 507
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
508
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
509
{
510 511
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
512 513
}

P
Peter Zijlstra 已提交
514
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
515 516 517
{
}

P
Peter Zijlstra 已提交
518 519 520 521
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
522

523
static inline const struct cpumask *sched_rt_period_mask(void)
524
{
525
	return cpu_online_mask;
526 527 528 529 530 531 532 533
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
534 535 536 537 538
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

539
#endif /* CONFIG_RT_GROUP_SCHED */
540

P
Peter Zijlstra 已提交
541
#ifdef CONFIG_SMP
542 543 544
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
545
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
546 547
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
548
	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
P
Peter Zijlstra 已提交
549 550 551
	int i, weight, more = 0;
	u64 rt_period;

552
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
553

554
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
555
	rt_period = ktime_to_ns(rt_b->rt_period);
556
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
557 558 559 560 561 562
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

563
		raw_spin_lock(&iter->rt_runtime_lock);
564 565 566 567 568
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
569 570 571
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

572 573 574 575
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
576 577
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
578
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
579 580 581 582 583 584
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
585
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
586 587 588
				break;
			}
		}
P
Peter Zijlstra 已提交
589
next:
590
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
591
	}
592
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
593 594 595

	return more;
}
P
Peter Zijlstra 已提交
596

597 598 599
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
600 601 602
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
603
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
604 605 606 607 608
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
609
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
610 611 612 613
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

614 615
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
616 617 618 619 620
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
621 622 623
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
624
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
625

626 627 628 629 630
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
631 632
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

633 634 635
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
636
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
637 638 639
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

640 641 642
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
643
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
644 645
				continue;

646
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
647 648 649 650 651 652 653 654
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
655
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
656 657 658 659 660

			if (!want)
				break;
		}

661
		raw_spin_lock(&rt_rq->rt_runtime_lock);
662 663 664 665
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
666 667
		BUG_ON(want);
balanced:
668 669 670 671
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
672
		rt_rq->rt_runtime = RUNTIME_INF;
673
		rt_rq->rt_throttled = 0;
674 675
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
676 677 678 679 680
	}
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
681
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
682 683 684 685 686
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

687 688 689
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
690
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
691 692
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

693 694
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
695 696
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
697
		rt_rq->rt_throttled = 0;
698 699
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
700 701 702
	}
}

703 704 705 706
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

707 708 709
	if (!sched_feat(RT_RUNTIME_SHARE))
		return more;

710
	if (rt_rq->rt_time > rt_rq->rt_runtime) {
711
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
712
		more = do_balance_runtime(rt_rq);
713
		raw_spin_lock(&rt_rq->rt_runtime_lock);
714 715 716 717
	}

	return more;
}
718
#else /* !CONFIG_SMP */
719 720 721 722
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
723
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
724

725 726
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
727
	int i, idle = 1, throttled = 0;
728
	const struct cpumask *span;
729 730

	span = sched_rt_period_mask();
731 732 733 734 735 736 737 738 739 740 741 742 743
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * FIXME: isolated CPUs should really leave the root task group,
	 * whether they are isolcpus or were isolated via cpusets, lest
	 * the timer run on a CPU which does not service all runqueues,
	 * potentially leaving other CPUs indefinitely throttled.  If
	 * isolation is really required, the user will turn the throttle
	 * off to kill the perturbations it causes anyway.  Meanwhile,
	 * this maintains functionality for boot and/or troubleshooting.
	 */
	if (rt_b == &root_task_group.rt_bandwidth)
		span = cpu_online_mask;
#endif
744
	for_each_cpu(i, span) {
745 746 747 748
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

749
		raw_spin_lock(&rq->lock);
750 751 752
		if (rt_rq->rt_time) {
			u64 runtime;

753
			raw_spin_lock(&rt_rq->rt_runtime_lock);
754 755 756 757 758 759 760
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
761 762 763 764 765 766 767

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
768 769 770
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
771
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
772
		} else if (rt_rq->rt_nr_running) {
773
			idle = 0;
774 775 776
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
777 778
		if (rt_rq->rt_throttled)
			throttled = 1;
779 780 781

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
782
		raw_spin_unlock(&rq->lock);
783 784
	}

785 786 787
	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
		return 1;

788 789
	return idle;
}
P
Peter Zijlstra 已提交
790

P
Peter Zijlstra 已提交
791 792
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
793
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
794 795 796
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
797
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
798 799 800 801 802
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
803
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
804
{
P
Peter Zijlstra 已提交
805
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
806 807

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
808
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
809

810
	if (runtime >= sched_rt_period(rt_rq))
P
Peter Zijlstra 已提交
811 812
		return 0;

813 814 815 816
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
817

P
Peter Zijlstra 已提交
818
	if (rt_rq->rt_time > runtime) {
819 820 821 822 823 824 825
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		/*
		 * Don't actually throttle groups that have no runtime assigned
		 * but accrue some time due to boosting.
		 */
		if (likely(rt_b->rt_runtime)) {
826 827
			static bool once = false;

828
			rt_rq->rt_throttled = 1;
829 830 831 832 833

			if (!once) {
				once = true;
				printk_sched("sched: RT throttling activated\n");
			}
834 835 836 837 838 839 840 841 842
		} else {
			/*
			 * In case we did anyway, make it go away,
			 * replenishment is a joke, since it will replenish us
			 * with exactly 0 ns.
			 */
			rt_rq->rt_time = 0;
		}

P
Peter Zijlstra 已提交
843
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
844
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
845 846
			return 1;
		}
P
Peter Zijlstra 已提交
847 848 849 850 851
	}

	return 0;
}

I
Ingo Molnar 已提交
852 853 854 855
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
856
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
857 858
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
859 860
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
861 862
	u64 delta_exec;

P
Peter Zijlstra 已提交
863
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
864 865
		return;

866
	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
867 868
	if (unlikely((s64)delta_exec <= 0))
		return;
I
Ingo Molnar 已提交
869

870 871
	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
872 873

	curr->se.sum_exec_runtime += delta_exec;
874 875
	account_group_exec_runtime(curr, delta_exec);

876
	curr->se.exec_start = rq_clock_task(rq);
877
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
878

879 880
	sched_rt_avg_update(rq, delta_exec);

881 882 883
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
884 885 886
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

887
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
888
			raw_spin_lock(&rt_rq->rt_runtime_lock);
889 890 891
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
892
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
893
		}
D
Dhaval Giani 已提交
894
	}
I
Ingo Molnar 已提交
895 896
}

897
#if defined CONFIG_SMP
898

899 900
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
901
{
G
Gregory Haskins 已提交
902
	struct rq *rq = rq_of_rt_rq(rt_rq);
903

904 905 906 907 908 909 910
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Change rq's cpupri only if rt_rq is the top queue.
	 */
	if (&rq->rt != rt_rq)
		return;
#endif
911 912
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
913
}
914

915 916 917 918
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
919

920 921 922 923 924 925 926
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Change rq's cpupri only if rt_rq is the top queue.
	 */
	if (&rq->rt != rt_rq)
		return;
#endif
927 928
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
929 930
}

931 932
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
933
static inline
934 935 936 937 938
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
939

940
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
957
	if (rt_rq->rt_nr_running) {
958

959
		WARN_ON(prio < prev_prio);
960

961
		/*
962 963
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
964
		 */
965
		if (prio == prev_prio) {
966 967 968
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
969
				sched_find_first_bit(array->bitmap);
970 971
		}

972
	} else
973
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
974

975 976
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
977

978 979 980 981 982 983
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
984

985
#ifdef CONFIG_RT_GROUP_SCHED
986 987 988 989 990 991 992 993 994 995 996 997 998 999

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
1000 1001 1002 1003
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
1042 1043
}

1044
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
1045
{
P
Peter Zijlstra 已提交
1046 1047 1048
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
1049
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
1050

1051 1052 1053 1054 1055 1056 1057
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
1058
		return;
1059

1060 1061 1062 1063
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
1064
	__set_bit(rt_se_prio(rt_se), array->bitmap);
1065

P
Peter Zijlstra 已提交
1066 1067 1068
	inc_rt_tasks(rt_se, rt_rq);
}

1069
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
1085
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1086
{
1087
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
1088

1089 1090 1091 1092 1093 1094 1095
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
1096 1097 1098 1099
			__dequeue_rt_entity(rt_se);
	}
}

1100
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1101 1102 1103
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
1104
		__enqueue_rt_entity(rt_se, head);
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
1115
			__enqueue_rt_entity(rt_se, false);
1116
	}
I
Ingo Molnar 已提交
1117 1118 1119 1120 1121
}

/*
 * Adding/removing a task to/from a priority array:
 */
1122
static void
1123
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
1124 1125 1126
{
	struct sched_rt_entity *rt_se = &p->rt;

1127
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
1128 1129
		rt_se->timeout = 0;

1130
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1131

1132
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1133
		enqueue_pushable_task(rq, p);
1134 1135

	inc_nr_running(rq);
P
Peter Zijlstra 已提交
1136 1137
}

1138
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1139
{
P
Peter Zijlstra 已提交
1140
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
1141

1142
	update_curr_rt(rq);
1143
	dequeue_rt_entity(rt_se);
1144

1145
	dequeue_pushable_task(rq, p);
1146 1147

	dec_nr_running(rq);
I
Ingo Molnar 已提交
1148 1149 1150
}

/*
1151 1152
 * Put task to the head or the end of the run list without the overhead of
 * dequeue followed by enqueue.
I
Ingo Molnar 已提交
1153
 */
1154 1155
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
1156
{
1157
	if (on_rt_rq(rt_se)) {
1158 1159 1160 1161 1162 1163 1164
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
1165
	}
P
Peter Zijlstra 已提交
1166 1167
}

1168
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
1169
{
P
Peter Zijlstra 已提交
1170 1171
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1172

P
Peter Zijlstra 已提交
1173 1174
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
1175
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
1176
	}
I
Ingo Molnar 已提交
1177 1178
}

P
Peter Zijlstra 已提交
1179
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
1180
{
1181
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
1182 1183
}

1184
#ifdef CONFIG_SMP
1185 1186
static int find_lowest_rq(struct task_struct *task);

1187
static int
1188
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1189
{
1190 1191
	struct task_struct *curr;
	struct rq *rq;
1192

1193
	if (p->nr_cpus_allowed == 1)
1194 1195
		goto out;

1196 1197 1198 1199
	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1200 1201 1202 1203 1204
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1205
	/*
1206
	 * If the current task on @p's runqueue is an RT task, then
1207 1208 1209 1210
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1211 1212 1213 1214 1215 1216 1217 1218 1219
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1220 1221 1222 1223 1224 1225
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1226
	 */
1227
	if (curr && unlikely(rt_task(curr)) &&
1228
	    (curr->nr_cpus_allowed < 2 ||
1229
	     curr->prio <= p->prio)) {
1230
		int target = find_lowest_rq(p);
1231

1232 1233
		if (target != -1)
			cpu = target;
1234
	}
1235
	rcu_read_unlock();
1236

1237
out:
1238
	return cpu;
1239
}
1240 1241 1242

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
1243
	if (rq->curr->nr_cpus_allowed == 1)
1244 1245
		return;

1246
	if (p->nr_cpus_allowed != 1
1247 1248
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1249

1250 1251
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1262 1263
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1264 1265 1266
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1267
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1268
{
1269
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1270
		resched_task(rq->curr);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1287
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1288
		check_preempt_equal_prio(rq, p);
1289
#endif
I
Ingo Molnar 已提交
1290 1291
}

P
Peter Zijlstra 已提交
1292 1293
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1294
{
P
Peter Zijlstra 已提交
1295 1296
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1297 1298 1299 1300
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1301
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1302 1303

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1304
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1305

P
Peter Zijlstra 已提交
1306 1307
	return next;
}
I
Ingo Molnar 已提交
1308

1309
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1310 1311 1312 1313
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1314

P
Peter Zijlstra 已提交
1315 1316
	rt_rq = &rq->rt;

1317
	if (!rt_rq->rt_nr_running)
P
Peter Zijlstra 已提交
1318 1319
		return NULL;

P
Peter Zijlstra 已提交
1320
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1321 1322 1323 1324
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1325
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1326 1327 1328 1329
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1330
	p->se.exec_start = rq_clock_task(rq);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1343
#ifdef CONFIG_SMP
1344 1345 1346 1347 1348
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1349
#endif
1350

P
Peter Zijlstra 已提交
1351
	return p;
I
Ingo Molnar 已提交
1352 1353
}

1354
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1355
{
1356
	update_curr_rt(rq);
1357 1358 1359 1360 1361

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
1362
	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1363
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1364 1365
}

1366
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1367

S
Steven Rostedt 已提交
1368 1369 1370
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

1371 1372 1373
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1374
	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1375 1376 1377 1378
		return 1;
	return 0;
}

1379 1380 1381 1382 1383
/*
 * Return the highest pushable rq's task, which is suitable to be executed
 * on the cpu, NULL otherwise
 */
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1384
{
1385 1386
	struct plist_head *head = &rq->rt.pushable_tasks;
	struct task_struct *p;
1387

1388 1389
	if (!has_pushable_tasks(rq))
		return NULL;
1390

1391 1392 1393
	plist_for_each_entry(p, head, pushable_tasks) {
		if (pick_rt_task(rq, p, cpu))
			return p;
1394 1395
	}

1396
	return NULL;
S
Steven Rostedt 已提交
1397 1398
}

1399
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1400

G
Gregory Haskins 已提交
1401 1402 1403
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1404
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1405 1406
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1407

1408 1409 1410 1411
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1412
	if (task->nr_cpus_allowed == 1)
1413
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1414

1415 1416
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1426
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1427 1428 1429 1430 1431 1432
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1433 1434
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1435

1436
	rcu_read_lock();
R
Rusty Russell 已提交
1437 1438 1439
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1440

R
Rusty Russell 已提交
1441 1442 1443 1444 1445
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1446 1447
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1448
				return this_cpu;
1449
			}
R
Rusty Russell 已提交
1450 1451 1452

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1453 1454
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1455
				return best_cpu;
1456
			}
G
Gregory Haskins 已提交
1457 1458
		}
	}
1459
	rcu_read_unlock();
G
Gregory Haskins 已提交
1460 1461 1462 1463 1464 1465

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1466 1467 1468 1469 1470 1471 1472
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1473 1474 1475
}

/* Will lock the rq it finds */
1476
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1477 1478 1479
{
	struct rq *lowest_rq = NULL;
	int tries;
1480
	int cpu;
S
Steven Rostedt 已提交
1481

1482 1483 1484
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1485
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1486 1487
			break;

1488 1489
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1490
		/* if the prio of this runqueue changed, try again */
1491
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1492 1493 1494 1495 1496 1497
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1498
			if (unlikely(task_rq(task) != rq ||
1499
				     !cpumask_test_cpu(lowest_rq->cpu,
1500
						       tsk_cpus_allowed(task)) ||
1501
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1502
				     !task->on_rq)) {
1503

1504
				double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1505 1506 1507 1508 1509 1510
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1511
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1512 1513 1514
			break;

		/* try again */
1515
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1516 1517 1518 1519 1520 1521
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
1534
	BUG_ON(p->nr_cpus_allowed <= 1);
1535

P
Peter Zijlstra 已提交
1536
	BUG_ON(!p->on_rq);
1537 1538 1539 1540 1541
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1542 1543 1544 1545 1546
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1547
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1548 1549 1550
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1551
	int ret = 0;
S
Steven Rostedt 已提交
1552

G
Gregory Haskins 已提交
1553 1554 1555
	if (!rq->rt.overloaded)
		return 0;

1556
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1557 1558 1559
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1560
retry:
1561
	if (unlikely(next_task == rq->curr)) {
1562
		WARN_ON(1);
S
Steven Rostedt 已提交
1563
		return 0;
1564
	}
S
Steven Rostedt 已提交
1565 1566 1567 1568 1569 1570

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1571 1572
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1573 1574 1575
		return 0;
	}

1576
	/* We might release rq lock */
S
Steven Rostedt 已提交
1577 1578 1579
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1580
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1581 1582 1583
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1584
		 * find_lock_lowest_rq releases rq->lock
1585 1586 1587 1588 1589
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1590
		 */
1591
		task = pick_next_pushable_task(rq);
1592 1593
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1594 1595 1596 1597
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1598 1599
			 */
			goto out;
S
Steven Rostedt 已提交
1600
		}
1601

1602 1603 1604 1605
		if (!task)
			/* No more tasks, just exit */
			goto out;

1606
		/*
1607
		 * Something has shifted, try again.
1608
		 */
1609 1610 1611
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1612 1613
	}

1614
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1615 1616
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1617
	ret = 1;
S
Steven Rostedt 已提交
1618 1619 1620

	resched_task(lowest_rq->curr);

1621
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1622 1623 1624 1625

out:
	put_task_struct(next_task);

1626
	return ret;
S
Steven Rostedt 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1636 1637
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1638
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1639
	struct task_struct *p;
1640 1641
	struct rq *src_rq;

1642
	if (likely(!rt_overloaded(this_rq)))
1643 1644
		return 0;

P
Peter Zijlstra 已提交
1645 1646 1647 1648 1649 1650
	/*
	 * Match the barrier from rt_set_overloaded; this guarantees that if we
	 * see overloaded we must also see the rto_mask bit.
	 */
	smp_rmb();

1651
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1652 1653 1654 1655
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1668 1669 1670
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1671
		 * alter this_rq
1672
		 */
1673
		double_lock_balance(this_rq, src_rq);
1674 1675

		/*
1676 1677
		 * We can pull only a task, which is pushable
		 * on its rq, and no others.
1678
		 */
1679
		p = pick_highest_pushable_task(src_rq, this_cpu);
1680 1681 1682 1683 1684

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1685
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1686
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1687
			WARN_ON(!p->on_rq);
1688 1689 1690 1691 1692 1693 1694

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1695
			 * current task on the run queue
1696
			 */
1697
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1698
				goto skip;
1699 1700 1701 1702 1703 1704 1705 1706 1707

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1708
			 * in another runqueue. (low likelihood
1709 1710 1711
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1712
skip:
1713
		double_unlock_balance(this_rq, src_rq);
1714 1715 1716 1717 1718
	}

	return ret;
}

1719
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1720 1721
{
	/* Try to pull RT tasks here if we lower this rq's prio */
Y
Yong Zhang 已提交
1722
	if (rq->rt.highest_prio.curr > prev->prio)
1723 1724 1725
		pull_rt_task(rq);
}

1726
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1727
{
1728
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1729 1730
}

1731 1732 1733 1734
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1735
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1736
{
1737
	if (!task_running(rq, p) &&
1738
	    !test_tsk_need_resched(rq->curr) &&
1739
	    has_pushable_tasks(rq) &&
1740
	    p->nr_cpus_allowed > 1 &&
1741
	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
1742
	    (rq->curr->nr_cpus_allowed < 2 ||
1743
	     rq->curr->prio <= p->prio))
1744 1745 1746
		push_rt_tasks(rq);
}

1747
static void set_cpus_allowed_rt(struct task_struct *p,
1748
				const struct cpumask *new_mask)
1749
{
1750 1751
	struct rq *rq;
	int weight;
1752 1753 1754

	BUG_ON(!rt_task(p));

1755 1756
	if (!p->on_rq)
		return;
1757

1758
	weight = cpumask_weight(new_mask);
1759

1760 1761 1762 1763
	/*
	 * Only update if the process changes its state from whether it
	 * can migrate or not.
	 */
1764
	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1765
		return;
1766

1767
	rq = task_rq(p);
1768

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	/*
	 * The process used to be able to migrate OR it can now migrate
	 */
	if (weight <= 1) {
		if (!task_current(rq, p))
			dequeue_pushable_task(rq, p);
		BUG_ON(!rq->rt.rt_nr_migratory);
		rq->rt.rt_nr_migratory--;
	} else {
		if (!task_current(rq, p))
			enqueue_pushable_task(rq, p);
		rq->rt.rt_nr_migratory++;
1781
	}
1782 1783

	update_rt_migration(&rq->rt);
1784
}
1785

1786
/* Assumes rq->lock is held */
1787
static void rq_online_rt(struct rq *rq)
1788 1789 1790
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1791

P
Peter Zijlstra 已提交
1792 1793
	__enable_runtime(rq);

1794
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1795 1796 1797
}

/* Assumes rq->lock is held */
1798
static void rq_offline_rt(struct rq *rq)
1799 1800 1801
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1802

P
Peter Zijlstra 已提交
1803 1804
	__disable_runtime(rq);

1805
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1806
}
1807 1808 1809 1810 1811

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1812
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1813 1814 1815 1816 1817 1818 1819 1820
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
1821 1822 1823 1824 1825
	if (!p->on_rq || rq->rt.rt_nr_running)
		return;

	if (pull_rt_task(rq))
		resched_task(rq->curr);
1826
}
1827

1828
void init_sched_rt_class(void)
1829 1830 1831
{
	unsigned int i;

1832
	for_each_possible_cpu(i) {
1833
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1834
					GFP_KERNEL, cpu_to_node(i));
1835
	}
1836
}
1837 1838 1839 1840 1841 1842 1843
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1844
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1855
	if (p->on_rq && rq->curr != p) {
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1871 1872
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1873
{
P
Peter Zijlstra 已提交
1874
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1875 1876 1877
		return;

	if (rq->curr == p) {
1878 1879 1880 1881 1882 1883 1884 1885 1886
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1887 1888 1889
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1890
		 */
1891
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1892 1893 1894 1895 1896
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1897
#endif /* CONFIG_SMP */
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1909 1910 1911 1912
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1913 1914 1915
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1916 1917 1918 1919

	if (soft != RLIM_INFINITY) {
		unsigned long next;

1920 1921 1922 1923 1924
		if (p->rt.watchdog_stamp != jiffies) {
			p->rt.timeout++;
			p->rt.watchdog_stamp = jiffies;
		}

1925
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1926
		if (p->rt.timeout > next)
1927
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1928 1929
	}
}
I
Ingo Molnar 已提交
1930

P
Peter Zijlstra 已提交
1931
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1932
{
1933 1934
	struct sched_rt_entity *rt_se = &p->rt;

1935 1936
	update_curr_rt(rq);

1937 1938
	watchdog(rq, p);

I
Ingo Molnar 已提交
1939 1940 1941 1942 1943 1944 1945
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1946
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1947 1948
		return;

1949
	p->rt.time_slice = sched_rr_timeslice;
I
Ingo Molnar 已提交
1950

1951
	/*
L
Li Bin 已提交
1952 1953
	 * Requeue to the end of queue if we (and all of our ancestors) are not
	 * the only element on the queue
1954
	 */
1955 1956 1957 1958 1959 1960
	for_each_sched_rt_entity(rt_se) {
		if (rt_se->run_list.prev != rt_se->run_list.next) {
			requeue_task_rt(rq, p, 0);
			set_tsk_need_resched(p);
			return;
		}
1961
	}
I
Ingo Molnar 已提交
1962 1963
}

1964 1965 1966 1967
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

1968
	p->se.exec_start = rq_clock_task(rq);
1969 1970 1971

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1972 1973
}

1974
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1975 1976 1977 1978 1979
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
1980
		return sched_rr_timeslice;
1981 1982 1983 1984
	else
		return 0;
}

1985
const struct sched_class rt_sched_class = {
1986
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1996
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1997 1998
	.select_task_rq		= select_task_rq_rt,

1999
	.set_cpus_allowed       = set_cpus_allowed_rt,
2000 2001
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
2002 2003
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
2004
	.task_woken		= task_woken_rt,
2005
	.switched_from		= switched_from_rt,
2006
#endif
I
Ingo Molnar 已提交
2007

2008
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
2009
	.task_tick		= task_tick_rt,
2010

2011 2012
	.get_rr_interval	= get_rr_interval_rt,

2013 2014
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
2015
};
2016 2017 2018 2019

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

2020
void print_rt_stats(struct seq_file *m, int cpu)
2021
{
C
Cheng Xu 已提交
2022
	rt_rq_iter_t iter;
2023 2024 2025
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
2026
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2027 2028 2029
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
2030
#endif /* CONFIG_SCHED_DEBUG */