rt.c 48.0 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#include "sched.h"

#include <linux/slab.h>

10 11
int sched_rr_timeslice = RR_TIMESLICE;

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

struct rt_bandwidth def_rt_bandwidth;

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

	raw_spin_lock_init(&rt_b->rt_runtime_lock);

	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	raw_spin_lock(&rt_b->rt_runtime_lock);
	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
	raw_spin_unlock(&rt_b->rt_runtime_lock);
}

void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

#if defined CONFIG_SMP
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
	plist_head_init(&rt_rq->pushable_tasks);
#endif
82 83
	/* We start is dequeued state, because no RT tasks are queued */
	rt_rq->rt_queued = 0;
84 85 86 87 88 89 90

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
	rt_rq->rt_runtime = 0;
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}

91
#ifdef CONFIG_RT_GROUP_SCHED
92 93 94 95
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
96 97 98

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

99 100
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
101 102 103
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
104 105 106 107 108 109 110 111 112 113 114 115 116
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

117 118 119 120 121 122 123
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = rt_se->rt_rq;

	return rt_rq->rq;
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
void free_rt_sched_group(struct task_group *tg)
{
	int i;

	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
	rt_rq->tg = tg;

	tg->rt_rq[cpu] = rt_rq;
	tg->rt_se[cpu] = rt_se;

	if (!rt_se)
		return;

	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

	rt_se->my_q = rt_rq;
	rt_se->parent = parent;
	INIT_LIST_HEAD(&rt_se->run_list);
}

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);

	for_each_possible_cpu(i) {
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_rq)
			goto err;

		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_se)
			goto err_free_rq;

		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
	}

	return 1;

err_free_rq:
	kfree(rt_rq);
err:
	return 0;
}

209 210
#else /* CONFIG_RT_GROUP_SCHED */

211 212
#define rt_entity_is_task(rt_se) (1)

213 214 215 216 217
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

218 219 220 221 222
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

223
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
224 225
{
	struct task_struct *p = rt_task_of(rt_se);
226 227 228 229 230 231 232

	return task_rq(p);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct rq *rq = rq_of_rt_se(rt_se);
233 234 235 236

	return &rq->rt;
}

237 238 239 240 241 242
void free_rt_sched_group(struct task_group *tg) { }

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}
243 244
#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
245
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
246

247 248
static int pull_rt_task(struct rq *this_rq);

P
Peter Zijlstra 已提交
249 250 251 252 253 254
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
	/* Try to pull RT tasks here if we lower this rq's prio */
	return rq->rt.highest_prio.curr > prev->prio;
}

255
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
256
{
257
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
258
}
I
Ingo Molnar 已提交
259

S
Steven Rostedt 已提交
260 261
static inline void rt_set_overload(struct rq *rq)
{
262 263 264
	if (!rq->online)
		return;

265
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
266 267 268 269 270 271
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
P
Peter Zijlstra 已提交
272 273
	 *
	 * Matched by the barrier in pull_rt_task().
S
Steven Rostedt 已提交
274
	 */
P
Peter Zijlstra 已提交
275
	smp_wmb();
276
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
277
}
I
Ingo Molnar 已提交
278

S
Steven Rostedt 已提交
279 280
static inline void rt_clear_overload(struct rq *rq)
{
281 282 283
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
284
	/* the order here really doesn't matter */
285
	atomic_dec(&rq->rd->rto_count);
286
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
287
}
288

289
static void update_rt_migration(struct rt_rq *rt_rq)
290
{
291
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
292 293 294
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
295
		}
296 297 298
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
299
	}
300
}
S
Steven Rostedt 已提交
301

302 303
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
304 305
	struct task_struct *p;

306 307 308
	if (!rt_entity_is_task(rt_se))
		return;

309
	p = rt_task_of(rt_se);
310 311 312
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
313
	if (p->nr_cpus_allowed > 1)
314 315 316 317 318 319 320
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
321 322
	struct task_struct *p;

323 324 325
	if (!rt_entity_is_task(rt_se))
		return;

326
	p = rt_task_of(rt_se);
327 328 329
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
330
	if (p->nr_cpus_allowed > 1)
331 332 333 334 335
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

336 337 338 339 340
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

P
Peter Zijlstra 已提交
341 342 343 344 345 346 347 348 349
static inline void set_post_schedule(struct rq *rq)
{
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
}

350 351 352 353 354
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
355 356 357 358

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
359 360 361 362 363 364
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

365 366 367 368 369 370 371
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
372 373
}

374 375
#else

376
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
377
{
P
Peter Zijlstra 已提交
378 379
}

380 381 382 383
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

384
static inline
385 386 387 388
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

389
static inline
390 391 392
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
393

P
Peter Zijlstra 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
	return false;
}

static inline int pull_rt_task(struct rq *this_rq)
{
	return 0;
}

static inline void set_post_schedule(struct rq *rq)
{
}
S
Steven Rostedt 已提交
407 408
#endif /* CONFIG_SMP */

409 410 411
static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
static void dequeue_top_rt_rq(struct rt_rq *rt_rq);

P
Peter Zijlstra 已提交
412 413 414 415 416
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

417
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
418

P
Peter Zijlstra 已提交
419
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
420 421
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
422
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
423

P
Peter Zijlstra 已提交
424 425 426 427 428 429
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
430 431
}

C
Cheng Xu 已提交
432 433
typedef struct task_group *rt_rq_iter_t;

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
451

P
Peter Zijlstra 已提交
452 453 454 455 456 457 458 459
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

460
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
461 462
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
463
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
464
{
465
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
466 467
	struct sched_rt_entity *rt_se;

468 469 470
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
471

472
	if (rt_rq->rt_nr_running) {
473 474 475
		if (!rt_se)
			enqueue_top_rt_rq(rt_rq);
		else if (!on_rt_rq(rt_se))
476
			enqueue_rt_entity(rt_se, false);
477

478
		if (rt_rq->highest_prio.curr < curr->prio)
479
			resched_task(curr);
P
Peter Zijlstra 已提交
480 481 482
	}
}

P
Peter Zijlstra 已提交
483
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
484
{
485
	struct sched_rt_entity *rt_se;
486
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
487

488
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
489

490 491 492
	if (!rt_se)
		dequeue_top_rt_rq(rt_rq);
	else if (on_rt_rq(rt_se))
P
Peter Zijlstra 已提交
493 494 495
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
496 497 498 499 500 501 502 503 504 505 506 507
static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

508
#ifdef CONFIG_SMP
509
static inline const struct cpumask *sched_rt_period_mask(void)
510
{
N
Nathan Zimmer 已提交
511
	return this_rq()->rd->span;
512
}
P
Peter Zijlstra 已提交
513
#else
514
static inline const struct cpumask *sched_rt_period_mask(void)
515
{
516
	return cpu_online_mask;
517 518
}
#endif
P
Peter Zijlstra 已提交
519

520 521
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
522
{
523 524
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
525

P
Peter Zijlstra 已提交
526 527 528 529 530
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

531
#else /* !CONFIG_RT_GROUP_SCHED */
532 533 534

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
535 536 537 538 539 540
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
541 542
}

C
Cheng Xu 已提交
543 544 545 546 547
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

P
Peter Zijlstra 已提交
548 549 550 551 552 553 554 555
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
556
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
557
{
558 559 560 561 562 563 564
	struct rq *rq = rq_of_rt_rq(rt_rq);

	if (!rt_rq->rt_nr_running)
		return;

	enqueue_top_rt_rq(rt_rq);
	resched_task(rq->curr);
P
Peter Zijlstra 已提交
565 566
}

P
Peter Zijlstra 已提交
567
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
568
{
569
	dequeue_top_rt_rq(rt_rq);
P
Peter Zijlstra 已提交
570 571
}

572
static inline const struct cpumask *sched_rt_period_mask(void)
573
{
574
	return cpu_online_mask;
575 576 577 578 579 580 581 582
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
583 584 585 586 587
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

588
#endif /* CONFIG_RT_GROUP_SCHED */
589

590 591 592 593 594 595 596 597
bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

	return (hrtimer_active(&rt_b->rt_period_timer) ||
		rt_rq->rt_time < rt_b->rt_runtime);
}

P
Peter Zijlstra 已提交
598
#ifdef CONFIG_SMP
599 600 601
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
602
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
603 604
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
605
	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
P
Peter Zijlstra 已提交
606 607 608
	int i, weight, more = 0;
	u64 rt_period;

609
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
610

611
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
612
	rt_period = ktime_to_ns(rt_b->rt_period);
613
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
614 615 616 617 618 619
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

620
		raw_spin_lock(&iter->rt_runtime_lock);
621 622 623 624 625
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
626 627 628
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

629 630 631 632
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
633 634
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
635
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
636 637 638 639 640 641
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
642
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
643 644 645
				break;
			}
		}
P
Peter Zijlstra 已提交
646
next:
647
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
648
	}
649
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
650 651 652

	return more;
}
P
Peter Zijlstra 已提交
653

654 655 656
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
657 658 659
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
660
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
661 662 663 664 665
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
666
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
667 668 669 670
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

671 672
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
673 674 675 676 677
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
678 679 680
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
681
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
682

683 684 685 686 687
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
688 689
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

690 691 692
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
693
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
694 695 696
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

697 698 699
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
700
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
701 702
				continue;

703
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
704 705 706 707 708 709 710 711
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
712
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
713 714 715 716 717

			if (!want)
				break;
		}

718
		raw_spin_lock(&rt_rq->rt_runtime_lock);
719 720 721 722
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
723 724
		BUG_ON(want);
balanced:
725 726 727 728
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
729
		rt_rq->rt_runtime = RUNTIME_INF;
730
		rt_rq->rt_throttled = 0;
731 732
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
733 734 735 736 737
	}
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
738
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
739 740 741 742 743
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

744 745 746
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
747
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
748 749
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

750 751
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
752 753
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
754
		rt_rq->rt_throttled = 0;
755 756
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
757 758 759
	}
}

760 761 762 763
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

764 765 766
	if (!sched_feat(RT_RUNTIME_SHARE))
		return more;

767
	if (rt_rq->rt_time > rt_rq->rt_runtime) {
768
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
769
		more = do_balance_runtime(rt_rq);
770
		raw_spin_lock(&rt_rq->rt_runtime_lock);
771 772 773 774
	}

	return more;
}
775
#else /* !CONFIG_SMP */
776 777 778 779
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
780
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
781

782 783
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
784
	int i, idle = 1, throttled = 0;
785
	const struct cpumask *span;
786 787

	span = sched_rt_period_mask();
788 789 790 791 792 793 794 795 796 797 798 799 800
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * FIXME: isolated CPUs should really leave the root task group,
	 * whether they are isolcpus or were isolated via cpusets, lest
	 * the timer run on a CPU which does not service all runqueues,
	 * potentially leaving other CPUs indefinitely throttled.  If
	 * isolation is really required, the user will turn the throttle
	 * off to kill the perturbations it causes anyway.  Meanwhile,
	 * this maintains functionality for boot and/or troubleshooting.
	 */
	if (rt_b == &root_task_group.rt_bandwidth)
		span = cpu_online_mask;
#endif
801
	for_each_cpu(i, span) {
802 803 804 805
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

806
		raw_spin_lock(&rq->lock);
807 808 809
		if (rt_rq->rt_time) {
			u64 runtime;

810
			raw_spin_lock(&rt_rq->rt_runtime_lock);
811 812 813 814 815 816 817
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
818 819 820 821 822 823 824

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
825 826 827
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
828
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
829
		} else if (rt_rq->rt_nr_running) {
830
			idle = 0;
831 832 833
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
834 835
		if (rt_rq->rt_throttled)
			throttled = 1;
836 837 838

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
839
		raw_spin_unlock(&rq->lock);
840 841
	}

842 843 844
	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
		return 1;

845 846
	return idle;
}
P
Peter Zijlstra 已提交
847

P
Peter Zijlstra 已提交
848 849
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
850
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
851 852 853
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
854
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
855 856 857 858 859
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
860
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
861
{
P
Peter Zijlstra 已提交
862
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
863 864

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
865
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
866

867
	if (runtime >= sched_rt_period(rt_rq))
P
Peter Zijlstra 已提交
868 869
		return 0;

870 871 872 873
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
874

P
Peter Zijlstra 已提交
875
	if (rt_rq->rt_time > runtime) {
876 877 878 879 880 881 882
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		/*
		 * Don't actually throttle groups that have no runtime assigned
		 * but accrue some time due to boosting.
		 */
		if (likely(rt_b->rt_runtime)) {
883 884
			static bool once = false;

885
			rt_rq->rt_throttled = 1;
886 887 888 889 890

			if (!once) {
				once = true;
				printk_sched("sched: RT throttling activated\n");
			}
891 892 893 894 895 896 897 898 899
		} else {
			/*
			 * In case we did anyway, make it go away,
			 * replenishment is a joke, since it will replenish us
			 * with exactly 0 ns.
			 */
			rt_rq->rt_time = 0;
		}

P
Peter Zijlstra 已提交
900
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
901
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
902 903
			return 1;
		}
P
Peter Zijlstra 已提交
904 905 906 907 908
	}

	return 0;
}

I
Ingo Molnar 已提交
909 910 911 912
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
913
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
914 915
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
916 917
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
918 919
	u64 delta_exec;

P
Peter Zijlstra 已提交
920
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
921 922
		return;

923
	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
924 925
	if (unlikely((s64)delta_exec <= 0))
		return;
I
Ingo Molnar 已提交
926

927 928
	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
929 930

	curr->se.sum_exec_runtime += delta_exec;
931 932
	account_group_exec_runtime(curr, delta_exec);

933
	curr->se.exec_start = rq_clock_task(rq);
934
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
935

936 937
	sched_rt_avg_update(rq, delta_exec);

938 939 940
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
941 942 943
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

944
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
945
			raw_spin_lock(&rt_rq->rt_runtime_lock);
946 947 948
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
949
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
950
		}
D
Dhaval Giani 已提交
951
	}
I
Ingo Molnar 已提交
952 953
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
static void
dequeue_top_rt_rq(struct rt_rq *rt_rq)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);

	BUG_ON(&rq->rt != rt_rq);

	if (!rt_rq->rt_queued)
		return;

	BUG_ON(!rq->nr_running);

	rq->nr_running -= rt_rq->rt_nr_running;
	rt_rq->rt_queued = 0;
}

static void
enqueue_top_rt_rq(struct rt_rq *rt_rq)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);

	BUG_ON(&rq->rt != rt_rq);

	if (rt_rq->rt_queued)
		return;
	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
		return;

	rq->nr_running += rt_rq->rt_nr_running;
	rt_rq->rt_queued = 1;
}

986
#if defined CONFIG_SMP
987

988 989
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
990
{
G
Gregory Haskins 已提交
991
	struct rq *rq = rq_of_rt_rq(rt_rq);
992

993 994 995 996 997 998 999
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Change rq's cpupri only if rt_rq is the top queue.
	 */
	if (&rq->rt != rt_rq)
		return;
#endif
1000 1001
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1002
}
1003

1004 1005 1006 1007
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
1008

1009 1010 1011 1012 1013 1014 1015
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Change rq's cpupri only if rt_rq is the top queue.
	 */
	if (&rq->rt != rt_rq)
		return;
#endif
1016 1017
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1018 1019
}

1020 1021
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1022
static inline
1023 1024 1025 1026 1027
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
1028

1029
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
1046
	if (rt_rq->rt_nr_running) {
1047

1048
		WARN_ON(prio < prev_prio);
1049

1050
		/*
1051 1052
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
1053
		 */
1054
		if (prio == prev_prio) {
1055 1056 1057
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
1058
				sched_find_first_bit(array->bitmap);
1059 1060
		}

1061
	} else
1062
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1063

1064 1065
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
1066

1067 1068 1069 1070 1071 1072
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1073

1074
#ifdef CONFIG_RT_GROUP_SCHED
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
1089 1090 1091 1092
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
static inline
unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
{
	struct rt_rq *group_rq = group_rt_rq(rt_se);

	if (group_rq)
		return group_rq->rt_nr_running;
	else
		return 1;
}

1119 1120 1121 1122 1123 1124
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
1125
	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
1137
	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1138 1139 1140 1141

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
1142 1143
}

1144
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
1145
{
P
Peter Zijlstra 已提交
1146 1147 1148
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
1149
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
1150

1151 1152 1153 1154 1155 1156 1157
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
1158
		return;
1159

1160 1161 1162 1163
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
1164
	__set_bit(rt_se_prio(rt_se), array->bitmap);
1165

P
Peter Zijlstra 已提交
1166 1167 1168
	inc_rt_tasks(rt_se, rt_rq);
}

1169
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
1185
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1186
{
1187
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
1188

1189 1190 1191 1192 1193
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

1194 1195
	dequeue_top_rt_rq(rt_rq_of_se(back));

1196 1197
	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
1198 1199 1200 1201
			__dequeue_rt_entity(rt_se);
	}
}

1202
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1203
{
1204 1205
	struct rq *rq = rq_of_rt_se(rt_se);

1206 1207
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
1208
		__enqueue_rt_entity(rt_se, head);
1209
	enqueue_top_rt_rq(&rq->rt);
1210 1211 1212 1213
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
1214 1215
	struct rq *rq = rq_of_rt_se(rt_se);

1216 1217 1218 1219 1220 1221
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
1222
			__enqueue_rt_entity(rt_se, false);
1223
	}
1224
	enqueue_top_rt_rq(&rq->rt);
I
Ingo Molnar 已提交
1225 1226 1227 1228 1229
}

/*
 * Adding/removing a task to/from a priority array:
 */
1230
static void
1231
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
1232 1233 1234
{
	struct sched_rt_entity *rt_se = &p->rt;

1235
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
1236 1237
		rt_se->timeout = 0;

1238
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1239

1240
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1241
		enqueue_pushable_task(rq, p);
P
Peter Zijlstra 已提交
1242 1243
}

1244
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1245
{
P
Peter Zijlstra 已提交
1246
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
1247

1248
	update_curr_rt(rq);
1249
	dequeue_rt_entity(rt_se);
1250

1251
	dequeue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1252 1253 1254
}

/*
1255 1256
 * Put task to the head or the end of the run list without the overhead of
 * dequeue followed by enqueue.
I
Ingo Molnar 已提交
1257
 */
1258 1259
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
1260
{
1261
	if (on_rt_rq(rt_se)) {
1262 1263 1264 1265 1266 1267 1268
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
1269
	}
P
Peter Zijlstra 已提交
1270 1271
}

1272
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
1273
{
P
Peter Zijlstra 已提交
1274 1275
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1276

P
Peter Zijlstra 已提交
1277 1278
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
1279
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
1280
	}
I
Ingo Molnar 已提交
1281 1282
}

P
Peter Zijlstra 已提交
1283
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
1284
{
1285
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
1286 1287
}

1288
#ifdef CONFIG_SMP
1289 1290
static int find_lowest_rq(struct task_struct *task);

1291
static int
1292
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1293
{
1294 1295
	struct task_struct *curr;
	struct rq *rq;
1296

1297
	if (p->nr_cpus_allowed == 1)
1298 1299
		goto out;

1300 1301 1302 1303
	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1304 1305 1306 1307 1308
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1309
	/*
1310
	 * If the current task on @p's runqueue is an RT task, then
1311 1312 1313 1314
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1315 1316 1317 1318 1319 1320 1321 1322 1323
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1324 1325 1326 1327 1328 1329
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1330
	 */
1331
	if (curr && unlikely(rt_task(curr)) &&
1332
	    (curr->nr_cpus_allowed < 2 ||
1333
	     curr->prio <= p->prio)) {
1334
		int target = find_lowest_rq(p);
1335

1336 1337
		if (target != -1)
			cpu = target;
1338
	}
1339
	rcu_read_unlock();
1340

1341
out:
1342
	return cpu;
1343
}
1344 1345 1346

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
1347
	if (rq->curr->nr_cpus_allowed == 1)
1348 1349
		return;

1350
	if (p->nr_cpus_allowed != 1
1351 1352
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1353

1354 1355
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1366 1367
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1368 1369 1370
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1371
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1372
{
1373
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1374
		resched_task(rq->curr);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1391
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1392
		check_preempt_equal_prio(rq, p);
1393
#endif
I
Ingo Molnar 已提交
1394 1395
}

P
Peter Zijlstra 已提交
1396 1397
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1398
{
P
Peter Zijlstra 已提交
1399 1400
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1401 1402 1403 1404
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1405
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1406 1407

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1408
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1409

P
Peter Zijlstra 已提交
1410 1411
	return next;
}
I
Ingo Molnar 已提交
1412

1413
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1414 1415 1416
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
1417
	struct rt_rq *rt_rq  = &rq->rt;
P
Peter Zijlstra 已提交
1418 1419 1420

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1421
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1422 1423 1424 1425
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1426
	p->se.exec_start = rq_clock_task(rq);
1427 1428 1429 1430

	return p;
}

1431 1432
static struct task_struct *
pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1433
{
1434 1435 1436
	struct task_struct *p;
	struct rt_rq *rt_rq = &rq->rt;

1437
	if (need_pull_rt_task(rq, prev)) {
1438
		pull_rt_task(rq);
1439 1440
		/*
		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1441 1442
		 * means a dl or stop task can slip in, in which case we need
		 * to re-start task selection.
1443
		 */
1444 1445
		if (unlikely((rq->stop && rq->stop->on_rq) ||
			     rq->dl.dl_nr_running))
1446 1447
			return RETRY_TASK;
	}
1448

1449 1450 1451 1452 1453 1454 1455
	/*
	 * We may dequeue prev's rt_rq in put_prev_task().
	 * So, we update time before rt_nr_running check.
	 */
	if (prev->sched_class == &rt_sched_class)
		update_curr_rt(rq);

1456
	if (!rt_rq->rt_queued)
1457 1458
		return NULL;

1459
	put_prev_task(rq, prev);
1460 1461

	p = _pick_next_task_rt(rq);
1462 1463 1464 1465 1466

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

P
Peter Zijlstra 已提交
1467
	set_post_schedule(rq);
1468

P
Peter Zijlstra 已提交
1469
	return p;
I
Ingo Molnar 已提交
1470 1471
}

1472
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1473
{
1474
	update_curr_rt(rq);
1475 1476 1477 1478 1479

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
1480
	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1481
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1482 1483
}

1484
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1485

S
Steven Rostedt 已提交
1486 1487 1488
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

1489 1490 1491
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1492
	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1493 1494 1495 1496
		return 1;
	return 0;
}

1497 1498 1499 1500 1501
/*
 * Return the highest pushable rq's task, which is suitable to be executed
 * on the cpu, NULL otherwise
 */
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1502
{
1503 1504
	struct plist_head *head = &rq->rt.pushable_tasks;
	struct task_struct *p;
1505

1506 1507
	if (!has_pushable_tasks(rq))
		return NULL;
1508

1509 1510 1511
	plist_for_each_entry(p, head, pushable_tasks) {
		if (pick_rt_task(rq, p, cpu))
			return p;
1512 1513
	}

1514
	return NULL;
S
Steven Rostedt 已提交
1515 1516
}

1517
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1518

G
Gregory Haskins 已提交
1519 1520 1521
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1522
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1523 1524
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1525

1526 1527 1528 1529
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1530
	if (task->nr_cpus_allowed == 1)
1531
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1532

1533 1534
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1544
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1545 1546 1547 1548 1549 1550
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1551 1552
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1553

1554
	rcu_read_lock();
R
Rusty Russell 已提交
1555 1556 1557
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1558

R
Rusty Russell 已提交
1559 1560 1561 1562 1563
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1564 1565
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1566
				return this_cpu;
1567
			}
R
Rusty Russell 已提交
1568 1569 1570

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1571 1572
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1573
				return best_cpu;
1574
			}
G
Gregory Haskins 已提交
1575 1576
		}
	}
1577
	rcu_read_unlock();
G
Gregory Haskins 已提交
1578 1579 1580 1581 1582 1583

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1584 1585 1586 1587 1588 1589 1590
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1591 1592 1593
}

/* Will lock the rq it finds */
1594
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1595 1596 1597
{
	struct rq *lowest_rq = NULL;
	int tries;
1598
	int cpu;
S
Steven Rostedt 已提交
1599

1600 1601 1602
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1603
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1604 1605
			break;

1606 1607
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1608
		/* if the prio of this runqueue changed, try again */
1609
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1610 1611 1612 1613 1614 1615
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1616
			if (unlikely(task_rq(task) != rq ||
1617
				     !cpumask_test_cpu(lowest_rq->cpu,
1618
						       tsk_cpus_allowed(task)) ||
1619
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1620
				     !task->on_rq)) {
1621

1622
				double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1623 1624 1625 1626 1627 1628
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1629
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1630 1631 1632
			break;

		/* try again */
1633
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1634 1635 1636 1637 1638 1639
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
1652
	BUG_ON(p->nr_cpus_allowed <= 1);
1653

P
Peter Zijlstra 已提交
1654
	BUG_ON(!p->on_rq);
1655 1656 1657 1658 1659
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1660 1661 1662 1663 1664
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1665
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1666 1667 1668
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1669
	int ret = 0;
S
Steven Rostedt 已提交
1670

G
Gregory Haskins 已提交
1671 1672 1673
	if (!rq->rt.overloaded)
		return 0;

1674
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1675 1676 1677
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1678
retry:
1679
	if (unlikely(next_task == rq->curr)) {
1680
		WARN_ON(1);
S
Steven Rostedt 已提交
1681
		return 0;
1682
	}
S
Steven Rostedt 已提交
1683 1684 1685 1686 1687 1688

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1689 1690
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1691 1692 1693
		return 0;
	}

1694
	/* We might release rq lock */
S
Steven Rostedt 已提交
1695 1696 1697
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1698
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1699 1700 1701
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1702
		 * find_lock_lowest_rq releases rq->lock
1703 1704 1705 1706 1707
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1708
		 */
1709
		task = pick_next_pushable_task(rq);
1710 1711
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1712 1713 1714 1715
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1716 1717
			 */
			goto out;
S
Steven Rostedt 已提交
1718
		}
1719

1720 1721 1722 1723
		if (!task)
			/* No more tasks, just exit */
			goto out;

1724
		/*
1725
		 * Something has shifted, try again.
1726
		 */
1727 1728 1729
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1730 1731
	}

1732
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1733 1734
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1735
	ret = 1;
S
Steven Rostedt 已提交
1736 1737 1738

	resched_task(lowest_rq->curr);

1739
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1740 1741 1742 1743

out:
	put_task_struct(next_task);

1744
	return ret;
S
Steven Rostedt 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1754 1755
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1756
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1757
	struct task_struct *p;
1758 1759
	struct rq *src_rq;

1760
	if (likely(!rt_overloaded(this_rq)))
1761 1762
		return 0;

P
Peter Zijlstra 已提交
1763 1764 1765 1766 1767 1768
	/*
	 * Match the barrier from rt_set_overloaded; this guarantees that if we
	 * see overloaded we must also see the rto_mask bit.
	 */
	smp_rmb();

1769
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1770 1771 1772 1773
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1786 1787 1788
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1789
		 * alter this_rq
1790
		 */
1791
		double_lock_balance(this_rq, src_rq);
1792 1793

		/*
1794 1795
		 * We can pull only a task, which is pushable
		 * on its rq, and no others.
1796
		 */
1797
		p = pick_highest_pushable_task(src_rq, this_cpu);
1798 1799 1800 1801 1802

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1803
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1804
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1805
			WARN_ON(!p->on_rq);
1806 1807 1808 1809 1810 1811 1812

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1813
			 * current task on the run queue
1814
			 */
1815
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1816
				goto skip;
1817 1818 1819 1820 1821 1822 1823 1824 1825

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1826
			 * in another runqueue. (low likelihood
1827 1828 1829
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1830
skip:
1831
		double_unlock_balance(this_rq, src_rq);
1832 1833 1834 1835 1836
	}

	return ret;
}

1837
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1838
{
1839
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1840 1841
}

1842 1843 1844 1845
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1846
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1847
{
1848
	if (!task_running(rq, p) &&
1849
	    !test_tsk_need_resched(rq->curr) &&
1850
	    has_pushable_tasks(rq) &&
1851
	    p->nr_cpus_allowed > 1 &&
1852
	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
1853
	    (rq->curr->nr_cpus_allowed < 2 ||
1854
	     rq->curr->prio <= p->prio))
1855 1856 1857
		push_rt_tasks(rq);
}

1858
static void set_cpus_allowed_rt(struct task_struct *p,
1859
				const struct cpumask *new_mask)
1860
{
1861 1862
	struct rq *rq;
	int weight;
1863 1864 1865

	BUG_ON(!rt_task(p));

1866 1867
	if (!p->on_rq)
		return;
1868

1869
	weight = cpumask_weight(new_mask);
1870

1871 1872 1873 1874
	/*
	 * Only update if the process changes its state from whether it
	 * can migrate or not.
	 */
1875
	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1876
		return;
1877

1878
	rq = task_rq(p);
1879

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	/*
	 * The process used to be able to migrate OR it can now migrate
	 */
	if (weight <= 1) {
		if (!task_current(rq, p))
			dequeue_pushable_task(rq, p);
		BUG_ON(!rq->rt.rt_nr_migratory);
		rq->rt.rt_nr_migratory--;
	} else {
		if (!task_current(rq, p))
			enqueue_pushable_task(rq, p);
		rq->rt.rt_nr_migratory++;
1892
	}
1893 1894

	update_rt_migration(&rq->rt);
1895
}
1896

1897
/* Assumes rq->lock is held */
1898
static void rq_online_rt(struct rq *rq)
1899 1900 1901
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1902

P
Peter Zijlstra 已提交
1903 1904
	__enable_runtime(rq);

1905
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1906 1907 1908
}

/* Assumes rq->lock is held */
1909
static void rq_offline_rt(struct rq *rq)
1910 1911 1912
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1913

P
Peter Zijlstra 已提交
1914 1915
	__disable_runtime(rq);

1916
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1917
}
1918 1919 1920 1921 1922

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1923
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1924 1925 1926 1927 1928 1929 1930 1931
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
1932 1933 1934 1935 1936
	if (!p->on_rq || rq->rt.rt_nr_running)
		return;

	if (pull_rt_task(rq))
		resched_task(rq->curr);
1937
}
1938

1939
void __init init_sched_rt_class(void)
1940 1941 1942
{
	unsigned int i;

1943
	for_each_possible_cpu(i) {
1944
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1945
					GFP_KERNEL, cpu_to_node(i));
1946
	}
1947
}
1948 1949 1950 1951 1952 1953 1954
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1955
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1966
	if (p->on_rq && rq->curr != p) {
1967
#ifdef CONFIG_SMP
1968
		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
1969
		    /* Don't resched if we changed runqueues */
1970
		    push_rt_task(rq) && rq != task_rq(p))
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1982 1983
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1984
{
P
Peter Zijlstra 已提交
1985
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1986 1987 1988
		return;

	if (rq->curr == p) {
1989 1990 1991 1992 1993 1994 1995 1996 1997
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1998 1999 2000
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
2001
		 */
2002
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2003 2004 2005 2006 2007
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
2008
#endif /* CONFIG_SMP */
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

2020 2021 2022 2023
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

2024 2025 2026
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2027 2028 2029 2030

	if (soft != RLIM_INFINITY) {
		unsigned long next;

2031 2032 2033 2034 2035
		if (p->rt.watchdog_stamp != jiffies) {
			p->rt.timeout++;
			p->rt.watchdog_stamp = jiffies;
		}

2036
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2037
		if (p->rt.timeout > next)
2038
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2039 2040
	}
}
I
Ingo Molnar 已提交
2041

P
Peter Zijlstra 已提交
2042
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
2043
{
2044 2045
	struct sched_rt_entity *rt_se = &p->rt;

2046 2047
	update_curr_rt(rq);

2048 2049
	watchdog(rq, p);

I
Ingo Molnar 已提交
2050 2051 2052 2053 2054 2055 2056
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
2057
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
2058 2059
		return;

2060
	p->rt.time_slice = sched_rr_timeslice;
I
Ingo Molnar 已提交
2061

2062
	/*
L
Li Bin 已提交
2063 2064
	 * Requeue to the end of queue if we (and all of our ancestors) are not
	 * the only element on the queue
2065
	 */
2066 2067 2068 2069 2070 2071
	for_each_sched_rt_entity(rt_se) {
		if (rt_se->run_list.prev != rt_se->run_list.next) {
			requeue_task_rt(rq, p, 0);
			set_tsk_need_resched(p);
			return;
		}
2072
	}
I
Ingo Molnar 已提交
2073 2074
}

2075 2076 2077 2078
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

2079
	p->se.exec_start = rq_clock_task(rq);
2080 2081 2082

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
2083 2084
}

2085
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2086 2087 2088 2089 2090
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
2091
		return sched_rr_timeslice;
2092 2093 2094 2095
	else
		return 0;
}

2096
const struct sched_class rt_sched_class = {
2097
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

2107
#ifdef CONFIG_SMP
L
Li Zefan 已提交
2108 2109
	.select_task_rq		= select_task_rq_rt,

2110
	.set_cpus_allowed       = set_cpus_allowed_rt,
2111 2112
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
2113
	.post_schedule		= post_schedule_rt,
2114
	.task_woken		= task_woken_rt,
2115
	.switched_from		= switched_from_rt,
2116
#endif
I
Ingo Molnar 已提交
2117

2118
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
2119
	.task_tick		= task_tick_rt,
2120

2121 2122
	.get_rr_interval	= get_rr_interval_rt,

2123 2124
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
2125
};
2126 2127 2128 2129

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

2130
void print_rt_stats(struct seq_file *m, int cpu)
2131
{
C
Cheng Xu 已提交
2132
	rt_rq_iter_t iter;
2133 2134 2135
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
2136
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2137 2138 2139
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
2140
#endif /* CONFIG_SCHED_DEBUG */