rt.c 45.4 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#include "sched.h"

#include <linux/slab.h>

10 11
int sched_rr_timeslice = RR_TIMESLICE;

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

struct rt_bandwidth def_rt_bandwidth;

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

	raw_spin_lock_init(&rt_b->rt_runtime_lock);

	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	raw_spin_lock(&rt_b->rt_runtime_lock);
	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
	raw_spin_unlock(&rt_b->rt_runtime_lock);
}

void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

#if defined CONFIG_SMP
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
	plist_head_init(&rt_rq->pushable_tasks);
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
	rt_rq->rt_runtime = 0;
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}

89
#ifdef CONFIG_RT_GROUP_SCHED
90 91 92 93
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
94 95 96

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

97 98
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
99 100 101
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
102 103 104 105 106 107 108 109 110 111 112 113 114
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
void free_rt_sched_group(struct task_group *tg)
{
	int i;

	if (tg->rt_se)
		destroy_rt_bandwidth(&tg->rt_bandwidth);

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->rt_nr_boosted = 0;
	rt_rq->rq = rq;
	rt_rq->tg = tg;

	tg->rt_rq[cpu] = rt_rq;
	tg->rt_se[cpu] = rt_se;

	if (!rt_se)
		return;

	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

	rt_se->my_q = rt_rq;
	rt_se->parent = parent;
	INIT_LIST_HEAD(&rt_se->run_list);
}

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);

	for_each_possible_cpu(i) {
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_rq)
			goto err;

		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
		if (!rt_se)
			goto err_free_rq;

		init_rt_rq(rt_rq, cpu_rq(i));
		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
	}

	return 1;

err_free_rq:
	kfree(rt_rq);
err:
	return 0;
}

200 201
#else /* CONFIG_RT_GROUP_SCHED */

202 203
#define rt_entity_is_task(rt_se) (1)

204 205 206 207 208
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

209 210 211 212 213 214 215 216 217 218 219 220 221
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

222 223 224 225 226 227
void free_rt_sched_group(struct task_group *tg) { }

int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}
228 229
#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
230
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
231

232
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
233
{
234
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
235
}
I
Ingo Molnar 已提交
236

S
Steven Rostedt 已提交
237 238
static inline void rt_set_overload(struct rq *rq)
{
239 240 241
	if (!rq->online)
		return;

242
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
243 244 245 246 247 248
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
P
Peter Zijlstra 已提交
249 250
	 *
	 * Matched by the barrier in pull_rt_task().
S
Steven Rostedt 已提交
251
	 */
P
Peter Zijlstra 已提交
252
	smp_wmb();
253
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
254
}
I
Ingo Molnar 已提交
255

S
Steven Rostedt 已提交
256 257
static inline void rt_clear_overload(struct rq *rq)
{
258 259 260
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
261
	/* the order here really doesn't matter */
262
	atomic_dec(&rq->rd->rto_count);
263
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
264
}
265

266
static void update_rt_migration(struct rt_rq *rt_rq)
267
{
268
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
269 270 271
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
272
		}
273 274 275
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
276
	}
277
}
S
Steven Rostedt 已提交
278

279 280
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
281 282
	struct task_struct *p;

283 284 285
	if (!rt_entity_is_task(rt_se))
		return;

286
	p = rt_task_of(rt_se);
287 288 289
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
290
	if (p->nr_cpus_allowed > 1)
291 292 293 294 295 296 297
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
298 299
	struct task_struct *p;

300 301 302
	if (!rt_entity_is_task(rt_se))
		return;

303
	p = rt_task_of(rt_se);
304 305 306
	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
307
	if (p->nr_cpus_allowed > 1)
308 309 310 311 312
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

313 314 315 316 317
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

318 319 320 321 322
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
323 324 325 326

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
327 328 329 330 331 332
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

333 334 335 336 337 338 339
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
340 341
}

342 343
#else

344
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
345
{
P
Peter Zijlstra 已提交
346 347
}

348 349 350 351
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

352
static inline
353 354 355 356
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

357
static inline
358 359 360
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
361

S
Steven Rostedt 已提交
362 363
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
364 365 366 367 368
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

369
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
370

P
Peter Zijlstra 已提交
371
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
372 373
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
374
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
375

P
Peter Zijlstra 已提交
376 377 378 379 380 381
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
382 383
}

C
Cheng Xu 已提交
384 385
typedef struct task_group *rt_rq_iter_t;

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
403

P
Peter Zijlstra 已提交
404 405 406 407 408 409 410 411
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

412
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
413 414
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
415
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
416
{
417
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
418 419
	struct sched_rt_entity *rt_se;

420 421 422
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
423

424 425
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
426
			enqueue_rt_entity(rt_se, false);
427
		if (rt_rq->highest_prio.curr < curr->prio)
428
			resched_task(curr);
P
Peter Zijlstra 已提交
429 430 431
	}
}

P
Peter Zijlstra 已提交
432
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
433
{
434
	struct sched_rt_entity *rt_se;
435
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
436

437
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
438 439 440 441 442

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

460
#ifdef CONFIG_SMP
461
static inline const struct cpumask *sched_rt_period_mask(void)
462
{
N
Nathan Zimmer 已提交
463
	return this_rq()->rd->span;
464
}
P
Peter Zijlstra 已提交
465
#else
466
static inline const struct cpumask *sched_rt_period_mask(void)
467
{
468
	return cpu_online_mask;
469 470
}
#endif
P
Peter Zijlstra 已提交
471

472 473
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
474
{
475 476
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
477

P
Peter Zijlstra 已提交
478 479 480 481 482
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

483
#else /* !CONFIG_RT_GROUP_SCHED */
484 485 486

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
487 488 489 490 491 492
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
493 494
}

C
Cheng Xu 已提交
495 496 497 498 499
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

P
Peter Zijlstra 已提交
500 501 502 503 504 505 506 507
#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
508
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
509
{
510 511
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
512 513
}

P
Peter Zijlstra 已提交
514
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
515 516 517
{
}

P
Peter Zijlstra 已提交
518 519 520 521
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
522

523
static inline const struct cpumask *sched_rt_period_mask(void)
524
{
525
	return cpu_online_mask;
526 527 528 529 530 531 532 533
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
534 535 536 537 538
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

539
#endif /* CONFIG_RT_GROUP_SCHED */
540

P
Peter Zijlstra 已提交
541
#ifdef CONFIG_SMP
542 543 544
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
545
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
546 547
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
548
	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
P
Peter Zijlstra 已提交
549 550 551
	int i, weight, more = 0;
	u64 rt_period;

552
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
553

554
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
555
	rt_period = ktime_to_ns(rt_b->rt_period);
556
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
557 558 559 560 561 562
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

563
		raw_spin_lock(&iter->rt_runtime_lock);
564 565 566 567 568
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
569 570 571
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

572 573 574 575
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
576 577
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
578
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
579 580 581 582 583 584
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
585
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
586 587 588
				break;
			}
		}
P
Peter Zijlstra 已提交
589
next:
590
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
591
	}
592
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
593 594 595

	return more;
}
P
Peter Zijlstra 已提交
596

597 598 599
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
600 601 602
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
603
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
604 605 606 607 608
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
609
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
610 611 612 613
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

614 615
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
616 617 618 619 620
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
621 622 623
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
624
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
625

626 627 628 629 630
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
631 632
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

633 634 635
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
636
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
637 638 639
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

640 641 642
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
643
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
644 645
				continue;

646
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
647 648 649 650 651 652 653 654
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
655
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
656 657 658 659 660

			if (!want)
				break;
		}

661
		raw_spin_lock(&rt_rq->rt_runtime_lock);
662 663 664 665
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
666 667
		BUG_ON(want);
balanced:
668 669 670 671
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
672
		rt_rq->rt_runtime = RUNTIME_INF;
673
		rt_rq->rt_throttled = 0;
674 675
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
676 677 678 679 680
	}
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
681
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
682 683 684 685 686
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

687 688 689
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
690
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
691 692
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

693 694
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
695 696
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
697
		rt_rq->rt_throttled = 0;
698 699
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
700 701 702
	}
}

703 704 705 706
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

707 708 709
	if (!sched_feat(RT_RUNTIME_SHARE))
		return more;

710
	if (rt_rq->rt_time > rt_rq->rt_runtime) {
711
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
712
		more = do_balance_runtime(rt_rq);
713
		raw_spin_lock(&rt_rq->rt_runtime_lock);
714 715 716 717
	}

	return more;
}
718
#else /* !CONFIG_SMP */
719 720 721 722
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
723
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
724

725 726
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
727
	int i, idle = 1, throttled = 0;
728
	const struct cpumask *span;
729 730

	span = sched_rt_period_mask();
731 732 733 734 735 736 737 738 739 740 741 742 743
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * FIXME: isolated CPUs should really leave the root task group,
	 * whether they are isolcpus or were isolated via cpusets, lest
	 * the timer run on a CPU which does not service all runqueues,
	 * potentially leaving other CPUs indefinitely throttled.  If
	 * isolation is really required, the user will turn the throttle
	 * off to kill the perturbations it causes anyway.  Meanwhile,
	 * this maintains functionality for boot and/or troubleshooting.
	 */
	if (rt_b == &root_task_group.rt_bandwidth)
		span = cpu_online_mask;
#endif
744
	for_each_cpu(i, span) {
745 746 747 748
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

749
		raw_spin_lock(&rq->lock);
750 751 752
		if (rt_rq->rt_time) {
			u64 runtime;

753
			raw_spin_lock(&rt_rq->rt_runtime_lock);
754 755 756 757 758 759 760
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
761 762 763 764 765 766 767

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
768 769 770
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
771
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
772
		} else if (rt_rq->rt_nr_running) {
773
			idle = 0;
774 775 776
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
777 778
		if (rt_rq->rt_throttled)
			throttled = 1;
779 780 781

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
782
		raw_spin_unlock(&rq->lock);
783 784
	}

785 786 787
	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
		return 1;

788 789
	return idle;
}
P
Peter Zijlstra 已提交
790

P
Peter Zijlstra 已提交
791 792
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
793
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
794 795 796
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
797
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
798 799 800 801 802
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
803
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
804
{
P
Peter Zijlstra 已提交
805
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
806 807

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
808
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
809

810
	if (runtime >= sched_rt_period(rt_rq))
P
Peter Zijlstra 已提交
811 812
		return 0;

813 814 815 816
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
817

P
Peter Zijlstra 已提交
818
	if (rt_rq->rt_time > runtime) {
819 820 821 822 823 824 825
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		/*
		 * Don't actually throttle groups that have no runtime assigned
		 * but accrue some time due to boosting.
		 */
		if (likely(rt_b->rt_runtime)) {
826 827
			static bool once = false;

828
			rt_rq->rt_throttled = 1;
829 830 831 832 833

			if (!once) {
				once = true;
				printk_sched("sched: RT throttling activated\n");
			}
834 835 836 837 838 839 840 841 842
		} else {
			/*
			 * In case we did anyway, make it go away,
			 * replenishment is a joke, since it will replenish us
			 * with exactly 0 ns.
			 */
			rt_rq->rt_time = 0;
		}

P
Peter Zijlstra 已提交
843
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
844
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
845 846
			return 1;
		}
P
Peter Zijlstra 已提交
847 848 849 850 851
	}

	return 0;
}

I
Ingo Molnar 已提交
852 853 854 855
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
856
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
857 858
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
859 860
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
861 862
	u64 delta_exec;

P
Peter Zijlstra 已提交
863
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
864 865
		return;

866
	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
867 868
	if (unlikely((s64)delta_exec <= 0))
		return;
I
Ingo Molnar 已提交
869

870 871
	schedstat_set(curr->se.statistics.exec_max,
		      max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
872 873

	curr->se.sum_exec_runtime += delta_exec;
874 875
	account_group_exec_runtime(curr, delta_exec);

876
	curr->se.exec_start = rq_clock_task(rq);
877
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
878

879 880
	sched_rt_avg_update(rq, delta_exec);

881 882 883
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
884 885 886
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

887
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
888
			raw_spin_lock(&rt_rq->rt_runtime_lock);
889 890 891
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
892
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
893
		}
D
Dhaval Giani 已提交
894
	}
I
Ingo Molnar 已提交
895 896
}

897
#if defined CONFIG_SMP
898

899 900
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
901
{
G
Gregory Haskins 已提交
902
	struct rq *rq = rq_of_rt_rq(rt_rq);
903

904 905
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
906
}
907

908 909 910 911
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
912

913 914
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
915 916
}

917 918
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
919
static inline
920 921 922 923 924
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
925

926
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
943
	if (rt_rq->rt_nr_running) {
944

945
		WARN_ON(prio < prev_prio);
946

947
		/*
948 949
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
950
		 */
951
		if (prio == prev_prio) {
952 953 954
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
955
				sched_find_first_bit(array->bitmap);
956 957
		}

958
	} else
959
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
960

961 962
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
963

964 965 966 967 968 969
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
970

971
#ifdef CONFIG_RT_GROUP_SCHED
972 973 974 975 976 977 978 979 980 981 982 983 984 985

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
986 987 988 989
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
1028 1029
}

1030
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
1031
{
P
Peter Zijlstra 已提交
1032 1033 1034
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
1035
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
1036

1037 1038 1039 1040 1041 1042 1043
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
1044
		return;
1045

1046 1047 1048 1049
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
1050
	__set_bit(rt_se_prio(rt_se), array->bitmap);
1051

P
Peter Zijlstra 已提交
1052 1053 1054
	inc_rt_tasks(rt_se, rt_rq);
}

1055
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
1071
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
1072
{
1073
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
1074

1075 1076 1077 1078 1079 1080 1081
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
1082 1083 1084 1085
			__dequeue_rt_entity(rt_se);
	}
}

1086
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1087 1088 1089
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
1090
		__enqueue_rt_entity(rt_se, head);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
1101
			__enqueue_rt_entity(rt_se, false);
1102
	}
I
Ingo Molnar 已提交
1103 1104 1105 1106 1107
}

/*
 * Adding/removing a task to/from a priority array:
 */
1108
static void
1109
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
1110 1111 1112
{
	struct sched_rt_entity *rt_se = &p->rt;

1113
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
1114 1115
		rt_se->timeout = 0;

1116
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1117

1118
	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1119
		enqueue_pushable_task(rq, p);
1120 1121

	inc_nr_running(rq);
P
Peter Zijlstra 已提交
1122 1123
}

1124
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1125
{
P
Peter Zijlstra 已提交
1126
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
1127

1128
	update_curr_rt(rq);
1129
	dequeue_rt_entity(rt_se);
1130

1131
	dequeue_pushable_task(rq, p);
1132 1133

	dec_nr_running(rq);
I
Ingo Molnar 已提交
1134 1135 1136
}

/*
1137 1138
 * Put task to the head or the end of the run list without the overhead of
 * dequeue followed by enqueue.
I
Ingo Molnar 已提交
1139
 */
1140 1141
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
1142
{
1143
	if (on_rt_rq(rt_se)) {
1144 1145 1146 1147 1148 1149 1150
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
1151
	}
P
Peter Zijlstra 已提交
1152 1153
}

1154
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
1155
{
P
Peter Zijlstra 已提交
1156 1157
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1158

P
Peter Zijlstra 已提交
1159 1160
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
1161
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
1162
	}
I
Ingo Molnar 已提交
1163 1164
}

P
Peter Zijlstra 已提交
1165
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
1166
{
1167
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
1168 1169
}

1170
#ifdef CONFIG_SMP
1171 1172
static int find_lowest_rq(struct task_struct *task);

1173
static int
1174
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1175
{
1176 1177
	struct task_struct *curr;
	struct rq *rq;
1178

1179
	if (p->nr_cpus_allowed == 1)
1180 1181
		goto out;

1182 1183 1184 1185
	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1186 1187 1188 1189 1190
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1191
	/*
1192
	 * If the current task on @p's runqueue is an RT task, then
1193 1194 1195 1196
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1197 1198 1199 1200 1201 1202 1203 1204 1205
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1206 1207 1208 1209 1210 1211
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1212
	 */
1213
	if (curr && unlikely(rt_task(curr)) &&
1214
	    (curr->nr_cpus_allowed < 2 ||
1215
	     curr->prio <= p->prio)) {
1216
		int target = find_lowest_rq(p);
1217

1218 1219
		if (target != -1)
			cpu = target;
1220
	}
1221
	rcu_read_unlock();
1222

1223
out:
1224
	return cpu;
1225
}
1226 1227 1228

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
1229
	if (rq->curr->nr_cpus_allowed == 1)
1230 1231
		return;

1232
	if (p->nr_cpus_allowed != 1
1233 1234
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1235

1236 1237
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1248 1249
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1250 1251 1252
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1253
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1254
{
1255
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1256
		resched_task(rq->curr);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1273
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1274
		check_preempt_equal_prio(rq, p);
1275
#endif
I
Ingo Molnar 已提交
1276 1277
}

P
Peter Zijlstra 已提交
1278 1279
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1280
{
P
Peter Zijlstra 已提交
1281 1282
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1283 1284 1285 1286
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1287
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1288 1289

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1290
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1291

P
Peter Zijlstra 已提交
1292 1293
	return next;
}
I
Ingo Molnar 已提交
1294

1295
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1296 1297 1298 1299
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1300

P
Peter Zijlstra 已提交
1301 1302
	rt_rq = &rq->rt;

1303
	if (!rt_rq->rt_nr_running)
P
Peter Zijlstra 已提交
1304 1305
		return NULL;

P
Peter Zijlstra 已提交
1306
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1307 1308 1309 1310
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1311
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1312 1313 1314 1315
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1316
	p->se.exec_start = rq_clock_task(rq);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1329
#ifdef CONFIG_SMP
1330 1331 1332 1333 1334
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1335
#endif
1336

P
Peter Zijlstra 已提交
1337
	return p;
I
Ingo Molnar 已提交
1338 1339
}

1340
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1341
{
1342
	update_curr_rt(rq);
1343 1344 1345 1346 1347

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
1348
	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1349
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1350 1351
}

1352
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1353

S
Steven Rostedt 已提交
1354 1355 1356
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

1357 1358 1359
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1360
	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1361 1362 1363 1364
		return 1;
	return 0;
}

1365 1366 1367 1368 1369
/*
 * Return the highest pushable rq's task, which is suitable to be executed
 * on the cpu, NULL otherwise
 */
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1370
{
1371 1372
	struct plist_head *head = &rq->rt.pushable_tasks;
	struct task_struct *p;
1373

1374 1375
	if (!has_pushable_tasks(rq))
		return NULL;
1376

1377 1378 1379
	plist_for_each_entry(p, head, pushable_tasks) {
		if (pick_rt_task(rq, p, cpu))
			return p;
1380 1381
	}

1382
	return NULL;
S
Steven Rostedt 已提交
1383 1384
}

1385
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1386

G
Gregory Haskins 已提交
1387 1388 1389
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1390
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1391 1392
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1393

1394 1395 1396 1397
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1398
	if (task->nr_cpus_allowed == 1)
1399
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1400

1401 1402
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1412
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1413 1414 1415 1416 1417 1418
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1419 1420
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1421

1422
	rcu_read_lock();
R
Rusty Russell 已提交
1423 1424 1425
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1426

R
Rusty Russell 已提交
1427 1428 1429 1430 1431
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1432 1433
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1434
				return this_cpu;
1435
			}
R
Rusty Russell 已提交
1436 1437 1438

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1439 1440
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1441
				return best_cpu;
1442
			}
G
Gregory Haskins 已提交
1443 1444
		}
	}
1445
	rcu_read_unlock();
G
Gregory Haskins 已提交
1446 1447 1448 1449 1450 1451

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1452 1453 1454 1455 1456 1457 1458
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1459 1460 1461
}

/* Will lock the rq it finds */
1462
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1463 1464 1465
{
	struct rq *lowest_rq = NULL;
	int tries;
1466
	int cpu;
S
Steven Rostedt 已提交
1467

1468 1469 1470
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1471
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1472 1473
			break;

1474 1475
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1476
		/* if the prio of this runqueue changed, try again */
1477
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1478 1479 1480 1481 1482 1483
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1484
			if (unlikely(task_rq(task) != rq ||
1485
				     !cpumask_test_cpu(lowest_rq->cpu,
1486
						       tsk_cpus_allowed(task)) ||
1487
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1488
				     !task->on_rq)) {
1489

1490
				double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1491 1492 1493 1494 1495 1496
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1497
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1498 1499 1500
			break;

		/* try again */
1501
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1502 1503 1504 1505 1506 1507
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
1520
	BUG_ON(p->nr_cpus_allowed <= 1);
1521

P
Peter Zijlstra 已提交
1522
	BUG_ON(!p->on_rq);
1523 1524 1525 1526 1527
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1528 1529 1530 1531 1532
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1533
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1534 1535 1536
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1537
	int ret = 0;
S
Steven Rostedt 已提交
1538

G
Gregory Haskins 已提交
1539 1540 1541
	if (!rq->rt.overloaded)
		return 0;

1542
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1543 1544 1545
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1546
retry:
1547
	if (unlikely(next_task == rq->curr)) {
1548
		WARN_ON(1);
S
Steven Rostedt 已提交
1549
		return 0;
1550
	}
S
Steven Rostedt 已提交
1551 1552 1553 1554 1555 1556

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1557 1558
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1559 1560 1561
		return 0;
	}

1562
	/* We might release rq lock */
S
Steven Rostedt 已提交
1563 1564 1565
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1566
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1567 1568 1569
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1570
		 * find_lock_lowest_rq releases rq->lock
1571 1572 1573 1574 1575
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1576
		 */
1577
		task = pick_next_pushable_task(rq);
1578 1579
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1580 1581 1582 1583
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1584 1585
			 */
			goto out;
S
Steven Rostedt 已提交
1586
		}
1587

1588 1589 1590 1591
		if (!task)
			/* No more tasks, just exit */
			goto out;

1592
		/*
1593
		 * Something has shifted, try again.
1594
		 */
1595 1596 1597
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1598 1599
	}

1600
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1601 1602
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1603
	ret = 1;
S
Steven Rostedt 已提交
1604 1605 1606

	resched_task(lowest_rq->curr);

1607
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1608 1609 1610 1611

out:
	put_task_struct(next_task);

1612
	return ret;
S
Steven Rostedt 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1622 1623
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1624
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1625
	struct task_struct *p;
1626 1627
	struct rq *src_rq;

1628
	if (likely(!rt_overloaded(this_rq)))
1629 1630
		return 0;

P
Peter Zijlstra 已提交
1631 1632 1633 1634 1635 1636
	/*
	 * Match the barrier from rt_set_overloaded; this guarantees that if we
	 * see overloaded we must also see the rto_mask bit.
	 */
	smp_rmb();

1637
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1638 1639 1640 1641
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1654 1655 1656
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1657
		 * alter this_rq
1658
		 */
1659
		double_lock_balance(this_rq, src_rq);
1660 1661

		/*
1662 1663
		 * We can pull only a task, which is pushable
		 * on its rq, and no others.
1664
		 */
1665
		p = pick_highest_pushable_task(src_rq, this_cpu);
1666 1667 1668 1669 1670

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1671
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1672
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1673
			WARN_ON(!p->on_rq);
1674 1675 1676 1677 1678 1679 1680

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1681
			 * current task on the run queue
1682
			 */
1683
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1684
				goto skip;
1685 1686 1687 1688 1689 1690 1691 1692 1693

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1694
			 * in another runqueue. (low likelihood
1695 1696 1697
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1698
skip:
1699
		double_unlock_balance(this_rq, src_rq);
1700 1701 1702 1703 1704
	}

	return ret;
}

1705
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1706 1707
{
	/* Try to pull RT tasks here if we lower this rq's prio */
Y
Yong Zhang 已提交
1708
	if (rq->rt.highest_prio.curr > prev->prio)
1709 1710 1711
		pull_rt_task(rq);
}

1712
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1713
{
1714
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1715 1716
}

1717 1718 1719 1720
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1721
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1722
{
1723
	if (!task_running(rq, p) &&
1724
	    !test_tsk_need_resched(rq->curr) &&
1725
	    has_pushable_tasks(rq) &&
1726
	    p->nr_cpus_allowed > 1 &&
1727
	    rt_task(rq->curr) &&
1728
	    (rq->curr->nr_cpus_allowed < 2 ||
1729
	     rq->curr->prio <= p->prio))
1730 1731 1732
		push_rt_tasks(rq);
}

1733
static void set_cpus_allowed_rt(struct task_struct *p,
1734
				const struct cpumask *new_mask)
1735
{
1736 1737
	struct rq *rq;
	int weight;
1738 1739 1740

	BUG_ON(!rt_task(p));

1741 1742
	if (!p->on_rq)
		return;
1743

1744
	weight = cpumask_weight(new_mask);
1745

1746 1747 1748 1749
	/*
	 * Only update if the process changes its state from whether it
	 * can migrate or not.
	 */
1750
	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1751
		return;
1752

1753
	rq = task_rq(p);
1754

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	/*
	 * The process used to be able to migrate OR it can now migrate
	 */
	if (weight <= 1) {
		if (!task_current(rq, p))
			dequeue_pushable_task(rq, p);
		BUG_ON(!rq->rt.rt_nr_migratory);
		rq->rt.rt_nr_migratory--;
	} else {
		if (!task_current(rq, p))
			enqueue_pushable_task(rq, p);
		rq->rt.rt_nr_migratory++;
1767
	}
1768 1769

	update_rt_migration(&rq->rt);
1770
}
1771

1772
/* Assumes rq->lock is held */
1773
static void rq_online_rt(struct rq *rq)
1774 1775 1776
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1777

P
Peter Zijlstra 已提交
1778 1779
	__enable_runtime(rq);

1780
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1781 1782 1783
}

/* Assumes rq->lock is held */
1784
static void rq_offline_rt(struct rq *rq)
1785 1786 1787
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1788

P
Peter Zijlstra 已提交
1789 1790
	__disable_runtime(rq);

1791
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1792
}
1793 1794 1795 1796 1797

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1798
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1799 1800 1801 1802 1803 1804 1805 1806
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
1807 1808 1809 1810 1811
	if (!p->on_rq || rq->rt.rt_nr_running)
		return;

	if (pull_rt_task(rq))
		resched_task(rq->curr);
1812
}
1813

1814
void init_sched_rt_class(void)
1815 1816 1817
{
	unsigned int i;

1818
	for_each_possible_cpu(i) {
1819
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1820
					GFP_KERNEL, cpu_to_node(i));
1821
	}
1822
}
1823 1824 1825 1826 1827 1828 1829
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1830
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1841
	if (p->on_rq && rq->curr != p) {
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1857 1858
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1859
{
P
Peter Zijlstra 已提交
1860
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1861 1862 1863
		return;

	if (rq->curr == p) {
1864 1865 1866 1867 1868 1869 1870 1871 1872
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1873 1874 1875
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1876
		 */
1877
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1878 1879 1880 1881 1882
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1883
#endif /* CONFIG_SMP */
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1895 1896 1897 1898
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1899 1900 1901
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1902 1903 1904 1905

	if (soft != RLIM_INFINITY) {
		unsigned long next;

1906 1907 1908 1909 1910
		if (p->rt.watchdog_stamp != jiffies) {
			p->rt.timeout++;
			p->rt.watchdog_stamp = jiffies;
		}

1911
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1912
		if (p->rt.timeout > next)
1913
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1914 1915
	}
}
I
Ingo Molnar 已提交
1916

P
Peter Zijlstra 已提交
1917
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1918
{
1919 1920
	struct sched_rt_entity *rt_se = &p->rt;

1921 1922
	update_curr_rt(rq);

1923 1924
	watchdog(rq, p);

I
Ingo Molnar 已提交
1925 1926 1927 1928 1929 1930 1931
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1932
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1933 1934
		return;

1935
	p->rt.time_slice = sched_rr_timeslice;
I
Ingo Molnar 已提交
1936

1937
	/*
1938 1939
	 * Requeue to the end of queue if we (and all of our ancestors) are the
	 * only element on the queue
1940
	 */
1941 1942 1943 1944 1945 1946
	for_each_sched_rt_entity(rt_se) {
		if (rt_se->run_list.prev != rt_se->run_list.next) {
			requeue_task_rt(rq, p, 0);
			set_tsk_need_resched(p);
			return;
		}
1947
	}
I
Ingo Molnar 已提交
1948 1949
}

1950 1951 1952 1953
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

1954
	p->se.exec_start = rq_clock_task(rq);
1955 1956 1957

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1958 1959
}

1960
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1961 1962 1963 1964 1965
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
1966
		return sched_rr_timeslice;
1967 1968 1969 1970
	else
		return 0;
}

1971
const struct sched_class rt_sched_class = {
1972
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1982
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1983 1984
	.select_task_rq		= select_task_rq_rt,

1985
	.set_cpus_allowed       = set_cpus_allowed_rt,
1986 1987
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1988 1989
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
1990
	.task_woken		= task_woken_rt,
1991
	.switched_from		= switched_from_rt,
1992
#endif
I
Ingo Molnar 已提交
1993

1994
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1995
	.task_tick		= task_tick_rt,
1996

1997 1998
	.get_rr_interval	= get_rr_interval_rt,

1999 2000
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
2001
};
2002 2003 2004 2005

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

2006
void print_rt_stats(struct seq_file *m, int cpu)
2007
{
C
Cheng Xu 已提交
2008
	rt_rq_iter_t iter;
2009 2010 2011
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
2012
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2013 2014 2015
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
2016
#endif /* CONFIG_SCHED_DEBUG */