memcontrol.c 131.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75
#else
#define do_swap_account		(0)
#endif

76 77 78 79 80 81 82 83 84
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85

86 87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 97
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
	/* incremented at every  pagein/pageout */
	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 104 105 106 107 108 109 110

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

111 112 113 114
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
115 116 117
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
118 119
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
120 121

	struct zone_reclaim_stat reclaim_stat;
122 123 124 125
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
126 127
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
128 129 130 131 132 133 134 135 136 137 138 139
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

160 161 162 163 164
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
165
/* For threshold */
166 167
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
168
	int current_threshold;
169 170 171 172 173
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
174 175 176 177 178 179 180 181 182 183 184 185

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
186 187 188 189 190
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
191 192

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
193
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194

B
Balbir Singh 已提交
195 196 197 198 199 200 201
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 203 204
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
205 206 207 208 209 210 211
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
212 213 214 215
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
216 217 218 219
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
220
	struct mem_cgroup_lru_info info;
221

K
KOSAKI Motohiro 已提交
222 223 224 225 226
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

227
	/*
228
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
229
	 * reclaimed from.
230
	 */
K
KAMEZAWA Hiroyuki 已提交
231
	int last_scanned_child;
232 233 234 235
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
236
	atomic_t	oom_lock;
237
	atomic_t	refcnt;
238

K
KOSAKI Motohiro 已提交
239
	unsigned int	swappiness;
240 241
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
242

243 244 245
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

246 247 248 249
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
250
	struct mem_cgroup_thresholds thresholds;
251

252
	/* thresholds for mem+swap usage. RCU-protected */
253
	struct mem_cgroup_thresholds memsw_thresholds;
254

K
KAMEZAWA Hiroyuki 已提交
255 256 257
	/* For oom notifier event fd */
	struct list_head oom_notify;

258 259 260 261 262
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
263
	/*
264
	 * percpu counter.
265
	 */
266
	struct mem_cgroup_stat_cpu *stat;
267 268 269 270 271 272
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
273 274
};

275 276 277 278 279 280
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
281
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 284 285
	NR_MOVE_TYPE,
};

286 287
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
288
	spinlock_t	  lock; /* for from, to */
289 290 291
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
292
	unsigned long moved_charge;
293
	unsigned long moved_swap;
294 295 296
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
297
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 299
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
300

D
Daisuke Nishimura 已提交
301 302 303 304 305 306
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

307 308 309 310 311 312
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

313 314 315 316 317 318 319
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

320 321 322
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
325
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
326
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327 328 329
	NR_CHARGE_TYPE,
};

330 331 332
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
333
#define _OOM_TYPE		(2)
334 335 336
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
337 338
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
339

340 341 342 343 344 345 346
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
347 348
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
349

350 351
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
352
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
353
static void drain_all_stock_async(void);
354

355 356 357 358 359 360
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

361 362 363 364 365
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

366
static struct mem_cgroup_per_zone *
367
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
368
{
369 370
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
391
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
392
				struct mem_cgroup_per_zone *mz,
393 394
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
395 396 397 398 399 400 401 402
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

403 404 405
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
422 423 424 425 426 427 428 429 430 431 432 433 434
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

435 436 437 438 439 440
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
441
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
442 443 444 445 446 447
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
448
	unsigned long long excess;
449 450
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
451 452
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
453 454 455
	mctz = soft_limit_tree_from_page(page);

	/*
456 457
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
458
	 */
459 460
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
461
		excess = res_counter_soft_limit_excess(&mem->res);
462 463 464 465
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
466
		if (excess || mz->on_tree) {
467 468 469 470 471
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
472 473
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
474
			 */
475
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
476 477
			spin_unlock(&mctz->lock);
		}
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

496 497 498 499
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
500
	struct mem_cgroup_per_zone *mz;
501 502

retry:
503
	mz = NULL;
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
552 553 554 555 556 557
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

558 559
	get_online_cpus();
	for_each_online_cpu(cpu)
560
		val += per_cpu(mem->stat->count[idx], cpu);
561 562 563 564 565 566
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
567 568 569 570 571 572 573 574 575 576 577 578
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

579 580 581 582
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
583
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
584 585
}

586
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
587
					 bool file, int nr_pages)
588
{
589 590
	preempt_disable();

591 592
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
593
	else
594
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
595

596 597
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
598
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
599
	else {
600
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
601 602
		nr_pages = -nr_pages; /* for event */
	}
603 604

	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
605

606
	preempt_enable();
607 608
}

K
KAMEZAWA Hiroyuki 已提交
609
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
610
					enum lru_list idx)
611 612 613 614 615 616 617 618 619 620 621
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
622 623
}

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

647
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
648 649 650 651 652 653
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

654
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
655
{
656 657 658 659 660 661 662 663
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

664 665 666 667
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

668 669 670
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
671 672 673

	if (!mm)
		return NULL;
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
689 690
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
691
{
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
714 715 716 717 718 719 720 721 722
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
723 724
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
725
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
726

K
KAMEZAWA Hiroyuki 已提交
727
	css_put(&iter->css);
728 729
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
730
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
731

732 733 734
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
735 736
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
737
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
738 739 740

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
741
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
742
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
743
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
744
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
745
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
746
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
747

K
KAMEZAWA Hiroyuki 已提交
748
	return iter;
K
KAMEZAWA Hiroyuki 已提交
749
}
K
KAMEZAWA Hiroyuki 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

763 764 765
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
766

767 768 769 770 771
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
785

K
KAMEZAWA Hiroyuki 已提交
786 787 788 789
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
790

791
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
792 793 794
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
795
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
796
		return;
797
	VM_BUG_ON(!pc->mem_cgroup);
798 799 800 801
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
802
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
803 804
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
805 806 807
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
808
	list_del_init(&pc->lru);
809 810
}

K
KAMEZAWA Hiroyuki 已提交
811
void mem_cgroup_del_lru(struct page *page)
812
{
K
KAMEZAWA Hiroyuki 已提交
813 814
	mem_cgroup_del_lru_list(page, page_lru(page));
}
815

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
838
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
839 840 841
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
842 843 844 845
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
846

847
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
848
		return;
849

K
KAMEZAWA Hiroyuki 已提交
850
	pc = lookup_page_cgroup(page);
851
	/* unused or root page is not rotated. */
852 853 854 855 856
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
857
		return;
858
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
859
	list_move(&pc->lru, &mz->lists[lru]);
860 861
}

K
KAMEZAWA Hiroyuki 已提交
862
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
863
{
K
KAMEZAWA Hiroyuki 已提交
864 865
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
866

867
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
868 869
		return;
	pc = lookup_page_cgroup(page);
870
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
871
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
872
		return;
873 874
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
875
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
876 877
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
878 879 880
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
881 882
	list_add(&pc->lru, &mz->lists[lru]);
}
883

K
KAMEZAWA Hiroyuki 已提交
884
/*
885 886 887 888 889
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
890
 */
891
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
892
{
893 894 895 896 897 898 899 900 901 902 903 904
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
905 906
}

907 908 909 910 911 912 913 914
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
915
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
916 917 918 919 920
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
921 922 923
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
924
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
925 926 927
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
928 929
}

930 931 932
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
933
	struct mem_cgroup *curr = NULL;
934
	struct task_struct *p;
935

936 937 938 939 940
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
941 942
	if (!curr)
		return 0;
943 944 945 946 947 948 949
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
950 951 952 953
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
954 955 956
	return ret;
}

957
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
958 959 960
{
	unsigned long active;
	unsigned long inactive;
961 962
	unsigned long gb;
	unsigned long inactive_ratio;
963

K
KAMEZAWA Hiroyuki 已提交
964 965
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
966

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
994 995 996 997 998
		return 1;

	return 0;
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1010 1011 1012 1013
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1014
	int nid = zone_to_nid(zone);
1015 1016 1017 1018 1019 1020
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1021 1022 1023
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1024
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1041 1042
	if (!PageCgroupUsed(pc))
		return NULL;
1043 1044
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1045
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1046 1047 1048 1049 1050 1051
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

1052 1053 1054 1055 1056
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1057
					int active, int file)
1058 1059 1060 1061 1062 1063
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1064
	struct page_cgroup *pc, *tmp;
1065
	int nid = zone_to_nid(z);
1066 1067
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1068
	int lru = LRU_FILE * file + active;
1069
	int ret;
1070

1071
	BUG_ON(!mem_cont);
1072
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1073
	src = &mz->lists[lru];
1074

1075 1076
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1077
		if (scan >= nr_to_scan)
1078
			break;
K
KAMEZAWA Hiroyuki 已提交
1079

1080 1081
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1082

1083
		page = lookup_cgroup_page(pc);
1084

H
Hugh Dickins 已提交
1085
		if (unlikely(!PageLRU(page)))
1086 1087
			continue;

H
Hugh Dickins 已提交
1088
		scan++;
1089 1090 1091
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1092
			list_move(&page->lru, dst);
1093
			mem_cgroup_del_lru(page);
1094
			nr_taken += hpage_nr_pages(page);
1095 1096 1097 1098 1099 1100 1101
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1102 1103 1104 1105
		}
	}

	*scanned = scan;
1106 1107 1108 1109

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1110 1111 1112
	return nr_taken;
}

1113 1114 1115
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1116
/**
1117 1118
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1119
 *
1120 1121
 * Returns the maximum amount of memory @mem can be charged with, in
 * bytes.
1122
 */
1123
static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
1124
{
1125 1126 1127 1128 1129 1130
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
	return margin;
1131 1132
}

K
KOSAKI Motohiro 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1149 1150 1151
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1152 1153 1154 1155

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1156
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1157 1158 1159
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1170 1171 1172
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1173
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1174 1175 1176
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1195 1196 1197

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1198 1199
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1200
	bool ret = false;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1235
/**
1236
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1255
	if (!memcg || !p)
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1302 1303 1304 1305 1306 1307 1308
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1309 1310 1311 1312
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1313 1314 1315
	return num;
}

D
David Rientjes 已提交
1316 1317 1318 1319 1320 1321 1322 1323
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1324 1325 1326
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1327 1328 1329 1330 1331 1332 1333 1334
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1335
/*
K
KAMEZAWA Hiroyuki 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1378 1379
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1380 1381 1382
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1383 1384
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1385 1386
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1387
						struct zone *zone,
1388 1389
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1390
{
K
KAMEZAWA Hiroyuki 已提交
1391 1392 1393
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1394 1395
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1396
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1397 1398 1399
	unsigned long excess;

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1400

1401 1402 1403 1404
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1405
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1406
		victim = mem_cgroup_select_victim(root_mem);
1407
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1408
			loop++;
1409 1410
			if (loop >= 1)
				drain_all_stock_async();
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1434
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1435 1436
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1437 1438
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1439
		/* we use swappiness of local cgroup */
1440 1441
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1442
				noswap, get_swappiness(victim), zone);
1443 1444 1445
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1446
		css_put(&victim->css);
1447 1448 1449 1450 1451 1452 1453
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1454
		total += ret;
1455
		if (check_soft) {
1456
			if (!res_counter_soft_limit_excess(&root_mem->res))
1457
				return total;
1458
		} else if (mem_cgroup_margin(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1459
			return 1 + total;
1460
	}
K
KAMEZAWA Hiroyuki 已提交
1461
	return total;
1462 1463
}

K
KAMEZAWA Hiroyuki 已提交
1464 1465 1466 1467 1468 1469
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1470 1471
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1472

K
KAMEZAWA Hiroyuki 已提交
1473 1474 1475 1476
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1477 1478 1479 1480

	if (lock_count == 1)
		return true;
	return false;
1481
}
1482

K
KAMEZAWA Hiroyuki 已提交
1483
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1484
{
K
KAMEZAWA Hiroyuki 已提交
1485 1486
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1487 1488 1489 1490 1491
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1492 1493
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1494 1495 1496
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1497 1498 1499 1500

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1537 1538
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1539
	if (mem && atomic_read(&mem->oom_lock))
1540 1541 1542
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1543 1544 1545 1546
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1547
{
K
KAMEZAWA Hiroyuki 已提交
1548
	struct oom_wait_info owait;
1549
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1550

K
KAMEZAWA Hiroyuki 已提交
1551 1552 1553 1554 1555
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1556
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1557 1558 1559 1560 1561 1562 1563 1564
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1565 1566 1567 1568
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1569
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1570 1571
	mutex_unlock(&memcg_oom_mutex);

1572 1573
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1574
		mem_cgroup_out_of_memory(mem, mask);
1575
	} else {
K
KAMEZAWA Hiroyuki 已提交
1576
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1577
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1578 1579 1580
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1581
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1582 1583 1584 1585 1586 1587 1588
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1589 1590
}

1591 1592 1593
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1613
 */
1614

1615 1616
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1617 1618
{
	struct mem_cgroup *mem;
1619 1620
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1621
	unsigned long uninitialized_var(flags);
1622 1623 1624 1625

	if (unlikely(!pc))
		return;

1626
	rcu_read_lock();
1627
	mem = pc->mem_cgroup;
1628 1629 1630
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1631
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1632
		/* take a lock against to access pc->mem_cgroup */
1633
		move_lock_page_cgroup(pc, &flags);
1634 1635 1636 1637 1638
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1639 1640

	switch (idx) {
1641
	case MEMCG_NR_FILE_MAPPED:
1642 1643 1644
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1645
			ClearPageCgroupFileMapped(pc);
1646
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1647 1648 1649
		break;
	default:
		BUG();
1650
	}
1651

1652 1653
	this_cpu_add(mem->stat->count[idx], val);

1654 1655
out:
	if (unlikely(need_unlock))
1656
		move_unlock_page_cgroup(pc, &flags);
1657 1658
	rcu_read_unlock();
	return;
1659
}
1660
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1661

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1723
 * This will be consumed by consume_stock() function, later.
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
		s64 x = per_cpu(mem->stat->count[i], cpu);

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1801 1802 1803 1804
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1805 1806 1807 1808 1809
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1810
	struct mem_cgroup *iter;
1811

1812 1813 1814 1815 1816 1817
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1818
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1819
		return NOTIFY_OK;
1820 1821 1822 1823

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1824 1825 1826 1827 1828
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

1856
		res_counter_uncharge(&mem->res, csize);
1857 1858 1859 1860
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1861 1862 1863 1864 1865 1866 1867 1868 1869
	/*
	 * csize can be either a huge page (HPAGE_SIZE), a batch of
	 * regular pages (CHARGE_SIZE), or a single regular page
	 * (PAGE_SIZE).
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
	if (csize == CHARGE_SIZE)
1870 1871 1872 1873 1874 1875
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1876
					      gfp_mask, flags);
1877
	if (mem_cgroup_margin(mem_over_limit) >= csize)
1878
		return CHARGE_RETRY;
1879
	/*
1880 1881 1882 1883 1884 1885 1886
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
1887
	 */
1888
	if (csize == PAGE_SIZE && ret)
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1908 1909 1910
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1911
 */
1912
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
1913 1914 1915
				   gfp_t gfp_mask,
				   struct mem_cgroup **memcg, bool oom,
				   int page_size)
1916
{
1917 1918 1919
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
A
Andrea Arcangeli 已提交
1920
	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1921

K
KAMEZAWA Hiroyuki 已提交
1922 1923 1924 1925 1926 1927 1928 1929
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1930

1931
	/*
1932 1933
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1934 1935 1936
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1937 1938 1939 1940
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1941
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1942 1943 1944
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
A
Andrea Arcangeli 已提交
1945
		if (page_size == PAGE_SIZE && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
1946
			goto done;
1947 1948
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1949
		struct task_struct *p;
1950

K
KAMEZAWA Hiroyuki 已提交
1951 1952 1953
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
1954 1955 1956 1957 1958 1959 1960 1961
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
1962 1963
		 */
		mem = mem_cgroup_from_task(p);
1964
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1965 1966 1967
			rcu_read_unlock();
			goto done;
		}
A
Andrea Arcangeli 已提交
1968
		if (page_size == PAGE_SIZE && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1987

1988 1989
	do {
		bool oom_check;
1990

1991
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1992 1993
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1994
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1995
		}
1996

1997 1998 1999 2000
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2001
		}
2002

2003
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2004

2005 2006 2007 2008
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
A
Andrea Arcangeli 已提交
2009
			csize = page_size;
K
KAMEZAWA Hiroyuki 已提交
2010 2011 2012
			css_put(&mem->css);
			mem = NULL;
			goto again;
2013
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2014
			css_put(&mem->css);
2015 2016
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2017 2018
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2019
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2020
			}
2021 2022 2023 2024
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2025
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2026
			goto bypass;
2027
		}
2028 2029
	} while (ret != CHARGE_OK);

A
Andrea Arcangeli 已提交
2030 2031
	if (csize > page_size)
		refill_stock(mem, csize - page_size);
K
KAMEZAWA Hiroyuki 已提交
2032
	css_put(&mem->css);
2033
done:
K
KAMEZAWA Hiroyuki 已提交
2034
	*memcg = mem;
2035 2036
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2037
	*memcg = NULL;
2038
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2039 2040 2041
bypass:
	*memcg = NULL;
	return 0;
2042
}
2043

2044 2045 2046 2047 2048
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2049 2050
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
2051 2052
{
	if (!mem_cgroup_is_root(mem)) {
2053
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2054
		if (do_swap_account)
2055
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2056
	}
2057 2058
}

A
Andrea Arcangeli 已提交
2059 2060
static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
				     int page_size)
2061
{
A
Andrea Arcangeli 已提交
2062
	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2063 2064
}

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2084
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2085
{
2086
	struct mem_cgroup *mem = NULL;
2087
	struct page_cgroup *pc;
2088
	unsigned short id;
2089 2090
	swp_entry_t ent;

2091 2092 2093
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2094
	lock_page_cgroup(pc);
2095
	if (PageCgroupUsed(pc)) {
2096
		mem = pc->mem_cgroup;
2097 2098
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2099
	} else if (PageSwapCache(page)) {
2100
		ent.val = page_private(page);
2101 2102 2103 2104 2105 2106
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2107
	}
2108
	unlock_page_cgroup(pc);
2109 2110 2111
	return mem;
}

2112
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2113
				       struct page *page,
2114 2115 2116
				       struct page_cgroup *pc,
				       enum charge_type ctype,
				       int page_size)
2117
{
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	int nr_pages = page_size >> PAGE_SHIFT;

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		mem_cgroup_cancel_charge(mem, page_size);
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2130
	pc->mem_cgroup = mem;
2131 2132 2133 2134 2135 2136 2137
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2138
	smp_wmb();
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2152

2153
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2154
	unlock_page_cgroup(pc);
2155 2156 2157 2158 2159
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2160
	memcg_check_events(mem, page);
2161
}
2162

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2177 2178
	if (mem_cgroup_disabled())
		return;
2179
	/*
2180
	 * We have no races with charge/uncharge but will have races with
2181 2182 2183 2184 2185 2186
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2197
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2198 2199
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2200 2201 2202 2203 2204
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2205
/**
2206
 * mem_cgroup_move_account - move account of the page
2207
 * @page: the page
2208 2209 2210
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2211
 * @uncharge: whether we should call uncharge and css_put against @from.
2212
 * @charge_size: number of bytes to charge (regular or huge page)
2213 2214
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2215
 * - page is not on LRU (isolate_page() is useful.)
2216
 * - compound_lock is held when charge_size > PAGE_SIZE
2217
 *
2218 2219 2220 2221
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2222
 */
2223
static int mem_cgroup_move_account(struct page *page, struct page_cgroup *pc,
2224 2225
				   struct mem_cgroup *from, struct mem_cgroup *to,
				   bool uncharge, int charge_size)
2226
{
2227
	int nr_pages = charge_size >> PAGE_SHIFT;
2228 2229
	unsigned long flags;
	int ret;
2230

2231
	VM_BUG_ON(from == to);
2232
	VM_BUG_ON(PageLRU(page));
2233 2234 2235 2236 2237 2238 2239
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2240
	if (charge_size > PAGE_SIZE && !PageTransHuge(page))
2241 2242 2243 2244 2245 2246 2247 2248 2249
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2250

2251
	if (PageCgroupFileMapped(pc)) {
2252 2253 2254 2255 2256
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2257
	}
2258
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2259 2260
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2261
		mem_cgroup_cancel_charge(from, charge_size);
2262

2263
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2264
	pc->mem_cgroup = to;
2265
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2266 2267 2268
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2269 2270 2271
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2272
	 */
2273 2274 2275
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2276
	unlock_page_cgroup(pc);
2277 2278 2279
	/*
	 * check events
	 */
2280 2281
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2282
out:
2283 2284 2285 2286 2287 2288 2289
	return ret;
}

/*
 * move charges to its parent.
 */

2290 2291
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2292 2293 2294 2295 2296 2297
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2298
	int page_size = PAGE_SIZE;
2299
	unsigned long flags;
2300 2301 2302 2303 2304 2305
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2306 2307 2308 2309 2310
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2311 2312 2313

	if (PageTransHuge(page))
		page_size = HPAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2314

2315
	parent = mem_cgroup_from_cont(pcg);
2316 2317
	ret = __mem_cgroup_try_charge(NULL, gfp_mask,
				&parent, false, page_size);
2318
	if (ret || !parent)
2319
		goto put_back;
2320

2321
	if (page_size > PAGE_SIZE)
2322 2323
		flags = compound_lock_irqsave(page);

2324
	ret = mem_cgroup_move_account(page, pc, child, parent, true, page_size);
2325
	if (ret)
2326
		mem_cgroup_cancel_charge(parent, page_size);
2327

2328
	if (page_size > PAGE_SIZE)
2329
		compound_unlock_irqrestore(page, flags);
2330
put_back:
K
KAMEZAWA Hiroyuki 已提交
2331
	putback_lru_page(page);
2332
put:
2333
	put_page(page);
2334
out:
2335 2336 2337
	return ret;
}

2338 2339 2340 2341 2342 2343 2344
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2345
				gfp_t gfp_mask, enum charge_type ctype)
2346
{
2347
	struct mem_cgroup *mem = NULL;
2348
	int page_size = PAGE_SIZE;
2349
	struct page_cgroup *pc;
2350
	bool oom = true;
2351
	int ret;
A
Andrea Arcangeli 已提交
2352

A
Andrea Arcangeli 已提交
2353
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2354
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2355
		VM_BUG_ON(!PageTransHuge(page));
2356 2357 2358 2359 2360
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2361
	}
2362 2363

	pc = lookup_page_cgroup(page);
2364
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2365

2366
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2367
	if (ret || !mem)
2368 2369
		return ret;

2370
	__mem_cgroup_commit_charge(mem, page, pc, ctype, page_size);
2371 2372 2373
	return 0;
}

2374 2375
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2376
{
2377
	if (mem_cgroup_disabled())
2378
		return 0;
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2390
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2391
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2392 2393
}

D
Daisuke Nishimura 已提交
2394 2395 2396 2397
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2398 2399
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2400
{
2401 2402
	int ret;

2403
	if (mem_cgroup_disabled())
2404
		return 0;
2405 2406
	if (PageCompound(page))
		return 0;
2407 2408 2409 2410 2411 2412 2413 2414
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2415 2416
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2417 2418 2419 2420
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2421 2422 2423 2424 2425 2426
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2427 2428
			return 0;
		}
2429
		unlock_page_cgroup(pc);
2430 2431
	}

2432
	if (unlikely(!mm))
2433
		mm = &init_mm;
2434

2435 2436
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2437
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2438

D
Daisuke Nishimura 已提交
2439 2440
	/* shmem */
	if (PageSwapCache(page)) {
2441
		struct mem_cgroup *mem;
2442

D
Daisuke Nishimura 已提交
2443 2444 2445 2446 2447 2448
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2449
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2450 2451

	return ret;
2452 2453
}

2454 2455 2456
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2457
 * struct page_cgroup is acquired. This refcnt will be consumed by
2458 2459
 * "commit()" or removed by "cancel()"
 */
2460 2461 2462 2463 2464
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2465
	int ret;
2466

2467 2468
	*ptr = NULL;

2469
	if (mem_cgroup_disabled())
2470 2471 2472 2473 2474 2475
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2476 2477 2478
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2479 2480
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2481
		goto charge_cur_mm;
2482
	mem = try_get_mem_cgroup_from_page(page);
2483 2484
	if (!mem)
		goto charge_cur_mm;
2485
	*ptr = mem;
A
Andrea Arcangeli 已提交
2486
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2487 2488
	css_put(&mem->css);
	return ret;
2489 2490 2491
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
A
Andrea Arcangeli 已提交
2492
	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2493 2494
}

D
Daisuke Nishimura 已提交
2495 2496 2497
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2498 2499 2500
{
	struct page_cgroup *pc;

2501
	if (mem_cgroup_disabled())
2502 2503 2504
		return;
	if (!ptr)
		return;
2505
	cgroup_exclude_rmdir(&ptr->css);
2506
	pc = lookup_page_cgroup(page);
2507
	mem_cgroup_lru_del_before_commit_swapcache(page);
2508
	__mem_cgroup_commit_charge(ptr, page, pc, ctype, PAGE_SIZE);
2509
	mem_cgroup_lru_add_after_commit_swapcache(page);
2510 2511 2512
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2513 2514 2515
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2516
	 */
2517
	if (do_swap_account && PageSwapCache(page)) {
2518
		swp_entry_t ent = {.val = page_private(page)};
2519
		unsigned short id;
2520
		struct mem_cgroup *memcg;
2521 2522 2523 2524

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2525
		if (memcg) {
2526 2527 2528 2529
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2530
			if (!mem_cgroup_is_root(memcg))
2531
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2532
			mem_cgroup_swap_statistics(memcg, false);
2533 2534
			mem_cgroup_put(memcg);
		}
2535
		rcu_read_unlock();
2536
	}
2537 2538 2539 2540 2541 2542
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2543 2544
}

D
Daisuke Nishimura 已提交
2545 2546 2547 2548 2549 2550
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2551 2552
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2553
	if (mem_cgroup_disabled())
2554 2555 2556
		return;
	if (!mem)
		return;
A
Andrea Arcangeli 已提交
2557
	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2558 2559
}

2560
static void
A
Andrea Arcangeli 已提交
2561 2562
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
	      int page_size)
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

A
Andrea Arcangeli 已提交
2589 2590 2591
	if (page_size != PAGE_SIZE)
		goto direct_uncharge;

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
A
Andrea Arcangeli 已提交
2605
	res_counter_uncharge(&mem->res, page_size);
2606
	if (uncharge_memsw)
A
Andrea Arcangeli 已提交
2607
		res_counter_uncharge(&mem->memsw, page_size);
2608 2609
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2610 2611
	return;
}
2612

2613
/*
2614
 * uncharge if !page_mapped(page)
2615
 */
2616
static struct mem_cgroup *
2617
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2618
{
2619
	int count;
H
Hugh Dickins 已提交
2620
	struct page_cgroup *pc;
2621
	struct mem_cgroup *mem = NULL;
A
Andrea Arcangeli 已提交
2622
	int page_size = PAGE_SIZE;
2623

2624
	if (mem_cgroup_disabled())
2625
		return NULL;
2626

K
KAMEZAWA Hiroyuki 已提交
2627
	if (PageSwapCache(page))
2628
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2629

A
Andrea Arcangeli 已提交
2630
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2631
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2632 2633
		VM_BUG_ON(!PageTransHuge(page));
	}
A
Andrea Arcangeli 已提交
2634

2635
	count = page_size >> PAGE_SHIFT;
2636
	/*
2637
	 * Check if our page_cgroup is valid
2638
	 */
2639 2640
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2641
		return NULL;
2642

2643
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2644

2645 2646
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2647 2648 2649 2650 2651
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2652
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2653 2654
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2666
	}
K
KAMEZAWA Hiroyuki 已提交
2667

2668
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
K
KAMEZAWA Hiroyuki 已提交
2669

2670
	ClearPageCgroupUsed(pc);
2671 2672 2673 2674 2675 2676
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2677

2678
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2679 2680 2681 2682
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2683
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2684 2685 2686 2687 2688
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
A
Andrea Arcangeli 已提交
2689
		__do_uncharge(mem, ctype, page_size);
2690

2691
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2692 2693 2694

unlock_out:
	unlock_page_cgroup(pc);
2695
	return NULL;
2696 2697
}

2698 2699
void mem_cgroup_uncharge_page(struct page *page)
{
2700 2701 2702 2703 2704
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2705 2706 2707 2708 2709 2710
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2711
	VM_BUG_ON(page->mapping);
2712 2713 2714
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2755
	memcg_oom_recover(batch->memcg);
2756 2757 2758 2759
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2760
#ifdef CONFIG_SWAP
2761
/*
2762
 * called after __delete_from_swap_cache() and drop "page" account.
2763 2764
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2765 2766
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2767 2768
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2769 2770 2771 2772 2773 2774
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2775

K
KAMEZAWA Hiroyuki 已提交
2776 2777 2778 2779 2780
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2781
		swap_cgroup_record(ent, css_id(&memcg->css));
2782
}
2783
#endif
2784 2785 2786 2787 2788 2789 2790

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2791
{
2792
	struct mem_cgroup *memcg;
2793
	unsigned short id;
2794 2795 2796 2797

	if (!do_swap_account)
		return;

2798 2799 2800
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2801
	if (memcg) {
2802 2803 2804 2805
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2806
		if (!mem_cgroup_is_root(memcg))
2807
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2808
		mem_cgroup_swap_statistics(memcg, false);
2809 2810
		mem_cgroup_put(memcg);
	}
2811
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2812
}
2813 2814 2815 2816 2817 2818

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2819
 * @need_fixup: whether we should fixup res_counters and refcounts.
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2830
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2831 2832 2833 2834 2835 2836 2837 2838
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2839
		mem_cgroup_swap_statistics(to, true);
2840
		/*
2841 2842 2843 2844 2845 2846
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2847 2848
		 */
		mem_cgroup_get(to);
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2860 2861 2862 2863 2864 2865
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2866
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2867 2868 2869
{
	return -EINVAL;
}
2870
#endif
K
KAMEZAWA Hiroyuki 已提交
2871

2872
/*
2873 2874
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2875
 */
2876
int mem_cgroup_prepare_migration(struct page *page,
2877
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2878 2879
{
	struct page_cgroup *pc;
2880
	struct mem_cgroup *mem = NULL;
2881
	enum charge_type ctype;
2882
	int ret = 0;
2883

2884 2885
	*ptr = NULL;

A
Andrea Arcangeli 已提交
2886
	VM_BUG_ON(PageTransHuge(page));
2887
	if (mem_cgroup_disabled())
2888 2889
		return 0;

2890 2891 2892
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2893 2894
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2926
	}
2927
	unlock_page_cgroup(pc);
2928 2929 2930 2931 2932 2933
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2934

A
Andrea Arcangeli 已提交
2935
	*ptr = mem;
2936
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2949
	}
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2963
	__mem_cgroup_commit_charge(mem, page, pc, ctype, PAGE_SIZE);
2964
	return ret;
2965
}
2966

2967
/* remove redundant charge if migration failed*/
2968
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2969
	struct page *oldpage, struct page *newpage, bool migration_ok)
2970
{
2971
	struct page *used, *unused;
2972 2973 2974 2975
	struct page_cgroup *pc;

	if (!mem)
		return;
2976
	/* blocks rmdir() */
2977
	cgroup_exclude_rmdir(&mem->css);
2978
	if (!migration_ok) {
2979 2980
		used = oldpage;
		unused = newpage;
2981
	} else {
2982
		used = newpage;
2983 2984
		unused = oldpage;
	}
2985
	/*
2986 2987 2988
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2989
	 */
2990 2991 2992 2993
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2994

2995 2996
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

2997
	/*
2998 2999 3000 3001 3002 3003
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3004
	 */
3005 3006
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3007
	/*
3008 3009
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3010 3011 3012 3013
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3014
}
3015

3016
/*
3017 3018 3019 3020 3021 3022
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3023
 */
3024
int mem_cgroup_shmem_charge_fallback(struct page *page,
3025 3026
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3027
{
3028
	struct mem_cgroup *mem;
3029
	int ret;
3030

3031
	if (mem_cgroup_disabled())
3032
		return 0;
3033

3034 3035 3036
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3037

3038
	return ret;
3039 3040
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3087 3088
static DEFINE_MUTEX(set_limit_mutex);

3089
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3090
				unsigned long long val)
3091
{
3092
	int retry_count;
3093
	u64 memswlimit, memlimit;
3094
	int ret = 0;
3095 3096
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3097
	int enlarge;
3098 3099 3100 3101 3102 3103 3104 3105 3106

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3107

3108
	enlarge = 0;
3109
	while (retry_count) {
3110 3111 3112 3113
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3124 3125
			break;
		}
3126 3127 3128 3129 3130

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3131
		ret = res_counter_set_limit(&memcg->res, val);
3132 3133 3134 3135 3136 3137
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3138 3139 3140 3141 3142
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3143
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3144
						MEM_CGROUP_RECLAIM_SHRINK);
3145 3146 3147 3148 3149 3150
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3151
	}
3152 3153
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3154

3155 3156 3157
	return ret;
}

L
Li Zefan 已提交
3158 3159
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3160
{
3161
	int retry_count;
3162
	u64 memlimit, memswlimit, oldusage, curusage;
3163 3164
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3165
	int enlarge = 0;
3166

3167 3168 3169
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3187 3188 3189
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3190
		ret = res_counter_set_limit(&memcg->memsw, val);
3191 3192 3193 3194 3195 3196
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3197 3198 3199 3200 3201
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3202
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3203 3204
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
3205
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3206
		/* Usage is reduced ? */
3207
		if (curusage >= oldusage)
3208
			retry_count--;
3209 3210
		else
			oldusage = curusage;
3211
	}
3212 3213
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3214 3215 3216
	return ret;
}

3217
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3218
					    gfp_t gfp_mask)
3219 3220 3221 3222 3223 3224
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3225
	unsigned long long excess;
3226 3227 3228 3229

	if (order > 0)
		return 0;

3230
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3278
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3279 3280 3281 3282 3283 3284 3285 3286
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3287 3288
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3307 3308 3309 3310
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3311
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3312
				int node, int zid, enum lru_list lru)
3313
{
K
KAMEZAWA Hiroyuki 已提交
3314 3315
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3316
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3317
	unsigned long flags, loop;
3318
	struct list_head *list;
3319
	int ret = 0;
3320

K
KAMEZAWA Hiroyuki 已提交
3321 3322
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3323
	list = &mz->lists[lru];
3324

3325 3326 3327 3328 3329
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3330 3331
		struct page *page;

3332
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3333
		spin_lock_irqsave(&zone->lru_lock, flags);
3334
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3335
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3336
			break;
3337 3338 3339 3340
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3341
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3342
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3343 3344
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3345
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3346

3347
		page = lookup_cgroup_page(pc);
3348 3349

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3350
		if (ret == -ENOMEM)
3351
			break;
3352 3353 3354 3355 3356 3357 3358

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3359
	}
K
KAMEZAWA Hiroyuki 已提交
3360

3361 3362 3363
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3364 3365 3366 3367 3368 3369
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3370
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3371
{
3372 3373 3374
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3375
	struct cgroup *cgrp = mem->css.cgroup;
3376

3377
	css_get(&mem->css);
3378 3379

	shrink = 0;
3380 3381 3382
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3383
move_account:
3384
	do {
3385
		ret = -EBUSY;
3386 3387 3388 3389
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3390
			goto out;
3391 3392
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3393
		drain_all_stock_sync();
3394
		ret = 0;
3395
		mem_cgroup_start_move(mem);
3396
		for_each_node_state(node, N_HIGH_MEMORY) {
3397
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3398
				enum lru_list l;
3399 3400
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3401
							node, zid, l);
3402 3403 3404
					if (ret)
						break;
				}
3405
			}
3406 3407 3408
			if (ret)
				break;
		}
3409
		mem_cgroup_end_move(mem);
3410
		memcg_oom_recover(mem);
3411 3412 3413
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3414
		cond_resched();
3415 3416
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3417 3418 3419
out:
	css_put(&mem->css);
	return ret;
3420 3421

try_to_free:
3422 3423
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3424 3425 3426
		ret = -EBUSY;
		goto out;
	}
3427 3428
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3429 3430 3431 3432
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3433 3434 3435 3436 3437

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3438 3439
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3440
		if (!progress) {
3441
			nr_retries--;
3442
			/* maybe some writeback is necessary */
3443
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3444
		}
3445 3446

	}
K
KAMEZAWA Hiroyuki 已提交
3447
	lru_add_drain();
3448
	/* try move_account...there may be some *locked* pages. */
3449
	goto move_account;
3450 3451
}

3452 3453 3454 3455 3456 3457
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3476
	 * If parent's use_hierarchy is set, we can't make any modifications
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3496

K
KAMEZAWA Hiroyuki 已提交
3497 3498
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx)
3499
{
K
KAMEZAWA Hiroyuki 已提交
3500 3501
	struct mem_cgroup *iter;
	s64 val = 0;
3502

K
KAMEZAWA Hiroyuki 已提交
3503 3504 3505 3506 3507 3508 3509
	/* each per cpu's value can be minus.Then, use s64 */
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3510 3511
}

3512 3513
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3514
	u64 val;
3515 3516 3517 3518 3519 3520 3521 3522

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

K
KAMEZAWA Hiroyuki 已提交
3523 3524
	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3525

K
KAMEZAWA Hiroyuki 已提交
3526 3527 3528
	if (swap)
		val += mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT);
3529 3530 3531 3532

	return val << PAGE_SHIFT;
}

3533
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3534
{
3535
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3536
	u64 val;
3537 3538 3539 3540 3541 3542
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3543 3544 3545
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3546
			val = res_counter_read_u64(&mem->res, name);
3547 3548
		break;
	case _MEMSWAP:
3549 3550 3551
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3552
			val = res_counter_read_u64(&mem->memsw, name);
3553 3554 3555 3556 3557 3558
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3559
}
3560 3561 3562 3563
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3564 3565
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3566
{
3567
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3568
	int type, name;
3569 3570 3571
	unsigned long long val;
	int ret;

3572 3573 3574
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3575
	case RES_LIMIT:
3576 3577 3578 3579
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3580 3581
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3582 3583 3584
		if (ret)
			break;
		if (type == _MEM)
3585
			ret = mem_cgroup_resize_limit(memcg, val);
3586 3587
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3588
		break;
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3603 3604 3605 3606 3607
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3608 3609
}

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3638
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3639 3640
{
	struct mem_cgroup *mem;
3641
	int type, name;
3642 3643

	mem = mem_cgroup_from_cont(cont);
3644 3645 3646
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3647
	case RES_MAX_USAGE:
3648 3649 3650 3651
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3652 3653
		break;
	case RES_FAILCNT:
3654 3655 3656 3657
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3658 3659
		break;
	}
3660

3661
	return 0;
3662 3663
}

3664 3665 3666 3667 3668 3669
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3670
#ifdef CONFIG_MMU
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3689 3690 3691 3692 3693 3694 3695
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3696

K
KAMEZAWA Hiroyuki 已提交
3697 3698 3699 3700 3701

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3702
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3703 3704
	MCS_PGPGIN,
	MCS_PGPGOUT,
3705
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3716 3717
};

K
KAMEZAWA Hiroyuki 已提交
3718 3719 3720 3721 3722 3723
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3724
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3725 3726
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3727
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3728 3729 3730 3731 3732 3733 3734 3735
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3736 3737
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3738 3739 3740 3741
{
	s64 val;

	/* per cpu stat */
3742
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3743
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3744
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3745
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3746
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3747
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3748
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3749
	s->stat[MCS_PGPGIN] += val;
3750
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3751
	s->stat[MCS_PGPGOUT] += val;
3752
	if (do_swap_account) {
3753
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3754 3755
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3773 3774 3775 3776
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3777 3778
}

3779 3780
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3781 3782
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3783
	struct mcs_total_stat mystat;
3784 3785
	int i;

K
KAMEZAWA Hiroyuki 已提交
3786 3787
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3788

3789 3790 3791
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3792
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3793
	}
L
Lee Schermerhorn 已提交
3794

K
KAMEZAWA Hiroyuki 已提交
3795
	/* Hierarchical information */
3796 3797 3798 3799 3800 3801 3802
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3803

K
KAMEZAWA Hiroyuki 已提交
3804 3805
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3806 3807 3808
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3809
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3810
	}
K
KAMEZAWA Hiroyuki 已提交
3811

K
KOSAKI Motohiro 已提交
3812
#ifdef CONFIG_DEBUG_VM
3813
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3841 3842 3843
	return 0;
}

K
KOSAKI Motohiro 已提交
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3856

K
KOSAKI Motohiro 已提交
3857 3858 3859 3860 3861 3862 3863
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3864 3865 3866

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3867 3868
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3869 3870
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3871
		return -EINVAL;
3872
	}
K
KOSAKI Motohiro 已提交
3873 3874 3875 3876 3877

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3878 3879
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3880 3881 3882
	return 0;
}

3883 3884 3885 3886 3887 3888 3889 3890
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3891
		t = rcu_dereference(memcg->thresholds.primary);
3892
	else
3893
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3905
	i = t->current_threshold;
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3929
	t->current_threshold = i - 1;
3930 3931 3932 3933 3934 3935
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3936 3937 3938 3939 3940 3941 3942
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3953
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
3964 3965 3966 3967
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3968 3969 3970 3971
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3972 3973
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3974 3975
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3976 3977
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3978
	int i, size, ret;
3979 3980 3981 3982 3983 3984

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3985

3986
	if (type == _MEM)
3987
		thresholds = &memcg->thresholds;
3988
	else if (type == _MEMSWAP)
3989
		thresholds = &memcg->memsw_thresholds;
3990 3991 3992 3993 3994 3995
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3996
	if (thresholds->primary)
3997 3998
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3999
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4000 4001

	/* Allocate memory for new array of thresholds */
4002
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4003
			GFP_KERNEL);
4004
	if (!new) {
4005 4006 4007
		ret = -ENOMEM;
		goto unlock;
	}
4008
	new->size = size;
4009 4010

	/* Copy thresholds (if any) to new array */
4011 4012
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4013
				sizeof(struct mem_cgroup_threshold));
4014 4015
	}

4016
	/* Add new threshold */
4017 4018
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4019 4020

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4021
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4022 4023 4024
			compare_thresholds, NULL);

	/* Find current threshold */
4025
	new->current_threshold = -1;
4026
	for (i = 0; i < size; i++) {
4027
		if (new->entries[i].threshold < usage) {
4028
			/*
4029 4030
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4031 4032
			 * it here.
			 */
4033
			++new->current_threshold;
4034 4035 4036
		}
	}

4037 4038 4039 4040 4041
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4042

4043
	/* To be sure that nobody uses thresholds */
4044 4045 4046 4047 4048 4049 4050 4051
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4052
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4053
	struct cftype *cft, struct eventfd_ctx *eventfd)
4054 4055
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4056 4057
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4058 4059
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4060
	int i, j, size;
4061 4062 4063

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4064
		thresholds = &memcg->thresholds;
4065
	else if (type == _MEMSWAP)
4066
		thresholds = &memcg->memsw_thresholds;
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4082 4083 4084
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4085 4086 4087
			size++;
	}

4088
	new = thresholds->spare;
4089

4090 4091
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4092 4093
		kfree(new);
		new = NULL;
4094
		goto swap_buffers;
4095 4096
	}

4097
	new->size = size;
4098 4099

	/* Copy thresholds and find current threshold */
4100 4101 4102
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4103 4104
			continue;

4105 4106
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4107
			/*
4108
			 * new->current_threshold will not be used
4109 4110 4111
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4112
			++new->current_threshold;
4113 4114 4115 4116
		}
		j++;
	}

4117
swap_buffers:
4118 4119 4120
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4121

4122
	/* To be sure that nobody uses thresholds */
4123 4124 4125 4126
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4127

K
KAMEZAWA Hiroyuki 已提交
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4153
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4208 4209
	if (!val)
		memcg_oom_recover(mem);
4210 4211 4212 4213
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4214 4215
static struct cftype mem_cgroup_files[] = {
	{
4216
		.name = "usage_in_bytes",
4217
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4218
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4219 4220
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4221
	},
4222 4223
	{
		.name = "max_usage_in_bytes",
4224
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4225
		.trigger = mem_cgroup_reset,
4226 4227
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4228
	{
4229
		.name = "limit_in_bytes",
4230
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4231
		.write_string = mem_cgroup_write,
4232
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4233
	},
4234 4235 4236 4237 4238 4239
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4240 4241
	{
		.name = "failcnt",
4242
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4243
		.trigger = mem_cgroup_reset,
4244
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4245
	},
4246 4247
	{
		.name = "stat",
4248
		.read_map = mem_control_stat_show,
4249
	},
4250 4251 4252 4253
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4254 4255 4256 4257 4258
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4259 4260 4261 4262 4263
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4264 4265 4266 4267 4268
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4269 4270
	{
		.name = "oom_control",
4271 4272
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4273 4274 4275 4276
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4277 4278
};

4279 4280 4281 4282 4283 4284
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4285 4286
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4322 4323 4324
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4325
	struct mem_cgroup_per_zone *mz;
4326
	enum lru_list l;
4327
	int zone, tmp = node;
4328 4329 4330 4331 4332 4333 4334 4335
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4336 4337
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4338
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4339 4340
	if (!pn)
		return 1;
4341

4342
	mem->info.nodeinfo[node] = pn;
4343 4344
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4345 4346
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4347
		mz->usage_in_excess = 0;
4348 4349
		mz->on_tree = false;
		mz->mem = mem;
4350
	}
4351 4352 4353
	return 0;
}

4354 4355 4356 4357 4358
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4359 4360 4361
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4362
	int size = sizeof(struct mem_cgroup);
4363

4364
	/* Can be very big if MAX_NUMNODES is very big */
4365
	if (size < PAGE_SIZE)
4366
		mem = kzalloc(size, GFP_KERNEL);
4367
	else
4368
		mem = vzalloc(size);
4369

4370 4371 4372
	if (!mem)
		return NULL;

4373
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4374 4375
	if (!mem->stat)
		goto out_free;
4376
	spin_lock_init(&mem->pcp_counter_lock);
4377
	return mem;
4378 4379 4380 4381 4382 4383 4384

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4385 4386
}

4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4398
static void __mem_cgroup_free(struct mem_cgroup *mem)
4399
{
K
KAMEZAWA Hiroyuki 已提交
4400 4401
	int node;

4402
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4403 4404
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4405 4406 4407
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4408 4409
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4410 4411 4412 4413 4414
		kfree(mem);
	else
		vfree(mem);
}

4415 4416 4417 4418 4419
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4420
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4421
{
4422
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4423
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4424
		__mem_cgroup_free(mem);
4425 4426 4427
		if (parent)
			mem_cgroup_put(parent);
	}
4428 4429
}

4430 4431 4432 4433 4434
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4435 4436 4437 4438 4439 4440 4441 4442 4443
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4444

4445 4446 4447
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4448
	if (!mem_cgroup_disabled() && really_do_swap_account)
4449 4450 4451 4452 4453 4454 4455 4456
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4482
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4483 4484
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4485
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4486
	long error = -ENOMEM;
4487
	int node;
B
Balbir Singh 已提交
4488

4489 4490
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4491
		return ERR_PTR(error);
4492

4493 4494 4495
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4496

4497
	/* root ? */
4498
	if (cont->parent == NULL) {
4499
		int cpu;
4500
		enable_swap_cgroup();
4501
		parent = NULL;
4502
		root_mem_cgroup = mem;
4503 4504
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4505 4506 4507 4508 4509
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4510
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4511
	} else {
4512
		parent = mem_cgroup_from_cont(cont->parent);
4513
		mem->use_hierarchy = parent->use_hierarchy;
4514
		mem->oom_kill_disable = parent->oom_kill_disable;
4515
	}
4516

4517 4518 4519
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4520 4521 4522 4523 4524 4525 4526
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4527 4528 4529 4530
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4531
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4532
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4533
	INIT_LIST_HEAD(&mem->oom_notify);
4534

K
KOSAKI Motohiro 已提交
4535 4536
	if (parent)
		mem->swappiness = get_swappiness(parent);
4537
	atomic_set(&mem->refcnt, 1);
4538
	mem->move_charge_at_immigrate = 0;
4539
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4540
	return &mem->css;
4541
free_out:
4542
	__mem_cgroup_free(mem);
4543
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4544
	return ERR_PTR(error);
B
Balbir Singh 已提交
4545 4546
}

4547
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4548 4549 4550
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4551 4552

	return mem_cgroup_force_empty(mem, false);
4553 4554
}

B
Balbir Singh 已提交
4555 4556 4557
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4558 4559 4560
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4561 4562 4563 4564 4565
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4566 4567 4568 4569 4570 4571 4572 4573
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4574 4575
}

4576
#ifdef CONFIG_MMU
4577
/* Handlers for move charge at task migration. */
4578 4579
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4580
{
4581 4582
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4583 4584
	struct mem_cgroup *mem = mc.to;

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
A
Andrea Arcangeli 已提交
4620 4621
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
					      PAGE_SIZE);
4622 4623 4624 4625 4626
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4627 4628 4629 4630 4631 4632 4633 4634
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4635
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4636 4637 4638 4639 4640 4641
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4642 4643 4644
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4645 4646 4647 4648 4649
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4650
	swp_entry_t	ent;
4651 4652 4653 4654 4655
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4656
	MC_TARGET_SWAP,
4657 4658
};

D
Daisuke Nishimura 已提交
4659 4660
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4661
{
D
Daisuke Nishimura 已提交
4662
	struct page *page = vm_normal_page(vma, addr, ptent);
4663

D
Daisuke Nishimura 已提交
4664 4665 4666 4667 4668 4669
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4670 4671
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4690 4691
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4692
		return NULL;
4693
	}
D
Daisuke Nishimura 已提交
4694 4695 4696 4697 4698 4699
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4745 4746
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4747 4748 4749

	if (!page && !ent.val)
		return 0;
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4765 4766
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4767 4768 4769 4770
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4783 4784
	split_huge_page_pmd(walk->mm, pmd);

4785 4786 4787 4788 4789 4790 4791
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4792 4793 4794
	return 0;
}

4795 4796 4797 4798 4799
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4800
	down_read(&mm->mmap_sem);
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4812
	up_read(&mm->mmap_sem);
4813 4814 4815 4816 4817 4818 4819 4820 4821

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4822 4823 4824 4825 4826
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4827 4828
}

4829 4830
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4831
{
4832 4833 4834
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4835
	/* we must uncharge all the leftover precharges from mc.to */
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4847
	}
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4882
	spin_lock(&mc.lock);
4883 4884
	mc.from = NULL;
	mc.to = NULL;
4885
	spin_unlock(&mc.lock);
4886
	mem_cgroup_end_move(from);
4887 4888
}

4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4907 4908 4909 4910
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4911
			VM_BUG_ON(mc.moved_charge);
4912
			VM_BUG_ON(mc.moved_swap);
4913
			mem_cgroup_start_move(from);
4914
			spin_lock(&mc.lock);
4915 4916
			mc.from = from;
			mc.to = mem;
4917
			spin_unlock(&mc.lock);
4918
			/* We set mc.moving_task later */
4919 4920 4921 4922

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4923 4924
		}
		mmput(mm);
4925 4926 4927 4928 4929 4930 4931 4932 4933
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4934
	mem_cgroup_clear_mc();
4935 4936
}

4937 4938 4939
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4940
{
4941 4942 4943 4944 4945
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4946
	split_huge_page_pmd(walk->mm, pmd);
4947 4948 4949 4950 4951 4952 4953 4954
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4955
		swp_entry_t ent;
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4967
			if (!mem_cgroup_move_account(page, pc,
4968
					mc.from, mc.to, false, PAGE_SIZE)) {
4969
				mc.precharge--;
4970 4971
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4972 4973 4974 4975 4976
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4977 4978
		case MC_TARGET_SWAP:
			ent = target.ent;
4979 4980
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4981
				mc.precharge--;
4982 4983 4984
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4985
			break;
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5000
		ret = mem_cgroup_do_precharge(1);
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5044
	up_read(&mm->mmap_sem);
5045 5046
}

B
Balbir Singh 已提交
5047 5048 5049
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5050 5051
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
5052
{
5053 5054 5055
	struct mm_struct *mm;

	if (!mc.to)
5056 5057 5058
		/* no need to move charge */
		return;

5059 5060 5061 5062 5063
	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
5064
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5065
}
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
5088

B
Balbir Singh 已提交
5089 5090 5091 5092
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5093
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5094 5095
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5096 5097
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5098
	.attach = mem_cgroup_move_task,
5099
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5100
	.use_id = 1,
B
Balbir Singh 已提交
5101
};
5102 5103

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5104 5105 5106
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5107
	if (!(*s) || !strcmp(s, "=1"))
5108
		really_do_swap_account = 1;
5109
	else if (!strcmp(s, "=0"))
5110 5111 5112 5113
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount", enable_swap_account);
5114 5115 5116

static int __init disable_swap_account(char *s)
{
5117
	printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5118
	enable_swap_account("=0");
5119 5120 5121 5122
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif