xhci-mem.c 74.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * xHCI host controller driver
 *
 * Copyright (C) 2008 Intel Corp.
 *
 * Author: Sarah Sharp
 * Some code borrowed from the Linux EHCI driver.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/usb.h>
24
#include <linux/pci.h>
25
#include <linux/slab.h>
26
#include <linux/dmapool.h>
27
#include <linux/dma-mapping.h>
28 29

#include "xhci.h"
30
#include "xhci-trace.h"
31
#include "xhci-debugfs.h"
32

33 34 35 36 37 38 39
/*
 * Allocates a generic ring segment from the ring pool, sets the dma address,
 * initializes the segment to zero, and sets the private next pointer to NULL.
 *
 * Section 4.11.1.1:
 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
 */
40
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
41 42 43
					       unsigned int cycle_state,
					       unsigned int max_packet,
					       gfp_t flags)
44 45 46
{
	struct xhci_segment *seg;
	dma_addr_t	dma;
47
	int		i;
48 49 50

	seg = kzalloc(sizeof *seg, flags);
	if (!seg)
51
		return NULL;
52

53
	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
54 55
	if (!seg->trbs) {
		kfree(seg);
56
		return NULL;
57 58
	}

59
	if (max_packet) {
60
		seg->bounce_buf = kzalloc(max_packet, flags);
61 62 63 64 65 66
		if (!seg->bounce_buf) {
			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
			kfree(seg);
			return NULL;
		}
	}
67 68 69
	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
	if (cycle_state == 0) {
		for (i = 0; i < TRBS_PER_SEGMENT; i++)
70
			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
71
	}
72 73 74 75 76 77 78 79 80 81 82 83
	seg->dma = dma;
	seg->next = NULL;

	return seg;
}

static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
{
	if (seg->trbs) {
		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
		seg->trbs = NULL;
	}
84
	kfree(seg->bounce_buf);
85 86 87
	kfree(seg);
}

88 89 90 91 92 93 94 95 96 97 98 99 100 101
static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
				struct xhci_segment *first)
{
	struct xhci_segment *seg;

	seg = first->next;
	while (seg != first) {
		struct xhci_segment *next = seg->next;
		xhci_segment_free(xhci, seg);
		seg = next;
	}
	xhci_segment_free(xhci, first);
}

102 103 104 105 106 107 108 109
/*
 * Make the prev segment point to the next segment.
 *
 * Change the last TRB in the prev segment to be a Link TRB which points to the
 * DMA address of the next segment.  The caller needs to set any Link TRB
 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 */
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
A
Andiry Xu 已提交
110
		struct xhci_segment *next, enum xhci_ring_type type)
111 112 113 114 115 116
{
	u32 val;

	if (!prev || !next)
		return;
	prev->next = next;
A
Andiry Xu 已提交
117
	if (type != TYPE_EVENT) {
118 119
		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
			cpu_to_le64(next->dma);
120 121

		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
M
Matt Evans 已提交
122
		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
123 124
		val &= ~TRB_TYPE_BITMASK;
		val |= TRB_TYPE(TRB_LINK);
125
		/* Always set the chain bit with 0.95 hardware */
126 127
		/* Set chain bit for isoc rings on AMD 0.96 host */
		if (xhci_link_trb_quirk(xhci) ||
A
Andiry Xu 已提交
128 129
				(type == TYPE_ISOC &&
				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
130
			val |= TRB_CHAIN;
M
Matt Evans 已提交
131
		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
132 133 134
	}
}

A
Andiry Xu 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/*
 * Link the ring to the new segments.
 * Set Toggle Cycle for the new ring if needed.
 */
static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
		struct xhci_segment *first, struct xhci_segment *last,
		unsigned int num_segs)
{
	struct xhci_segment *next;

	if (!ring || !first || !last)
		return;

	next = ring->enq_seg->next;
	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
	xhci_link_segments(xhci, last, next, ring->type);
	ring->num_segs += num_segs;
	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;

	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
			&= ~cpu_to_le32(LINK_TOGGLE);
		last->trbs[TRBS_PER_SEGMENT-1].link.control
			|= cpu_to_le32(LINK_TOGGLE);
		ring->last_seg = last;
	}
}

G
Gerd Hoffmann 已提交
163 164 165 166 167 168 169 170 171
/*
 * We need a radix tree for mapping physical addresses of TRBs to which stream
 * ID they belong to.  We need to do this because the host controller won't tell
 * us which stream ring the TRB came from.  We could store the stream ID in an
 * event data TRB, but that doesn't help us for the cancellation case, since the
 * endpoint may stop before it reaches that event data TRB.
 *
 * The radix tree maps the upper portion of the TRB DMA address to a ring
 * segment that has the same upper portion of DMA addresses.  For example, say I
172
 * have segments of size 1KB, that are always 1KB aligned.  A segment may
G
Gerd Hoffmann 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 * pass the radix tree a key to get the right stream ID:
 *
 *	0x10c90fff >> 10 = 0x43243
 *	0x10c912c0 >> 10 = 0x43244
 *	0x10c91400 >> 10 = 0x43245
 *
 * Obviously, only those TRBs with DMA addresses that are within the segment
 * will make the radix tree return the stream ID for that ring.
 *
 * Caveats for the radix tree:
 *
 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 * extended systems (where the DMA address can be bigger than 32-bits),
 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 */
194 195 196 197
static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
		struct xhci_ring *ring,
		struct xhci_segment *seg,
		gfp_t mem_flags)
G
Gerd Hoffmann 已提交
198 199 200 201
{
	unsigned long key;
	int ret;

202 203 204
	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
	/* Skip any segments that were already added. */
	if (radix_tree_lookup(trb_address_map, key))
G
Gerd Hoffmann 已提交
205 206
		return 0;

207 208 209 210 211 212 213 214
	ret = radix_tree_maybe_preload(mem_flags);
	if (ret)
		return ret;
	ret = radix_tree_insert(trb_address_map,
			key, ring);
	radix_tree_preload_end();
	return ret;
}
G
Gerd Hoffmann 已提交
215

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
		struct xhci_segment *seg)
{
	unsigned long key;

	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
	if (radix_tree_lookup(trb_address_map, key))
		radix_tree_delete(trb_address_map, key);
}

static int xhci_update_stream_segment_mapping(
		struct radix_tree_root *trb_address_map,
		struct xhci_ring *ring,
		struct xhci_segment *first_seg,
		struct xhci_segment *last_seg,
		gfp_t mem_flags)
{
	struct xhci_segment *seg;
	struct xhci_segment *failed_seg;
	int ret;

	if (WARN_ON_ONCE(trb_address_map == NULL))
		return 0;

	seg = first_seg;
	do {
		ret = xhci_insert_segment_mapping(trb_address_map,
				ring, seg, mem_flags);
G
Gerd Hoffmann 已提交
244
		if (ret)
245 246 247
			goto remove_streams;
		if (seg == last_seg)
			return 0;
G
Gerd Hoffmann 已提交
248
		seg = seg->next;
249
	} while (seg != first_seg);
G
Gerd Hoffmann 已提交
250 251

	return 0;
252 253 254 255 256 257 258 259 260 261 262 263

remove_streams:
	failed_seg = seg;
	seg = first_seg;
	do {
		xhci_remove_segment_mapping(trb_address_map, seg);
		if (seg == failed_seg)
			return ret;
		seg = seg->next;
	} while (seg != first_seg);

	return ret;
G
Gerd Hoffmann 已提交
264 265 266 267 268 269 270 271 272 273 274
}

static void xhci_remove_stream_mapping(struct xhci_ring *ring)
{
	struct xhci_segment *seg;

	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
		return;

	seg = ring->first_seg;
	do {
275
		xhci_remove_segment_mapping(ring->trb_address_map, seg);
G
Gerd Hoffmann 已提交
276 277 278 279
		seg = seg->next;
	} while (seg != ring->first_seg);
}

280 281 282 283 284 285
static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
{
	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
			ring->first_seg, ring->last_seg, mem_flags);
}

286
/* XXX: Do we need the hcd structure in all these functions? */
287
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
288
{
289
	if (!ring)
290
		return;
291

292 293
	trace_xhci_ring_free(ring);

G
Gerd Hoffmann 已提交
294 295 296
	if (ring->first_seg) {
		if (ring->type == TYPE_STREAM)
			xhci_remove_stream_mapping(ring);
297
		xhci_free_segments_for_ring(xhci, ring->first_seg);
G
Gerd Hoffmann 已提交
298
	}
299

300 301 302
	kfree(ring);
}

303 304
static void xhci_initialize_ring_info(struct xhci_ring *ring,
					unsigned int cycle_state)
305 306 307 308 309 310 311 312 313
{
	/* The ring is empty, so the enqueue pointer == dequeue pointer */
	ring->enqueue = ring->first_seg->trbs;
	ring->enq_seg = ring->first_seg;
	ring->dequeue = ring->enqueue;
	ring->deq_seg = ring->first_seg;
	/* The ring is initialized to 0. The producer must write 1 to the cycle
	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
314 315 316
	 *
	 * New rings are initialized with cycle state equal to 1; if we are
	 * handling ring expansion, set the cycle state equal to the old ring.
317
	 */
318
	ring->cycle_state = cycle_state;
319 320 321 322 323 324

	/*
	 * Each segment has a link TRB, and leave an extra TRB for SW
	 * accounting purpose
	 */
	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325 326
}

327 328 329
/* Allocate segments and link them for a ring */
static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
		struct xhci_segment **first, struct xhci_segment **last,
330
		unsigned int num_segs, unsigned int cycle_state,
331
		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
332 333 334
{
	struct xhci_segment *prev;

335
	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
336 337 338 339 340 341 342 343
	if (!prev)
		return -ENOMEM;
	num_segs--;

	*first = prev;
	while (num_segs > 0) {
		struct xhci_segment	*next;

344
		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
345
		if (!next) {
346 347 348 349 350 351
			prev = *first;
			while (prev) {
				next = prev->next;
				xhci_segment_free(xhci, prev);
				prev = next;
			}
352 353 354 355 356 357 358 359 360 361 362 363 364
			return -ENOMEM;
		}
		xhci_link_segments(xhci, prev, next, type);

		prev = next;
		num_segs--;
	}
	xhci_link_segments(xhci, prev, *first, type);
	*last = prev;

	return 0;
}

365 366 367 368 369 370 371 372
/**
 * Create a new ring with zero or more segments.
 *
 * Link each segment together into a ring.
 * Set the end flag and the cycle toggle bit on the last segment.
 * See section 4.9.1 and figures 15 and 16.
 */
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
373
		unsigned int num_segs, unsigned int cycle_state,
374
		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375 376
{
	struct xhci_ring	*ring;
377
	int ret;
378 379 380

	ring = kzalloc(sizeof *(ring), flags);
	if (!ring)
381
		return NULL;
382

383
	ring->num_segs = num_segs;
384
	ring->bounce_buf_len = max_packet;
385
	INIT_LIST_HEAD(&ring->td_list);
A
Andiry Xu 已提交
386
	ring->type = type;
387 388 389
	if (num_segs == 0)
		return ring;

390
	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 392
			&ring->last_seg, num_segs, cycle_state, type,
			max_packet, flags);
393
	if (ret)
394 395
		goto fail;

A
Andiry Xu 已提交
396 397
	/* Only event ring does not use link TRB */
	if (type != TYPE_EVENT) {
398
		/* See section 4.9.2.1 and 6.4.4.1 */
399
		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400
			cpu_to_le32(LINK_TOGGLE);
401
	}
402
	xhci_initialize_ring_info(ring, cycle_state);
403
	trace_xhci_ring_alloc(ring);
404 405 406
	return ring;

fail:
407
	kfree(ring);
408
	return NULL;
409 410
}

M
Mathias Nyman 已提交
411
void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412 413 414
		struct xhci_virt_device *virt_dev,
		unsigned int ep_index)
{
M
Mathias Nyman 已提交
415
	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416 417 418
	virt_dev->eps[ep_index].ring = NULL;
}

A
Andiry Xu 已提交
419 420
/*
 * Expand an existing ring.
M
Mathias Nyman 已提交
421
 * Allocate a new ring which has same segment numbers and link the two rings.
A
Andiry Xu 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
 */
int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
				unsigned int num_trbs, gfp_t flags)
{
	struct xhci_segment	*first;
	struct xhci_segment	*last;
	unsigned int		num_segs;
	unsigned int		num_segs_needed;
	int			ret;

	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
				(TRBS_PER_SEGMENT - 1);

	/* Allocate number of segments we needed, or double the ring size */
	num_segs = ring->num_segs > num_segs_needed ?
			ring->num_segs : num_segs_needed;

	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440 441
			num_segs, ring->cycle_state, ring->type,
			ring->bounce_buf_len, flags);
A
Andiry Xu 已提交
442 443 444
	if (ret)
		return -ENOMEM;

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	if (ring->type == TYPE_STREAM)
		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
						ring, first, last, flags);
	if (ret) {
		struct xhci_segment *next;
		do {
			next = first->next;
			xhci_segment_free(xhci, first);
			if (first == last)
				break;
			first = next;
		} while (true);
		return ret;
	}

A
Andiry Xu 已提交
460
	xhci_link_rings(xhci, ring, first, last, num_segs);
461
	trace_xhci_ring_expansion(ring);
462 463
	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
			"ring expansion succeed, now has %d segments",
A
Andiry Xu 已提交
464 465 466 467 468
			ring->num_segs);

	return 0;
}

469
static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
470 471
						    int type, gfp_t flags)
{
472 473 474 475 476 477
	struct xhci_container_ctx *ctx;

	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
		return NULL;

	ctx = kzalloc(sizeof(*ctx), flags);
478 479 480 481 482 483 484 485
	if (!ctx)
		return NULL;

	ctx->type = type;
	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
	if (type == XHCI_CTX_TYPE_INPUT)
		ctx->size += CTX_SIZE(xhci->hcc_params);

486
	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
487 488 489 490
	if (!ctx->bytes) {
		kfree(ctx);
		return NULL;
	}
491 492 493
	return ctx;
}

494
static void xhci_free_container_ctx(struct xhci_hcd *xhci,
495 496
			     struct xhci_container_ctx *ctx)
{
497 498
	if (!ctx)
		return;
499 500 501 502
	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
	kfree(ctx);
}

503
struct xhci_input_control_ctx *xhci_get_input_control_ctx(
504 505
					      struct xhci_container_ctx *ctx)
{
506 507 508
	if (ctx->type != XHCI_CTX_TYPE_INPUT)
		return NULL;

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
	return (struct xhci_input_control_ctx *)ctx->bytes;
}

struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
					struct xhci_container_ctx *ctx)
{
	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
		return (struct xhci_slot_ctx *)ctx->bytes;

	return (struct xhci_slot_ctx *)
		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
}

struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
				    struct xhci_container_ctx *ctx,
				    unsigned int ep_index)
{
	/* increment ep index by offset of start of ep ctx array */
	ep_index++;
	if (ctx->type == XHCI_CTX_TYPE_INPUT)
		ep_index++;

	return (struct xhci_ep_ctx *)
		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
}

535 536 537

/***************** Streams structures manipulation *************************/

538
static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
539 540 541
		unsigned int num_stream_ctxs,
		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
{
542
	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
543
	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
544

545 546
	if (size > MEDIUM_STREAM_ARRAY_SIZE)
		dma_free_coherent(dev, size,
547
				stream_ctx, dma);
548
	else if (size <= SMALL_STREAM_ARRAY_SIZE)
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
		return dma_pool_free(xhci->small_streams_pool,
				stream_ctx, dma);
	else
		return dma_pool_free(xhci->medium_streams_pool,
				stream_ctx, dma);
}

/*
 * The stream context array for each endpoint with bulk streams enabled can
 * vary in size, based on:
 *  - how many streams the endpoint supports,
 *  - the maximum primary stream array size the host controller supports,
 *  - and how many streams the device driver asks for.
 *
 * The stream context array must be a power of 2, and can be as small as
 * 64 bytes or as large as 1MB.
 */
566
static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
567 568 569
		unsigned int num_stream_ctxs, dma_addr_t *dma,
		gfp_t mem_flags)
{
570
	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
571
	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
572

573 574
	if (size > MEDIUM_STREAM_ARRAY_SIZE)
		return dma_alloc_coherent(dev, size,
575
				dma, mem_flags);
576
	else if (size <= SMALL_STREAM_ARRAY_SIZE)
577 578 579 580 581 582 583
		return dma_pool_alloc(xhci->small_streams_pool,
				mem_flags, dma);
	else
		return dma_pool_alloc(xhci->medium_streams_pool,
				mem_flags, dma);
}

584 585 586 587 588 589
struct xhci_ring *xhci_dma_to_transfer_ring(
		struct xhci_virt_ep *ep,
		u64 address)
{
	if (ep->ep_state & EP_HAS_STREAMS)
		return radix_tree_lookup(&ep->stream_info->trb_address_map,
590
				address >> TRB_SEGMENT_SHIFT);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	return ep->ring;
}

struct xhci_ring *xhci_stream_id_to_ring(
		struct xhci_virt_device *dev,
		unsigned int ep_index,
		unsigned int stream_id)
{
	struct xhci_virt_ep *ep = &dev->eps[ep_index];

	if (stream_id == 0)
		return ep->ring;
	if (!ep->stream_info)
		return NULL;

	if (stream_id > ep->stream_info->num_streams)
		return NULL;
	return ep->stream_info->stream_rings[stream_id];
}

611 612 613 614 615 616 617 618 619 620 621
/*
 * Change an endpoint's internal structure so it supports stream IDs.  The
 * number of requested streams includes stream 0, which cannot be used by device
 * drivers.
 *
 * The number of stream contexts in the stream context array may be bigger than
 * the number of streams the driver wants to use.  This is because the number of
 * stream context array entries must be a power of two.
 */
struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
		unsigned int num_stream_ctxs,
622 623
		unsigned int num_streams,
		unsigned int max_packet, gfp_t mem_flags)
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
{
	struct xhci_stream_info *stream_info;
	u32 cur_stream;
	struct xhci_ring *cur_ring;
	u64 addr;
	int ret;

	xhci_dbg(xhci, "Allocating %u streams and %u "
			"stream context array entries.\n",
			num_streams, num_stream_ctxs);
	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
		return NULL;
	}
	xhci->cmd_ring_reserved_trbs++;

	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
	if (!stream_info)
		goto cleanup_trbs;

	stream_info->num_streams = num_streams;
	stream_info->num_stream_ctxs = num_stream_ctxs;

	/* Initialize the array of virtual pointers to stream rings. */
	stream_info->stream_rings = kzalloc(
			sizeof(struct xhci_ring *)*num_streams,
			mem_flags);
	if (!stream_info->stream_rings)
		goto cleanup_info;

	/* Initialize the array of DMA addresses for stream rings for the HW. */
	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
			num_stream_ctxs, &stream_info->ctx_array_dma,
			mem_flags);
	if (!stream_info->stream_ctx_array)
		goto cleanup_ctx;
	memset(stream_info->stream_ctx_array, 0,
			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);

	/* Allocate everything needed to free the stream rings later */
	stream_info->free_streams_command =
		xhci_alloc_command(xhci, true, true, mem_flags);
	if (!stream_info->free_streams_command)
		goto cleanup_ctx;

	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);

	/* Allocate rings for all the streams that the driver will use,
	 * and add their segment DMA addresses to the radix tree.
	 * Stream 0 is reserved.
	 */
675

676 677
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		stream_info->stream_rings[cur_stream] =
678 679
			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
					mem_flags);
680 681 682
		cur_ring = stream_info->stream_rings[cur_stream];
		if (!cur_ring)
			goto cleanup_rings;
683
		cur_ring->stream_id = cur_stream;
G
Gerd Hoffmann 已提交
684
		cur_ring->trb_address_map = &stream_info->trb_address_map;
685 686 687 688
		/* Set deq ptr, cycle bit, and stream context type */
		addr = cur_ring->first_seg->dma |
			SCT_FOR_CTX(SCT_PRI_TR) |
			cur_ring->cycle_state;
689 690
		stream_info->stream_ctx_array[cur_stream].stream_ring =
			cpu_to_le64(addr);
691 692 693
		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
				cur_stream, (unsigned long long) addr);

G
Gerd Hoffmann 已提交
694
		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
		if (ret) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
			goto cleanup_rings;
		}
	}
	/* Leave the other unused stream ring pointers in the stream context
	 * array initialized to zero.  This will cause the xHC to give us an
	 * error if the device asks for a stream ID we don't have setup (if it
	 * was any other way, the host controller would assume the ring is
	 * "empty" and wait forever for data to be queued to that stream ID).
	 */

	return stream_info;

cleanup_rings:
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
cleanup_ctx:
	kfree(stream_info->stream_rings);
cleanup_info:
	kfree(stream_info);
cleanup_trbs:
	xhci->cmd_ring_reserved_trbs--;
	return NULL;
}
/*
 * Sets the MaxPStreams field and the Linear Stream Array field.
 * Sets the dequeue pointer to the stream context array.
 */
void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
		struct xhci_ep_ctx *ep_ctx,
		struct xhci_stream_info *stream_info)
{
	u32 max_primary_streams;
	/* MaxPStreams is the number of stream context array entries, not the
	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
	 */
	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
741 742
	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
			"Setting number of stream ctx array entries to %u",
743
			1 << (max_primary_streams + 1));
M
Matt Evans 已提交
744 745 746 747
	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
				       | EP_HAS_LSA);
	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
748 749 750 751 752 753 754
}

/*
 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 * not at the beginning of the ring).
 */
755
void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
756 757 758
		struct xhci_virt_ep *ep)
{
	dma_addr_t addr;
M
Matt Evans 已提交
759
	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
760
	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
M
Matt Evans 已提交
761
	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
}

/* Frees all stream contexts associated with the endpoint,
 *
 * Caller should fix the endpoint context streams fields.
 */
void xhci_free_stream_info(struct xhci_hcd *xhci,
		struct xhci_stream_info *stream_info)
{
	int cur_stream;
	struct xhci_ring *cur_ring;

	if (!stream_info)
		return;

	for (cur_stream = 1; cur_stream < stream_info->num_streams;
			cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
	xhci->cmd_ring_reserved_trbs--;
	if (stream_info->stream_ctx_array)
		xhci_free_stream_ctx(xhci,
				stream_info->num_stream_ctxs,
				stream_info->stream_ctx_array,
				stream_info->ctx_array_dma);

793
	kfree(stream_info->stream_rings);
794 795 796 797 798 799
	kfree(stream_info);
}


/***************** Device context manipulation *************************/

800 801 802
static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
		struct xhci_virt_ep *ep)
{
803 804
	timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
		    0);
805 806 807
	ep->xhci = xhci;
}

808 809 810 811 812
static void xhci_free_tt_info(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		int slot_id)
{
	struct list_head *tt_list_head;
813 814
	struct xhci_tt_bw_info *tt_info, *next;
	bool slot_found = false;
815 816 817 818 819 820 821 822 823 824 825

	/* If the device never made it past the Set Address stage,
	 * it may not have the real_port set correctly.
	 */
	if (virt_dev->real_port == 0 ||
			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
		xhci_dbg(xhci, "Bad real port.\n");
		return;
	}

	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
826 827 828 829 830 831 832
	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
		/* Multi-TT hubs will have more than one entry */
		if (tt_info->slot_id == slot_id) {
			slot_found = true;
			list_del(&tt_info->tt_list);
			kfree(tt_info);
		} else if (slot_found) {
833
			break;
834
		}
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
	}
}

int xhci_alloc_tt_info(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *hdev,
		struct usb_tt *tt, gfp_t mem_flags)
{
	struct xhci_tt_bw_info		*tt_info;
	unsigned int			num_ports;
	int				i, j;

	if (!tt->multi)
		num_ports = 1;
	else
		num_ports = hdev->maxchild;

	for (i = 0; i < num_ports; i++, tt_info++) {
		struct xhci_interval_bw_table *bw_table;

		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
		if (!tt_info)
			goto free_tts;
		INIT_LIST_HEAD(&tt_info->tt_list);
		list_add(&tt_info->tt_list,
				&xhci->rh_bw[virt_dev->real_port - 1].tts);
		tt_info->slot_id = virt_dev->udev->slot_id;
		if (tt->multi)
			tt_info->ttport = i+1;
		bw_table = &tt_info->bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
	}
	return 0;

free_tts:
	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
	return -ENOMEM;
}


/* All the xhci_tds in the ring's TD list should be freed at this point.
 * Should be called with xhci->lock held if there is any chance the TT lists
 * will be manipulated by the configure endpoint, allocate device, or update
 * hub functions while this function is removing the TT entries from the list.
 */
881 882 883 884
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
{
	struct xhci_virt_device *dev;
	int i;
885
	int old_active_eps = 0;
886 887 888 889 890 891

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || !xhci->devs[slot_id])
		return;

	dev = xhci->devs[slot_id];
892 893 894

	trace_xhci_free_virt_device(dev);

895
	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
896 897 898
	if (!dev)
		return;

899 900 901
	if (dev->tt_info)
		old_active_eps = dev->tt_info->active_eps;

902
	for (i = 0; i < 31; i++) {
903 904
		if (dev->eps[i].ring)
			xhci_ring_free(xhci, dev->eps[i].ring);
905 906 907
		if (dev->eps[i].stream_info)
			xhci_free_stream_info(xhci,
					dev->eps[i].stream_info);
908 909 910 911 912 913 914 915 916
		/* Endpoints on the TT/root port lists should have been removed
		 * when usb_disable_device() was called for the device.
		 * We can't drop them anyway, because the udev might have gone
		 * away by this point, and we can't tell what speed it was.
		 */
		if (!list_empty(&dev->eps[i].bw_endpoint_list))
			xhci_warn(xhci, "Slot %u endpoint %u "
					"not removed from BW list!\n",
					slot_id, i);
917
	}
918 919
	/* If this is a hub, free the TT(s) from the TT list */
	xhci_free_tt_info(xhci, dev, slot_id);
920 921
	/* If necessary, update the number of active TTs on this root port */
	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
922 923

	if (dev->in_ctx)
924
		xhci_free_container_ctx(xhci, dev->in_ctx);
925
	if (dev->out_ctx)
926 927
		xhci_free_container_ctx(xhci, dev->out_ctx);

928
	kfree(xhci->devs[slot_id]);
929
	xhci->devs[slot_id] = NULL;
930 931
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
/*
 * Free a virt_device structure.
 * If the virt_device added a tt_info (a hub) and has children pointing to
 * that tt_info, then free the child first. Recursive.
 * We can't rely on udev at this point to find child-parent relationships.
 */
void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
{
	struct xhci_virt_device *vdev;
	struct list_head *tt_list_head;
	struct xhci_tt_bw_info *tt_info, *next;
	int i;

	vdev = xhci->devs[slot_id];
	if (!vdev)
		return;

	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
		/* is this a hub device that added a tt_info to the tts list */
		if (tt_info->slot_id == slot_id) {
			/* are any devices using this tt_info? */
			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
				vdev = xhci->devs[i];
				if (vdev && (vdev->tt_info == tt_info))
					xhci_free_virt_devices_depth_first(
						xhci, i);
			}
		}
	}
	/* we are now at a leaf device */
963
	xhci_debugfs_remove_slot(xhci, slot_id);
964 965 966
	xhci_free_virt_device(xhci, slot_id);
}

967 968 969 970
int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
		struct usb_device *udev, gfp_t flags)
{
	struct xhci_virt_device *dev;
971
	int i;
972 973 974 975 976 977 978 979 980 981 982 983

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || xhci->devs[slot_id]) {
		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
		return 0;
	}

	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
	if (!xhci->devs[slot_id])
		return 0;
	dev = xhci->devs[slot_id];

984 985
	/* Allocate the (output) device context that will be used in the HC. */
	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
986 987
	if (!dev->out_ctx)
		goto fail;
988

989
	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
990
			(unsigned long long)dev->out_ctx->dma);
991 992

	/* Allocate the (input) device context for address device command */
993
	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
994 995
	if (!dev->in_ctx)
		goto fail;
996

997
	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
998
			(unsigned long long)dev->in_ctx->dma);
999

1000 1001 1002
	/* Initialize the cancellation list and watchdog timers for each ep */
	for (i = 0; i < 31; i++) {
		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1003
		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1004
		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1005
	}
1006

1007
	/* Allocate endpoint 0 ring */
1008
	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1009
	if (!dev->eps[0].ring)
1010 1011
		goto fail;

1012
	dev->udev = udev;
1013

1014
	/* Point to output device context in dcbaa. */
M
Matt Evans 已提交
1015
	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1016
	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
M
Matt Evans 已提交
1017 1018
		 slot_id,
		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1019
		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1020

1021 1022
	trace_xhci_alloc_virt_device(dev);

1023 1024 1025 1026 1027 1028
	return 1;
fail:
	xhci_free_virt_device(xhci, slot_id);
	return 0;
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct xhci_virt_device *virt_dev;
	struct xhci_ep_ctx	*ep0_ctx;
	struct xhci_ring	*ep_ring;

	virt_dev = xhci->devs[udev->slot_id];
	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
	ep_ring = virt_dev->eps[0].ring;
	/*
	 * FIXME we don't keep track of the dequeue pointer very well after a
	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
	 * host to our enqueue pointer.  This should only be called after a
	 * configured device has reset, so all control transfers should have
	 * been completed or cancelled before the reset.
	 */
M
Matt Evans 已提交
1046 1047 1048
	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
							ep_ring->enqueue)
				   | ep_ring->cycle_state);
1049 1050
}

1051 1052 1053 1054 1055 1056 1057 1058 1059
/*
 * The xHCI roothub may have ports of differing speeds in any order in the port
 * status registers.  xhci->port_array provides an array of the port speed for
 * each offset into the port status registers.
 *
 * The xHCI hardware wants to know the roothub port number that the USB device
 * is attached to (or the roothub port its ancestor hub is attached to).  All we
 * know is the index of that port under either the USB 2.0 or the USB 3.0
 * roothub, but that doesn't give us the real index into the HW port status
1060
 * registers. Call xhci_find_raw_port_number() to get real index.
1061 1062 1063 1064 1065
 */
static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct usb_device *top_dev;
1066 1067
	struct usb_hcd *hcd;

1068
	if (udev->speed >= USB_SPEED_SUPER)
1069 1070 1071
		hcd = xhci->shared_hcd;
	else
		hcd = xhci->main_hcd;
1072 1073 1074 1075 1076

	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;

1077
	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1078 1079
}

1080 1081 1082 1083 1084
/* Setup an xHCI virtual device for a Set Address command */
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
{
	struct xhci_virt_device *dev;
	struct xhci_ep_ctx	*ep0_ctx;
1085
	struct xhci_slot_ctx    *slot_ctx;
1086
	u32			port_num;
1087
	u32			max_packets;
1088
	struct usb_device *top_dev;
1089 1090 1091 1092 1093 1094 1095 1096

	dev = xhci->devs[udev->slot_id];
	/* Slot ID 0 is reserved */
	if (udev->slot_id == 0 || !dev) {
		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
				udev->slot_id);
		return -EINVAL;
	}
1097 1098
	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1099 1100

	/* 3) Only the control endpoint is valid - one endpoint context */
1101
	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1102
	switch (udev->speed) {
1103
	case USB_SPEED_SUPER_PLUS:
1104 1105 1106
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
		max_packets = MAX_PACKET(512);
		break;
1107
	case USB_SPEED_SUPER:
1108
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1109
		max_packets = MAX_PACKET(512);
1110 1111
		break;
	case USB_SPEED_HIGH:
1112
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1113
		max_packets = MAX_PACKET(64);
1114
		break;
1115
	/* USB core guesses at a 64-byte max packet first for FS devices */
1116
	case USB_SPEED_FULL:
1117
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1118
		max_packets = MAX_PACKET(64);
1119 1120
		break;
	case USB_SPEED_LOW:
1121
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1122
		max_packets = MAX_PACKET(8);
1123
		break;
1124
	case USB_SPEED_WIRELESS:
1125 1126 1127 1128 1129
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* Speed was set earlier, this shouldn't happen. */
1130
		return -EINVAL;
1131 1132
	}
	/* Find the root hub port this device is under */
1133 1134 1135
	port_num = xhci_find_real_port_number(xhci, udev);
	if (!port_num)
		return -EINVAL;
1136
	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1137
	/* Set the port number in the virtual_device to the faked port number */
1138 1139 1140
	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;
1141
	dev->fake_port = top_dev->portnum;
1142
	dev->real_port = port_num;
1143
	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1144
	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	/* Find the right bandwidth table that this device will be a part of.
	 * If this is a full speed device attached directly to a root port (or a
	 * decendent of one), it counts as a primary bandwidth domain, not a
	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
	 * will never be created for the HS root hub.
	 */
	if (!udev->tt || !udev->tt->hub->parent) {
		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
	} else {
		struct xhci_root_port_bw_info *rh_bw;
		struct xhci_tt_bw_info *tt_bw;

		rh_bw = &xhci->rh_bw[port_num - 1];
		/* Find the right TT. */
		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
			if (tt_bw->slot_id != udev->tt->hub->slot_id)
				continue;

			if (!dev->udev->tt->multi ||
					(udev->tt->multi &&
					 tt_bw->ttport == dev->udev->ttport)) {
				dev->bw_table = &tt_bw->bw_table;
				dev->tt_info = tt_bw;
				break;
			}
		}
		if (!dev->tt_info)
			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
	}

S
Sarah Sharp 已提交
1176 1177
	/* Is this a LS/FS device under an external HS hub? */
	if (udev->tt && udev->tt->hub->parent) {
M
Matt Evans 已提交
1178 1179
		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
						(udev->ttport << 8));
1180
		if (udev->tt->multi)
M
Matt Evans 已提交
1181
			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1182
	}
1183
	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1184 1185 1186 1187
	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);

	/* Step 4 - ring already allocated */
	/* Step 5 */
M
Matt Evans 已提交
1188
	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1189

1190
	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1191 1192
	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
					 max_packets);
1193

M
Matt Evans 已提交
1194 1195
	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
				   dev->eps[0].ring->cycle_state);
1196

1197 1198
	trace_xhci_setup_addressable_virt_device(dev);

1199 1200 1201 1202 1203
	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */

	return 0;
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
/*
 * Convert interval expressed as 2^(bInterval - 1) == interval into
 * straight exponent value 2^n == interval.
 *
 */
static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	unsigned int interval;

	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
	if (interval != ep->desc.bInterval - 1)
		dev_warn(&udev->dev,
1217
			 "ep %#x - rounding interval to %d %sframes\n",
1218
			 ep->desc.bEndpointAddress,
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
			 1 << interval,
			 udev->speed == USB_SPEED_FULL ? "" : "micro");

	if (udev->speed == USB_SPEED_FULL) {
		/*
		 * Full speed isoc endpoints specify interval in frames,
		 * not microframes. We are using microframes everywhere,
		 * so adjust accordingly.
		 */
		interval += 3;	/* 1 frame = 2^3 uframes */
	}
1230 1231 1232 1233 1234

	return interval;
}

/*
1235
 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1236 1237
 * microframes, rounded down to nearest power of 2.
 */
1238 1239 1240
static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
		struct usb_host_endpoint *ep, unsigned int desc_interval,
		unsigned int min_exponent, unsigned int max_exponent)
1241 1242 1243
{
	unsigned int interval;

1244 1245 1246
	interval = fls(desc_interval) - 1;
	interval = clamp_val(interval, min_exponent, max_exponent);
	if ((1 << interval) != desc_interval)
1247
		dev_dbg(&udev->dev,
1248 1249 1250
			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
			 ep->desc.bEndpointAddress,
			 1 << interval,
1251
			 desc_interval);
1252 1253 1254 1255

	return interval;
}

1256 1257 1258
static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
1259 1260
	if (ep->desc.bInterval == 0)
		return 0;
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	return xhci_microframes_to_exponent(udev, ep,
			ep->desc.bInterval, 0, 15);
}


static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	return xhci_microframes_to_exponent(udev, ep,
			ep->desc.bInterval * 8, 3, 10);
}

1273 1274 1275 1276 1277 1278 1279 1280
/* Return the polling or NAK interval.
 *
 * The polling interval is expressed in "microframes".  If xHCI's Interval field
 * is set to N, it will service the endpoint every 2^(Interval)*125us.
 *
 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
 * is set to 0.
 */
1281
static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1282 1283 1284 1285 1286 1287 1288 1289
		struct usb_host_endpoint *ep)
{
	unsigned int interval = 0;

	switch (udev->speed) {
	case USB_SPEED_HIGH:
		/* Max NAK rate */
		if (usb_endpoint_xfer_control(&ep->desc) ||
1290
		    usb_endpoint_xfer_bulk(&ep->desc)) {
1291
			interval = xhci_parse_microframe_interval(udev, ep);
1292 1293
			break;
		}
1294
		/* Fall through - SS and HS isoc/int have same decoding */
1295

1296
	case USB_SPEED_SUPER_PLUS:
1297 1298
	case USB_SPEED_SUPER:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1299 1300
		    usb_endpoint_xfer_isoc(&ep->desc)) {
			interval = xhci_parse_exponent_interval(udev, ep);
1301 1302
		}
		break;
1303

1304
	case USB_SPEED_FULL:
1305
		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1306 1307 1308 1309
			interval = xhci_parse_exponent_interval(udev, ep);
			break;
		}
		/*
1310
		 * Fall through for interrupt endpoint interval decoding
1311 1312 1313 1314
		 * since it uses the same rules as low speed interrupt
		 * endpoints.
		 */

1315 1316
	case USB_SPEED_LOW:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1317 1318 1319
		    usb_endpoint_xfer_isoc(&ep->desc)) {

			interval = xhci_parse_frame_interval(udev, ep);
1320 1321
		}
		break;
1322

1323 1324 1325
	default:
		BUG();
	}
1326
	return interval;
1327 1328
}

1329
/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1330 1331 1332 1333
 * High speed endpoint descriptors can define "the number of additional
 * transaction opportunities per microframe", but that goes in the Max Burst
 * endpoint context field.
 */
1334
static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1335 1336
		struct usb_host_endpoint *ep)
{
1337
	if (udev->speed < USB_SPEED_SUPER ||
1338
			!usb_endpoint_xfer_isoc(&ep->desc))
1339
		return 0;
1340
	return ep->ss_ep_comp.bmAttributes;
1341 1342
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
				       struct usb_host_endpoint *ep)
{
	/* Super speed and Plus have max burst in ep companion desc */
	if (udev->speed >= USB_SPEED_SUPER)
		return ep->ss_ep_comp.bMaxBurst;

	if (udev->speed == USB_SPEED_HIGH &&
	    (usb_endpoint_xfer_isoc(&ep->desc) ||
	     usb_endpoint_xfer_int(&ep->desc)))
1353
		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1354 1355 1356 1357

	return 0;
}

1358
static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1359 1360 1361 1362
{
	int in;

	in = usb_endpoint_dir_in(&ep->desc);
1363

1364 1365
	switch (usb_endpoint_type(&ep->desc)) {
	case USB_ENDPOINT_XFER_CONTROL:
1366
		return CTRL_EP;
1367
	case USB_ENDPOINT_XFER_BULK:
1368
		return in ? BULK_IN_EP : BULK_OUT_EP;
1369
	case USB_ENDPOINT_XFER_ISOC:
1370
		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1371
	case USB_ENDPOINT_XFER_INT:
1372
		return in ? INT_IN_EP : INT_OUT_EP;
1373
	}
1374
	return 0;
1375 1376
}

1377 1378 1379 1380
/* Return the maximum endpoint service interval time (ESIT) payload.
 * Basically, this is the maxpacket size, multiplied by the burst size
 * and mult size.
 */
1381
static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		struct usb_host_endpoint *ep)
{
	int max_burst;
	int max_packet;

	/* Only applies for interrupt or isochronous endpoints */
	if (usb_endpoint_xfer_control(&ep->desc) ||
			usb_endpoint_xfer_bulk(&ep->desc))
		return 0;

1392 1393 1394 1395 1396 1397
	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
	else if (udev->speed >= USB_SPEED_SUPER)
1398
		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1399

1400
	max_packet = usb_endpoint_maxp(&ep->desc);
1401
	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1402
	/* A 0 in max burst means 1 transfer per ESIT */
1403
	return max_packet * max_burst;
1404 1405
}

1406 1407 1408
/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
 * Drivers will have to call usb_alloc_streams() to do that.
 */
1409 1410 1411
int xhci_endpoint_init(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *udev,
1412 1413
		struct usb_host_endpoint *ep,
		gfp_t mem_flags)
1414 1415 1416 1417 1418
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;
	struct xhci_ring *ep_ring;
	unsigned int max_packet;
1419
	enum xhci_ring_type ring_type;
1420
	u32 max_esit_payload;
1421
	u32 endpoint_type;
1422 1423 1424 1425 1426
	unsigned int max_burst;
	unsigned int interval;
	unsigned int mult;
	unsigned int avg_trb_len;
	unsigned int err_count = 0;
1427 1428

	ep_index = xhci_get_endpoint_index(&ep->desc);
1429
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1430

1431
	endpoint_type = xhci_get_endpoint_type(ep);
1432 1433 1434
	if (!endpoint_type)
		return -EINVAL;

1435
	ring_type = usb_endpoint_type(&ep->desc);
1436

1437 1438 1439 1440 1441 1442 1443 1444
	/*
	 * Get values to fill the endpoint context, mostly from ep descriptor.
	 * The average TRB buffer lengt for bulk endpoints is unclear as we
	 * have no clue on scatter gather list entry size. For Isoc and Int,
	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
	 */
	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
	interval = xhci_get_endpoint_interval(udev, ep);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

	/* Periodic endpoint bInterval limit quirk */
	if (usb_endpoint_xfer_int(&ep->desc) ||
	    usb_endpoint_xfer_isoc(&ep->desc)) {
		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
		    udev->speed >= USB_SPEED_HIGH &&
		    interval >= 7) {
			interval = 6;
		}
	}

1456
	mult = xhci_get_endpoint_mult(udev, ep);
1457
	max_packet = usb_endpoint_maxp(&ep->desc);
1458 1459
	max_burst = xhci_get_endpoint_max_burst(udev, ep);
	avg_trb_len = max_esit_payload;
1460 1461 1462

	/* FIXME dig Mult and streams info out of ep companion desc */

1463
	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1464
	if (!usb_endpoint_xfer_isoc(&ep->desc))
1465 1466 1467 1468 1469
		err_count = 3;
	/* Some devices get this wrong */
	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
		max_packet = 512;
	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1470
	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1471
		avg_trb_len = 8;
1472 1473 1474
	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
		mult = 0;
1475

1476 1477 1478
	/* Set up the endpoint ring */
	virt_dev->eps[ep_index].new_ring =
		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
M
Mathias Nyman 已提交
1479 1480 1481
	if (!virt_dev->eps[ep_index].new_ring)
		return -ENOMEM;

1482 1483 1484
	virt_dev->eps[ep_index].skip = false;
	ep_ring = virt_dev->eps[ep_index].new_ring;

1485
	/* Fill the endpoint context */
1486 1487
	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
				      EP_INTERVAL(interval) |
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
				      EP_MULT(mult));
	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
				       MAX_PACKET(max_packet) |
				       MAX_BURST(max_burst) |
				       ERROR_COUNT(err_count));
	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
				  ep_ring->cycle_state);

	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
				      EP_AVG_TRB_LENGTH(avg_trb_len));
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	return 0;
}

void xhci_endpoint_zero(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_host_endpoint *ep)
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;

	ep_index = xhci_get_endpoint_index(&ep->desc);
1510
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1511 1512 1513

	ep_ctx->ep_info = 0;
	ep_ctx->ep_info2 = 0;
1514
	ep_ctx->deq = 0;
1515 1516 1517 1518 1519 1520
	ep_ctx->tx_info = 0;
	/* Don't free the endpoint ring until the set interface or configuration
	 * request succeeds.
	 */
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
{
	bw_info->ep_interval = 0;
	bw_info->mult = 0;
	bw_info->num_packets = 0;
	bw_info->max_packet_size = 0;
	bw_info->type = 0;
	bw_info->max_esit_payload = 0;
}

void xhci_update_bw_info(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_input_control_ctx *ctrl_ctx,
		struct xhci_virt_device *virt_dev)
{
	struct xhci_bw_info *bw_info;
	struct xhci_ep_ctx *ep_ctx;
	unsigned int ep_type;
	int i;

1541
	for (i = 1; i < 31; i++) {
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		bw_info = &virt_dev->eps[i].bw_info;

		/* We can't tell what endpoint type is being dropped, but
		 * unconditionally clearing the bandwidth info for non-periodic
		 * endpoints should be harmless because the info will never be
		 * set in the first place.
		 */
		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
			/* Dropped endpoint */
			xhci_clear_endpoint_bw_info(bw_info);
			continue;
		}

		if (EP_IS_ADDED(ctrl_ctx, i)) {
			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));

			/* Ignore non-periodic endpoints */
			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
					ep_type != ISOC_IN_EP &&
					ep_type != INT_IN_EP)
				continue;

			/* Added or changed endpoint */
			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
					le32_to_cpu(ep_ctx->ep_info));
1568 1569 1570
			/* Number of packets and mult are zero-based in the
			 * input context, but we want one-based for the
			 * interval table.
1571
			 */
1572 1573
			bw_info->mult = CTX_TO_EP_MULT(
					le32_to_cpu(ep_ctx->ep_info)) + 1;
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
			bw_info->num_packets = CTX_TO_MAX_BURST(
					le32_to_cpu(ep_ctx->ep_info2)) + 1;
			bw_info->max_packet_size = MAX_PACKET_DECODED(
					le32_to_cpu(ep_ctx->ep_info2));
			bw_info->type = ep_type;
			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
					le32_to_cpu(ep_ctx->tx_info));
		}
	}
}

1585 1586 1587 1588 1589
/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.
 */
void xhci_endpoint_copy(struct xhci_hcd *xhci,
1590 1591 1592
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx,
		unsigned int ep_index)
1593 1594 1595 1596
{
	struct xhci_ep_ctx *out_ep_ctx;
	struct xhci_ep_ctx *in_ep_ctx;

1597 1598
	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
	in_ep_ctx->deq = out_ep_ctx->deq;
	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
}

/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.  Only the context entries field matters,
 * but we'll copy the whole thing anyway.
 */
1611 1612 1613
void xhci_slot_copy(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx)
1614 1615 1616 1617
{
	struct xhci_slot_ctx *in_slot_ctx;
	struct xhci_slot_ctx *out_slot_ctx;

1618 1619
	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1620 1621 1622 1623 1624 1625 1626

	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
}

1627 1628 1629 1630
/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	int i;
1631
	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1632 1633
	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

1634 1635
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Allocating %d scratchpad buffers", num_sp);
1636 1637 1638 1639 1640 1641 1642 1643

	if (!num_sp)
		return 0;

	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
	if (!xhci->scratchpad)
		goto fail_sp;

1644
	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1645
				     num_sp * sizeof(u64),
1646
				     &xhci->scratchpad->sp_dma, flags);
1647 1648 1649 1650 1651 1652 1653
	if (!xhci->scratchpad->sp_array)
		goto fail_sp2;

	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
	if (!xhci->scratchpad->sp_buffers)
		goto fail_sp3;

M
Matt Evans 已提交
1654
	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1655 1656
	for (i = 0; i < num_sp; i++) {
		dma_addr_t dma;
1657
		void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1658
				flags);
1659
		if (!buf)
1660
			goto fail_sp4;
1661 1662 1663 1664 1665 1666 1667

		xhci->scratchpad->sp_array[i] = dma;
		xhci->scratchpad->sp_buffers[i] = buf;
	}

	return 0;

1668
 fail_sp4:
1669
	for (i = i - 1; i >= 0; i--) {
1670
		dma_free_coherent(dev, xhci->page_size,
1671
				    xhci->scratchpad->sp_buffers[i],
1672
				    xhci->scratchpad->sp_array[i]);
1673 1674 1675 1676 1677
	}

	kfree(xhci->scratchpad->sp_buffers);

 fail_sp3:
1678
	dma_free_coherent(dev, num_sp * sizeof(u64),
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);

 fail_sp2:
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;

 fail_sp:
	return -ENOMEM;
}

static void scratchpad_free(struct xhci_hcd *xhci)
{
	int num_sp;
	int i;
1694
	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1695 1696 1697 1698 1699 1700 1701

	if (!xhci->scratchpad)
		return;

	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	for (i = 0; i < num_sp; i++) {
1702
		dma_free_coherent(dev, xhci->page_size,
1703
				    xhci->scratchpad->sp_buffers[i],
1704
				    xhci->scratchpad->sp_array[i]);
1705 1706
	}
	kfree(xhci->scratchpad->sp_buffers);
1707
	dma_free_coherent(dev, num_sp * sizeof(u64),
1708 1709 1710 1711 1712 1713
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;
}

1714
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1715 1716
		bool allocate_in_ctx, bool allocate_completion,
		gfp_t mem_flags)
1717 1718 1719 1720 1721 1722 1723
{
	struct xhci_command *command;

	command = kzalloc(sizeof(*command), mem_flags);
	if (!command)
		return NULL;

1724 1725 1726 1727 1728 1729 1730 1731
	if (allocate_in_ctx) {
		command->in_ctx =
			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
					mem_flags);
		if (!command->in_ctx) {
			kfree(command);
			return NULL;
		}
1732
	}
1733 1734 1735 1736 1737 1738

	if (allocate_completion) {
		command->completion =
			kzalloc(sizeof(struct completion), mem_flags);
		if (!command->completion) {
			xhci_free_container_ctx(xhci, command->in_ctx);
1739
			kfree(command);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
			return NULL;
		}
		init_completion(command->completion);
	}

	command->status = 0;
	INIT_LIST_HEAD(&command->cmd_list);
	return command;
}

1750
void xhci_urb_free_priv(struct urb_priv *urb_priv)
1751
{
1752
	kfree(urb_priv);
1753 1754
}

1755 1756 1757 1758 1759 1760 1761 1762 1763
void xhci_free_command(struct xhci_hcd *xhci,
		struct xhci_command *command)
{
	xhci_free_container_ctx(xhci,
			command->in_ctx);
	kfree(command->completion);
	kfree(command);
}

1764 1765
void xhci_mem_cleanup(struct xhci_hcd *xhci)
{
1766
	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1767
	int size;
1768
	int i, j, num_ports;
1769

1770
	cancel_delayed_work_sync(&xhci->cmd_timer);
1771

1772 1773 1774
	/* Free the Event Ring Segment Table and the actual Event Ring */
	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
	if (xhci->erst.entries)
1775
		dma_free_coherent(dev, size,
1776 1777
				xhci->erst.entries, xhci->erst.erst_dma_addr);
	xhci->erst.entries = NULL;
1778
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1779 1780 1781
	if (xhci->event_ring)
		xhci_ring_free(xhci, xhci->event_ring);
	xhci->event_ring = NULL;
1782
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1783

1784 1785
	if (xhci->lpm_command)
		xhci_free_command(xhci, xhci->lpm_command);
1786
	xhci->lpm_command = NULL;
1787 1788 1789
	if (xhci->cmd_ring)
		xhci_ring_free(xhci, xhci->cmd_ring);
	xhci->cmd_ring = NULL;
1790
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
M
Mathias Nyman 已提交
1791
	xhci_cleanup_command_queue(xhci);
1792

1793
	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1794
	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1795 1796 1797 1798 1799 1800 1801 1802
		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
			struct list_head *ep = &bwt->interval_bw[j].endpoints;
			while (!list_empty(ep))
				list_del_init(ep->next);
		}
	}

1803 1804
	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
		xhci_free_virt_devices_depth_first(xhci, i);
1805

1806
	dma_pool_destroy(xhci->segment_pool);
1807
	xhci->segment_pool = NULL;
1808
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1809

1810
	dma_pool_destroy(xhci->device_pool);
1811
	xhci->device_pool = NULL;
1812
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1813

1814
	dma_pool_destroy(xhci->small_streams_pool);
1815
	xhci->small_streams_pool = NULL;
1816 1817
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Freed small stream array pool");
1818

1819
	dma_pool_destroy(xhci->medium_streams_pool);
1820
	xhci->medium_streams_pool = NULL;
1821 1822
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Freed medium stream array pool");
1823

1824
	if (xhci->dcbaa)
1825
		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1826 1827
				xhci->dcbaa, xhci->dcbaa->dma);
	xhci->dcbaa = NULL;
1828

1829
	scratchpad_free(xhci);
1830

1831 1832 1833
	if (!xhci->rh_bw)
		goto no_bw;

1834 1835 1836 1837 1838 1839
	for (i = 0; i < num_ports; i++) {
		struct xhci_tt_bw_info *tt, *n;
		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
			list_del(&tt->tt_list);
			kfree(tt);
		}
1840 1841
	}

1842
no_bw:
1843
	xhci->cmd_ring_reserved_trbs = 0;
1844 1845
	xhci->num_usb2_ports = 0;
	xhci->num_usb3_ports = 0;
1846
	xhci->num_active_eps = 0;
1847 1848 1849
	kfree(xhci->usb2_ports);
	kfree(xhci->usb3_ports);
	kfree(xhci->port_array);
1850
	kfree(xhci->rh_bw);
1851
	kfree(xhci->ext_caps);
1852

1853 1854 1855 1856 1857 1858
	xhci->usb2_ports = NULL;
	xhci->usb3_ports = NULL;
	xhci->port_array = NULL;
	xhci->rh_bw = NULL;
	xhci->ext_caps = NULL;

1859 1860
	xhci->page_size = 0;
	xhci->page_shift = 0;
1861
	xhci->bus_state[0].bus_suspended = 0;
1862
	xhci->bus_state[1].bus_suspended = 0;
1863 1864
}

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
		struct xhci_segment *input_seg,
		union xhci_trb *start_trb,
		union xhci_trb *end_trb,
		dma_addr_t input_dma,
		struct xhci_segment *result_seg,
		char *test_name, int test_number)
{
	unsigned long long start_dma;
	unsigned long long end_dma;
	struct xhci_segment *seg;

	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);

1880
	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	if (seg != result_seg) {
		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
				test_name, test_number);
		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
				"input DMA 0x%llx\n",
				input_seg,
				(unsigned long long) input_dma);
		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
				"ending TRB %p (0x%llx DMA)\n",
				start_trb, start_dma,
				end_trb, end_dma);
		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
				result_seg, seg);
1894 1895
		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
			  true);
1896 1897 1898 1899 1900 1901
		return -1;
	}
	return 0;
}

/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1902
static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
{
	struct {
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} simple_test_vector [] = {
		/* A zeroed DMA field should fail */
		{ 0, NULL },
		/* One TRB before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 16, NULL },
		/* One byte before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 1, NULL },
		/* Starting TRB should succeed */
		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
		/* Ending TRB should succeed */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
			xhci->event_ring->first_seg },
		/* One byte after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
		/* One TRB after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
		/* An address of all ones should fail */
		{ (dma_addr_t) (~0), NULL },
	};
	struct {
		struct xhci_segment	*input_seg;
		union xhci_trb		*start_trb;
		union xhci_trb		*end_trb;
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} complex_test_vector [] = {
		/* Test feeding a valid DMA address from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid start and end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->cmd_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[0],
			.end_trb = &xhci->event_ring->first_seg->trbs[3],
			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[3],
			.end_trb = &xhci->event_ring->first_seg->trbs[6],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
			.result_seg = NULL,
		},
		/* TRB not in this ring, and we have a wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
	};

	unsigned int num_tests;
	int i, ret;

1994
	num_tests = ARRAY_SIZE(simple_test_vector);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				xhci->event_ring->first_seg,
				xhci->event_ring->first_seg->trbs,
				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
				simple_test_vector[i].input_dma,
				simple_test_vector[i].result_seg,
				"Simple", i);
		if (ret < 0)
			return ret;
	}

2007
	num_tests = ARRAY_SIZE(complex_test_vector);
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				complex_test_vector[i].input_seg,
				complex_test_vector[i].start_trb,
				complex_test_vector[i].end_trb,
				complex_test_vector[i].input_dma,
				complex_test_vector[i].result_seg,
				"Complex", i);
		if (ret < 0)
			return ret;
	}
	xhci_dbg(xhci, "TRB math tests passed.\n");
	return 0;
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
{
	u64 temp;
	dma_addr_t deq;

	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
			xhci->event_ring->dequeue);
	if (deq == 0 && !in_interrupt())
		xhci_warn(xhci, "WARN something wrong with SW event ring "
				"dequeue ptr.\n");
	/* Update HC event ring dequeue pointer */
2034
	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2035 2036 2037 2038 2039
	temp &= ERST_PTR_MASK;
	/* Don't clear the EHB bit (which is RW1C) because
	 * there might be more events to service.
	 */
	temp &= ~ERST_EHB;
2040 2041 2042
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Write event ring dequeue pointer, "
			"preserving EHB bit");
2043
	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2044 2045 2046
			&xhci->ir_set->erst_dequeue);
}

2047
static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2048
		__le32 __iomem *addr, int max_caps)
2049 2050 2051
{
	u32 temp, port_offset, port_count;
	int i;
2052
	u8 major_revision, minor_revision;
2053
	struct xhci_hub *rhub;
2054

2055
	temp = readl(addr);
2056
	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2057
	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2058

2059
	if (major_revision == 0x03) {
2060
		rhub = &xhci->usb3_rhub;
2061
	} else if (major_revision <= 0x02) {
2062 2063
		rhub = &xhci->usb2_rhub;
	} else {
2064 2065 2066 2067 2068 2069
		xhci_warn(xhci, "Ignoring unknown port speed, "
				"Ext Cap %p, revision = 0x%x\n",
				addr, major_revision);
		/* Ignoring port protocol we can't understand. FIXME */
		return;
	}
2070
	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2071 2072 2073

	if (rhub->min_rev < minor_revision)
		rhub->min_rev = minor_revision;
2074 2075

	/* Port offset and count in the third dword, see section 7.2 */
2076
	temp = readl(addr + 2);
2077 2078
	port_offset = XHCI_EXT_PORT_OFF(temp);
	port_count = XHCI_EXT_PORT_COUNT(temp);
2079 2080 2081
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Ext Cap %p, port offset = %u, "
			"count = %u, revision = 0x%x",
2082 2083 2084 2085 2086
			addr, port_offset, port_count, major_revision);
	/* Port count includes the current port offset */
	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
		/* WTF? "Valid values are ‘1’ to MaxPorts" */
		return;
A
Andiry Xu 已提交
2087

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
	if (rhub->psi_count) {
		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
				    GFP_KERNEL);
		if (!rhub->psi)
			rhub->psi_count = 0;

		rhub->psi_uid_count++;
		for (i = 0; i < rhub->psi_count; i++) {
			rhub->psi[i] = readl(addr + 4 + i);

			/* count unique ID values, two consecutive entries can
			 * have the same ID if link is assymetric
			 */
			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
				rhub->psi_uid_count++;

			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
				  XHCI_EXT_PORT_LP(rhub->psi[i]),
				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
		}
	}
2115 2116 2117 2118
	/* cache usb2 port capabilities */
	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
		xhci->ext_caps[xhci->num_ext_caps++] = temp;

A
Andiry Xu 已提交
2119 2120 2121
	/* Check the host's USB2 LPM capability */
	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
			(temp & XHCI_L1C)) {
2122 2123
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"xHCI 0.96: support USB2 software lpm");
A
Andiry Xu 已提交
2124 2125 2126 2127
		xhci->sw_lpm_support = 1;
	}

	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2128 2129
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"xHCI 1.0: support USB2 software lpm");
A
Andiry Xu 已提交
2130 2131
		xhci->sw_lpm_support = 1;
		if (temp & XHCI_HLC) {
2132 2133
			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
					"xHCI 1.0: support USB2 hardware lpm");
A
Andiry Xu 已提交
2134 2135 2136 2137
			xhci->hw_lpm_support = 1;
		}
	}

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	port_offset--;
	for (i = port_offset; i < (port_offset + port_count); i++) {
		/* Duplicate entry.  Ignore the port if the revisions differ. */
		if (xhci->port_array[i] != 0) {
			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
					" port %u\n", addr, i);
			xhci_warn(xhci, "Port was marked as USB %u, "
					"duplicated as USB %u\n",
					xhci->port_array[i], major_revision);
			/* Only adjust the roothub port counts if we haven't
			 * found a similar duplicate.
			 */
			if (xhci->port_array[i] != major_revision &&
2151
				xhci->port_array[i] != DUPLICATE_ENTRY) {
2152 2153 2154 2155
				if (xhci->port_array[i] == 0x03)
					xhci->num_usb3_ports--;
				else
					xhci->num_usb2_ports--;
2156
				xhci->port_array[i] = DUPLICATE_ENTRY;
2157 2158
			}
			/* FIXME: Should we disable the port? */
2159
			continue;
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
		}
		xhci->port_array[i] = major_revision;
		if (major_revision == 0x03)
			xhci->num_usb3_ports++;
		else
			xhci->num_usb2_ports++;
	}
	/* FIXME: Should we disable ports not in the Extended Capabilities? */
}

/*
 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
 * specify what speeds each port is supposed to be.  We can't count on the port
 * speed bits in the PORTSC register being correct until a device is connected,
 * but we need to set up the two fake roothubs with the correct number of USB
 * 3.0 and USB 2.0 ports at host controller initialization time.
 */
static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
{
2179 2180
	void __iomem *base;
	u32 offset;
2181
	unsigned int num_ports;
2182
	int i, j, port_index;
2183
	int cap_count = 0;
2184
	u32 cap_start;
2185 2186 2187 2188 2189 2190

	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
	if (!xhci->port_array)
		return -ENOMEM;

2191 2192 2193
	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
	if (!xhci->rh_bw)
		return -ENOMEM;
2194 2195 2196
	for (i = 0; i < num_ports; i++) {
		struct xhci_interval_bw_table *bw_table;

2197
		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2198 2199 2200 2201
		bw_table = &xhci->rh_bw[i].bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
	}
2202
	base = &xhci->cap_regs->hc_capbase;
2203

2204 2205 2206 2207 2208
	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
	if (!cap_start) {
		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
		return -ENODEV;
	}
2209

2210
	offset = cap_start;
2211
	/* count extended protocol capability entries for later caching */
2212 2213 2214 2215 2216
	while (offset) {
		cap_count++;
		offset = xhci_find_next_ext_cap(base, offset,
						      XHCI_EXT_CAPS_PROTOCOL);
	}
2217 2218 2219 2220 2221

	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
	if (!xhci->ext_caps)
		return -ENOMEM;

2222 2223 2224 2225 2226
	offset = cap_start;

	while (offset) {
		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2227
			break;
2228 2229
		offset = xhci_find_next_ext_cap(base, offset,
						XHCI_EXT_CAPS_PROTOCOL);
2230 2231 2232 2233 2234 2235
	}

	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
		xhci_warn(xhci, "No ports on the roothubs?\n");
		return -ENODEV;
	}
2236 2237
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2238
			xhci->num_usb2_ports, xhci->num_usb3_ports);
2239 2240 2241 2242

	/* Place limits on the number of roothub ports so that the hub
	 * descriptors aren't longer than the USB core will allocate.
	 */
2243
	if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2244
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2245 2246 2247
				"Limiting USB 3.0 roothub ports to %u.",
				USB_SS_MAXPORTS);
		xhci->num_usb3_ports = USB_SS_MAXPORTS;
2248 2249
	}
	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2250 2251
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"Limiting USB 2.0 roothub ports to %u.",
2252 2253 2254 2255
				USB_MAXCHILDREN);
		xhci->num_usb2_ports = USB_MAXCHILDREN;
	}

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	/*
	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
	 * Not sure how the USB core will handle a hub with no ports...
	 */
	if (xhci->num_usb2_ports) {
		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
				xhci->num_usb2_ports, flags);
		if (!xhci->usb2_ports)
			return -ENOMEM;

		port_index = 0;
2267 2268 2269
		for (i = 0; i < num_ports; i++) {
			if (xhci->port_array[i] == 0x03 ||
					xhci->port_array[i] == 0 ||
2270
					xhci->port_array[i] == DUPLICATE_ENTRY)
2271 2272 2273 2274 2275
				continue;

			xhci->usb2_ports[port_index] =
				&xhci->op_regs->port_status_base +
				NUM_PORT_REGS*i;
2276 2277 2278
			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
					"USB 2.0 port at index %u, "
					"addr = %p", i,
2279 2280
					xhci->usb2_ports[port_index]);
			port_index++;
2281 2282
			if (port_index == xhci->num_usb2_ports)
				break;
2283
		}
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	}
	if (xhci->num_usb3_ports) {
		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
				xhci->num_usb3_ports, flags);
		if (!xhci->usb3_ports)
			return -ENOMEM;

		port_index = 0;
		for (i = 0; i < num_ports; i++)
			if (xhci->port_array[i] == 0x03) {
				xhci->usb3_ports[port_index] =
					&xhci->op_regs->port_status_base +
					NUM_PORT_REGS*i;
2297 2298 2299
				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
						"USB 3.0 port at index %u, "
						"addr = %p", i,
2300 2301
						xhci->usb3_ports[port_index]);
				port_index++;
2302 2303
				if (port_index == xhci->num_usb3_ports)
					break;
2304 2305 2306 2307
			}
	}
	return 0;
}
2308

2309 2310
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
{
2311
	dma_addr_t	dma;
2312
	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2313
	unsigned int	val, val2;
2314
	u64		val_64;
2315
	struct xhci_segment	*seg;
2316
	u32 page_size, temp;
2317 2318
	int i;

M
Mathias Nyman 已提交
2319
	INIT_LIST_HEAD(&xhci->cmd_list);
2320

2321 2322
	/* init command timeout work */
	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2323
	init_completion(&xhci->cmd_ring_stop_completion);
2324

2325
	page_size = readl(&xhci->op_regs->page_size);
2326 2327
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Supported page size register = 0x%x", page_size);
2328 2329 2330 2331 2332 2333
	for (i = 0; i < 16; i++) {
		if ((0x1 & page_size) != 0)
			break;
		page_size = page_size >> 1;
	}
	if (i < 16)
2334 2335
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Supported page size of %iK", (1 << (i+12)) / 1024);
2336 2337 2338 2339 2340
	else
		xhci_warn(xhci, "WARN: no supported page size\n");
	/* Use 4K pages, since that's common and the minimum the HC supports */
	xhci->page_shift = 12;
	xhci->page_size = 1 << xhci->page_shift;
2341 2342
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"HCD page size set to %iK", xhci->page_size / 1024);
2343 2344 2345 2346 2347

	/*
	 * Program the Number of Device Slots Enabled field in the CONFIG
	 * register with the max value of slots the HC can handle.
	 */
2348
	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2349 2350
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// xHC can handle at most %d device slots.", val);
2351
	val2 = readl(&xhci->op_regs->config_reg);
2352
	val |= (val2 & ~HCS_SLOTS_MASK);
2353 2354
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Setting Max device slots reg = 0x%x.", val);
2355
	writel(val, &xhci->op_regs->config_reg);
2356

2357
	/*
2358
	 * xHCI section 5.4.6 - doorbell array must be
2359 2360
	 * "physically contiguous and 64-byte (cache line) aligned".
	 */
2361
	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2362
			flags);
2363 2364 2365 2366
	if (!xhci->dcbaa)
		goto fail;
	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
	xhci->dcbaa->dma = dma;
2367 2368
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2369
			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2370
	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2371

2372 2373 2374
	/*
	 * Initialize the ring segment pool.  The ring must be a contiguous
	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2375 2376 2377
	 * however, the command ring segment needs 64-byte aligned segments
	 * and our use of dma addresses in the trb_address_map radix tree needs
	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2378 2379
	 */
	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2380
			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2381

2382 2383
	/* See Table 46 and Note on Figure 55 */
	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2384
			2112, 64, xhci->page_size);
2385
	if (!xhci->segment_pool || !xhci->device_pool)
2386 2387
		goto fail;

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	/* Linear stream context arrays don't have any boundary restrictions,
	 * and only need to be 16-byte aligned.
	 */
	xhci->small_streams_pool =
		dma_pool_create("xHCI 256 byte stream ctx arrays",
			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
	xhci->medium_streams_pool =
		dma_pool_create("xHCI 1KB stream ctx arrays",
			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2398
	 * will be allocated with dma_alloc_coherent()
2399 2400 2401 2402 2403
	 */

	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
		goto fail;

2404
	/* Set up the command ring to have one segments for now. */
2405
	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2406 2407
	if (!xhci->cmd_ring)
		goto fail;
2408 2409 2410
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Allocated command ring at %p", xhci->cmd_ring);
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2411
			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2412 2413

	/* Set the address in the Command Ring Control register */
2414
	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2415 2416
	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2417
		xhci->cmd_ring->cycle_state;
2418
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2419
			"// Setting command ring address to 0x%016llx", val_64);
2420
	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2421 2422
	xhci_dbg_cmd_ptrs(xhci);

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
	if (!xhci->lpm_command)
		goto fail;

	/* Reserve one command ring TRB for disabling LPM.
	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
	 * disabling LPM, we only need to reserve one TRB for all devices.
	 */
	xhci->cmd_ring_reserved_trbs++;

2433
	val = readl(&xhci->cap_regs->db_off);
2434
	val &= DBOFF_MASK;
2435 2436 2437
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Doorbell array is located at offset 0x%x"
			" from cap regs base addr", val);
2438
	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2439 2440 2441
	xhci_dbg_regs(xhci);
	xhci_print_run_regs(xhci);
	/* Set ir_set to interrupt register set 0 */
2442
	xhci->ir_set = &xhci->run_regs->ir_set[0];
2443 2444 2445 2446 2447

	/*
	 * Event ring setup: Allocate a normal ring, but also setup
	 * the event ring segment table (ERST).  Section 4.9.3.
	 */
2448
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2449
	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2450
					0, flags);
2451 2452
	if (!xhci->event_ring)
		goto fail;
2453
	if (xhci_check_trb_in_td_math(xhci) < 0)
2454
		goto fail;
2455

2456 2457
	xhci->erst.entries = dma_alloc_coherent(dev,
			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2458
			flags);
2459 2460
	if (!xhci->erst.entries)
		goto fail;
2461 2462
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Allocated event ring segment table at 0x%llx",
2463
			(unsigned long long)dma);
2464 2465 2466 2467

	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
	xhci->erst.num_entries = ERST_NUM_SEGS;
	xhci->erst.erst_dma_addr = dma;
2468 2469
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2470
			xhci->erst.num_entries,
2471 2472
			xhci->erst.entries,
			(unsigned long long)xhci->erst.erst_dma_addr);
2473 2474 2475 2476

	/* set ring base address and size for each segment table entry */
	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
M
Matt Evans 已提交
2477 2478
		entry->seg_addr = cpu_to_le64(seg->dma);
		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2479 2480 2481 2482 2483
		entry->rsvd = 0;
		seg = seg->next;
	}

	/* set ERST count with the number of entries in the segment table */
2484
	val = readl(&xhci->ir_set->erst_size);
2485 2486
	val &= ERST_SIZE_MASK;
	val |= ERST_NUM_SEGS;
2487 2488
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2489
			val);
2490
	writel(val, &xhci->ir_set->erst_size);
2491

2492 2493
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Set ERST entries to point to event ring.");
2494
	/* set the segment table base address */
2495 2496
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Set ERST base address for ir_set 0 = 0x%llx",
2497
			(unsigned long long)xhci->erst.erst_dma_addr);
2498
	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2499 2500
	val_64 &= ERST_PTR_MASK;
	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2501
	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2502 2503

	/* Set the event ring dequeue address */
2504
	xhci_set_hc_event_deq(xhci);
2505 2506
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Wrote ERST address to ir_set 0.");
2507
	xhci_print_ir_set(xhci, 0);
2508 2509 2510 2511 2512 2513

	/*
	 * XXX: Might need to set the Interrupter Moderation Register to
	 * something other than the default (~1ms minimum between interrupts).
	 * See section 5.5.1.2.
	 */
2514
	for (i = 0; i < MAX_HC_SLOTS; i++)
2515
		xhci->devs[i] = NULL;
2516
	for (i = 0; i < USB_MAXCHILDREN; i++) {
2517
		xhci->bus_state[0].resume_done[i] = 0;
2518
		xhci->bus_state[1].resume_done[i] = 0;
2519 2520
		/* Only the USB 2.0 completions will ever be used. */
		init_completion(&xhci->bus_state[1].rexit_done[i]);
2521
	}
2522

2523 2524
	if (scratchpad_alloc(xhci, flags))
		goto fail;
2525 2526
	if (xhci_setup_port_arrays(xhci, flags))
		goto fail;
2527

2528 2529 2530 2531
	/* Enable USB 3.0 device notifications for function remote wake, which
	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
	 * U3 (device suspend).
	 */
2532
	temp = readl(&xhci->op_regs->dev_notification);
2533 2534
	temp &= ~DEV_NOTE_MASK;
	temp |= DEV_NOTE_FWAKE;
2535
	writel(temp, &xhci->op_regs->dev_notification);
2536

2537
	return 0;
2538

2539
fail:
2540 2541
	xhci_halt(xhci);
	xhci_reset(xhci);
2542 2543 2544
	xhci_mem_cleanup(xhci);
	return -ENOMEM;
}