xhci-mem.c 75.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * xHCI host controller driver
 *
 * Copyright (C) 2008 Intel Corp.
 *
 * Author: Sarah Sharp
 * Some code borrowed from the Linux EHCI driver.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/usb.h>
24
#include <linux/pci.h>
25
#include <linux/slab.h>
26
#include <linux/dmapool.h>
27
#include <linux/dma-mapping.h>
28 29

#include "xhci.h"
30
#include "xhci-trace.h"
31

32 33 34 35 36 37 38
/*
 * Allocates a generic ring segment from the ring pool, sets the dma address,
 * initializes the segment to zero, and sets the private next pointer to NULL.
 *
 * Section 4.11.1.1:
 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
 */
39 40
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
					unsigned int cycle_state, gfp_t flags)
41 42 43
{
	struct xhci_segment *seg;
	dma_addr_t	dma;
44
	int		i;
45 46 47

	seg = kzalloc(sizeof *seg, flags);
	if (!seg)
48
		return NULL;
49

50
	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
51 52
	if (!seg->trbs) {
		kfree(seg);
53
		return NULL;
54 55
	}

56 57 58
	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
	if (cycle_state == 0) {
		for (i = 0; i < TRBS_PER_SEGMENT; i++)
59
			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
60
	}
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
	seg->dma = dma;
	seg->next = NULL;

	return seg;
}

static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
{
	if (seg->trbs) {
		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
		seg->trbs = NULL;
	}
	kfree(seg);
}

76 77 78 79 80 81 82 83 84 85 86 87 88 89
static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
				struct xhci_segment *first)
{
	struct xhci_segment *seg;

	seg = first->next;
	while (seg != first) {
		struct xhci_segment *next = seg->next;
		xhci_segment_free(xhci, seg);
		seg = next;
	}
	xhci_segment_free(xhci, first);
}

90 91 92 93 94 95 96 97
/*
 * Make the prev segment point to the next segment.
 *
 * Change the last TRB in the prev segment to be a Link TRB which points to the
 * DMA address of the next segment.  The caller needs to set any Link TRB
 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 */
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
A
Andiry Xu 已提交
98
		struct xhci_segment *next, enum xhci_ring_type type)
99 100 101 102 103 104
{
	u32 val;

	if (!prev || !next)
		return;
	prev->next = next;
A
Andiry Xu 已提交
105
	if (type != TYPE_EVENT) {
106 107
		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
			cpu_to_le64(next->dma);
108 109

		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
M
Matt Evans 已提交
110
		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111 112
		val &= ~TRB_TYPE_BITMASK;
		val |= TRB_TYPE(TRB_LINK);
113
		/* Always set the chain bit with 0.95 hardware */
114 115
		/* Set chain bit for isoc rings on AMD 0.96 host */
		if (xhci_link_trb_quirk(xhci) ||
A
Andiry Xu 已提交
116 117
				(type == TYPE_ISOC &&
				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
118
			val |= TRB_CHAIN;
M
Matt Evans 已提交
119
		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120 121 122
	}
}

A
Andiry Xu 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Link the ring to the new segments.
 * Set Toggle Cycle for the new ring if needed.
 */
static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
		struct xhci_segment *first, struct xhci_segment *last,
		unsigned int num_segs)
{
	struct xhci_segment *next;

	if (!ring || !first || !last)
		return;

	next = ring->enq_seg->next;
	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
	xhci_link_segments(xhci, last, next, ring->type);
	ring->num_segs += num_segs;
	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;

	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
			&= ~cpu_to_le32(LINK_TOGGLE);
		last->trbs[TRBS_PER_SEGMENT-1].link.control
			|= cpu_to_le32(LINK_TOGGLE);
		ring->last_seg = last;
	}
}

G
Gerd Hoffmann 已提交
151 152 153 154 155 156 157 158 159
/*
 * We need a radix tree for mapping physical addresses of TRBs to which stream
 * ID they belong to.  We need to do this because the host controller won't tell
 * us which stream ring the TRB came from.  We could store the stream ID in an
 * event data TRB, but that doesn't help us for the cancellation case, since the
 * endpoint may stop before it reaches that event data TRB.
 *
 * The radix tree maps the upper portion of the TRB DMA address to a ring
 * segment that has the same upper portion of DMA addresses.  For example, say I
160
 * have segments of size 1KB, that are always 1KB aligned.  A segment may
G
Gerd Hoffmann 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 * pass the radix tree a key to get the right stream ID:
 *
 *	0x10c90fff >> 10 = 0x43243
 *	0x10c912c0 >> 10 = 0x43244
 *	0x10c91400 >> 10 = 0x43245
 *
 * Obviously, only those TRBs with DMA addresses that are within the segment
 * will make the radix tree return the stream ID for that ring.
 *
 * Caveats for the radix tree:
 *
 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 * extended systems (where the DMA address can be bigger than 32-bits),
 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 */
182 183 184 185
static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
		struct xhci_ring *ring,
		struct xhci_segment *seg,
		gfp_t mem_flags)
G
Gerd Hoffmann 已提交
186 187 188 189
{
	unsigned long key;
	int ret;

190 191 192
	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
	/* Skip any segments that were already added. */
	if (radix_tree_lookup(trb_address_map, key))
G
Gerd Hoffmann 已提交
193 194
		return 0;

195 196 197 198 199 200 201 202
	ret = radix_tree_maybe_preload(mem_flags);
	if (ret)
		return ret;
	ret = radix_tree_insert(trb_address_map,
			key, ring);
	radix_tree_preload_end();
	return ret;
}
G
Gerd Hoffmann 已提交
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
		struct xhci_segment *seg)
{
	unsigned long key;

	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
	if (radix_tree_lookup(trb_address_map, key))
		radix_tree_delete(trb_address_map, key);
}

static int xhci_update_stream_segment_mapping(
		struct radix_tree_root *trb_address_map,
		struct xhci_ring *ring,
		struct xhci_segment *first_seg,
		struct xhci_segment *last_seg,
		gfp_t mem_flags)
{
	struct xhci_segment *seg;
	struct xhci_segment *failed_seg;
	int ret;

	if (WARN_ON_ONCE(trb_address_map == NULL))
		return 0;

	seg = first_seg;
	do {
		ret = xhci_insert_segment_mapping(trb_address_map,
				ring, seg, mem_flags);
G
Gerd Hoffmann 已提交
232
		if (ret)
233 234 235
			goto remove_streams;
		if (seg == last_seg)
			return 0;
G
Gerd Hoffmann 已提交
236
		seg = seg->next;
237
	} while (seg != first_seg);
G
Gerd Hoffmann 已提交
238 239

	return 0;
240 241 242 243 244 245 246 247 248 249 250 251

remove_streams:
	failed_seg = seg;
	seg = first_seg;
	do {
		xhci_remove_segment_mapping(trb_address_map, seg);
		if (seg == failed_seg)
			return ret;
		seg = seg->next;
	} while (seg != first_seg);

	return ret;
G
Gerd Hoffmann 已提交
252 253 254 255 256 257 258 259 260 261 262
}

static void xhci_remove_stream_mapping(struct xhci_ring *ring)
{
	struct xhci_segment *seg;

	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
		return;

	seg = ring->first_seg;
	do {
263
		xhci_remove_segment_mapping(ring->trb_address_map, seg);
G
Gerd Hoffmann 已提交
264 265 266 267
		seg = seg->next;
	} while (seg != ring->first_seg);
}

268 269 270 271 272 273
static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
{
	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
			ring->first_seg, ring->last_seg, mem_flags);
}

274
/* XXX: Do we need the hcd structure in all these functions? */
275
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
276
{
277
	if (!ring)
278
		return;
279

G
Gerd Hoffmann 已提交
280 281 282
	if (ring->first_seg) {
		if (ring->type == TYPE_STREAM)
			xhci_remove_stream_mapping(ring);
283
		xhci_free_segments_for_ring(xhci, ring->first_seg);
G
Gerd Hoffmann 已提交
284
	}
285

286 287 288
	kfree(ring);
}

289 290
static void xhci_initialize_ring_info(struct xhci_ring *ring,
					unsigned int cycle_state)
291 292 293 294 295 296 297 298 299
{
	/* The ring is empty, so the enqueue pointer == dequeue pointer */
	ring->enqueue = ring->first_seg->trbs;
	ring->enq_seg = ring->first_seg;
	ring->dequeue = ring->enqueue;
	ring->deq_seg = ring->first_seg;
	/* The ring is initialized to 0. The producer must write 1 to the cycle
	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
300 301 302
	 *
	 * New rings are initialized with cycle state equal to 1; if we are
	 * handling ring expansion, set the cycle state equal to the old ring.
303
	 */
304
	ring->cycle_state = cycle_state;
305 306 307
	/* Not necessary for new rings, but needed for re-initialized rings */
	ring->enq_updates = 0;
	ring->deq_updates = 0;
308 309 310 311 312 313

	/*
	 * Each segment has a link TRB, and leave an extra TRB for SW
	 * accounting purpose
	 */
	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
314 315
}

316 317 318
/* Allocate segments and link them for a ring */
static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
		struct xhci_segment **first, struct xhci_segment **last,
319 320
		unsigned int num_segs, unsigned int cycle_state,
		enum xhci_ring_type type, gfp_t flags)
321 322 323
{
	struct xhci_segment *prev;

324
	prev = xhci_segment_alloc(xhci, cycle_state, flags);
325 326 327 328 329 330 331 332
	if (!prev)
		return -ENOMEM;
	num_segs--;

	*first = prev;
	while (num_segs > 0) {
		struct xhci_segment	*next;

333
		next = xhci_segment_alloc(xhci, cycle_state, flags);
334
		if (!next) {
335 336 337 338 339 340
			prev = *first;
			while (prev) {
				next = prev->next;
				xhci_segment_free(xhci, prev);
				prev = next;
			}
341 342 343 344 345 346 347 348 349 350 351 352 353
			return -ENOMEM;
		}
		xhci_link_segments(xhci, prev, next, type);

		prev = next;
		num_segs--;
	}
	xhci_link_segments(xhci, prev, *first, type);
	*last = prev;

	return 0;
}

354 355 356 357 358 359 360 361
/**
 * Create a new ring with zero or more segments.
 *
 * Link each segment together into a ring.
 * Set the end flag and the cycle toggle bit on the last segment.
 * See section 4.9.1 and figures 15 and 16.
 */
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
362 363
		unsigned int num_segs, unsigned int cycle_state,
		enum xhci_ring_type type, gfp_t flags)
364 365
{
	struct xhci_ring	*ring;
366
	int ret;
367 368 369

	ring = kzalloc(sizeof *(ring), flags);
	if (!ring)
370
		return NULL;
371

372
	ring->num_segs = num_segs;
373
	INIT_LIST_HEAD(&ring->td_list);
A
Andiry Xu 已提交
374
	ring->type = type;
375 376 377
	if (num_segs == 0)
		return ring;

378
	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
379
			&ring->last_seg, num_segs, cycle_state, type, flags);
380
	if (ret)
381 382
		goto fail;

A
Andiry Xu 已提交
383 384
	/* Only event ring does not use link TRB */
	if (type != TYPE_EVENT) {
385
		/* See section 4.9.2.1 and 6.4.4.1 */
386
		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
387
			cpu_to_le32(LINK_TOGGLE);
388
	}
389
	xhci_initialize_ring_info(ring, cycle_state);
390 391 392
	return ring;

fail:
393
	kfree(ring);
394
	return NULL;
395 396
}

397 398 399 400 401 402 403 404 405 406
void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		unsigned int ep_index)
{
	int rings_cached;

	rings_cached = virt_dev->num_rings_cached;
	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
		virt_dev->ring_cache[rings_cached] =
			virt_dev->eps[ep_index].ring;
407
		virt_dev->num_rings_cached++;
408 409
		xhci_dbg(xhci, "Cached old ring, "
				"%d ring%s cached\n",
410 411
				virt_dev->num_rings_cached,
				(virt_dev->num_rings_cached > 1) ? "s" : "");
412 413 414 415 416 417 418 419 420
	} else {
		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
		xhci_dbg(xhci, "Ring cache full (%d rings), "
				"freeing ring\n",
				virt_dev->num_rings_cached);
	}
	virt_dev->eps[ep_index].ring = NULL;
}

421 422 423 424
/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 * pointers to the beginning of the ring.
 */
static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
425 426
			struct xhci_ring *ring, unsigned int cycle_state,
			enum xhci_ring_type type)
427 428
{
	struct xhci_segment	*seg = ring->first_seg;
429 430
	int i;

431 432 433
	do {
		memset(seg->trbs, 0,
				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
434 435
		if (cycle_state == 0) {
			for (i = 0; i < TRBS_PER_SEGMENT; i++)
436 437
				seg->trbs[i].link.control |=
					cpu_to_le32(TRB_CYCLE);
438
		}
439
		/* All endpoint rings have link TRBs */
A
Andiry Xu 已提交
440
		xhci_link_segments(xhci, seg, seg->next, type);
441 442
		seg = seg->next;
	} while (seg != ring->first_seg);
A
Andiry Xu 已提交
443
	ring->type = type;
444
	xhci_initialize_ring_info(ring, cycle_state);
445 446 447 448 449 450
	/* td list should be empty since all URBs have been cancelled,
	 * but just in case...
	 */
	INIT_LIST_HEAD(&ring->td_list);
}

A
Andiry Xu 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
/*
 * Expand an existing ring.
 * Look for a cached ring or allocate a new ring which has same segment numbers
 * and link the two rings.
 */
int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
				unsigned int num_trbs, gfp_t flags)
{
	struct xhci_segment	*first;
	struct xhci_segment	*last;
	unsigned int		num_segs;
	unsigned int		num_segs_needed;
	int			ret;

	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
				(TRBS_PER_SEGMENT - 1);

	/* Allocate number of segments we needed, or double the ring size */
	num_segs = ring->num_segs > num_segs_needed ?
			ring->num_segs : num_segs_needed;

	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
			num_segs, ring->cycle_state, ring->type, flags);
	if (ret)
		return -ENOMEM;

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	if (ring->type == TYPE_STREAM)
		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
						ring, first, last, flags);
	if (ret) {
		struct xhci_segment *next;
		do {
			next = first->next;
			xhci_segment_free(xhci, first);
			if (first == last)
				break;
			first = next;
		} while (true);
		return ret;
	}

A
Andiry Xu 已提交
492
	xhci_link_rings(xhci, ring, first, last, num_segs);
493 494
	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
			"ring expansion succeed, now has %d segments",
A
Andiry Xu 已提交
495 496 497 498 499
			ring->num_segs);

	return 0;
}

500 501
#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)

502
static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
503 504
						    int type, gfp_t flags)
{
505 506 507 508 509 510
	struct xhci_container_ctx *ctx;

	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
		return NULL;

	ctx = kzalloc(sizeof(*ctx), flags);
511 512 513 514 515 516 517 518
	if (!ctx)
		return NULL;

	ctx->type = type;
	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
	if (type == XHCI_CTX_TYPE_INPUT)
		ctx->size += CTX_SIZE(xhci->hcc_params);

519
	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
520 521 522 523
	if (!ctx->bytes) {
		kfree(ctx);
		return NULL;
	}
524 525 526
	return ctx;
}

527
static void xhci_free_container_ctx(struct xhci_hcd *xhci,
528 529
			     struct xhci_container_ctx *ctx)
{
530 531
	if (!ctx)
		return;
532 533 534 535
	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
	kfree(ctx);
}

536
struct xhci_input_control_ctx *xhci_get_input_control_ctx(
537 538
					      struct xhci_container_ctx *ctx)
{
539 540 541
	if (ctx->type != XHCI_CTX_TYPE_INPUT)
		return NULL;

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	return (struct xhci_input_control_ctx *)ctx->bytes;
}

struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
					struct xhci_container_ctx *ctx)
{
	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
		return (struct xhci_slot_ctx *)ctx->bytes;

	return (struct xhci_slot_ctx *)
		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
}

struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
				    struct xhci_container_ctx *ctx,
				    unsigned int ep_index)
{
	/* increment ep index by offset of start of ep ctx array */
	ep_index++;
	if (ctx->type == XHCI_CTX_TYPE_INPUT)
		ep_index++;

	return (struct xhci_ep_ctx *)
		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
}

568 569 570

/***************** Streams structures manipulation *************************/

571
static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
572 573 574
		unsigned int num_stream_ctxs,
		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
{
575
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
576
	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
577

578 579
	if (size > MEDIUM_STREAM_ARRAY_SIZE)
		dma_free_coherent(dev, size,
580
				stream_ctx, dma);
581
	else if (size <= SMALL_STREAM_ARRAY_SIZE)
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
		return dma_pool_free(xhci->small_streams_pool,
				stream_ctx, dma);
	else
		return dma_pool_free(xhci->medium_streams_pool,
				stream_ctx, dma);
}

/*
 * The stream context array for each endpoint with bulk streams enabled can
 * vary in size, based on:
 *  - how many streams the endpoint supports,
 *  - the maximum primary stream array size the host controller supports,
 *  - and how many streams the device driver asks for.
 *
 * The stream context array must be a power of 2, and can be as small as
 * 64 bytes or as large as 1MB.
 */
599
static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
600 601 602
		unsigned int num_stream_ctxs, dma_addr_t *dma,
		gfp_t mem_flags)
{
603
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
604
	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
605

606 607
	if (size > MEDIUM_STREAM_ARRAY_SIZE)
		return dma_alloc_coherent(dev, size,
608
				dma, mem_flags);
609
	else if (size <= SMALL_STREAM_ARRAY_SIZE)
610 611 612 613 614 615 616
		return dma_pool_alloc(xhci->small_streams_pool,
				mem_flags, dma);
	else
		return dma_pool_alloc(xhci->medium_streams_pool,
				mem_flags, dma);
}

617 618 619 620 621 622
struct xhci_ring *xhci_dma_to_transfer_ring(
		struct xhci_virt_ep *ep,
		u64 address)
{
	if (ep->ep_state & EP_HAS_STREAMS)
		return radix_tree_lookup(&ep->stream_info->trb_address_map,
623
				address >> TRB_SEGMENT_SHIFT);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	return ep->ring;
}

struct xhci_ring *xhci_stream_id_to_ring(
		struct xhci_virt_device *dev,
		unsigned int ep_index,
		unsigned int stream_id)
{
	struct xhci_virt_ep *ep = &dev->eps[ep_index];

	if (stream_id == 0)
		return ep->ring;
	if (!ep->stream_info)
		return NULL;

	if (stream_id > ep->stream_info->num_streams)
		return NULL;
	return ep->stream_info->stream_rings[stream_id];
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
/*
 * Change an endpoint's internal structure so it supports stream IDs.  The
 * number of requested streams includes stream 0, which cannot be used by device
 * drivers.
 *
 * The number of stream contexts in the stream context array may be bigger than
 * the number of streams the driver wants to use.  This is because the number of
 * stream context array entries must be a power of two.
 */
struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
		unsigned int num_stream_ctxs,
		unsigned int num_streams, gfp_t mem_flags)
{
	struct xhci_stream_info *stream_info;
	u32 cur_stream;
	struct xhci_ring *cur_ring;
	u64 addr;
	int ret;

	xhci_dbg(xhci, "Allocating %u streams and %u "
			"stream context array entries.\n",
			num_streams, num_stream_ctxs);
	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
		return NULL;
	}
	xhci->cmd_ring_reserved_trbs++;

	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
	if (!stream_info)
		goto cleanup_trbs;

	stream_info->num_streams = num_streams;
	stream_info->num_stream_ctxs = num_stream_ctxs;

	/* Initialize the array of virtual pointers to stream rings. */
	stream_info->stream_rings = kzalloc(
			sizeof(struct xhci_ring *)*num_streams,
			mem_flags);
	if (!stream_info->stream_rings)
		goto cleanup_info;

	/* Initialize the array of DMA addresses for stream rings for the HW. */
	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
			num_stream_ctxs, &stream_info->ctx_array_dma,
			mem_flags);
	if (!stream_info->stream_ctx_array)
		goto cleanup_ctx;
	memset(stream_info->stream_ctx_array, 0,
			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);

	/* Allocate everything needed to free the stream rings later */
	stream_info->free_streams_command =
		xhci_alloc_command(xhci, true, true, mem_flags);
	if (!stream_info->free_streams_command)
		goto cleanup_ctx;

	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);

	/* Allocate rings for all the streams that the driver will use,
	 * and add their segment DMA addresses to the radix tree.
	 * Stream 0 is reserved.
	 */
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		stream_info->stream_rings[cur_stream] =
709
			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
710 711 712
		cur_ring = stream_info->stream_rings[cur_stream];
		if (!cur_ring)
			goto cleanup_rings;
713
		cur_ring->stream_id = cur_stream;
G
Gerd Hoffmann 已提交
714
		cur_ring->trb_address_map = &stream_info->trb_address_map;
715 716 717 718
		/* Set deq ptr, cycle bit, and stream context type */
		addr = cur_ring->first_seg->dma |
			SCT_FOR_CTX(SCT_PRI_TR) |
			cur_ring->cycle_state;
719 720
		stream_info->stream_ctx_array[cur_stream].stream_ring =
			cpu_to_le64(addr);
721 722 723
		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
				cur_stream, (unsigned long long) addr);

G
Gerd Hoffmann 已提交
724
		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
		if (ret) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
			goto cleanup_rings;
		}
	}
	/* Leave the other unused stream ring pointers in the stream context
	 * array initialized to zero.  This will cause the xHC to give us an
	 * error if the device asks for a stream ID we don't have setup (if it
	 * was any other way, the host controller would assume the ring is
	 * "empty" and wait forever for data to be queued to that stream ID).
	 */

	return stream_info;

cleanup_rings:
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
cleanup_ctx:
	kfree(stream_info->stream_rings);
cleanup_info:
	kfree(stream_info);
cleanup_trbs:
	xhci->cmd_ring_reserved_trbs--;
	return NULL;
}
/*
 * Sets the MaxPStreams field and the Linear Stream Array field.
 * Sets the dequeue pointer to the stream context array.
 */
void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
		struct xhci_ep_ctx *ep_ctx,
		struct xhci_stream_info *stream_info)
{
	u32 max_primary_streams;
	/* MaxPStreams is the number of stream context array entries, not the
	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
	 */
	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
771 772
	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
			"Setting number of stream ctx array entries to %u",
773
			1 << (max_primary_streams + 1));
M
Matt Evans 已提交
774 775 776 777
	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
				       | EP_HAS_LSA);
	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
778 779 780 781 782 783 784
}

/*
 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 * not at the beginning of the ring).
 */
785
void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
786 787 788
		struct xhci_virt_ep *ep)
{
	dma_addr_t addr;
M
Matt Evans 已提交
789
	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
790
	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
M
Matt Evans 已提交
791
	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
}

/* Frees all stream contexts associated with the endpoint,
 *
 * Caller should fix the endpoint context streams fields.
 */
void xhci_free_stream_info(struct xhci_hcd *xhci,
		struct xhci_stream_info *stream_info)
{
	int cur_stream;
	struct xhci_ring *cur_ring;

	if (!stream_info)
		return;

	for (cur_stream = 1; cur_stream < stream_info->num_streams;
			cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
	xhci->cmd_ring_reserved_trbs--;
	if (stream_info->stream_ctx_array)
		xhci_free_stream_ctx(xhci,
				stream_info->num_stream_ctxs,
				stream_info->stream_ctx_array,
				stream_info->ctx_array_dma);

823
	kfree(stream_info->stream_rings);
824 825 826 827 828 829
	kfree(stream_info);
}


/***************** Device context manipulation *************************/

830 831 832
static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
		struct xhci_virt_ep *ep)
{
J
Julia Lawall 已提交
833 834
	setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
		    (unsigned long)ep);
835 836 837
	ep->xhci = xhci;
}

838 839 840 841 842
static void xhci_free_tt_info(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		int slot_id)
{
	struct list_head *tt_list_head;
843 844
	struct xhci_tt_bw_info *tt_info, *next;
	bool slot_found = false;
845 846 847 848 849 850 851 852 853 854 855

	/* If the device never made it past the Set Address stage,
	 * it may not have the real_port set correctly.
	 */
	if (virt_dev->real_port == 0 ||
			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
		xhci_dbg(xhci, "Bad real port.\n");
		return;
	}

	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
856 857 858 859 860 861 862
	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
		/* Multi-TT hubs will have more than one entry */
		if (tt_info->slot_id == slot_id) {
			slot_found = true;
			list_del(&tt_info->tt_list);
			kfree(tt_info);
		} else if (slot_found) {
863
			break;
864
		}
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	}
}

int xhci_alloc_tt_info(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *hdev,
		struct usb_tt *tt, gfp_t mem_flags)
{
	struct xhci_tt_bw_info		*tt_info;
	unsigned int			num_ports;
	int				i, j;

	if (!tt->multi)
		num_ports = 1;
	else
		num_ports = hdev->maxchild;

	for (i = 0; i < num_ports; i++, tt_info++) {
		struct xhci_interval_bw_table *bw_table;

		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
		if (!tt_info)
			goto free_tts;
		INIT_LIST_HEAD(&tt_info->tt_list);
		list_add(&tt_info->tt_list,
				&xhci->rh_bw[virt_dev->real_port - 1].tts);
		tt_info->slot_id = virt_dev->udev->slot_id;
		if (tt->multi)
			tt_info->ttport = i+1;
		bw_table = &tt_info->bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
	}
	return 0;

free_tts:
	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
	return -ENOMEM;
}


/* All the xhci_tds in the ring's TD list should be freed at this point.
 * Should be called with xhci->lock held if there is any chance the TT lists
 * will be manipulated by the configure endpoint, allocate device, or update
 * hub functions while this function is removing the TT entries from the list.
 */
911 912 913 914
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
{
	struct xhci_virt_device *dev;
	int i;
915
	int old_active_eps = 0;
916 917 918 919 920 921

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || !xhci->devs[slot_id])
		return;

	dev = xhci->devs[slot_id];
922
	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
923 924 925
	if (!dev)
		return;

926 927 928
	if (dev->tt_info)
		old_active_eps = dev->tt_info->active_eps;

929
	for (i = 0; i < 31; ++i) {
930 931
		if (dev->eps[i].ring)
			xhci_ring_free(xhci, dev->eps[i].ring);
932 933 934
		if (dev->eps[i].stream_info)
			xhci_free_stream_info(xhci,
					dev->eps[i].stream_info);
935 936 937 938 939 940 941 942 943
		/* Endpoints on the TT/root port lists should have been removed
		 * when usb_disable_device() was called for the device.
		 * We can't drop them anyway, because the udev might have gone
		 * away by this point, and we can't tell what speed it was.
		 */
		if (!list_empty(&dev->eps[i].bw_endpoint_list))
			xhci_warn(xhci, "Slot %u endpoint %u "
					"not removed from BW list!\n",
					slot_id, i);
944
	}
945 946
	/* If this is a hub, free the TT(s) from the TT list */
	xhci_free_tt_info(xhci, dev, slot_id);
947 948
	/* If necessary, update the number of active TTs on this root port */
	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
949

950 951 952 953 954 955
	if (dev->ring_cache) {
		for (i = 0; i < dev->num_rings_cached; i++)
			xhci_ring_free(xhci, dev->ring_cache[i]);
		kfree(dev->ring_cache);
	}

956
	if (dev->in_ctx)
957
		xhci_free_container_ctx(xhci, dev->in_ctx);
958
	if (dev->out_ctx)
959 960
		xhci_free_container_ctx(xhci, dev->out_ctx);

961
	kfree(xhci->devs[slot_id]);
962
	xhci->devs[slot_id] = NULL;
963 964 965 966 967 968
}

int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
		struct usb_device *udev, gfp_t flags)
{
	struct xhci_virt_device *dev;
969
	int i;
970 971 972 973 974 975 976 977 978 979 980 981

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || xhci->devs[slot_id]) {
		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
		return 0;
	}

	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
	if (!xhci->devs[slot_id])
		return 0;
	dev = xhci->devs[slot_id];

982 983
	/* Allocate the (output) device context that will be used in the HC. */
	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
984 985
	if (!dev->out_ctx)
		goto fail;
986

987
	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
988
			(unsigned long long)dev->out_ctx->dma);
989 990

	/* Allocate the (input) device context for address device command */
991
	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
992 993
	if (!dev->in_ctx)
		goto fail;
994

995
	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
996
			(unsigned long long)dev->in_ctx->dma);
997

998 999 1000
	/* Initialize the cancellation list and watchdog timers for each ep */
	for (i = 0; i < 31; i++) {
		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1001
		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1002
		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1003
	}
1004

1005
	/* Allocate endpoint 0 ring */
1006
	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1007
	if (!dev->eps[0].ring)
1008 1009
		goto fail;

1010 1011 1012 1013 1014 1015 1016 1017
	/* Allocate pointers to the ring cache */
	dev->ring_cache = kzalloc(
			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
			flags);
	if (!dev->ring_cache)
		goto fail;
	dev->num_rings_cached = 0;

1018
	init_completion(&dev->cmd_completion);
1019
	dev->udev = udev;
1020

1021
	/* Point to output device context in dcbaa. */
M
Matt Evans 已提交
1022
	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1023
	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
M
Matt Evans 已提交
1024 1025
		 slot_id,
		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1026
		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1027 1028 1029 1030 1031 1032 1033

	return 1;
fail:
	xhci_free_virt_device(xhci, slot_id);
	return 0;
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct xhci_virt_device *virt_dev;
	struct xhci_ep_ctx	*ep0_ctx;
	struct xhci_ring	*ep_ring;

	virt_dev = xhci->devs[udev->slot_id];
	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
	ep_ring = virt_dev->eps[0].ring;
	/*
	 * FIXME we don't keep track of the dequeue pointer very well after a
	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
	 * host to our enqueue pointer.  This should only be called after a
	 * configured device has reset, so all control transfers should have
	 * been completed or cancelled before the reset.
	 */
M
Matt Evans 已提交
1051 1052 1053
	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
							ep_ring->enqueue)
				   | ep_ring->cycle_state);
1054 1055
}

1056 1057 1058 1059 1060 1061 1062 1063 1064
/*
 * The xHCI roothub may have ports of differing speeds in any order in the port
 * status registers.  xhci->port_array provides an array of the port speed for
 * each offset into the port status registers.
 *
 * The xHCI hardware wants to know the roothub port number that the USB device
 * is attached to (or the roothub port its ancestor hub is attached to).  All we
 * know is the index of that port under either the USB 2.0 or the USB 3.0
 * roothub, but that doesn't give us the real index into the HW port status
1065
 * registers. Call xhci_find_raw_port_number() to get real index.
1066 1067 1068 1069 1070
 */
static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct usb_device *top_dev;
1071 1072
	struct usb_hcd *hcd;

1073
	if (udev->speed >= USB_SPEED_SUPER)
1074 1075 1076
		hcd = xhci->shared_hcd;
	else
		hcd = xhci->main_hcd;
1077 1078 1079 1080 1081

	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;

1082
	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1083 1084
}

1085 1086 1087 1088 1089
/* Setup an xHCI virtual device for a Set Address command */
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
{
	struct xhci_virt_device *dev;
	struct xhci_ep_ctx	*ep0_ctx;
1090
	struct xhci_slot_ctx    *slot_ctx;
1091
	u32			port_num;
1092
	u32			max_packets;
1093
	struct usb_device *top_dev;
1094 1095 1096 1097 1098 1099 1100 1101

	dev = xhci->devs[udev->slot_id];
	/* Slot ID 0 is reserved */
	if (udev->slot_id == 0 || !dev) {
		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
				udev->slot_id);
		return -EINVAL;
	}
1102 1103
	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1104 1105

	/* 3) Only the control endpoint is valid - one endpoint context */
1106
	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1107
	switch (udev->speed) {
1108
	case USB_SPEED_SUPER_PLUS:
1109 1110 1111
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
		max_packets = MAX_PACKET(512);
		break;
1112
	case USB_SPEED_SUPER:
1113
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1114
		max_packets = MAX_PACKET(512);
1115 1116
		break;
	case USB_SPEED_HIGH:
1117
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1118
		max_packets = MAX_PACKET(64);
1119
		break;
1120
	/* USB core guesses at a 64-byte max packet first for FS devices */
1121
	case USB_SPEED_FULL:
1122
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1123
		max_packets = MAX_PACKET(64);
1124 1125
		break;
	case USB_SPEED_LOW:
1126
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1127
		max_packets = MAX_PACKET(8);
1128
		break;
1129
	case USB_SPEED_WIRELESS:
1130 1131 1132 1133 1134
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* Speed was set earlier, this shouldn't happen. */
1135
		return -EINVAL;
1136 1137
	}
	/* Find the root hub port this device is under */
1138 1139 1140
	port_num = xhci_find_real_port_number(xhci, udev);
	if (!port_num)
		return -EINVAL;
1141
	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1142
	/* Set the port number in the virtual_device to the faked port number */
1143 1144 1145
	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;
1146
	dev->fake_port = top_dev->portnum;
1147
	dev->real_port = port_num;
1148
	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1149
	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	/* Find the right bandwidth table that this device will be a part of.
	 * If this is a full speed device attached directly to a root port (or a
	 * decendent of one), it counts as a primary bandwidth domain, not a
	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
	 * will never be created for the HS root hub.
	 */
	if (!udev->tt || !udev->tt->hub->parent) {
		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
	} else {
		struct xhci_root_port_bw_info *rh_bw;
		struct xhci_tt_bw_info *tt_bw;

		rh_bw = &xhci->rh_bw[port_num - 1];
		/* Find the right TT. */
		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
			if (tt_bw->slot_id != udev->tt->hub->slot_id)
				continue;

			if (!dev->udev->tt->multi ||
					(udev->tt->multi &&
					 tt_bw->ttport == dev->udev->ttport)) {
				dev->bw_table = &tt_bw->bw_table;
				dev->tt_info = tt_bw;
				break;
			}
		}
		if (!dev->tt_info)
			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
	}

S
Sarah Sharp 已提交
1181 1182
	/* Is this a LS/FS device under an external HS hub? */
	if (udev->tt && udev->tt->hub->parent) {
M
Matt Evans 已提交
1183 1184
		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
						(udev->ttport << 8));
1185
		if (udev->tt->multi)
M
Matt Evans 已提交
1186
			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1187
	}
1188
	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1189 1190 1191 1192
	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);

	/* Step 4 - ring already allocated */
	/* Step 5 */
M
Matt Evans 已提交
1193
	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1194

1195
	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1196 1197
	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
					 max_packets);
1198

M
Matt Evans 已提交
1199 1200
	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
				   dev->eps[0].ring->cycle_state);
1201 1202 1203 1204 1205 1206

	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */

	return 0;
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/*
 * Convert interval expressed as 2^(bInterval - 1) == interval into
 * straight exponent value 2^n == interval.
 *
 */
static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	unsigned int interval;

	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
	if (interval != ep->desc.bInterval - 1)
		dev_warn(&udev->dev,
1220
			 "ep %#x - rounding interval to %d %sframes\n",
1221
			 ep->desc.bEndpointAddress,
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
			 1 << interval,
			 udev->speed == USB_SPEED_FULL ? "" : "micro");

	if (udev->speed == USB_SPEED_FULL) {
		/*
		 * Full speed isoc endpoints specify interval in frames,
		 * not microframes. We are using microframes everywhere,
		 * so adjust accordingly.
		 */
		interval += 3;	/* 1 frame = 2^3 uframes */
	}
1233 1234 1235 1236 1237

	return interval;
}

/*
1238
 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1239 1240
 * microframes, rounded down to nearest power of 2.
 */
1241 1242 1243
static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
		struct usb_host_endpoint *ep, unsigned int desc_interval,
		unsigned int min_exponent, unsigned int max_exponent)
1244 1245 1246
{
	unsigned int interval;

1247 1248 1249
	interval = fls(desc_interval) - 1;
	interval = clamp_val(interval, min_exponent, max_exponent);
	if ((1 << interval) != desc_interval)
1250
		dev_dbg(&udev->dev,
1251 1252 1253
			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
			 ep->desc.bEndpointAddress,
			 1 << interval,
1254
			 desc_interval);
1255 1256 1257 1258

	return interval;
}

1259 1260 1261
static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
1262 1263
	if (ep->desc.bInterval == 0)
		return 0;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	return xhci_microframes_to_exponent(udev, ep,
			ep->desc.bInterval, 0, 15);
}


static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	return xhci_microframes_to_exponent(udev, ep,
			ep->desc.bInterval * 8, 3, 10);
}

1276 1277 1278 1279 1280 1281 1282 1283
/* Return the polling or NAK interval.
 *
 * The polling interval is expressed in "microframes".  If xHCI's Interval field
 * is set to N, it will service the endpoint every 2^(Interval)*125us.
 *
 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
 * is set to 0.
 */
1284
static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1285 1286 1287 1288 1289 1290 1291 1292
		struct usb_host_endpoint *ep)
{
	unsigned int interval = 0;

	switch (udev->speed) {
	case USB_SPEED_HIGH:
		/* Max NAK rate */
		if (usb_endpoint_xfer_control(&ep->desc) ||
1293
		    usb_endpoint_xfer_bulk(&ep->desc)) {
1294
			interval = xhci_parse_microframe_interval(udev, ep);
1295 1296
			break;
		}
1297
		/* Fall through - SS and HS isoc/int have same decoding */
1298

1299
	case USB_SPEED_SUPER_PLUS:
1300 1301
	case USB_SPEED_SUPER:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1302 1303
		    usb_endpoint_xfer_isoc(&ep->desc)) {
			interval = xhci_parse_exponent_interval(udev, ep);
1304 1305
		}
		break;
1306

1307
	case USB_SPEED_FULL:
1308
		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1309 1310 1311 1312
			interval = xhci_parse_exponent_interval(udev, ep);
			break;
		}
		/*
1313
		 * Fall through for interrupt endpoint interval decoding
1314 1315 1316 1317
		 * since it uses the same rules as low speed interrupt
		 * endpoints.
		 */

1318 1319
	case USB_SPEED_LOW:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1320 1321 1322
		    usb_endpoint_xfer_isoc(&ep->desc)) {

			interval = xhci_parse_frame_interval(udev, ep);
1323 1324
		}
		break;
1325

1326 1327 1328 1329 1330 1331
	default:
		BUG();
	}
	return EP_INTERVAL(interval);
}

1332
/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1333 1334 1335 1336
 * High speed endpoint descriptors can define "the number of additional
 * transaction opportunities per microframe", but that goes in the Max Burst
 * endpoint context field.
 */
1337
static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1338 1339
		struct usb_host_endpoint *ep)
{
1340
	if (udev->speed < USB_SPEED_SUPER ||
1341
			!usb_endpoint_xfer_isoc(&ep->desc))
1342
		return 0;
1343
	return ep->ss_ep_comp.bmAttributes;
1344 1345
}

1346
static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
{
	int in;
	u32 type;

	in = usb_endpoint_dir_in(&ep->desc);
	if (usb_endpoint_xfer_control(&ep->desc)) {
		type = EP_TYPE(CTRL_EP);
	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
		if (in)
			type = EP_TYPE(BULK_IN_EP);
		else
			type = EP_TYPE(BULK_OUT_EP);
	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
		if (in)
			type = EP_TYPE(ISOC_IN_EP);
		else
			type = EP_TYPE(ISOC_OUT_EP);
	} else if (usb_endpoint_xfer_int(&ep->desc)) {
		if (in)
			type = EP_TYPE(INT_IN_EP);
		else
			type = EP_TYPE(INT_OUT_EP);
	} else {
1370
		type = 0;
1371 1372 1373 1374
	}
	return type;
}

1375 1376 1377 1378
/* Return the maximum endpoint service interval time (ESIT) payload.
 * Basically, this is the maxpacket size, multiplied by the burst size
 * and mult size.
 */
1379
static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
		struct usb_host_endpoint *ep)
{
	int max_burst;
	int max_packet;

	/* Only applies for interrupt or isochronous endpoints */
	if (usb_endpoint_xfer_control(&ep->desc) ||
			usb_endpoint_xfer_bulk(&ep->desc))
		return 0;

1390
	if (udev->speed >= USB_SPEED_SUPER)
1391
		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1392

1393 1394
	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1395 1396 1397 1398
	/* A 0 in max burst means 1 transfer per ESIT */
	return max_packet * (max_burst + 1);
}

1399 1400 1401
/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
 * Drivers will have to call usb_alloc_streams() to do that.
 */
1402 1403 1404
int xhci_endpoint_init(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *udev,
1405 1406
		struct usb_host_endpoint *ep,
		gfp_t mem_flags)
1407 1408 1409 1410 1411 1412
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;
	struct xhci_ring *ep_ring;
	unsigned int max_packet;
	unsigned int max_burst;
A
Andiry Xu 已提交
1413
	enum xhci_ring_type type;
1414
	u32 max_esit_payload;
1415
	u32 endpoint_type;
1416 1417

	ep_index = xhci_get_endpoint_index(&ep->desc);
1418
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1419

1420
	endpoint_type = xhci_get_endpoint_type(ep);
1421 1422 1423 1424
	if (!endpoint_type)
		return -EINVAL;
	ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);

A
Andiry Xu 已提交
1425
	type = usb_endpoint_type(&ep->desc);
1426
	/* Set up the endpoint ring */
A
Andiry Xu 已提交
1427
	virt_dev->eps[ep_index].new_ring =
1428
		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1429 1430 1431 1432
	if (!virt_dev->eps[ep_index].new_ring) {
		/* Attempt to use the ring cache */
		if (virt_dev->num_rings_cached == 0)
			return -ENOMEM;
1433
		virt_dev->num_rings_cached--;
1434 1435 1436
		virt_dev->eps[ep_index].new_ring =
			virt_dev->ring_cache[virt_dev->num_rings_cached];
		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1437
		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1438
					1, type);
1439
	}
1440
	virt_dev->eps[ep_index].skip = false;
1441
	ep_ring = virt_dev->eps[ep_index].new_ring;
M
Matt Evans 已提交
1442
	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1443

M
Matt Evans 已提交
1444 1445
	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1446 1447 1448

	/* FIXME dig Mult and streams info out of ep companion desc */

1449
	/* Allow 3 retries for everything but isoc;
1450
	 * CErr shall be set to 0 for Isoch endpoints.
1451
	 */
1452
	if (!usb_endpoint_xfer_isoc(&ep->desc))
1453
		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1454
	else
1455
		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1456 1457

	/* Set the max packet size and max burst */
1458 1459
	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
	max_burst = 0;
1460
	switch (udev->speed) {
1461
	case USB_SPEED_SUPER_PLUS:
1462
	case USB_SPEED_SUPER:
S
Sarah Sharp 已提交
1463
		/* dig out max burst from ep companion desc */
1464
		max_burst = ep->ss_ep_comp.bMaxBurst;
1465 1466
		break;
	case USB_SPEED_HIGH:
1467 1468 1469
		/* Some devices get this wrong */
		if (usb_endpoint_xfer_bulk(&ep->desc))
			max_packet = 512;
1470 1471 1472 1473 1474
		/* bits 11:12 specify the number of additional transaction
		 * opportunities per microframe (USB 2.0, section 9.6.6)
		 */
		if (usb_endpoint_xfer_isoc(&ep->desc) ||
				usb_endpoint_xfer_int(&ep->desc)) {
1475
			max_burst = (usb_endpoint_maxp(&ep->desc)
M
Matt Evans 已提交
1476
				     & 0x1800) >> 11;
1477
		}
1478
		break;
1479 1480 1481 1482 1483 1484
	case USB_SPEED_FULL:
	case USB_SPEED_LOW:
		break;
	default:
		BUG();
	}
1485 1486
	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
			MAX_BURST(max_burst));
1487
	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
M
Matt Evans 已提交
1488
	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

	/*
	 * XXX no idea how to calculate the average TRB buffer length for bulk
	 * endpoints, as the driver gives us no clue how big each scatter gather
	 * list entry (or buffer) is going to be.
	 *
	 * For isochronous and interrupt endpoints, we set it to the max
	 * available, until we have new API in the USB core to allow drivers to
	 * declare how much bandwidth they actually need.
	 *
	 * Normally, it would be calculated by taking the total of the buffer
	 * lengths in the TD and then dividing by the number of TRBs in a TD,
	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
	 * use Event Data TRBs, and we don't chain in a link TRB on short
	 * transfers, we're basically dividing by 1.
1504
	 *
1505 1506
	 * xHCI 1.0 and 1.1 specification indicates that the Average TRB Length
	 * should be set to 8 for control endpoints.
1507
	 */
1508
	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1509 1510 1511 1512
		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
	else
		ep_ctx->tx_info |=
			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1513

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	/* FIXME Debug endpoint context */
	return 0;
}

void xhci_endpoint_zero(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_host_endpoint *ep)
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;

	ep_index = xhci_get_endpoint_index(&ep->desc);
1526
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1527 1528 1529

	ep_ctx->ep_info = 0;
	ep_ctx->ep_info2 = 0;
1530
	ep_ctx->deq = 0;
1531 1532 1533 1534 1535 1536
	ep_ctx->tx_info = 0;
	/* Don't free the endpoint ring until the set interface or configuration
	 * request succeeds.
	 */
}

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
{
	bw_info->ep_interval = 0;
	bw_info->mult = 0;
	bw_info->num_packets = 0;
	bw_info->max_packet_size = 0;
	bw_info->type = 0;
	bw_info->max_esit_payload = 0;
}

void xhci_update_bw_info(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_input_control_ctx *ctrl_ctx,
		struct xhci_virt_device *virt_dev)
{
	struct xhci_bw_info *bw_info;
	struct xhci_ep_ctx *ep_ctx;
	unsigned int ep_type;
	int i;

	for (i = 1; i < 31; ++i) {
		bw_info = &virt_dev->eps[i].bw_info;

		/* We can't tell what endpoint type is being dropped, but
		 * unconditionally clearing the bandwidth info for non-periodic
		 * endpoints should be harmless because the info will never be
		 * set in the first place.
		 */
		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
			/* Dropped endpoint */
			xhci_clear_endpoint_bw_info(bw_info);
			continue;
		}

		if (EP_IS_ADDED(ctrl_ctx, i)) {
			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));

			/* Ignore non-periodic endpoints */
			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
					ep_type != ISOC_IN_EP &&
					ep_type != INT_IN_EP)
				continue;

			/* Added or changed endpoint */
			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
					le32_to_cpu(ep_ctx->ep_info));
1584 1585 1586
			/* Number of packets and mult are zero-based in the
			 * input context, but we want one-based for the
			 * interval table.
1587
			 */
1588 1589
			bw_info->mult = CTX_TO_EP_MULT(
					le32_to_cpu(ep_ctx->ep_info)) + 1;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
			bw_info->num_packets = CTX_TO_MAX_BURST(
					le32_to_cpu(ep_ctx->ep_info2)) + 1;
			bw_info->max_packet_size = MAX_PACKET_DECODED(
					le32_to_cpu(ep_ctx->ep_info2));
			bw_info->type = ep_type;
			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
					le32_to_cpu(ep_ctx->tx_info));
		}
	}
}

1601 1602 1603 1604 1605
/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.
 */
void xhci_endpoint_copy(struct xhci_hcd *xhci,
1606 1607 1608
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx,
		unsigned int ep_index)
1609 1610 1611 1612
{
	struct xhci_ep_ctx *out_ep_ctx;
	struct xhci_ep_ctx *in_ep_ctx;

1613 1614
	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
	in_ep_ctx->deq = out_ep_ctx->deq;
	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
}

/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.  Only the context entries field matters,
 * but we'll copy the whole thing anyway.
 */
1627 1628 1629
void xhci_slot_copy(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx)
1630 1631 1632 1633
{
	struct xhci_slot_ctx *in_slot_ctx;
	struct xhci_slot_ctx *out_slot_ctx;

1634 1635
	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1636 1637 1638 1639 1640 1641 1642

	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
}

1643 1644 1645 1646 1647 1648 1649
/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	int i;
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

1650 1651
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Allocating %d scratchpad buffers", num_sp);
1652 1653 1654 1655 1656 1657 1658 1659

	if (!num_sp)
		return 0;

	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
	if (!xhci->scratchpad)
		goto fail_sp;

1660
	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1661
				     num_sp * sizeof(u64),
1662
				     &xhci->scratchpad->sp_dma, flags);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	if (!xhci->scratchpad->sp_array)
		goto fail_sp2;

	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
	if (!xhci->scratchpad->sp_buffers)
		goto fail_sp3;

	xhci->scratchpad->sp_dma_buffers =
		kzalloc(sizeof(dma_addr_t) * num_sp, flags);

	if (!xhci->scratchpad->sp_dma_buffers)
		goto fail_sp4;

M
Matt Evans 已提交
1676
	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1677 1678
	for (i = 0; i < num_sp; i++) {
		dma_addr_t dma;
1679 1680
		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
				flags);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		if (!buf)
			goto fail_sp5;

		xhci->scratchpad->sp_array[i] = dma;
		xhci->scratchpad->sp_buffers[i] = buf;
		xhci->scratchpad->sp_dma_buffers[i] = dma;
	}

	return 0;

 fail_sp5:
	for (i = i - 1; i >= 0; i--) {
1693
		dma_free_coherent(dev, xhci->page_size,
1694 1695 1696 1697 1698 1699 1700 1701 1702
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);

 fail_sp4:
	kfree(xhci->scratchpad->sp_buffers);

 fail_sp3:
1703
	dma_free_coherent(dev, num_sp * sizeof(u64),
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);

 fail_sp2:
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;

 fail_sp:
	return -ENOMEM;
}

static void scratchpad_free(struct xhci_hcd *xhci)
{
	int num_sp;
	int i;
1719
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1720 1721 1722 1723 1724 1725 1726

	if (!xhci->scratchpad)
		return;

	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	for (i = 0; i < num_sp; i++) {
1727
		dma_free_coherent(dev, xhci->page_size,
1728 1729 1730 1731 1732
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);
	kfree(xhci->scratchpad->sp_buffers);
1733
	dma_free_coherent(dev, num_sp * sizeof(u64),
1734 1735 1736 1737 1738 1739
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;
}

1740
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1741 1742
		bool allocate_in_ctx, bool allocate_completion,
		gfp_t mem_flags)
1743 1744 1745 1746 1747 1748 1749
{
	struct xhci_command *command;

	command = kzalloc(sizeof(*command), mem_flags);
	if (!command)
		return NULL;

1750 1751 1752 1753 1754 1755 1756 1757
	if (allocate_in_ctx) {
		command->in_ctx =
			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
					mem_flags);
		if (!command->in_ctx) {
			kfree(command);
			return NULL;
		}
1758
	}
1759 1760 1761 1762 1763 1764

	if (allocate_completion) {
		command->completion =
			kzalloc(sizeof(struct completion), mem_flags);
		if (!command->completion) {
			xhci_free_container_ctx(xhci, command->in_ctx);
1765
			kfree(command);
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
			return NULL;
		}
		init_completion(command->completion);
	}

	command->status = 0;
	INIT_LIST_HEAD(&command->cmd_list);
	return command;
}

1776
void xhci_urb_free_priv(struct urb_priv *urb_priv)
1777
{
A
Andiry Xu 已提交
1778 1779 1780
	if (urb_priv) {
		kfree(urb_priv->td[0]);
		kfree(urb_priv);
1781 1782 1783
	}
}

1784 1785 1786 1787 1788 1789 1790 1791 1792
void xhci_free_command(struct xhci_hcd *xhci,
		struct xhci_command *command)
{
	xhci_free_container_ctx(xhci,
			command->in_ctx);
	kfree(command->completion);
	kfree(command);
}

1793 1794
void xhci_mem_cleanup(struct xhci_hcd *xhci)
{
1795
	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1796
	int size;
1797
	int i, j, num_ports;
1798

1799
	del_timer_sync(&xhci->cmd_timer);
1800

1801 1802 1803
	/* Free the Event Ring Segment Table and the actual Event Ring */
	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
	if (xhci->erst.entries)
1804
		dma_free_coherent(dev, size,
1805 1806
				xhci->erst.entries, xhci->erst.erst_dma_addr);
	xhci->erst.entries = NULL;
1807
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1808 1809 1810
	if (xhci->event_ring)
		xhci_ring_free(xhci, xhci->event_ring);
	xhci->event_ring = NULL;
1811
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1812

1813 1814
	if (xhci->lpm_command)
		xhci_free_command(xhci, xhci->lpm_command);
1815
	xhci->lpm_command = NULL;
1816 1817 1818
	if (xhci->cmd_ring)
		xhci_ring_free(xhci, xhci->cmd_ring);
	xhci->cmd_ring = NULL;
1819
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
M
Mathias Nyman 已提交
1820
	xhci_cleanup_command_queue(xhci);
1821

1822
	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1823
	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1824 1825 1826 1827 1828 1829 1830 1831
		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
			struct list_head *ep = &bwt->interval_bw[j].endpoints;
			while (!list_empty(ep))
				list_del_init(ep->next);
		}
	}

1832 1833 1834
	for (i = 1; i < MAX_HC_SLOTS; ++i)
		xhci_free_virt_device(xhci, i);

1835
	dma_pool_destroy(xhci->segment_pool);
1836
	xhci->segment_pool = NULL;
1837
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1838

1839
	dma_pool_destroy(xhci->device_pool);
1840
	xhci->device_pool = NULL;
1841
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1842

1843
	dma_pool_destroy(xhci->small_streams_pool);
1844
	xhci->small_streams_pool = NULL;
1845 1846
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Freed small stream array pool");
1847

1848
	dma_pool_destroy(xhci->medium_streams_pool);
1849
	xhci->medium_streams_pool = NULL;
1850 1851
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Freed medium stream array pool");
1852

1853
	if (xhci->dcbaa)
1854
		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1855 1856
				xhci->dcbaa, xhci->dcbaa->dma);
	xhci->dcbaa = NULL;
1857

1858
	scratchpad_free(xhci);
1859

1860 1861 1862
	if (!xhci->rh_bw)
		goto no_bw;

1863 1864 1865 1866 1867 1868
	for (i = 0; i < num_ports; i++) {
		struct xhci_tt_bw_info *tt, *n;
		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
			list_del(&tt->tt_list);
			kfree(tt);
		}
1869 1870
	}

1871
no_bw:
1872
	xhci->cmd_ring_reserved_trbs = 0;
1873 1874
	xhci->num_usb2_ports = 0;
	xhci->num_usb3_ports = 0;
1875
	xhci->num_active_eps = 0;
1876 1877 1878
	kfree(xhci->usb2_ports);
	kfree(xhci->usb3_ports);
	kfree(xhci->port_array);
1879
	kfree(xhci->rh_bw);
1880
	kfree(xhci->ext_caps);
1881

1882 1883
	xhci->page_size = 0;
	xhci->page_shift = 0;
1884
	xhci->bus_state[0].bus_suspended = 0;
1885
	xhci->bus_state[1].bus_suspended = 0;
1886 1887
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
		struct xhci_segment *input_seg,
		union xhci_trb *start_trb,
		union xhci_trb *end_trb,
		dma_addr_t input_dma,
		struct xhci_segment *result_seg,
		char *test_name, int test_number)
{
	unsigned long long start_dma;
	unsigned long long end_dma;
	struct xhci_segment *seg;

	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);

1903
	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	if (seg != result_seg) {
		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
				test_name, test_number);
		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
				"input DMA 0x%llx\n",
				input_seg,
				(unsigned long long) input_dma);
		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
				"ending TRB %p (0x%llx DMA)\n",
				start_trb, start_dma,
				end_trb, end_dma);
		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
				result_seg, seg);
1917 1918
		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
			  true);
1919 1920 1921 1922 1923 1924
		return -1;
	}
	return 0;
}

/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1925
static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
{
	struct {
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} simple_test_vector [] = {
		/* A zeroed DMA field should fail */
		{ 0, NULL },
		/* One TRB before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 16, NULL },
		/* One byte before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 1, NULL },
		/* Starting TRB should succeed */
		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
		/* Ending TRB should succeed */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
			xhci->event_ring->first_seg },
		/* One byte after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
		/* One TRB after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
		/* An address of all ones should fail */
		{ (dma_addr_t) (~0), NULL },
	};
	struct {
		struct xhci_segment	*input_seg;
		union xhci_trb		*start_trb;
		union xhci_trb		*end_trb;
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} complex_test_vector [] = {
		/* Test feeding a valid DMA address from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid start and end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->cmd_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[0],
			.end_trb = &xhci->event_ring->first_seg->trbs[3],
			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[3],
			.end_trb = &xhci->event_ring->first_seg->trbs[6],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
			.result_seg = NULL,
		},
		/* TRB not in this ring, and we have a wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
	};

	unsigned int num_tests;
	int i, ret;

2017
	num_tests = ARRAY_SIZE(simple_test_vector);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				xhci->event_ring->first_seg,
				xhci->event_ring->first_seg->trbs,
				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
				simple_test_vector[i].input_dma,
				simple_test_vector[i].result_seg,
				"Simple", i);
		if (ret < 0)
			return ret;
	}

2030
	num_tests = ARRAY_SIZE(complex_test_vector);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				complex_test_vector[i].input_seg,
				complex_test_vector[i].start_trb,
				complex_test_vector[i].end_trb,
				complex_test_vector[i].input_dma,
				complex_test_vector[i].result_seg,
				"Complex", i);
		if (ret < 0)
			return ret;
	}
	xhci_dbg(xhci, "TRB math tests passed.\n");
	return 0;
}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
{
	u64 temp;
	dma_addr_t deq;

	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
			xhci->event_ring->dequeue);
	if (deq == 0 && !in_interrupt())
		xhci_warn(xhci, "WARN something wrong with SW event ring "
				"dequeue ptr.\n");
	/* Update HC event ring dequeue pointer */
2057
	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2058 2059 2060 2061 2062
	temp &= ERST_PTR_MASK;
	/* Don't clear the EHB bit (which is RW1C) because
	 * there might be more events to service.
	 */
	temp &= ~ERST_EHB;
2063 2064 2065
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Write event ring dequeue pointer, "
			"preserving EHB bit");
2066
	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2067 2068 2069
			&xhci->ir_set->erst_dequeue);
}

2070
static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2071
		__le32 __iomem *addr, int max_caps)
2072 2073 2074
{
	u32 temp, port_offset, port_count;
	int i;
2075
	u8 major_revision;
2076
	struct xhci_hub *rhub;
2077

2078
	temp = readl(addr);
2079
	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2080

2081
	if (major_revision == 0x03) {
2082
		rhub = &xhci->usb3_rhub;
2083
	} else if (major_revision <= 0x02) {
2084 2085
		rhub = &xhci->usb2_rhub;
	} else {
2086 2087 2088 2089 2090 2091
		xhci_warn(xhci, "Ignoring unknown port speed, "
				"Ext Cap %p, revision = 0x%x\n",
				addr, major_revision);
		/* Ignoring port protocol we can't understand. FIXME */
		return;
	}
2092 2093
	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
	rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2094 2095

	/* Port offset and count in the third dword, see section 7.2 */
2096
	temp = readl(addr + 2);
2097 2098
	port_offset = XHCI_EXT_PORT_OFF(temp);
	port_count = XHCI_EXT_PORT_COUNT(temp);
2099 2100 2101
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Ext Cap %p, port offset = %u, "
			"count = %u, revision = 0x%x",
2102 2103 2104 2105 2106
			addr, port_offset, port_count, major_revision);
	/* Port count includes the current port offset */
	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
		/* WTF? "Valid values are ‘1’ to MaxPorts" */
		return;
A
Andiry Xu 已提交
2107

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
	if (rhub->psi_count) {
		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
				    GFP_KERNEL);
		if (!rhub->psi)
			rhub->psi_count = 0;

		rhub->psi_uid_count++;
		for (i = 0; i < rhub->psi_count; i++) {
			rhub->psi[i] = readl(addr + 4 + i);

			/* count unique ID values, two consecutive entries can
			 * have the same ID if link is assymetric
			 */
			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
				rhub->psi_uid_count++;

			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
				  XHCI_EXT_PORT_LP(rhub->psi[i]),
				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
		}
	}
2135 2136 2137 2138
	/* cache usb2 port capabilities */
	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
		xhci->ext_caps[xhci->num_ext_caps++] = temp;

A
Andiry Xu 已提交
2139 2140 2141
	/* Check the host's USB2 LPM capability */
	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
			(temp & XHCI_L1C)) {
2142 2143
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"xHCI 0.96: support USB2 software lpm");
A
Andiry Xu 已提交
2144 2145 2146 2147
		xhci->sw_lpm_support = 1;
	}

	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2148 2149
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"xHCI 1.0: support USB2 software lpm");
A
Andiry Xu 已提交
2150 2151
		xhci->sw_lpm_support = 1;
		if (temp & XHCI_HLC) {
2152 2153
			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
					"xHCI 1.0: support USB2 hardware lpm");
A
Andiry Xu 已提交
2154 2155 2156 2157
			xhci->hw_lpm_support = 1;
		}
	}

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	port_offset--;
	for (i = port_offset; i < (port_offset + port_count); i++) {
		/* Duplicate entry.  Ignore the port if the revisions differ. */
		if (xhci->port_array[i] != 0) {
			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
					" port %u\n", addr, i);
			xhci_warn(xhci, "Port was marked as USB %u, "
					"duplicated as USB %u\n",
					xhci->port_array[i], major_revision);
			/* Only adjust the roothub port counts if we haven't
			 * found a similar duplicate.
			 */
			if (xhci->port_array[i] != major_revision &&
2171
				xhci->port_array[i] != DUPLICATE_ENTRY) {
2172 2173 2174 2175
				if (xhci->port_array[i] == 0x03)
					xhci->num_usb3_ports--;
				else
					xhci->num_usb2_ports--;
2176
				xhci->port_array[i] = DUPLICATE_ENTRY;
2177 2178
			}
			/* FIXME: Should we disable the port? */
2179
			continue;
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
		}
		xhci->port_array[i] = major_revision;
		if (major_revision == 0x03)
			xhci->num_usb3_ports++;
		else
			xhci->num_usb2_ports++;
	}
	/* FIXME: Should we disable ports not in the Extended Capabilities? */
}

/*
 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
 * specify what speeds each port is supposed to be.  We can't count on the port
 * speed bits in the PORTSC register being correct until a device is connected,
 * but we need to set up the two fake roothubs with the correct number of USB
 * 3.0 and USB 2.0 ports at host controller initialization time.
 */
static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
{
2199 2200
	void __iomem *base;
	u32 offset;
2201
	unsigned int num_ports;
2202
	int i, j, port_index;
2203
	int cap_count = 0;
2204
	u32 cap_start;
2205 2206 2207 2208 2209 2210

	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
	if (!xhci->port_array)
		return -ENOMEM;

2211 2212 2213
	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
	if (!xhci->rh_bw)
		return -ENOMEM;
2214 2215 2216
	for (i = 0; i < num_ports; i++) {
		struct xhci_interval_bw_table *bw_table;

2217
		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2218 2219 2220 2221
		bw_table = &xhci->rh_bw[i].bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
	}
2222
	base = &xhci->cap_regs->hc_capbase;
2223

2224 2225 2226 2227 2228
	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
	if (!cap_start) {
		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
		return -ENODEV;
	}
2229

2230
	offset = cap_start;
2231
	/* count extended protocol capability entries for later caching */
2232 2233 2234 2235 2236
	while (offset) {
		cap_count++;
		offset = xhci_find_next_ext_cap(base, offset,
						      XHCI_EXT_CAPS_PROTOCOL);
	}
2237 2238 2239 2240 2241

	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
	if (!xhci->ext_caps)
		return -ENOMEM;

2242 2243 2244 2245 2246
	offset = cap_start;

	while (offset) {
		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2247
			break;
2248 2249
		offset = xhci_find_next_ext_cap(base, offset,
						XHCI_EXT_CAPS_PROTOCOL);
2250 2251 2252 2253 2254 2255
	}

	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
		xhci_warn(xhci, "No ports on the roothubs?\n");
		return -ENODEV;
	}
2256 2257
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2258
			xhci->num_usb2_ports, xhci->num_usb3_ports);
2259 2260 2261 2262 2263

	/* Place limits on the number of roothub ports so that the hub
	 * descriptors aren't longer than the USB core will allocate.
	 */
	if (xhci->num_usb3_ports > 15) {
2264 2265
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"Limiting USB 3.0 roothub ports to 15.");
2266 2267 2268
		xhci->num_usb3_ports = 15;
	}
	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2269 2270
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"Limiting USB 2.0 roothub ports to %u.",
2271 2272 2273 2274
				USB_MAXCHILDREN);
		xhci->num_usb2_ports = USB_MAXCHILDREN;
	}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	/*
	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
	 * Not sure how the USB core will handle a hub with no ports...
	 */
	if (xhci->num_usb2_ports) {
		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
				xhci->num_usb2_ports, flags);
		if (!xhci->usb2_ports)
			return -ENOMEM;

		port_index = 0;
2286 2287 2288
		for (i = 0; i < num_ports; i++) {
			if (xhci->port_array[i] == 0x03 ||
					xhci->port_array[i] == 0 ||
2289
					xhci->port_array[i] == DUPLICATE_ENTRY)
2290 2291 2292 2293 2294
				continue;

			xhci->usb2_ports[port_index] =
				&xhci->op_regs->port_status_base +
				NUM_PORT_REGS*i;
2295 2296 2297
			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
					"USB 2.0 port at index %u, "
					"addr = %p", i,
2298 2299
					xhci->usb2_ports[port_index]);
			port_index++;
2300 2301
			if (port_index == xhci->num_usb2_ports)
				break;
2302
		}
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
	}
	if (xhci->num_usb3_ports) {
		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
				xhci->num_usb3_ports, flags);
		if (!xhci->usb3_ports)
			return -ENOMEM;

		port_index = 0;
		for (i = 0; i < num_ports; i++)
			if (xhci->port_array[i] == 0x03) {
				xhci->usb3_ports[port_index] =
					&xhci->op_regs->port_status_base +
					NUM_PORT_REGS*i;
2316 2317 2318
				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
						"USB 3.0 port at index %u, "
						"addr = %p", i,
2319 2320
						xhci->usb3_ports[port_index]);
				port_index++;
2321 2322
				if (port_index == xhci->num_usb3_ports)
					break;
2323 2324 2325 2326
			}
	}
	return 0;
}
2327

2328 2329
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
{
2330 2331
	dma_addr_t	dma;
	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2332
	unsigned int	val, val2;
2333
	u64		val_64;
2334
	struct xhci_segment	*seg;
2335
	u32 page_size, temp;
2336 2337
	int i;

M
Mathias Nyman 已提交
2338
	INIT_LIST_HEAD(&xhci->cmd_list);
2339

2340 2341 2342 2343
	/* init command timeout timer */
	setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
		    (unsigned long)xhci);

2344
	page_size = readl(&xhci->op_regs->page_size);
2345 2346
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Supported page size register = 0x%x", page_size);
2347 2348 2349 2350 2351 2352
	for (i = 0; i < 16; i++) {
		if ((0x1 & page_size) != 0)
			break;
		page_size = page_size >> 1;
	}
	if (i < 16)
2353 2354
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Supported page size of %iK", (1 << (i+12)) / 1024);
2355 2356 2357 2358 2359
	else
		xhci_warn(xhci, "WARN: no supported page size\n");
	/* Use 4K pages, since that's common and the minimum the HC supports */
	xhci->page_shift = 12;
	xhci->page_size = 1 << xhci->page_shift;
2360 2361
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"HCD page size set to %iK", xhci->page_size / 1024);
2362 2363 2364 2365 2366

	/*
	 * Program the Number of Device Slots Enabled field in the CONFIG
	 * register with the max value of slots the HC can handle.
	 */
2367
	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2368 2369
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// xHC can handle at most %d device slots.", val);
2370
	val2 = readl(&xhci->op_regs->config_reg);
2371
	val |= (val2 & ~HCS_SLOTS_MASK);
2372 2373
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Setting Max device slots reg = 0x%x.", val);
2374
	writel(val, &xhci->op_regs->config_reg);
2375

2376 2377 2378 2379
	/*
	 * Section 5.4.8 - doorbell array must be
	 * "physically contiguous and 64-byte (cache line) aligned".
	 */
2380 2381
	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
			GFP_KERNEL);
2382 2383 2384 2385
	if (!xhci->dcbaa)
		goto fail;
	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
	xhci->dcbaa->dma = dma;
2386 2387
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2388
			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2389
	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2390

2391 2392 2393
	/*
	 * Initialize the ring segment pool.  The ring must be a contiguous
	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2394 2395 2396
	 * however, the command ring segment needs 64-byte aligned segments
	 * and our use of dma addresses in the trb_address_map radix tree needs
	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2397 2398
	 */
	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2399
			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2400

2401 2402
	/* See Table 46 and Note on Figure 55 */
	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2403
			2112, 64, xhci->page_size);
2404
	if (!xhci->segment_pool || !xhci->device_pool)
2405 2406
		goto fail;

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	/* Linear stream context arrays don't have any boundary restrictions,
	 * and only need to be 16-byte aligned.
	 */
	xhci->small_streams_pool =
		dma_pool_create("xHCI 256 byte stream ctx arrays",
			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
	xhci->medium_streams_pool =
		dma_pool_create("xHCI 1KB stream ctx arrays",
			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2417
	 * will be allocated with dma_alloc_coherent()
2418 2419 2420 2421 2422
	 */

	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
		goto fail;

2423
	/* Set up the command ring to have one segments for now. */
2424
	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2425 2426
	if (!xhci->cmd_ring)
		goto fail;
2427 2428 2429
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Allocated command ring at %p", xhci->cmd_ring);
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2430
			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2431 2432

	/* Set the address in the Command Ring Control register */
2433
	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2434 2435
	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2436
		xhci->cmd_ring->cycle_state;
2437 2438
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Setting command ring address to 0x%x", val);
2439
	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2440 2441
	xhci_dbg_cmd_ptrs(xhci);

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
	if (!xhci->lpm_command)
		goto fail;

	/* Reserve one command ring TRB for disabling LPM.
	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
	 * disabling LPM, we only need to reserve one TRB for all devices.
	 */
	xhci->cmd_ring_reserved_trbs++;

2452
	val = readl(&xhci->cap_regs->db_off);
2453
	val &= DBOFF_MASK;
2454 2455 2456
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Doorbell array is located at offset 0x%x"
			" from cap regs base addr", val);
2457
	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2458 2459 2460
	xhci_dbg_regs(xhci);
	xhci_print_run_regs(xhci);
	/* Set ir_set to interrupt register set 0 */
2461
	xhci->ir_set = &xhci->run_regs->ir_set[0];
2462 2463 2464 2465 2466

	/*
	 * Event ring setup: Allocate a normal ring, but also setup
	 * the event ring segment table (ERST).  Section 4.9.3.
	 */
2467
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2468
	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2469
						flags);
2470 2471
	if (!xhci->event_ring)
		goto fail;
2472
	if (xhci_check_trb_in_td_math(xhci) < 0)
2473
		goto fail;
2474

2475 2476 2477
	xhci->erst.entries = dma_alloc_coherent(dev,
			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
			GFP_KERNEL);
2478 2479
	if (!xhci->erst.entries)
		goto fail;
2480 2481
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Allocated event ring segment table at 0x%llx",
2482
			(unsigned long long)dma);
2483 2484 2485 2486

	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
	xhci->erst.num_entries = ERST_NUM_SEGS;
	xhci->erst.erst_dma_addr = dma;
2487 2488
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2489
			xhci->erst.num_entries,
2490 2491
			xhci->erst.entries,
			(unsigned long long)xhci->erst.erst_dma_addr);
2492 2493 2494 2495

	/* set ring base address and size for each segment table entry */
	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
M
Matt Evans 已提交
2496 2497
		entry->seg_addr = cpu_to_le64(seg->dma);
		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2498 2499 2500 2501 2502
		entry->rsvd = 0;
		seg = seg->next;
	}

	/* set ERST count with the number of entries in the segment table */
2503
	val = readl(&xhci->ir_set->erst_size);
2504 2505
	val &= ERST_SIZE_MASK;
	val |= ERST_NUM_SEGS;
2506 2507
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2508
			val);
2509
	writel(val, &xhci->ir_set->erst_size);
2510

2511 2512
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Set ERST entries to point to event ring.");
2513
	/* set the segment table base address */
2514 2515
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Set ERST base address for ir_set 0 = 0x%llx",
2516
			(unsigned long long)xhci->erst.erst_dma_addr);
2517
	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2518 2519
	val_64 &= ERST_PTR_MASK;
	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2520
	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2521 2522

	/* Set the event ring dequeue address */
2523
	xhci_set_hc_event_deq(xhci);
2524 2525
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Wrote ERST address to ir_set 0.");
2526
	xhci_print_ir_set(xhci, 0);
2527 2528 2529 2530 2531 2532

	/*
	 * XXX: Might need to set the Interrupter Moderation Register to
	 * something other than the default (~1ms minimum between interrupts).
	 * See section 5.5.1.2.
	 */
2533 2534
	init_completion(&xhci->addr_dev);
	for (i = 0; i < MAX_HC_SLOTS; ++i)
2535
		xhci->devs[i] = NULL;
2536
	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2537
		xhci->bus_state[0].resume_done[i] = 0;
2538
		xhci->bus_state[1].resume_done[i] = 0;
2539 2540
		/* Only the USB 2.0 completions will ever be used. */
		init_completion(&xhci->bus_state[1].rexit_done[i]);
2541
	}
2542

2543 2544
	if (scratchpad_alloc(xhci, flags))
		goto fail;
2545 2546
	if (xhci_setup_port_arrays(xhci, flags))
		goto fail;
2547

2548 2549 2550 2551
	/* Enable USB 3.0 device notifications for function remote wake, which
	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
	 * U3 (device suspend).
	 */
2552
	temp = readl(&xhci->op_regs->dev_notification);
2553 2554
	temp &= ~DEV_NOTE_MASK;
	temp |= DEV_NOTE_FWAKE;
2555
	writel(temp, &xhci->op_regs->dev_notification);
2556

2557
	return 0;
2558

2559 2560
fail:
	xhci_warn(xhci, "Couldn't initialize memory\n");
2561 2562
	xhci_halt(xhci);
	xhci_reset(xhci);
2563 2564 2565
	xhci_mem_cleanup(xhci);
	return -ENOMEM;
}