xhci-mem.c 76.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * xHCI host controller driver
 *
 * Copyright (C) 2008 Intel Corp.
 *
 * Author: Sarah Sharp
 * Some code borrowed from the Linux EHCI driver.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/usb.h>
24
#include <linux/pci.h>
25
#include <linux/slab.h>
26
#include <linux/dmapool.h>
27
#include <linux/dma-mapping.h>
28 29

#include "xhci.h"
30
#include "xhci-trace.h"
31

32 33 34 35 36 37 38
/*
 * Allocates a generic ring segment from the ring pool, sets the dma address,
 * initializes the segment to zero, and sets the private next pointer to NULL.
 *
 * Section 4.11.1.1:
 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
 */
39
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 41 42
					       unsigned int cycle_state,
					       unsigned int max_packet,
					       gfp_t flags)
43 44 45
{
	struct xhci_segment *seg;
	dma_addr_t	dma;
46
	int		i;
47 48 49

	seg = kzalloc(sizeof *seg, flags);
	if (!seg)
50
		return NULL;
51

52
	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53 54
	if (!seg->trbs) {
		kfree(seg);
55
		return NULL;
56 57
	}

58 59 60 61 62 63 64 65
	if (max_packet) {
		seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
		if (!seg->bounce_buf) {
			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
			kfree(seg);
			return NULL;
		}
	}
66 67 68
	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
	if (cycle_state == 0) {
		for (i = 0; i < TRBS_PER_SEGMENT; i++)
69
			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70
	}
71 72 73 74 75 76 77 78 79 80 81 82
	seg->dma = dma;
	seg->next = NULL;

	return seg;
}

static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
{
	if (seg->trbs) {
		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
		seg->trbs = NULL;
	}
83
	kfree(seg->bounce_buf);
84 85 86
	kfree(seg);
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
				struct xhci_segment *first)
{
	struct xhci_segment *seg;

	seg = first->next;
	while (seg != first) {
		struct xhci_segment *next = seg->next;
		xhci_segment_free(xhci, seg);
		seg = next;
	}
	xhci_segment_free(xhci, first);
}

101 102 103 104 105 106 107 108
/*
 * Make the prev segment point to the next segment.
 *
 * Change the last TRB in the prev segment to be a Link TRB which points to the
 * DMA address of the next segment.  The caller needs to set any Link TRB
 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 */
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
A
Andiry Xu 已提交
109
		struct xhci_segment *next, enum xhci_ring_type type)
110 111 112 113 114 115
{
	u32 val;

	if (!prev || !next)
		return;
	prev->next = next;
A
Andiry Xu 已提交
116
	if (type != TYPE_EVENT) {
117 118
		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
			cpu_to_le64(next->dma);
119 120

		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
M
Matt Evans 已提交
121
		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122 123
		val &= ~TRB_TYPE_BITMASK;
		val |= TRB_TYPE(TRB_LINK);
124
		/* Always set the chain bit with 0.95 hardware */
125 126
		/* Set chain bit for isoc rings on AMD 0.96 host */
		if (xhci_link_trb_quirk(xhci) ||
A
Andiry Xu 已提交
127 128
				(type == TYPE_ISOC &&
				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
129
			val |= TRB_CHAIN;
M
Matt Evans 已提交
130
		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131 132 133
	}
}

A
Andiry Xu 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/*
 * Link the ring to the new segments.
 * Set Toggle Cycle for the new ring if needed.
 */
static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
		struct xhci_segment *first, struct xhci_segment *last,
		unsigned int num_segs)
{
	struct xhci_segment *next;

	if (!ring || !first || !last)
		return;

	next = ring->enq_seg->next;
	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
	xhci_link_segments(xhci, last, next, ring->type);
	ring->num_segs += num_segs;
	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;

	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
			&= ~cpu_to_le32(LINK_TOGGLE);
		last->trbs[TRBS_PER_SEGMENT-1].link.control
			|= cpu_to_le32(LINK_TOGGLE);
		ring->last_seg = last;
	}
}

G
Gerd Hoffmann 已提交
162 163 164 165 166 167 168 169 170
/*
 * We need a radix tree for mapping physical addresses of TRBs to which stream
 * ID they belong to.  We need to do this because the host controller won't tell
 * us which stream ring the TRB came from.  We could store the stream ID in an
 * event data TRB, but that doesn't help us for the cancellation case, since the
 * endpoint may stop before it reaches that event data TRB.
 *
 * The radix tree maps the upper portion of the TRB DMA address to a ring
 * segment that has the same upper portion of DMA addresses.  For example, say I
171
 * have segments of size 1KB, that are always 1KB aligned.  A segment may
G
Gerd Hoffmann 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 * pass the radix tree a key to get the right stream ID:
 *
 *	0x10c90fff >> 10 = 0x43243
 *	0x10c912c0 >> 10 = 0x43244
 *	0x10c91400 >> 10 = 0x43245
 *
 * Obviously, only those TRBs with DMA addresses that are within the segment
 * will make the radix tree return the stream ID for that ring.
 *
 * Caveats for the radix tree:
 *
 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 * extended systems (where the DMA address can be bigger than 32-bits),
 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 */
193 194 195 196
static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
		struct xhci_ring *ring,
		struct xhci_segment *seg,
		gfp_t mem_flags)
G
Gerd Hoffmann 已提交
197 198 199 200
{
	unsigned long key;
	int ret;

201 202 203
	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
	/* Skip any segments that were already added. */
	if (radix_tree_lookup(trb_address_map, key))
G
Gerd Hoffmann 已提交
204 205
		return 0;

206 207 208 209 210 211 212 213
	ret = radix_tree_maybe_preload(mem_flags);
	if (ret)
		return ret;
	ret = radix_tree_insert(trb_address_map,
			key, ring);
	radix_tree_preload_end();
	return ret;
}
G
Gerd Hoffmann 已提交
214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
		struct xhci_segment *seg)
{
	unsigned long key;

	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
	if (radix_tree_lookup(trb_address_map, key))
		radix_tree_delete(trb_address_map, key);
}

static int xhci_update_stream_segment_mapping(
		struct radix_tree_root *trb_address_map,
		struct xhci_ring *ring,
		struct xhci_segment *first_seg,
		struct xhci_segment *last_seg,
		gfp_t mem_flags)
{
	struct xhci_segment *seg;
	struct xhci_segment *failed_seg;
	int ret;

	if (WARN_ON_ONCE(trb_address_map == NULL))
		return 0;

	seg = first_seg;
	do {
		ret = xhci_insert_segment_mapping(trb_address_map,
				ring, seg, mem_flags);
G
Gerd Hoffmann 已提交
243
		if (ret)
244 245 246
			goto remove_streams;
		if (seg == last_seg)
			return 0;
G
Gerd Hoffmann 已提交
247
		seg = seg->next;
248
	} while (seg != first_seg);
G
Gerd Hoffmann 已提交
249 250

	return 0;
251 252 253 254 255 256 257 258 259 260 261 262

remove_streams:
	failed_seg = seg;
	seg = first_seg;
	do {
		xhci_remove_segment_mapping(trb_address_map, seg);
		if (seg == failed_seg)
			return ret;
		seg = seg->next;
	} while (seg != first_seg);

	return ret;
G
Gerd Hoffmann 已提交
263 264 265 266 267 268 269 270 271 272 273
}

static void xhci_remove_stream_mapping(struct xhci_ring *ring)
{
	struct xhci_segment *seg;

	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
		return;

	seg = ring->first_seg;
	do {
274
		xhci_remove_segment_mapping(ring->trb_address_map, seg);
G
Gerd Hoffmann 已提交
275 276 277 278
		seg = seg->next;
	} while (seg != ring->first_seg);
}

279 280 281 282 283 284
static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
{
	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
			ring->first_seg, ring->last_seg, mem_flags);
}

285
/* XXX: Do we need the hcd structure in all these functions? */
286
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287
{
288
	if (!ring)
289
		return;
290

G
Gerd Hoffmann 已提交
291 292 293
	if (ring->first_seg) {
		if (ring->type == TYPE_STREAM)
			xhci_remove_stream_mapping(ring);
294
		xhci_free_segments_for_ring(xhci, ring->first_seg);
G
Gerd Hoffmann 已提交
295
	}
296

297 298 299
	kfree(ring);
}

300 301
static void xhci_initialize_ring_info(struct xhci_ring *ring,
					unsigned int cycle_state)
302 303 304 305 306 307 308 309 310
{
	/* The ring is empty, so the enqueue pointer == dequeue pointer */
	ring->enqueue = ring->first_seg->trbs;
	ring->enq_seg = ring->first_seg;
	ring->dequeue = ring->enqueue;
	ring->deq_seg = ring->first_seg;
	/* The ring is initialized to 0. The producer must write 1 to the cycle
	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
311 312 313
	 *
	 * New rings are initialized with cycle state equal to 1; if we are
	 * handling ring expansion, set the cycle state equal to the old ring.
314
	 */
315
	ring->cycle_state = cycle_state;
316 317 318
	/* Not necessary for new rings, but needed for re-initialized rings */
	ring->enq_updates = 0;
	ring->deq_updates = 0;
319 320 321 322 323 324

	/*
	 * Each segment has a link TRB, and leave an extra TRB for SW
	 * accounting purpose
	 */
	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325 326
}

327 328 329
/* Allocate segments and link them for a ring */
static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
		struct xhci_segment **first, struct xhci_segment **last,
330
		unsigned int num_segs, unsigned int cycle_state,
331
		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
332 333 334
{
	struct xhci_segment *prev;

335
	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
336 337 338 339 340 341 342 343
	if (!prev)
		return -ENOMEM;
	num_segs--;

	*first = prev;
	while (num_segs > 0) {
		struct xhci_segment	*next;

344
		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
345
		if (!next) {
346 347 348 349 350 351
			prev = *first;
			while (prev) {
				next = prev->next;
				xhci_segment_free(xhci, prev);
				prev = next;
			}
352 353 354 355 356 357 358 359 360 361 362 363 364
			return -ENOMEM;
		}
		xhci_link_segments(xhci, prev, next, type);

		prev = next;
		num_segs--;
	}
	xhci_link_segments(xhci, prev, *first, type);
	*last = prev;

	return 0;
}

365 366 367 368 369 370 371 372
/**
 * Create a new ring with zero or more segments.
 *
 * Link each segment together into a ring.
 * Set the end flag and the cycle toggle bit on the last segment.
 * See section 4.9.1 and figures 15 and 16.
 */
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
373
		unsigned int num_segs, unsigned int cycle_state,
374
		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375 376
{
	struct xhci_ring	*ring;
377
	int ret;
378 379 380

	ring = kzalloc(sizeof *(ring), flags);
	if (!ring)
381
		return NULL;
382

383
	ring->num_segs = num_segs;
384
	ring->bounce_buf_len = max_packet;
385
	INIT_LIST_HEAD(&ring->td_list);
A
Andiry Xu 已提交
386
	ring->type = type;
387 388 389
	if (num_segs == 0)
		return ring;

390
	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 392
			&ring->last_seg, num_segs, cycle_state, type,
			max_packet, flags);
393
	if (ret)
394 395
		goto fail;

A
Andiry Xu 已提交
396 397
	/* Only event ring does not use link TRB */
	if (type != TYPE_EVENT) {
398
		/* See section 4.9.2.1 and 6.4.4.1 */
399
		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400
			cpu_to_le32(LINK_TOGGLE);
401
	}
402
	xhci_initialize_ring_info(ring, cycle_state);
403 404 405
	return ring;

fail:
406
	kfree(ring);
407
	return NULL;
408 409
}

410 411 412 413 414 415 416 417 418 419
void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		unsigned int ep_index)
{
	int rings_cached;

	rings_cached = virt_dev->num_rings_cached;
	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
		virt_dev->ring_cache[rings_cached] =
			virt_dev->eps[ep_index].ring;
420
		virt_dev->num_rings_cached++;
421 422
		xhci_dbg(xhci, "Cached old ring, "
				"%d ring%s cached\n",
423 424
				virt_dev->num_rings_cached,
				(virt_dev->num_rings_cached > 1) ? "s" : "");
425 426 427 428 429 430 431 432 433
	} else {
		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
		xhci_dbg(xhci, "Ring cache full (%d rings), "
				"freeing ring\n",
				virt_dev->num_rings_cached);
	}
	virt_dev->eps[ep_index].ring = NULL;
}

434 435 436 437
/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 * pointers to the beginning of the ring.
 */
static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
438 439
			struct xhci_ring *ring, unsigned int cycle_state,
			enum xhci_ring_type type)
440 441
{
	struct xhci_segment	*seg = ring->first_seg;
442 443
	int i;

444 445 446
	do {
		memset(seg->trbs, 0,
				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
447 448
		if (cycle_state == 0) {
			for (i = 0; i < TRBS_PER_SEGMENT; i++)
449 450
				seg->trbs[i].link.control |=
					cpu_to_le32(TRB_CYCLE);
451
		}
452
		/* All endpoint rings have link TRBs */
A
Andiry Xu 已提交
453
		xhci_link_segments(xhci, seg, seg->next, type);
454 455
		seg = seg->next;
	} while (seg != ring->first_seg);
A
Andiry Xu 已提交
456
	ring->type = type;
457
	xhci_initialize_ring_info(ring, cycle_state);
458 459 460 461 462 463
	/* td list should be empty since all URBs have been cancelled,
	 * but just in case...
	 */
	INIT_LIST_HEAD(&ring->td_list);
}

A
Andiry Xu 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
/*
 * Expand an existing ring.
 * Look for a cached ring or allocate a new ring which has same segment numbers
 * and link the two rings.
 */
int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
				unsigned int num_trbs, gfp_t flags)
{
	struct xhci_segment	*first;
	struct xhci_segment	*last;
	unsigned int		num_segs;
	unsigned int		num_segs_needed;
	int			ret;

	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
				(TRBS_PER_SEGMENT - 1);

	/* Allocate number of segments we needed, or double the ring size */
	num_segs = ring->num_segs > num_segs_needed ?
			ring->num_segs : num_segs_needed;

	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
486 487
			num_segs, ring->cycle_state, ring->type,
			ring->bounce_buf_len, flags);
A
Andiry Xu 已提交
488 489 490
	if (ret)
		return -ENOMEM;

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	if (ring->type == TYPE_STREAM)
		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
						ring, first, last, flags);
	if (ret) {
		struct xhci_segment *next;
		do {
			next = first->next;
			xhci_segment_free(xhci, first);
			if (first == last)
				break;
			first = next;
		} while (true);
		return ret;
	}

A
Andiry Xu 已提交
506
	xhci_link_rings(xhci, ring, first, last, num_segs);
507 508
	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
			"ring expansion succeed, now has %d segments",
A
Andiry Xu 已提交
509 510 511 512 513
			ring->num_segs);

	return 0;
}

514 515
#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)

516
static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
517 518
						    int type, gfp_t flags)
{
519 520 521 522 523 524
	struct xhci_container_ctx *ctx;

	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
		return NULL;

	ctx = kzalloc(sizeof(*ctx), flags);
525 526 527 528 529 530 531 532
	if (!ctx)
		return NULL;

	ctx->type = type;
	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
	if (type == XHCI_CTX_TYPE_INPUT)
		ctx->size += CTX_SIZE(xhci->hcc_params);

533
	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
534 535 536 537
	if (!ctx->bytes) {
		kfree(ctx);
		return NULL;
	}
538 539 540
	return ctx;
}

541
static void xhci_free_container_ctx(struct xhci_hcd *xhci,
542 543
			     struct xhci_container_ctx *ctx)
{
544 545
	if (!ctx)
		return;
546 547 548 549
	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
	kfree(ctx);
}

550
struct xhci_input_control_ctx *xhci_get_input_control_ctx(
551 552
					      struct xhci_container_ctx *ctx)
{
553 554 555
	if (ctx->type != XHCI_CTX_TYPE_INPUT)
		return NULL;

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	return (struct xhci_input_control_ctx *)ctx->bytes;
}

struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
					struct xhci_container_ctx *ctx)
{
	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
		return (struct xhci_slot_ctx *)ctx->bytes;

	return (struct xhci_slot_ctx *)
		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
}

struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
				    struct xhci_container_ctx *ctx,
				    unsigned int ep_index)
{
	/* increment ep index by offset of start of ep ctx array */
	ep_index++;
	if (ctx->type == XHCI_CTX_TYPE_INPUT)
		ep_index++;

	return (struct xhci_ep_ctx *)
		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
}

582 583 584

/***************** Streams structures manipulation *************************/

585
static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
586 587 588
		unsigned int num_stream_ctxs,
		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
{
589
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
590
	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
591

592 593
	if (size > MEDIUM_STREAM_ARRAY_SIZE)
		dma_free_coherent(dev, size,
594
				stream_ctx, dma);
595
	else if (size <= SMALL_STREAM_ARRAY_SIZE)
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
		return dma_pool_free(xhci->small_streams_pool,
				stream_ctx, dma);
	else
		return dma_pool_free(xhci->medium_streams_pool,
				stream_ctx, dma);
}

/*
 * The stream context array for each endpoint with bulk streams enabled can
 * vary in size, based on:
 *  - how many streams the endpoint supports,
 *  - the maximum primary stream array size the host controller supports,
 *  - and how many streams the device driver asks for.
 *
 * The stream context array must be a power of 2, and can be as small as
 * 64 bytes or as large as 1MB.
 */
613
static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
614 615 616
		unsigned int num_stream_ctxs, dma_addr_t *dma,
		gfp_t mem_flags)
{
617
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
618
	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
619

620 621
	if (size > MEDIUM_STREAM_ARRAY_SIZE)
		return dma_alloc_coherent(dev, size,
622
				dma, mem_flags);
623
	else if (size <= SMALL_STREAM_ARRAY_SIZE)
624 625 626 627 628 629 630
		return dma_pool_alloc(xhci->small_streams_pool,
				mem_flags, dma);
	else
		return dma_pool_alloc(xhci->medium_streams_pool,
				mem_flags, dma);
}

631 632 633 634 635 636
struct xhci_ring *xhci_dma_to_transfer_ring(
		struct xhci_virt_ep *ep,
		u64 address)
{
	if (ep->ep_state & EP_HAS_STREAMS)
		return radix_tree_lookup(&ep->stream_info->trb_address_map,
637
				address >> TRB_SEGMENT_SHIFT);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	return ep->ring;
}

struct xhci_ring *xhci_stream_id_to_ring(
		struct xhci_virt_device *dev,
		unsigned int ep_index,
		unsigned int stream_id)
{
	struct xhci_virt_ep *ep = &dev->eps[ep_index];

	if (stream_id == 0)
		return ep->ring;
	if (!ep->stream_info)
		return NULL;

	if (stream_id > ep->stream_info->num_streams)
		return NULL;
	return ep->stream_info->stream_rings[stream_id];
}

658 659 660 661 662 663 664 665 666 667 668
/*
 * Change an endpoint's internal structure so it supports stream IDs.  The
 * number of requested streams includes stream 0, which cannot be used by device
 * drivers.
 *
 * The number of stream contexts in the stream context array may be bigger than
 * the number of streams the driver wants to use.  This is because the number of
 * stream context array entries must be a power of two.
 */
struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
		unsigned int num_stream_ctxs,
669 670
		unsigned int num_streams,
		unsigned int max_packet, gfp_t mem_flags)
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
{
	struct xhci_stream_info *stream_info;
	u32 cur_stream;
	struct xhci_ring *cur_ring;
	u64 addr;
	int ret;

	xhci_dbg(xhci, "Allocating %u streams and %u "
			"stream context array entries.\n",
			num_streams, num_stream_ctxs);
	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
		return NULL;
	}
	xhci->cmd_ring_reserved_trbs++;

	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
	if (!stream_info)
		goto cleanup_trbs;

	stream_info->num_streams = num_streams;
	stream_info->num_stream_ctxs = num_stream_ctxs;

	/* Initialize the array of virtual pointers to stream rings. */
	stream_info->stream_rings = kzalloc(
			sizeof(struct xhci_ring *)*num_streams,
			mem_flags);
	if (!stream_info->stream_rings)
		goto cleanup_info;

	/* Initialize the array of DMA addresses for stream rings for the HW. */
	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
			num_stream_ctxs, &stream_info->ctx_array_dma,
			mem_flags);
	if (!stream_info->stream_ctx_array)
		goto cleanup_ctx;
	memset(stream_info->stream_ctx_array, 0,
			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);

	/* Allocate everything needed to free the stream rings later */
	stream_info->free_streams_command =
		xhci_alloc_command(xhci, true, true, mem_flags);
	if (!stream_info->free_streams_command)
		goto cleanup_ctx;

	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);

	/* Allocate rings for all the streams that the driver will use,
	 * and add their segment DMA addresses to the radix tree.
	 * Stream 0 is reserved.
	 */
722

723 724
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		stream_info->stream_rings[cur_stream] =
725 726
			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
					mem_flags);
727 728 729
		cur_ring = stream_info->stream_rings[cur_stream];
		if (!cur_ring)
			goto cleanup_rings;
730
		cur_ring->stream_id = cur_stream;
G
Gerd Hoffmann 已提交
731
		cur_ring->trb_address_map = &stream_info->trb_address_map;
732 733 734 735
		/* Set deq ptr, cycle bit, and stream context type */
		addr = cur_ring->first_seg->dma |
			SCT_FOR_CTX(SCT_PRI_TR) |
			cur_ring->cycle_state;
736 737
		stream_info->stream_ctx_array[cur_stream].stream_ring =
			cpu_to_le64(addr);
738 739 740
		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
				cur_stream, (unsigned long long) addr);

G
Gerd Hoffmann 已提交
741
		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
		if (ret) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
			goto cleanup_rings;
		}
	}
	/* Leave the other unused stream ring pointers in the stream context
	 * array initialized to zero.  This will cause the xHC to give us an
	 * error if the device asks for a stream ID we don't have setup (if it
	 * was any other way, the host controller would assume the ring is
	 * "empty" and wait forever for data to be queued to that stream ID).
	 */

	return stream_info;

cleanup_rings:
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
cleanup_ctx:
	kfree(stream_info->stream_rings);
cleanup_info:
	kfree(stream_info);
cleanup_trbs:
	xhci->cmd_ring_reserved_trbs--;
	return NULL;
}
/*
 * Sets the MaxPStreams field and the Linear Stream Array field.
 * Sets the dequeue pointer to the stream context array.
 */
void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
		struct xhci_ep_ctx *ep_ctx,
		struct xhci_stream_info *stream_info)
{
	u32 max_primary_streams;
	/* MaxPStreams is the number of stream context array entries, not the
	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
	 */
	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
788 789
	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
			"Setting number of stream ctx array entries to %u",
790
			1 << (max_primary_streams + 1));
M
Matt Evans 已提交
791 792 793 794
	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
				       | EP_HAS_LSA);
	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
795 796 797 798 799 800 801
}

/*
 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 * not at the beginning of the ring).
 */
802
void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
803 804 805
		struct xhci_virt_ep *ep)
{
	dma_addr_t addr;
M
Matt Evans 已提交
806
	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
807
	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
M
Matt Evans 已提交
808
	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
}

/* Frees all stream contexts associated with the endpoint,
 *
 * Caller should fix the endpoint context streams fields.
 */
void xhci_free_stream_info(struct xhci_hcd *xhci,
		struct xhci_stream_info *stream_info)
{
	int cur_stream;
	struct xhci_ring *cur_ring;

	if (!stream_info)
		return;

	for (cur_stream = 1; cur_stream < stream_info->num_streams;
			cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
	xhci->cmd_ring_reserved_trbs--;
	if (stream_info->stream_ctx_array)
		xhci_free_stream_ctx(xhci,
				stream_info->num_stream_ctxs,
				stream_info->stream_ctx_array,
				stream_info->ctx_array_dma);

840
	kfree(stream_info->stream_rings);
841 842 843 844 845 846
	kfree(stream_info);
}


/***************** Device context manipulation *************************/

847 848 849
static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
		struct xhci_virt_ep *ep)
{
J
Julia Lawall 已提交
850 851
	setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
		    (unsigned long)ep);
852 853 854
	ep->xhci = xhci;
}

855 856 857 858 859
static void xhci_free_tt_info(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		int slot_id)
{
	struct list_head *tt_list_head;
860 861
	struct xhci_tt_bw_info *tt_info, *next;
	bool slot_found = false;
862 863 864 865 866 867 868 869 870 871 872

	/* If the device never made it past the Set Address stage,
	 * it may not have the real_port set correctly.
	 */
	if (virt_dev->real_port == 0 ||
			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
		xhci_dbg(xhci, "Bad real port.\n");
		return;
	}

	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
873 874 875 876 877 878 879
	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
		/* Multi-TT hubs will have more than one entry */
		if (tt_info->slot_id == slot_id) {
			slot_found = true;
			list_del(&tt_info->tt_list);
			kfree(tt_info);
		} else if (slot_found) {
880
			break;
881
		}
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	}
}

int xhci_alloc_tt_info(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *hdev,
		struct usb_tt *tt, gfp_t mem_flags)
{
	struct xhci_tt_bw_info		*tt_info;
	unsigned int			num_ports;
	int				i, j;

	if (!tt->multi)
		num_ports = 1;
	else
		num_ports = hdev->maxchild;

	for (i = 0; i < num_ports; i++, tt_info++) {
		struct xhci_interval_bw_table *bw_table;

		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
		if (!tt_info)
			goto free_tts;
		INIT_LIST_HEAD(&tt_info->tt_list);
		list_add(&tt_info->tt_list,
				&xhci->rh_bw[virt_dev->real_port - 1].tts);
		tt_info->slot_id = virt_dev->udev->slot_id;
		if (tt->multi)
			tt_info->ttport = i+1;
		bw_table = &tt_info->bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
	}
	return 0;

free_tts:
	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
	return -ENOMEM;
}


/* All the xhci_tds in the ring's TD list should be freed at this point.
 * Should be called with xhci->lock held if there is any chance the TT lists
 * will be manipulated by the configure endpoint, allocate device, or update
 * hub functions while this function is removing the TT entries from the list.
 */
928 929 930 931
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
{
	struct xhci_virt_device *dev;
	int i;
932
	int old_active_eps = 0;
933 934 935 936 937 938

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || !xhci->devs[slot_id])
		return;

	dev = xhci->devs[slot_id];
939
	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
940 941 942
	if (!dev)
		return;

943 944 945
	if (dev->tt_info)
		old_active_eps = dev->tt_info->active_eps;

946
	for (i = 0; i < 31; ++i) {
947 948
		if (dev->eps[i].ring)
			xhci_ring_free(xhci, dev->eps[i].ring);
949 950 951
		if (dev->eps[i].stream_info)
			xhci_free_stream_info(xhci,
					dev->eps[i].stream_info);
952 953 954 955 956 957 958 959 960
		/* Endpoints on the TT/root port lists should have been removed
		 * when usb_disable_device() was called for the device.
		 * We can't drop them anyway, because the udev might have gone
		 * away by this point, and we can't tell what speed it was.
		 */
		if (!list_empty(&dev->eps[i].bw_endpoint_list))
			xhci_warn(xhci, "Slot %u endpoint %u "
					"not removed from BW list!\n",
					slot_id, i);
961
	}
962 963
	/* If this is a hub, free the TT(s) from the TT list */
	xhci_free_tt_info(xhci, dev, slot_id);
964 965
	/* If necessary, update the number of active TTs on this root port */
	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
966

967 968 969 970 971 972
	if (dev->ring_cache) {
		for (i = 0; i < dev->num_rings_cached; i++)
			xhci_ring_free(xhci, dev->ring_cache[i]);
		kfree(dev->ring_cache);
	}

973
	if (dev->in_ctx)
974
		xhci_free_container_ctx(xhci, dev->in_ctx);
975
	if (dev->out_ctx)
976 977
		xhci_free_container_ctx(xhci, dev->out_ctx);

978
	kfree(xhci->devs[slot_id]);
979
	xhci->devs[slot_id] = NULL;
980 981
}

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/*
 * Free a virt_device structure.
 * If the virt_device added a tt_info (a hub) and has children pointing to
 * that tt_info, then free the child first. Recursive.
 * We can't rely on udev at this point to find child-parent relationships.
 */
void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
{
	struct xhci_virt_device *vdev;
	struct list_head *tt_list_head;
	struct xhci_tt_bw_info *tt_info, *next;
	int i;

	vdev = xhci->devs[slot_id];
	if (!vdev)
		return;

	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
		/* is this a hub device that added a tt_info to the tts list */
		if (tt_info->slot_id == slot_id) {
			/* are any devices using this tt_info? */
			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
				vdev = xhci->devs[i];
				if (vdev && (vdev->tt_info == tt_info))
					xhci_free_virt_devices_depth_first(
						xhci, i);
			}
		}
	}
	/* we are now at a leaf device */
	xhci_free_virt_device(xhci, slot_id);
}

1016 1017 1018 1019
int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
		struct usb_device *udev, gfp_t flags)
{
	struct xhci_virt_device *dev;
1020
	int i;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || xhci->devs[slot_id]) {
		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
		return 0;
	}

	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
	if (!xhci->devs[slot_id])
		return 0;
	dev = xhci->devs[slot_id];

1033 1034
	/* Allocate the (output) device context that will be used in the HC. */
	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1035 1036
	if (!dev->out_ctx)
		goto fail;
1037

1038
	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1039
			(unsigned long long)dev->out_ctx->dma);
1040 1041

	/* Allocate the (input) device context for address device command */
1042
	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1043 1044
	if (!dev->in_ctx)
		goto fail;
1045

1046
	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1047
			(unsigned long long)dev->in_ctx->dma);
1048

1049 1050 1051
	/* Initialize the cancellation list and watchdog timers for each ep */
	for (i = 0; i < 31; i++) {
		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1052
		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1053
		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1054
	}
1055

1056
	/* Allocate endpoint 0 ring */
1057
	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1058
	if (!dev->eps[0].ring)
1059 1060
		goto fail;

1061 1062 1063 1064 1065 1066 1067 1068
	/* Allocate pointers to the ring cache */
	dev->ring_cache = kzalloc(
			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
			flags);
	if (!dev->ring_cache)
		goto fail;
	dev->num_rings_cached = 0;

1069
	dev->udev = udev;
1070

1071
	/* Point to output device context in dcbaa. */
M
Matt Evans 已提交
1072
	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1073
	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
M
Matt Evans 已提交
1074 1075
		 slot_id,
		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1076
		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1077 1078 1079 1080 1081 1082 1083

	return 1;
fail:
	xhci_free_virt_device(xhci, slot_id);
	return 0;
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct xhci_virt_device *virt_dev;
	struct xhci_ep_ctx	*ep0_ctx;
	struct xhci_ring	*ep_ring;

	virt_dev = xhci->devs[udev->slot_id];
	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
	ep_ring = virt_dev->eps[0].ring;
	/*
	 * FIXME we don't keep track of the dequeue pointer very well after a
	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
	 * host to our enqueue pointer.  This should only be called after a
	 * configured device has reset, so all control transfers should have
	 * been completed or cancelled before the reset.
	 */
M
Matt Evans 已提交
1101 1102 1103
	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
							ep_ring->enqueue)
				   | ep_ring->cycle_state);
1104 1105
}

1106 1107 1108 1109 1110 1111 1112 1113 1114
/*
 * The xHCI roothub may have ports of differing speeds in any order in the port
 * status registers.  xhci->port_array provides an array of the port speed for
 * each offset into the port status registers.
 *
 * The xHCI hardware wants to know the roothub port number that the USB device
 * is attached to (or the roothub port its ancestor hub is attached to).  All we
 * know is the index of that port under either the USB 2.0 or the USB 3.0
 * roothub, but that doesn't give us the real index into the HW port status
1115
 * registers. Call xhci_find_raw_port_number() to get real index.
1116 1117 1118 1119 1120
 */
static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct usb_device *top_dev;
1121 1122
	struct usb_hcd *hcd;

1123
	if (udev->speed >= USB_SPEED_SUPER)
1124 1125 1126
		hcd = xhci->shared_hcd;
	else
		hcd = xhci->main_hcd;
1127 1128 1129 1130 1131

	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;

1132
	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1133 1134
}

1135 1136 1137 1138 1139
/* Setup an xHCI virtual device for a Set Address command */
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
{
	struct xhci_virt_device *dev;
	struct xhci_ep_ctx	*ep0_ctx;
1140
	struct xhci_slot_ctx    *slot_ctx;
1141
	u32			port_num;
1142
	u32			max_packets;
1143
	struct usb_device *top_dev;
1144 1145 1146 1147 1148 1149 1150 1151

	dev = xhci->devs[udev->slot_id];
	/* Slot ID 0 is reserved */
	if (udev->slot_id == 0 || !dev) {
		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
				udev->slot_id);
		return -EINVAL;
	}
1152 1153
	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1154 1155

	/* 3) Only the control endpoint is valid - one endpoint context */
1156
	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1157
	switch (udev->speed) {
1158
	case USB_SPEED_SUPER_PLUS:
1159 1160 1161
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
		max_packets = MAX_PACKET(512);
		break;
1162
	case USB_SPEED_SUPER:
1163
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1164
		max_packets = MAX_PACKET(512);
1165 1166
		break;
	case USB_SPEED_HIGH:
1167
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1168
		max_packets = MAX_PACKET(64);
1169
		break;
1170
	/* USB core guesses at a 64-byte max packet first for FS devices */
1171
	case USB_SPEED_FULL:
1172
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1173
		max_packets = MAX_PACKET(64);
1174 1175
		break;
	case USB_SPEED_LOW:
1176
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1177
		max_packets = MAX_PACKET(8);
1178
		break;
1179
	case USB_SPEED_WIRELESS:
1180 1181 1182 1183 1184
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* Speed was set earlier, this shouldn't happen. */
1185
		return -EINVAL;
1186 1187
	}
	/* Find the root hub port this device is under */
1188 1189 1190
	port_num = xhci_find_real_port_number(xhci, udev);
	if (!port_num)
		return -EINVAL;
1191
	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1192
	/* Set the port number in the virtual_device to the faked port number */
1193 1194 1195
	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;
1196
	dev->fake_port = top_dev->portnum;
1197
	dev->real_port = port_num;
1198
	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1199
	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	/* Find the right bandwidth table that this device will be a part of.
	 * If this is a full speed device attached directly to a root port (or a
	 * decendent of one), it counts as a primary bandwidth domain, not a
	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
	 * will never be created for the HS root hub.
	 */
	if (!udev->tt || !udev->tt->hub->parent) {
		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
	} else {
		struct xhci_root_port_bw_info *rh_bw;
		struct xhci_tt_bw_info *tt_bw;

		rh_bw = &xhci->rh_bw[port_num - 1];
		/* Find the right TT. */
		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
			if (tt_bw->slot_id != udev->tt->hub->slot_id)
				continue;

			if (!dev->udev->tt->multi ||
					(udev->tt->multi &&
					 tt_bw->ttport == dev->udev->ttport)) {
				dev->bw_table = &tt_bw->bw_table;
				dev->tt_info = tt_bw;
				break;
			}
		}
		if (!dev->tt_info)
			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
	}

S
Sarah Sharp 已提交
1231 1232
	/* Is this a LS/FS device under an external HS hub? */
	if (udev->tt && udev->tt->hub->parent) {
M
Matt Evans 已提交
1233 1234
		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
						(udev->ttport << 8));
1235
		if (udev->tt->multi)
M
Matt Evans 已提交
1236
			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1237
	}
1238
	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1239 1240 1241 1242
	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);

	/* Step 4 - ring already allocated */
	/* Step 5 */
M
Matt Evans 已提交
1243
	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1244

1245
	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1246 1247
	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
					 max_packets);
1248

M
Matt Evans 已提交
1249 1250
	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
				   dev->eps[0].ring->cycle_state);
1251 1252 1253 1254 1255 1256

	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */

	return 0;
}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
/*
 * Convert interval expressed as 2^(bInterval - 1) == interval into
 * straight exponent value 2^n == interval.
 *
 */
static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	unsigned int interval;

	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
	if (interval != ep->desc.bInterval - 1)
		dev_warn(&udev->dev,
1270
			 "ep %#x - rounding interval to %d %sframes\n",
1271
			 ep->desc.bEndpointAddress,
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
			 1 << interval,
			 udev->speed == USB_SPEED_FULL ? "" : "micro");

	if (udev->speed == USB_SPEED_FULL) {
		/*
		 * Full speed isoc endpoints specify interval in frames,
		 * not microframes. We are using microframes everywhere,
		 * so adjust accordingly.
		 */
		interval += 3;	/* 1 frame = 2^3 uframes */
	}
1283 1284 1285 1286 1287

	return interval;
}

/*
1288
 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1289 1290
 * microframes, rounded down to nearest power of 2.
 */
1291 1292 1293
static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
		struct usb_host_endpoint *ep, unsigned int desc_interval,
		unsigned int min_exponent, unsigned int max_exponent)
1294 1295 1296
{
	unsigned int interval;

1297 1298 1299
	interval = fls(desc_interval) - 1;
	interval = clamp_val(interval, min_exponent, max_exponent);
	if ((1 << interval) != desc_interval)
1300
		dev_dbg(&udev->dev,
1301 1302 1303
			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
			 ep->desc.bEndpointAddress,
			 1 << interval,
1304
			 desc_interval);
1305 1306 1307 1308

	return interval;
}

1309 1310 1311
static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
1312 1313
	if (ep->desc.bInterval == 0)
		return 0;
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	return xhci_microframes_to_exponent(udev, ep,
			ep->desc.bInterval, 0, 15);
}


static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	return xhci_microframes_to_exponent(udev, ep,
			ep->desc.bInterval * 8, 3, 10);
}

1326 1327 1328 1329 1330 1331 1332 1333
/* Return the polling or NAK interval.
 *
 * The polling interval is expressed in "microframes".  If xHCI's Interval field
 * is set to N, it will service the endpoint every 2^(Interval)*125us.
 *
 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
 * is set to 0.
 */
1334
static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1335 1336 1337 1338 1339 1340 1341 1342
		struct usb_host_endpoint *ep)
{
	unsigned int interval = 0;

	switch (udev->speed) {
	case USB_SPEED_HIGH:
		/* Max NAK rate */
		if (usb_endpoint_xfer_control(&ep->desc) ||
1343
		    usb_endpoint_xfer_bulk(&ep->desc)) {
1344
			interval = xhci_parse_microframe_interval(udev, ep);
1345 1346
			break;
		}
1347
		/* Fall through - SS and HS isoc/int have same decoding */
1348

1349
	case USB_SPEED_SUPER_PLUS:
1350 1351
	case USB_SPEED_SUPER:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1352 1353
		    usb_endpoint_xfer_isoc(&ep->desc)) {
			interval = xhci_parse_exponent_interval(udev, ep);
1354 1355
		}
		break;
1356

1357
	case USB_SPEED_FULL:
1358
		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1359 1360 1361 1362
			interval = xhci_parse_exponent_interval(udev, ep);
			break;
		}
		/*
1363
		 * Fall through for interrupt endpoint interval decoding
1364 1365 1366 1367
		 * since it uses the same rules as low speed interrupt
		 * endpoints.
		 */

1368 1369
	case USB_SPEED_LOW:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1370 1371 1372
		    usb_endpoint_xfer_isoc(&ep->desc)) {

			interval = xhci_parse_frame_interval(udev, ep);
1373 1374
		}
		break;
1375

1376 1377 1378
	default:
		BUG();
	}
1379
	return interval;
1380 1381
}

1382
/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1383 1384 1385 1386
 * High speed endpoint descriptors can define "the number of additional
 * transaction opportunities per microframe", but that goes in the Max Burst
 * endpoint context field.
 */
1387
static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1388 1389
		struct usb_host_endpoint *ep)
{
1390
	if (udev->speed < USB_SPEED_SUPER ||
1391
			!usb_endpoint_xfer_isoc(&ep->desc))
1392
		return 0;
1393
	return ep->ss_ep_comp.bmAttributes;
1394 1395
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
				       struct usb_host_endpoint *ep)
{
	/* Super speed and Plus have max burst in ep companion desc */
	if (udev->speed >= USB_SPEED_SUPER)
		return ep->ss_ep_comp.bMaxBurst;

	if (udev->speed == USB_SPEED_HIGH &&
	    (usb_endpoint_xfer_isoc(&ep->desc) ||
	     usb_endpoint_xfer_int(&ep->desc)))
1406
		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1407 1408 1409 1410

	return 0;
}

1411
static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1412 1413 1414 1415
{
	int in;

	in = usb_endpoint_dir_in(&ep->desc);
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

	if (usb_endpoint_xfer_control(&ep->desc))
		return CTRL_EP;
	if (usb_endpoint_xfer_bulk(&ep->desc))
		return in ? BULK_IN_EP : BULK_OUT_EP;
	if (usb_endpoint_xfer_isoc(&ep->desc))
		return in ? ISOC_IN_EP : ISOC_OUT_EP;
	if (usb_endpoint_xfer_int(&ep->desc))
		return in ? INT_IN_EP : INT_OUT_EP;
	return 0;
1426 1427
}

1428 1429 1430 1431
/* Return the maximum endpoint service interval time (ESIT) payload.
 * Basically, this is the maxpacket size, multiplied by the burst size
 * and mult size.
 */
1432
static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
		struct usb_host_endpoint *ep)
{
	int max_burst;
	int max_packet;

	/* Only applies for interrupt or isochronous endpoints */
	if (usb_endpoint_xfer_control(&ep->desc) ||
			usb_endpoint_xfer_bulk(&ep->desc))
		return 0;

1443 1444 1445 1446 1447 1448
	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
	else if (udev->speed >= USB_SPEED_SUPER)
1449
		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1450

1451
	max_packet = usb_endpoint_maxp(&ep->desc);
1452
	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1453
	/* A 0 in max burst means 1 transfer per ESIT */
1454
	return max_packet * max_burst;
1455 1456
}

1457 1458 1459
/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
 * Drivers will have to call usb_alloc_streams() to do that.
 */
1460 1461 1462
int xhci_endpoint_init(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *udev,
1463 1464
		struct usb_host_endpoint *ep,
		gfp_t mem_flags)
1465 1466 1467 1468 1469
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;
	struct xhci_ring *ep_ring;
	unsigned int max_packet;
1470
	enum xhci_ring_type ring_type;
1471
	u32 max_esit_payload;
1472
	u32 endpoint_type;
1473 1474 1475 1476 1477
	unsigned int max_burst;
	unsigned int interval;
	unsigned int mult;
	unsigned int avg_trb_len;
	unsigned int err_count = 0;
1478 1479

	ep_index = xhci_get_endpoint_index(&ep->desc);
1480
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1481

1482
	endpoint_type = xhci_get_endpoint_type(ep);
1483 1484 1485
	if (!endpoint_type)
		return -EINVAL;

1486
	ring_type = usb_endpoint_type(&ep->desc);
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496
	/*
	 * Get values to fill the endpoint context, mostly from ep descriptor.
	 * The average TRB buffer lengt for bulk endpoints is unclear as we
	 * have no clue on scatter gather list entry size. For Isoc and Int,
	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
	 */
	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
	interval = xhci_get_endpoint_interval(udev, ep);
	mult = xhci_get_endpoint_mult(udev, ep);
1497
	max_packet = usb_endpoint_maxp(&ep->desc);
1498 1499
	max_burst = xhci_get_endpoint_max_burst(udev, ep);
	avg_trb_len = max_esit_payload;
1500 1501 1502

	/* FIXME dig Mult and streams info out of ep companion desc */

1503
	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1504
	if (!usb_endpoint_xfer_isoc(&ep->desc))
1505 1506 1507 1508 1509
		err_count = 3;
	/* Some devices get this wrong */
	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
		max_packet = 512;
	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1510
	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1511
		avg_trb_len = 8;
1512 1513 1514
	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
		mult = 0;
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	/* Set up the endpoint ring */
	virt_dev->eps[ep_index].new_ring =
		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
	if (!virt_dev->eps[ep_index].new_ring) {
		/* Attempt to use the ring cache */
		if (virt_dev->num_rings_cached == 0)
			return -ENOMEM;
		virt_dev->num_rings_cached--;
		virt_dev->eps[ep_index].new_ring =
			virt_dev->ring_cache[virt_dev->num_rings_cached];
		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
					1, ring_type);
	}
	virt_dev->eps[ep_index].skip = false;
	ep_ring = virt_dev->eps[ep_index].new_ring;

1533
	/* Fill the endpoint context */
1534 1535
	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
				      EP_INTERVAL(interval) |
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
				      EP_MULT(mult));
	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
				       MAX_PACKET(max_packet) |
				       MAX_BURST(max_burst) |
				       ERROR_COUNT(err_count));
	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
				  ep_ring->cycle_state);

	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
				      EP_AVG_TRB_LENGTH(avg_trb_len));
1546

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	/* FIXME Debug endpoint context */
	return 0;
}

void xhci_endpoint_zero(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_host_endpoint *ep)
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;

	ep_index = xhci_get_endpoint_index(&ep->desc);
1559
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1560 1561 1562

	ep_ctx->ep_info = 0;
	ep_ctx->ep_info2 = 0;
1563
	ep_ctx->deq = 0;
1564 1565 1566 1567 1568 1569
	ep_ctx->tx_info = 0;
	/* Don't free the endpoint ring until the set interface or configuration
	 * request succeeds.
	 */
}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
{
	bw_info->ep_interval = 0;
	bw_info->mult = 0;
	bw_info->num_packets = 0;
	bw_info->max_packet_size = 0;
	bw_info->type = 0;
	bw_info->max_esit_payload = 0;
}

void xhci_update_bw_info(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_input_control_ctx *ctrl_ctx,
		struct xhci_virt_device *virt_dev)
{
	struct xhci_bw_info *bw_info;
	struct xhci_ep_ctx *ep_ctx;
	unsigned int ep_type;
	int i;

	for (i = 1; i < 31; ++i) {
		bw_info = &virt_dev->eps[i].bw_info;

		/* We can't tell what endpoint type is being dropped, but
		 * unconditionally clearing the bandwidth info for non-periodic
		 * endpoints should be harmless because the info will never be
		 * set in the first place.
		 */
		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
			/* Dropped endpoint */
			xhci_clear_endpoint_bw_info(bw_info);
			continue;
		}

		if (EP_IS_ADDED(ctrl_ctx, i)) {
			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));

			/* Ignore non-periodic endpoints */
			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
					ep_type != ISOC_IN_EP &&
					ep_type != INT_IN_EP)
				continue;

			/* Added or changed endpoint */
			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
					le32_to_cpu(ep_ctx->ep_info));
1617 1618 1619
			/* Number of packets and mult are zero-based in the
			 * input context, but we want one-based for the
			 * interval table.
1620
			 */
1621 1622
			bw_info->mult = CTX_TO_EP_MULT(
					le32_to_cpu(ep_ctx->ep_info)) + 1;
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
			bw_info->num_packets = CTX_TO_MAX_BURST(
					le32_to_cpu(ep_ctx->ep_info2)) + 1;
			bw_info->max_packet_size = MAX_PACKET_DECODED(
					le32_to_cpu(ep_ctx->ep_info2));
			bw_info->type = ep_type;
			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
					le32_to_cpu(ep_ctx->tx_info));
		}
	}
}

1634 1635 1636 1637 1638
/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.
 */
void xhci_endpoint_copy(struct xhci_hcd *xhci,
1639 1640 1641
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx,
		unsigned int ep_index)
1642 1643 1644 1645
{
	struct xhci_ep_ctx *out_ep_ctx;
	struct xhci_ep_ctx *in_ep_ctx;

1646 1647
	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
	in_ep_ctx->deq = out_ep_ctx->deq;
	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
}

/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.  Only the context entries field matters,
 * but we'll copy the whole thing anyway.
 */
1660 1661 1662
void xhci_slot_copy(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx)
1663 1664 1665 1666
{
	struct xhci_slot_ctx *in_slot_ctx;
	struct xhci_slot_ctx *out_slot_ctx;

1667 1668
	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1669 1670 1671 1672 1673 1674 1675

	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
}

1676 1677 1678 1679 1680 1681 1682
/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	int i;
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

1683 1684
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Allocating %d scratchpad buffers", num_sp);
1685 1686 1687 1688 1689 1690 1691 1692

	if (!num_sp)
		return 0;

	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
	if (!xhci->scratchpad)
		goto fail_sp;

1693
	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1694
				     num_sp * sizeof(u64),
1695
				     &xhci->scratchpad->sp_dma, flags);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	if (!xhci->scratchpad->sp_array)
		goto fail_sp2;

	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
	if (!xhci->scratchpad->sp_buffers)
		goto fail_sp3;

	xhci->scratchpad->sp_dma_buffers =
		kzalloc(sizeof(dma_addr_t) * num_sp, flags);

	if (!xhci->scratchpad->sp_dma_buffers)
		goto fail_sp4;

M
Matt Evans 已提交
1709
	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1710 1711
	for (i = 0; i < num_sp; i++) {
		dma_addr_t dma;
1712 1713
		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
				flags);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
		if (!buf)
			goto fail_sp5;

		xhci->scratchpad->sp_array[i] = dma;
		xhci->scratchpad->sp_buffers[i] = buf;
		xhci->scratchpad->sp_dma_buffers[i] = dma;
	}

	return 0;

 fail_sp5:
	for (i = i - 1; i >= 0; i--) {
1726
		dma_free_coherent(dev, xhci->page_size,
1727 1728 1729 1730 1731 1732 1733 1734 1735
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);

 fail_sp4:
	kfree(xhci->scratchpad->sp_buffers);

 fail_sp3:
1736
	dma_free_coherent(dev, num_sp * sizeof(u64),
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);

 fail_sp2:
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;

 fail_sp:
	return -ENOMEM;
}

static void scratchpad_free(struct xhci_hcd *xhci)
{
	int num_sp;
	int i;
1752
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1753 1754 1755 1756 1757 1758 1759

	if (!xhci->scratchpad)
		return;

	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	for (i = 0; i < num_sp; i++) {
1760
		dma_free_coherent(dev, xhci->page_size,
1761 1762 1763 1764 1765
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);
	kfree(xhci->scratchpad->sp_buffers);
1766
	dma_free_coherent(dev, num_sp * sizeof(u64),
1767 1768 1769 1770 1771 1772
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;
}

1773
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1774 1775
		bool allocate_in_ctx, bool allocate_completion,
		gfp_t mem_flags)
1776 1777 1778 1779 1780 1781 1782
{
	struct xhci_command *command;

	command = kzalloc(sizeof(*command), mem_flags);
	if (!command)
		return NULL;

1783 1784 1785 1786 1787 1788 1789 1790
	if (allocate_in_ctx) {
		command->in_ctx =
			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
					mem_flags);
		if (!command->in_ctx) {
			kfree(command);
			return NULL;
		}
1791
	}
1792 1793 1794 1795 1796 1797

	if (allocate_completion) {
		command->completion =
			kzalloc(sizeof(struct completion), mem_flags);
		if (!command->completion) {
			xhci_free_container_ctx(xhci, command->in_ctx);
1798
			kfree(command);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
			return NULL;
		}
		init_completion(command->completion);
	}

	command->status = 0;
	INIT_LIST_HEAD(&command->cmd_list);
	return command;
}

1809
void xhci_urb_free_priv(struct urb_priv *urb_priv)
1810
{
A
Andiry Xu 已提交
1811 1812 1813
	if (urb_priv) {
		kfree(urb_priv->td[0]);
		kfree(urb_priv);
1814 1815 1816
	}
}

1817 1818 1819 1820 1821 1822 1823 1824 1825
void xhci_free_command(struct xhci_hcd *xhci,
		struct xhci_command *command)
{
	xhci_free_container_ctx(xhci,
			command->in_ctx);
	kfree(command->completion);
	kfree(command);
}

1826 1827
void xhci_mem_cleanup(struct xhci_hcd *xhci)
{
1828
	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1829
	int size;
1830
	int i, j, num_ports;
1831

1832
	cancel_delayed_work_sync(&xhci->cmd_timer);
1833

1834 1835 1836
	/* Free the Event Ring Segment Table and the actual Event Ring */
	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
	if (xhci->erst.entries)
1837
		dma_free_coherent(dev, size,
1838 1839
				xhci->erst.entries, xhci->erst.erst_dma_addr);
	xhci->erst.entries = NULL;
1840
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1841 1842 1843
	if (xhci->event_ring)
		xhci_ring_free(xhci, xhci->event_ring);
	xhci->event_ring = NULL;
1844
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1845

1846 1847
	if (xhci->lpm_command)
		xhci_free_command(xhci, xhci->lpm_command);
1848
	xhci->lpm_command = NULL;
1849 1850 1851
	if (xhci->cmd_ring)
		xhci_ring_free(xhci, xhci->cmd_ring);
	xhci->cmd_ring = NULL;
1852
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
M
Mathias Nyman 已提交
1853
	xhci_cleanup_command_queue(xhci);
1854

1855
	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1856
	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1857 1858 1859 1860 1861 1862 1863 1864
		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
			struct list_head *ep = &bwt->interval_bw[j].endpoints;
			while (!list_empty(ep))
				list_del_init(ep->next);
		}
	}

1865 1866
	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
		xhci_free_virt_devices_depth_first(xhci, i);
1867

1868
	dma_pool_destroy(xhci->segment_pool);
1869
	xhci->segment_pool = NULL;
1870
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1871

1872
	dma_pool_destroy(xhci->device_pool);
1873
	xhci->device_pool = NULL;
1874
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1875

1876
	dma_pool_destroy(xhci->small_streams_pool);
1877
	xhci->small_streams_pool = NULL;
1878 1879
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Freed small stream array pool");
1880

1881
	dma_pool_destroy(xhci->medium_streams_pool);
1882
	xhci->medium_streams_pool = NULL;
1883 1884
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Freed medium stream array pool");
1885

1886
	if (xhci->dcbaa)
1887
		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1888 1889
				xhci->dcbaa, xhci->dcbaa->dma);
	xhci->dcbaa = NULL;
1890

1891
	scratchpad_free(xhci);
1892

1893 1894 1895
	if (!xhci->rh_bw)
		goto no_bw;

1896 1897 1898 1899 1900 1901
	for (i = 0; i < num_ports; i++) {
		struct xhci_tt_bw_info *tt, *n;
		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
			list_del(&tt->tt_list);
			kfree(tt);
		}
1902 1903
	}

1904
no_bw:
1905
	xhci->cmd_ring_reserved_trbs = 0;
1906 1907
	xhci->num_usb2_ports = 0;
	xhci->num_usb3_ports = 0;
1908
	xhci->num_active_eps = 0;
1909 1910 1911
	kfree(xhci->usb2_ports);
	kfree(xhci->usb3_ports);
	kfree(xhci->port_array);
1912
	kfree(xhci->rh_bw);
1913
	kfree(xhci->ext_caps);
1914

1915 1916 1917 1918 1919 1920
	xhci->usb2_ports = NULL;
	xhci->usb3_ports = NULL;
	xhci->port_array = NULL;
	xhci->rh_bw = NULL;
	xhci->ext_caps = NULL;

1921 1922
	xhci->page_size = 0;
	xhci->page_shift = 0;
1923
	xhci->bus_state[0].bus_suspended = 0;
1924
	xhci->bus_state[1].bus_suspended = 0;
1925 1926
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
		struct xhci_segment *input_seg,
		union xhci_trb *start_trb,
		union xhci_trb *end_trb,
		dma_addr_t input_dma,
		struct xhci_segment *result_seg,
		char *test_name, int test_number)
{
	unsigned long long start_dma;
	unsigned long long end_dma;
	struct xhci_segment *seg;

	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);

1942
	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	if (seg != result_seg) {
		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
				test_name, test_number);
		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
				"input DMA 0x%llx\n",
				input_seg,
				(unsigned long long) input_dma);
		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
				"ending TRB %p (0x%llx DMA)\n",
				start_trb, start_dma,
				end_trb, end_dma);
		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
				result_seg, seg);
1956 1957
		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
			  true);
1958 1959 1960 1961 1962 1963
		return -1;
	}
	return 0;
}

/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1964
static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
{
	struct {
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} simple_test_vector [] = {
		/* A zeroed DMA field should fail */
		{ 0, NULL },
		/* One TRB before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 16, NULL },
		/* One byte before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 1, NULL },
		/* Starting TRB should succeed */
		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
		/* Ending TRB should succeed */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
			xhci->event_ring->first_seg },
		/* One byte after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
		/* One TRB after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
		/* An address of all ones should fail */
		{ (dma_addr_t) (~0), NULL },
	};
	struct {
		struct xhci_segment	*input_seg;
		union xhci_trb		*start_trb;
		union xhci_trb		*end_trb;
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} complex_test_vector [] = {
		/* Test feeding a valid DMA address from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid start and end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->cmd_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[0],
			.end_trb = &xhci->event_ring->first_seg->trbs[3],
			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[3],
			.end_trb = &xhci->event_ring->first_seg->trbs[6],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
			.result_seg = NULL,
		},
		/* TRB not in this ring, and we have a wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
	};

	unsigned int num_tests;
	int i, ret;

2056
	num_tests = ARRAY_SIZE(simple_test_vector);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				xhci->event_ring->first_seg,
				xhci->event_ring->first_seg->trbs,
				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
				simple_test_vector[i].input_dma,
				simple_test_vector[i].result_seg,
				"Simple", i);
		if (ret < 0)
			return ret;
	}

2069
	num_tests = ARRAY_SIZE(complex_test_vector);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				complex_test_vector[i].input_seg,
				complex_test_vector[i].start_trb,
				complex_test_vector[i].end_trb,
				complex_test_vector[i].input_dma,
				complex_test_vector[i].result_seg,
				"Complex", i);
		if (ret < 0)
			return ret;
	}
	xhci_dbg(xhci, "TRB math tests passed.\n");
	return 0;
}

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
{
	u64 temp;
	dma_addr_t deq;

	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
			xhci->event_ring->dequeue);
	if (deq == 0 && !in_interrupt())
		xhci_warn(xhci, "WARN something wrong with SW event ring "
				"dequeue ptr.\n");
	/* Update HC event ring dequeue pointer */
2096
	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2097 2098 2099 2100 2101
	temp &= ERST_PTR_MASK;
	/* Don't clear the EHB bit (which is RW1C) because
	 * there might be more events to service.
	 */
	temp &= ~ERST_EHB;
2102 2103 2104
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Write event ring dequeue pointer, "
			"preserving EHB bit");
2105
	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2106 2107 2108
			&xhci->ir_set->erst_dequeue);
}

2109
static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2110
		__le32 __iomem *addr, int max_caps)
2111 2112 2113
{
	u32 temp, port_offset, port_count;
	int i;
2114
	u8 major_revision;
2115
	struct xhci_hub *rhub;
2116

2117
	temp = readl(addr);
2118
	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2119

2120
	if (major_revision == 0x03) {
2121
		rhub = &xhci->usb3_rhub;
2122
	} else if (major_revision <= 0x02) {
2123 2124
		rhub = &xhci->usb2_rhub;
	} else {
2125 2126 2127 2128 2129 2130
		xhci_warn(xhci, "Ignoring unknown port speed, "
				"Ext Cap %p, revision = 0x%x\n",
				addr, major_revision);
		/* Ignoring port protocol we can't understand. FIXME */
		return;
	}
2131 2132
	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
	rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2133 2134

	/* Port offset and count in the third dword, see section 7.2 */
2135
	temp = readl(addr + 2);
2136 2137
	port_offset = XHCI_EXT_PORT_OFF(temp);
	port_count = XHCI_EXT_PORT_COUNT(temp);
2138 2139 2140
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Ext Cap %p, port offset = %u, "
			"count = %u, revision = 0x%x",
2141 2142 2143 2144 2145
			addr, port_offset, port_count, major_revision);
	/* Port count includes the current port offset */
	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
		/* WTF? "Valid values are ‘1’ to MaxPorts" */
		return;
A
Andiry Xu 已提交
2146

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
	if (rhub->psi_count) {
		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
				    GFP_KERNEL);
		if (!rhub->psi)
			rhub->psi_count = 0;

		rhub->psi_uid_count++;
		for (i = 0; i < rhub->psi_count; i++) {
			rhub->psi[i] = readl(addr + 4 + i);

			/* count unique ID values, two consecutive entries can
			 * have the same ID if link is assymetric
			 */
			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
				rhub->psi_uid_count++;

			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
				  XHCI_EXT_PORT_LP(rhub->psi[i]),
				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
		}
	}
2174 2175 2176 2177
	/* cache usb2 port capabilities */
	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
		xhci->ext_caps[xhci->num_ext_caps++] = temp;

A
Andiry Xu 已提交
2178 2179 2180
	/* Check the host's USB2 LPM capability */
	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
			(temp & XHCI_L1C)) {
2181 2182
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"xHCI 0.96: support USB2 software lpm");
A
Andiry Xu 已提交
2183 2184 2185 2186
		xhci->sw_lpm_support = 1;
	}

	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2187 2188
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"xHCI 1.0: support USB2 software lpm");
A
Andiry Xu 已提交
2189 2190
		xhci->sw_lpm_support = 1;
		if (temp & XHCI_HLC) {
2191 2192
			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
					"xHCI 1.0: support USB2 hardware lpm");
A
Andiry Xu 已提交
2193 2194 2195 2196
			xhci->hw_lpm_support = 1;
		}
	}

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
	port_offset--;
	for (i = port_offset; i < (port_offset + port_count); i++) {
		/* Duplicate entry.  Ignore the port if the revisions differ. */
		if (xhci->port_array[i] != 0) {
			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
					" port %u\n", addr, i);
			xhci_warn(xhci, "Port was marked as USB %u, "
					"duplicated as USB %u\n",
					xhci->port_array[i], major_revision);
			/* Only adjust the roothub port counts if we haven't
			 * found a similar duplicate.
			 */
			if (xhci->port_array[i] != major_revision &&
2210
				xhci->port_array[i] != DUPLICATE_ENTRY) {
2211 2212 2213 2214
				if (xhci->port_array[i] == 0x03)
					xhci->num_usb3_ports--;
				else
					xhci->num_usb2_ports--;
2215
				xhci->port_array[i] = DUPLICATE_ENTRY;
2216 2217
			}
			/* FIXME: Should we disable the port? */
2218
			continue;
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
		}
		xhci->port_array[i] = major_revision;
		if (major_revision == 0x03)
			xhci->num_usb3_ports++;
		else
			xhci->num_usb2_ports++;
	}
	/* FIXME: Should we disable ports not in the Extended Capabilities? */
}

/*
 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
 * specify what speeds each port is supposed to be.  We can't count on the port
 * speed bits in the PORTSC register being correct until a device is connected,
 * but we need to set up the two fake roothubs with the correct number of USB
 * 3.0 and USB 2.0 ports at host controller initialization time.
 */
static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
{
2238 2239
	void __iomem *base;
	u32 offset;
2240
	unsigned int num_ports;
2241
	int i, j, port_index;
2242
	int cap_count = 0;
2243
	u32 cap_start;
2244 2245 2246 2247 2248 2249

	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
	if (!xhci->port_array)
		return -ENOMEM;

2250 2251 2252
	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
	if (!xhci->rh_bw)
		return -ENOMEM;
2253 2254 2255
	for (i = 0; i < num_ports; i++) {
		struct xhci_interval_bw_table *bw_table;

2256
		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2257 2258 2259 2260
		bw_table = &xhci->rh_bw[i].bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
	}
2261
	base = &xhci->cap_regs->hc_capbase;
2262

2263 2264 2265 2266 2267
	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
	if (!cap_start) {
		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
		return -ENODEV;
	}
2268

2269
	offset = cap_start;
2270
	/* count extended protocol capability entries for later caching */
2271 2272 2273 2274 2275
	while (offset) {
		cap_count++;
		offset = xhci_find_next_ext_cap(base, offset,
						      XHCI_EXT_CAPS_PROTOCOL);
	}
2276 2277 2278 2279 2280

	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
	if (!xhci->ext_caps)
		return -ENOMEM;

2281 2282 2283 2284 2285
	offset = cap_start;

	while (offset) {
		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2286
			break;
2287 2288
		offset = xhci_find_next_ext_cap(base, offset,
						XHCI_EXT_CAPS_PROTOCOL);
2289 2290 2291 2292 2293 2294
	}

	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
		xhci_warn(xhci, "No ports on the roothubs?\n");
		return -ENODEV;
	}
2295 2296
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2297
			xhci->num_usb2_ports, xhci->num_usb3_ports);
2298 2299 2300 2301 2302

	/* Place limits on the number of roothub ports so that the hub
	 * descriptors aren't longer than the USB core will allocate.
	 */
	if (xhci->num_usb3_ports > 15) {
2303 2304
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"Limiting USB 3.0 roothub ports to 15.");
2305 2306 2307
		xhci->num_usb3_ports = 15;
	}
	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2308 2309
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"Limiting USB 2.0 roothub ports to %u.",
2310 2311 2312 2313
				USB_MAXCHILDREN);
		xhci->num_usb2_ports = USB_MAXCHILDREN;
	}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	/*
	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
	 * Not sure how the USB core will handle a hub with no ports...
	 */
	if (xhci->num_usb2_ports) {
		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
				xhci->num_usb2_ports, flags);
		if (!xhci->usb2_ports)
			return -ENOMEM;

		port_index = 0;
2325 2326 2327
		for (i = 0; i < num_ports; i++) {
			if (xhci->port_array[i] == 0x03 ||
					xhci->port_array[i] == 0 ||
2328
					xhci->port_array[i] == DUPLICATE_ENTRY)
2329 2330 2331 2332 2333
				continue;

			xhci->usb2_ports[port_index] =
				&xhci->op_regs->port_status_base +
				NUM_PORT_REGS*i;
2334 2335 2336
			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
					"USB 2.0 port at index %u, "
					"addr = %p", i,
2337 2338
					xhci->usb2_ports[port_index]);
			port_index++;
2339 2340
			if (port_index == xhci->num_usb2_ports)
				break;
2341
		}
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	}
	if (xhci->num_usb3_ports) {
		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
				xhci->num_usb3_ports, flags);
		if (!xhci->usb3_ports)
			return -ENOMEM;

		port_index = 0;
		for (i = 0; i < num_ports; i++)
			if (xhci->port_array[i] == 0x03) {
				xhci->usb3_ports[port_index] =
					&xhci->op_regs->port_status_base +
					NUM_PORT_REGS*i;
2355 2356 2357
				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
						"USB 3.0 port at index %u, "
						"addr = %p", i,
2358 2359
						xhci->usb3_ports[port_index]);
				port_index++;
2360 2361
				if (port_index == xhci->num_usb3_ports)
					break;
2362 2363 2364 2365
			}
	}
	return 0;
}
2366

2367 2368
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
{
2369 2370
	dma_addr_t	dma;
	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2371
	unsigned int	val, val2;
2372
	u64		val_64;
2373
	struct xhci_segment	*seg;
2374
	u32 page_size, temp;
2375 2376
	int i;

M
Mathias Nyman 已提交
2377
	INIT_LIST_HEAD(&xhci->cmd_list);
2378

2379 2380
	/* init command timeout work */
	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2381

2382
	page_size = readl(&xhci->op_regs->page_size);
2383 2384
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Supported page size register = 0x%x", page_size);
2385 2386 2387 2388 2389 2390
	for (i = 0; i < 16; i++) {
		if ((0x1 & page_size) != 0)
			break;
		page_size = page_size >> 1;
	}
	if (i < 16)
2391 2392
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Supported page size of %iK", (1 << (i+12)) / 1024);
2393 2394 2395 2396 2397
	else
		xhci_warn(xhci, "WARN: no supported page size\n");
	/* Use 4K pages, since that's common and the minimum the HC supports */
	xhci->page_shift = 12;
	xhci->page_size = 1 << xhci->page_shift;
2398 2399
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"HCD page size set to %iK", xhci->page_size / 1024);
2400 2401 2402 2403 2404

	/*
	 * Program the Number of Device Slots Enabled field in the CONFIG
	 * register with the max value of slots the HC can handle.
	 */
2405
	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2406 2407
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// xHC can handle at most %d device slots.", val);
2408
	val2 = readl(&xhci->op_regs->config_reg);
2409
	val |= (val2 & ~HCS_SLOTS_MASK);
2410 2411
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Setting Max device slots reg = 0x%x.", val);
2412
	writel(val, &xhci->op_regs->config_reg);
2413

2414 2415 2416 2417
	/*
	 * Section 5.4.8 - doorbell array must be
	 * "physically contiguous and 64-byte (cache line) aligned".
	 */
2418
	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2419
			flags);
2420 2421 2422 2423
	if (!xhci->dcbaa)
		goto fail;
	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
	xhci->dcbaa->dma = dma;
2424 2425
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2426
			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2427
	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2428

2429 2430 2431
	/*
	 * Initialize the ring segment pool.  The ring must be a contiguous
	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2432 2433 2434
	 * however, the command ring segment needs 64-byte aligned segments
	 * and our use of dma addresses in the trb_address_map radix tree needs
	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2435 2436
	 */
	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2437
			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2438

2439 2440
	/* See Table 46 and Note on Figure 55 */
	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2441
			2112, 64, xhci->page_size);
2442
	if (!xhci->segment_pool || !xhci->device_pool)
2443 2444
		goto fail;

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	/* Linear stream context arrays don't have any boundary restrictions,
	 * and only need to be 16-byte aligned.
	 */
	xhci->small_streams_pool =
		dma_pool_create("xHCI 256 byte stream ctx arrays",
			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
	xhci->medium_streams_pool =
		dma_pool_create("xHCI 1KB stream ctx arrays",
			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2455
	 * will be allocated with dma_alloc_coherent()
2456 2457 2458 2459 2460
	 */

	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
		goto fail;

2461
	/* Set up the command ring to have one segments for now. */
2462
	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2463 2464
	if (!xhci->cmd_ring)
		goto fail;
2465 2466 2467
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Allocated command ring at %p", xhci->cmd_ring);
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2468
			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2469 2470

	/* Set the address in the Command Ring Control register */
2471
	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2472 2473
	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2474
		xhci->cmd_ring->cycle_state;
2475 2476
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Setting command ring address to 0x%x", val);
2477
	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2478 2479
	xhci_dbg_cmd_ptrs(xhci);

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
	if (!xhci->lpm_command)
		goto fail;

	/* Reserve one command ring TRB for disabling LPM.
	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
	 * disabling LPM, we only need to reserve one TRB for all devices.
	 */
	xhci->cmd_ring_reserved_trbs++;

2490
	val = readl(&xhci->cap_regs->db_off);
2491
	val &= DBOFF_MASK;
2492 2493 2494
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Doorbell array is located at offset 0x%x"
			" from cap regs base addr", val);
2495
	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2496 2497 2498
	xhci_dbg_regs(xhci);
	xhci_print_run_regs(xhci);
	/* Set ir_set to interrupt register set 0 */
2499
	xhci->ir_set = &xhci->run_regs->ir_set[0];
2500 2501 2502 2503 2504

	/*
	 * Event ring setup: Allocate a normal ring, but also setup
	 * the event ring segment table (ERST).  Section 4.9.3.
	 */
2505
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2506
	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2507
					0, flags);
2508 2509
	if (!xhci->event_ring)
		goto fail;
2510
	if (xhci_check_trb_in_td_math(xhci) < 0)
2511
		goto fail;
2512

2513 2514
	xhci->erst.entries = dma_alloc_coherent(dev,
			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2515
			flags);
2516 2517
	if (!xhci->erst.entries)
		goto fail;
2518 2519
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Allocated event ring segment table at 0x%llx",
2520
			(unsigned long long)dma);
2521 2522 2523 2524

	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
	xhci->erst.num_entries = ERST_NUM_SEGS;
	xhci->erst.erst_dma_addr = dma;
2525 2526
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2527
			xhci->erst.num_entries,
2528 2529
			xhci->erst.entries,
			(unsigned long long)xhci->erst.erst_dma_addr);
2530 2531 2532 2533

	/* set ring base address and size for each segment table entry */
	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
M
Matt Evans 已提交
2534 2535
		entry->seg_addr = cpu_to_le64(seg->dma);
		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2536 2537 2538 2539 2540
		entry->rsvd = 0;
		seg = seg->next;
	}

	/* set ERST count with the number of entries in the segment table */
2541
	val = readl(&xhci->ir_set->erst_size);
2542 2543
	val &= ERST_SIZE_MASK;
	val |= ERST_NUM_SEGS;
2544 2545
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2546
			val);
2547
	writel(val, &xhci->ir_set->erst_size);
2548

2549 2550
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Set ERST entries to point to event ring.");
2551
	/* set the segment table base address */
2552 2553
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Set ERST base address for ir_set 0 = 0x%llx",
2554
			(unsigned long long)xhci->erst.erst_dma_addr);
2555
	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2556 2557
	val_64 &= ERST_PTR_MASK;
	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2558
	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2559 2560

	/* Set the event ring dequeue address */
2561
	xhci_set_hc_event_deq(xhci);
2562 2563
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Wrote ERST address to ir_set 0.");
2564
	xhci_print_ir_set(xhci, 0);
2565 2566 2567 2568 2569 2570

	/*
	 * XXX: Might need to set the Interrupter Moderation Register to
	 * something other than the default (~1ms minimum between interrupts).
	 * See section 5.5.1.2.
	 */
2571
	for (i = 0; i < MAX_HC_SLOTS; ++i)
2572
		xhci->devs[i] = NULL;
2573
	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2574
		xhci->bus_state[0].resume_done[i] = 0;
2575
		xhci->bus_state[1].resume_done[i] = 0;
2576 2577
		/* Only the USB 2.0 completions will ever be used. */
		init_completion(&xhci->bus_state[1].rexit_done[i]);
2578
	}
2579

2580 2581
	if (scratchpad_alloc(xhci, flags))
		goto fail;
2582 2583
	if (xhci_setup_port_arrays(xhci, flags))
		goto fail;
2584

2585 2586 2587 2588
	/* Enable USB 3.0 device notifications for function remote wake, which
	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
	 * U3 (device suspend).
	 */
2589
	temp = readl(&xhci->op_regs->dev_notification);
2590 2591
	temp &= ~DEV_NOTE_MASK;
	temp |= DEV_NOTE_FWAKE;
2592
	writel(temp, &xhci->op_regs->dev_notification);
2593

2594
	return 0;
2595

2596 2597
fail:
	xhci_warn(xhci, "Couldn't initialize memory\n");
2598 2599
	xhci_halt(xhci);
	xhci_reset(xhci);
2600 2601 2602
	xhci_mem_cleanup(xhci);
	return -ENOMEM;
}