xhci-mem.c 22.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * xHCI host controller driver
 *
 * Copyright (C) 2008 Intel Corp.
 *
 * Author: Sarah Sharp
 * Some code borrowed from the Linux EHCI driver.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/usb.h>
24
#include <linux/pci.h>
25
#include <linux/dmapool.h>
26 27 28

#include "xhci.h"

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Allocates a generic ring segment from the ring pool, sets the dma address,
 * initializes the segment to zero, and sets the private next pointer to NULL.
 *
 * Section 4.11.1.1:
 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
 */
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	struct xhci_segment *seg;
	dma_addr_t	dma;

	seg = kzalloc(sizeof *seg, flags);
	if (!seg)
		return 0;
44
	xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
45 46 47 48 49 50

	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
	if (!seg->trbs) {
		kfree(seg);
		return 0;
	}
51 52
	xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
			seg->trbs, (unsigned long long)dma);
53 54 55 56 57 58 59 60 61 62 63 64 65

	memset(seg->trbs, 0, SEGMENT_SIZE);
	seg->dma = dma;
	seg->next = NULL;

	return seg;
}

static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
{
	if (!seg)
		return;
	if (seg->trbs) {
66 67
		xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
				seg->trbs, (unsigned long long)seg->dma);
68 69 70
		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
		seg->trbs = NULL;
	}
71
	xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	kfree(seg);
}

/*
 * Make the prev segment point to the next segment.
 *
 * Change the last TRB in the prev segment to be a Link TRB which points to the
 * DMA address of the next segment.  The caller needs to set any Link TRB
 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 */
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
		struct xhci_segment *next, bool link_trbs)
{
	u32 val;

	if (!prev || !next)
		return;
	prev->next = next;
	if (link_trbs) {
		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr[0] = next->dma;

		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
		val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
		val &= ~TRB_TYPE_BITMASK;
		val |= TRB_TYPE(TRB_LINK);
		prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
	}
99 100 101
	xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
			(unsigned long long)prev->dma,
			(unsigned long long)next->dma);
102 103 104
}

/* XXX: Do we need the hcd structure in all these functions? */
105
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
106 107 108 109 110 111 112 113
{
	struct xhci_segment *seg;
	struct xhci_segment *first_seg;

	if (!ring || !ring->first_seg)
		return;
	first_seg = ring->first_seg;
	seg = first_seg->next;
114
	xhci_dbg(xhci, "Freeing ring at %p\n", ring);
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	while (seg != first_seg) {
		struct xhci_segment *next = seg->next;
		xhci_segment_free(xhci, seg);
		seg = next;
	}
	xhci_segment_free(xhci, first_seg);
	ring->first_seg = NULL;
	kfree(ring);
}

/**
 * Create a new ring with zero or more segments.
 *
 * Link each segment together into a ring.
 * Set the end flag and the cycle toggle bit on the last segment.
 * See section 4.9.1 and figures 15 and 16.
 */
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
		unsigned int num_segs, bool link_trbs, gfp_t flags)
{
	struct xhci_ring	*ring;
	struct xhci_segment	*prev;

	ring = kzalloc(sizeof *(ring), flags);
139
	xhci_dbg(xhci, "Allocating ring at %p\n", ring);
140 141 142
	if (!ring)
		return 0;

143
	INIT_LIST_HEAD(&ring->td_list);
144
	INIT_LIST_HEAD(&ring->cancelled_td_list);
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
	if (num_segs == 0)
		return ring;

	ring->first_seg = xhci_segment_alloc(xhci, flags);
	if (!ring->first_seg)
		goto fail;
	num_segs--;

	prev = ring->first_seg;
	while (num_segs > 0) {
		struct xhci_segment	*next;

		next = xhci_segment_alloc(xhci, flags);
		if (!next)
			goto fail;
		xhci_link_segments(xhci, prev, next, link_trbs);

		prev = next;
		num_segs--;
	}
	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);

	if (link_trbs) {
		/* See section 4.9.2.1 and 6.4.4.1 */
		prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
		xhci_dbg(xhci, "Wrote link toggle flag to"
171 172
				" segment %p (virtual), 0x%llx (DMA)\n",
				prev, (unsigned long long)prev->dma);
173 174 175
	}
	/* The ring is empty, so the enqueue pointer == dequeue pointer */
	ring->enqueue = ring->first_seg->trbs;
176
	ring->enq_seg = ring->first_seg;
177
	ring->dequeue = ring->enqueue;
178
	ring->deq_seg = ring->first_seg;
179 180 181 182 183 184 185 186 187 188 189 190 191
	/* The ring is initialized to 0. The producer must write 1 to the cycle
	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
	 */
	ring->cycle_state = 1;

	return ring;

fail:
	xhci_ring_free(xhci, ring);
	return 0;
}

192
/* All the xhci_tds in the ring's TD list should be freed at this point */
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
{
	struct xhci_virt_device *dev;
	int i;

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || !xhci->devs[slot_id])
		return;

	dev = xhci->devs[slot_id];
	xhci->dcbaa->dev_context_ptrs[2*slot_id] = 0;
	xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0;
	if (!dev)
		return;

	for (i = 0; i < 31; ++i)
		if (dev->ep_rings[i])
			xhci_ring_free(xhci, dev->ep_rings[i]);

	if (dev->in_ctx)
		dma_pool_free(xhci->device_pool,
				dev->in_ctx, dev->in_ctx_dma);
	if (dev->out_ctx)
		dma_pool_free(xhci->device_pool,
				dev->out_ctx, dev->out_ctx_dma);
	kfree(xhci->devs[slot_id]);
	xhci->devs[slot_id] = 0;
}

int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
		struct usb_device *udev, gfp_t flags)
{
	dma_addr_t	dma;
	struct xhci_virt_device *dev;

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || xhci->devs[slot_id]) {
		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
		return 0;
	}

	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
	if (!xhci->devs[slot_id])
		return 0;
	dev = xhci->devs[slot_id];

	/* Allocate the (output) device context that will be used in the HC */
	dev->out_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
	if (!dev->out_ctx)
		goto fail;
	dev->out_ctx_dma = dma;
244 245
	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
			(unsigned long long)dma);
246 247 248 249 250 251 252
	memset(dev->out_ctx, 0, sizeof(*dev->out_ctx));

	/* Allocate the (input) device context for address device command */
	dev->in_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
	if (!dev->in_ctx)
		goto fail;
	dev->in_ctx_dma = dma;
253 254
	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
			(unsigned long long)dma);
255 256 257 258 259 260 261
	memset(dev->in_ctx, 0, sizeof(*dev->in_ctx));

	/* Allocate endpoint 0 ring */
	dev->ep_rings[0] = xhci_ring_alloc(xhci, 1, true, flags);
	if (!dev->ep_rings[0])
		goto fail;

262 263
	init_completion(&dev->cmd_completion);

264 265 266 267 268 269
	/*
	 * Point to output device context in dcbaa; skip the output control
	 * context, which is eight 32 bit fields (or 32 bytes long)
	 */
	xhci->dcbaa->dev_context_ptrs[2*slot_id] =
		(u32) dev->out_ctx_dma + (32);
270
	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
271
			slot_id,
272 273
			&xhci->dcbaa->dev_context_ptrs[2*slot_id],
			(unsigned long long)dev->out_ctx_dma);
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
	xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0;

	return 1;
fail:
	xhci_free_virt_device(xhci, slot_id);
	return 0;
}

/* Setup an xHCI virtual device for a Set Address command */
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
{
	struct xhci_virt_device *dev;
	struct xhci_ep_ctx	*ep0_ctx;
	struct usb_device	*top_dev;

	dev = xhci->devs[udev->slot_id];
	/* Slot ID 0 is reserved */
	if (udev->slot_id == 0 || !dev) {
		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
				udev->slot_id);
		return -EINVAL;
	}
	ep0_ctx = &dev->in_ctx->ep[0];

	/* 2) New slot context and endpoint 0 context are valid*/
	dev->in_ctx->add_flags = SLOT_FLAG | EP0_FLAG;

	/* 3) Only the control endpoint is valid - one endpoint context */
	dev->in_ctx->slot.dev_info |= LAST_CTX(1);

	switch (udev->speed) {
	case USB_SPEED_SUPER:
		dev->in_ctx->slot.dev_info |= (u32) udev->route;
		dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_SS;
		break;
	case USB_SPEED_HIGH:
		dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_HS;
		break;
	case USB_SPEED_FULL:
		dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_FS;
		break;
	case USB_SPEED_LOW:
		dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_LS;
		break;
	case USB_SPEED_VARIABLE:
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* Speed was set earlier, this shouldn't happen. */
		BUG();
	}
	/* Find the root hub port this device is under */
	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;
	dev->in_ctx->slot.dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
	xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);

	/* Is this a LS/FS device under a HS hub? */
	/*
	 * FIXME: I don't think this is right, where does the TT info for the
	 * roothub or parent hub come from?
	 */
	if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
			udev->tt) {
		dev->in_ctx->slot.tt_info = udev->tt->hub->slot_id;
		dev->in_ctx->slot.tt_info |= udev->ttport << 8;
	}
343
	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);

	/* Step 4 - ring already allocated */
	/* Step 5 */
	ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
	/*
	 * See section 4.3 bullet 6:
	 * The default Max Packet size for ep0 is "8 bytes for a USB2
	 * LS/FS/HS device or 512 bytes for a USB3 SS device"
	 * XXX: Not sure about wireless USB devices.
	 */
	if (udev->speed == USB_SPEED_SUPER)
		ep0_ctx->ep_info2 |= MAX_PACKET(512);
	else
		ep0_ctx->ep_info2 |= MAX_PACKET(8);
	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
	ep0_ctx->ep_info2 |= MAX_BURST(0);
	ep0_ctx->ep_info2 |= ERROR_COUNT(3);

	ep0_ctx->deq[0] =
		dev->ep_rings[0]->first_seg->dma;
	ep0_ctx->deq[0] |= dev->ep_rings[0]->cycle_state;
	ep0_ctx->deq[1] = 0;

	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */

	return 0;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/* Return the polling or NAK interval.
 *
 * The polling interval is expressed in "microframes".  If xHCI's Interval field
 * is set to N, it will service the endpoint every 2^(Interval)*125us.
 *
 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
 * is set to 0.
 */
static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	unsigned int interval = 0;

	switch (udev->speed) {
	case USB_SPEED_HIGH:
		/* Max NAK rate */
		if (usb_endpoint_xfer_control(&ep->desc) ||
				usb_endpoint_xfer_bulk(&ep->desc))
			interval = ep->desc.bInterval;
		/* Fall through - SS and HS isoc/int have same decoding */
	case USB_SPEED_SUPER:
		if (usb_endpoint_xfer_int(&ep->desc) ||
				usb_endpoint_xfer_isoc(&ep->desc)) {
			if (ep->desc.bInterval == 0)
				interval = 0;
			else
				interval = ep->desc.bInterval - 1;
			if (interval > 15)
				interval = 15;
			if (interval != ep->desc.bInterval + 1)
				dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
						ep->desc.bEndpointAddress, 1 << interval);
		}
		break;
	/* Convert bInterval (in 1-255 frames) to microframes and round down to
	 * nearest power of 2.
	 */
	case USB_SPEED_FULL:
	case USB_SPEED_LOW:
		if (usb_endpoint_xfer_int(&ep->desc) ||
				usb_endpoint_xfer_isoc(&ep->desc)) {
			interval = fls(8*ep->desc.bInterval) - 1;
			if (interval > 10)
				interval = 10;
			if (interval < 3)
				interval = 3;
			if ((1 << interval) != 8*ep->desc.bInterval)
				dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
						ep->desc.bEndpointAddress, 1 << interval);
		}
		break;
	default:
		BUG();
	}
	return EP_INTERVAL(interval);
}

static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	int in;
	u32 type;

	in = usb_endpoint_dir_in(&ep->desc);
	if (usb_endpoint_xfer_control(&ep->desc)) {
		type = EP_TYPE(CTRL_EP);
	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
		if (in)
			type = EP_TYPE(BULK_IN_EP);
		else
			type = EP_TYPE(BULK_OUT_EP);
	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
		if (in)
			type = EP_TYPE(ISOC_IN_EP);
		else
			type = EP_TYPE(ISOC_OUT_EP);
	} else if (usb_endpoint_xfer_int(&ep->desc)) {
		if (in)
			type = EP_TYPE(INT_IN_EP);
		else
			type = EP_TYPE(INT_OUT_EP);
	} else {
		BUG();
	}
	return type;
}

int xhci_endpoint_init(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;
	struct xhci_ring *ep_ring;
	unsigned int max_packet;
	unsigned int max_burst;

	ep_index = xhci_get_endpoint_index(&ep->desc);
	ep_ctx = &virt_dev->in_ctx->ep[ep_index];

	/* Set up the endpoint ring */
	virt_dev->new_ep_rings[ep_index] = xhci_ring_alloc(xhci, 1, true, GFP_KERNEL);
	if (!virt_dev->new_ep_rings[ep_index])
		return -ENOMEM;
	ep_ring = virt_dev->new_ep_rings[ep_index];
	ep_ctx->deq[0] = ep_ring->first_seg->dma | ep_ring->cycle_state;
480
	ep_ctx->deq[1] = 0;
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

	ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);

	/* FIXME dig Mult and streams info out of ep companion desc */

	/* Allow 3 retries for everything but isoc */
	if (!usb_endpoint_xfer_isoc(&ep->desc))
		ep_ctx->ep_info2 = ERROR_COUNT(3);
	else
		ep_ctx->ep_info2 = ERROR_COUNT(0);

	ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);

	/* Set the max packet size and max burst */
	switch (udev->speed) {
	case USB_SPEED_SUPER:
		max_packet = ep->desc.wMaxPacketSize;
		ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
S
Sarah Sharp 已提交
499
		/* dig out max burst from ep companion desc */
500
		max_packet = ep->ss_ep_comp->desc.bMaxBurst;
S
Sarah Sharp 已提交
501
		ep_ctx->ep_info2 |= MAX_BURST(max_packet);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
		break;
	case USB_SPEED_HIGH:
		/* bits 11:12 specify the number of additional transaction
		 * opportunities per microframe (USB 2.0, section 9.6.6)
		 */
		if (usb_endpoint_xfer_isoc(&ep->desc) ||
				usb_endpoint_xfer_int(&ep->desc)) {
			max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
			ep_ctx->ep_info2 |= MAX_BURST(max_burst);
		}
		/* Fall through */
	case USB_SPEED_FULL:
	case USB_SPEED_LOW:
		max_packet = ep->desc.wMaxPacketSize & 0x3ff;
		ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
		break;
	default:
		BUG();
	}
	/* FIXME Debug endpoint context */
	return 0;
}

void xhci_endpoint_zero(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_host_endpoint *ep)
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;

	ep_index = xhci_get_endpoint_index(&ep->desc);
	ep_ctx = &virt_dev->in_ctx->ep[ep_index];

	ep_ctx->ep_info = 0;
	ep_ctx->ep_info2 = 0;
	ep_ctx->deq[0] = 0;
538
	ep_ctx->deq[1] = 0;
539 540 541 542 543 544
	ep_ctx->tx_info = 0;
	/* Don't free the endpoint ring until the set interface or configuration
	 * request succeeds.
	 */
}

545 546
void xhci_mem_cleanup(struct xhci_hcd *xhci)
{
547 548
	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
	int size;
549
	int i;
550 551 552 553

	/* Free the Event Ring Segment Table and the actual Event Ring */
	xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
	xhci_writel(xhci, 0, &xhci->ir_set->erst_base[0]);
554
	xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]);
555
	xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[0]);
556
	xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[1]);
557 558 559 560 561 562 563 564 565 566 567 568
	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
	if (xhci->erst.entries)
		pci_free_consistent(pdev, size,
				xhci->erst.entries, xhci->erst.erst_dma_addr);
	xhci->erst.entries = NULL;
	xhci_dbg(xhci, "Freed ERST\n");
	if (xhci->event_ring)
		xhci_ring_free(xhci, xhci->event_ring);
	xhci->event_ring = NULL;
	xhci_dbg(xhci, "Freed event ring\n");

	xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[0]);
569
	xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[1]);
570 571 572 573
	if (xhci->cmd_ring)
		xhci_ring_free(xhci, xhci->cmd_ring);
	xhci->cmd_ring = NULL;
	xhci_dbg(xhci, "Freed command ring\n");
574 575 576 577

	for (i = 1; i < MAX_HC_SLOTS; ++i)
		xhci_free_virt_device(xhci, i);

578 579 580 581
	if (xhci->segment_pool)
		dma_pool_destroy(xhci->segment_pool);
	xhci->segment_pool = NULL;
	xhci_dbg(xhci, "Freed segment pool\n");
582 583 584 585 586 587

	if (xhci->device_pool)
		dma_pool_destroy(xhci->device_pool);
	xhci->device_pool = NULL;
	xhci_dbg(xhci, "Freed device context pool\n");

588
	xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[0]);
589
	xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[1]);
590 591 592 593
	if (xhci->dcbaa)
		pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
				xhci->dcbaa, xhci->dcbaa->dma);
	xhci->dcbaa = NULL;
594

595 596 597 598 599 600
	xhci->page_size = 0;
	xhci->page_shift = 0;
}

int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
{
601 602
	dma_addr_t	dma;
	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
603
	unsigned int	val, val2;
604
	struct xhci_segment	*seg;
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	u32 page_size;
	int i;

	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
	for (i = 0; i < 16; i++) {
		if ((0x1 & page_size) != 0)
			break;
		page_size = page_size >> 1;
	}
	if (i < 16)
		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
	else
		xhci_warn(xhci, "WARN: no supported page size\n");
	/* Use 4K pages, since that's common and the minimum the HC supports */
	xhci->page_shift = 12;
	xhci->page_size = 1 << xhci->page_shift;
	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);

	/*
	 * Program the Number of Device Slots Enabled field in the CONFIG
	 * register with the max value of slots the HC can handle.
	 */
	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
			(unsigned int) val);
	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
	val |= (val2 & ~HCS_SLOTS_MASK);
	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
			(unsigned int) val);
	xhci_writel(xhci, val, &xhci->op_regs->config_reg);

637 638 639 640 641 642 643 644 645 646
	/*
	 * Section 5.4.8 - doorbell array must be
	 * "physically contiguous and 64-byte (cache line) aligned".
	 */
	xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
			sizeof(*xhci->dcbaa), &dma);
	if (!xhci->dcbaa)
		goto fail;
	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
	xhci->dcbaa->dma = dma;
647 648
	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
649
	xhci_writel(xhci, dma, &xhci->op_regs->dcbaa_ptr[0]);
650
	xhci_writel(xhci, (u32) 0, &xhci->op_regs->dcbaa_ptr[1]);
651

652 653 654 655 656 657 658 659
	/*
	 * Initialize the ring segment pool.  The ring must be a contiguous
	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
	 * however, the command ring segment needs 64-byte aligned segments,
	 * so we pick the greater alignment need.
	 */
	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
			SEGMENT_SIZE, 64, xhci->page_size);
660 661 662 663 664 665
	/* See Table 46 and Note on Figure 55 */
	/* FIXME support 64-byte contexts */
	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
			sizeof(struct xhci_device_control),
			64, xhci->page_size);
	if (!xhci->segment_pool || !xhci->device_pool)
666 667 668 669 670 671
		goto fail;

	/* Set up the command ring to have one segments for now. */
	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
	if (!xhci->cmd_ring)
		goto fail;
672 673 674
	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
			(unsigned long long)xhci->cmd_ring->first_seg->dma);
675 676 677 678 679 680 681 682

	/* Set the address in the Command Ring Control register */
	val = xhci_readl(xhci, &xhci->op_regs->cmd_ring[0]);
	val = (val & ~CMD_RING_ADDR_MASK) |
		(xhci->cmd_ring->first_seg->dma & CMD_RING_ADDR_MASK) |
		xhci->cmd_ring->cycle_state;
	xhci_dbg(xhci, "// Setting command ring address low bits to 0x%x\n", val);
	xhci_writel(xhci, val, &xhci->op_regs->cmd_ring[0]);
683 684
	xhci_dbg(xhci, "// Setting command ring address high bits to 0x0\n");
	xhci_writel(xhci, (u32) 0, &xhci->op_regs->cmd_ring[1]);
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	xhci_dbg_cmd_ptrs(xhci);

	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
	val &= DBOFF_MASK;
	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
			" from cap regs base addr\n", val);
	xhci->dba = (void *) xhci->cap_regs + val;
	xhci_dbg_regs(xhci);
	xhci_print_run_regs(xhci);
	/* Set ir_set to interrupt register set 0 */
	xhci->ir_set = (void *) xhci->run_regs->ir_set;

	/*
	 * Event ring setup: Allocate a normal ring, but also setup
	 * the event ring segment table (ERST).  Section 4.9.3.
	 */
	xhci_dbg(xhci, "// Allocating event ring\n");
	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
	if (!xhci->event_ring)
		goto fail;

	xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
			sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
	if (!xhci->erst.entries)
		goto fail;
710 711
	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
			(unsigned long long)dma);
712 713 714 715

	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
	xhci->erst.num_entries = ERST_NUM_SEGS;
	xhci->erst.erst_dma_addr = dma;
716
	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
717
			xhci->erst.num_entries,
718 719
			xhci->erst.entries,
			(unsigned long long)xhci->erst.erst_dma_addr);
720 721 722 723 724

	/* set ring base address and size for each segment table entry */
	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
		entry->seg_addr[0] = seg->dma;
725
		entry->seg_addr[1] = 0;
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
		entry->seg_size = TRBS_PER_SEGMENT;
		entry->rsvd = 0;
		seg = seg->next;
	}

	/* set ERST count with the number of entries in the segment table */
	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
	val &= ERST_SIZE_MASK;
	val |= ERST_NUM_SEGS;
	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
			val);
	xhci_writel(xhci, val, &xhci->ir_set->erst_size);

	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
	/* set the segment table base address */
741 742
	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
			(unsigned long long)xhci->erst.erst_dma_addr);
743 744 745 746
	val = xhci_readl(xhci, &xhci->ir_set->erst_base[0]);
	val &= ERST_PTR_MASK;
	val |= (xhci->erst.erst_dma_addr & ~ERST_PTR_MASK);
	xhci_writel(xhci, val, &xhci->ir_set->erst_base[0]);
747
	xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]);
748 749

	/* Set the event ring dequeue address */
750
	xhci_set_hc_event_deq(xhci);
751 752 753 754 755 756 757 758
	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
	xhci_print_ir_set(xhci, xhci->ir_set, 0);

	/*
	 * XXX: Might need to set the Interrupter Moderation Register to
	 * something other than the default (~1ms minimum between interrupts).
	 * See section 5.5.1.2.
	 */
759 760 761
	init_completion(&xhci->addr_dev);
	for (i = 0; i < MAX_HC_SLOTS; ++i)
		xhci->devs[i] = 0;
762 763 764 765 766 767 768

	return 0;
fail:
	xhci_warn(xhci, "Couldn't initialize memory\n");
	xhci_mem_cleanup(xhci);
	return -ENOMEM;
}