xhci-mem.c 76.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * xHCI host controller driver
 *
 * Copyright (C) 2008 Intel Corp.
 *
 * Author: Sarah Sharp
 * Some code borrowed from the Linux EHCI driver.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/usb.h>
24
#include <linux/pci.h>
25
#include <linux/slab.h>
26
#include <linux/dmapool.h>
27
#include <linux/dma-mapping.h>
28 29

#include "xhci.h"
30
#include "xhci-trace.h"
31

32 33 34 35 36 37 38
/*
 * Allocates a generic ring segment from the ring pool, sets the dma address,
 * initializes the segment to zero, and sets the private next pointer to NULL.
 *
 * Section 4.11.1.1:
 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
 */
39
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 41 42
					       unsigned int cycle_state,
					       unsigned int max_packet,
					       gfp_t flags)
43 44 45
{
	struct xhci_segment *seg;
	dma_addr_t	dma;
46
	int		i;
47 48 49

	seg = kzalloc(sizeof *seg, flags);
	if (!seg)
50
		return NULL;
51

52
	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53 54
	if (!seg->trbs) {
		kfree(seg);
55
		return NULL;
56 57
	}

58 59 60 61 62 63 64 65
	if (max_packet) {
		seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
		if (!seg->bounce_buf) {
			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
			kfree(seg);
			return NULL;
		}
	}
66 67 68
	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
	if (cycle_state == 0) {
		for (i = 0; i < TRBS_PER_SEGMENT; i++)
69
			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70
	}
71 72 73 74 75 76 77 78 79 80 81 82
	seg->dma = dma;
	seg->next = NULL;

	return seg;
}

static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
{
	if (seg->trbs) {
		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
		seg->trbs = NULL;
	}
83
	kfree(seg->bounce_buf);
84 85 86
	kfree(seg);
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
				struct xhci_segment *first)
{
	struct xhci_segment *seg;

	seg = first->next;
	while (seg != first) {
		struct xhci_segment *next = seg->next;
		xhci_segment_free(xhci, seg);
		seg = next;
	}
	xhci_segment_free(xhci, first);
}

101 102 103 104 105 106 107 108
/*
 * Make the prev segment point to the next segment.
 *
 * Change the last TRB in the prev segment to be a Link TRB which points to the
 * DMA address of the next segment.  The caller needs to set any Link TRB
 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 */
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
A
Andiry Xu 已提交
109
		struct xhci_segment *next, enum xhci_ring_type type)
110 111 112 113 114 115
{
	u32 val;

	if (!prev || !next)
		return;
	prev->next = next;
A
Andiry Xu 已提交
116
	if (type != TYPE_EVENT) {
117 118
		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
			cpu_to_le64(next->dma);
119 120

		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
M
Matt Evans 已提交
121
		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122 123
		val &= ~TRB_TYPE_BITMASK;
		val |= TRB_TYPE(TRB_LINK);
124
		/* Always set the chain bit with 0.95 hardware */
125 126
		/* Set chain bit for isoc rings on AMD 0.96 host */
		if (xhci_link_trb_quirk(xhci) ||
A
Andiry Xu 已提交
127 128
				(type == TYPE_ISOC &&
				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
129
			val |= TRB_CHAIN;
M
Matt Evans 已提交
130
		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131 132 133
	}
}

A
Andiry Xu 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/*
 * Link the ring to the new segments.
 * Set Toggle Cycle for the new ring if needed.
 */
static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
		struct xhci_segment *first, struct xhci_segment *last,
		unsigned int num_segs)
{
	struct xhci_segment *next;

	if (!ring || !first || !last)
		return;

	next = ring->enq_seg->next;
	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
	xhci_link_segments(xhci, last, next, ring->type);
	ring->num_segs += num_segs;
	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;

	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
			&= ~cpu_to_le32(LINK_TOGGLE);
		last->trbs[TRBS_PER_SEGMENT-1].link.control
			|= cpu_to_le32(LINK_TOGGLE);
		ring->last_seg = last;
	}
}

G
Gerd Hoffmann 已提交
162 163 164 165 166 167 168 169 170
/*
 * We need a radix tree for mapping physical addresses of TRBs to which stream
 * ID they belong to.  We need to do this because the host controller won't tell
 * us which stream ring the TRB came from.  We could store the stream ID in an
 * event data TRB, but that doesn't help us for the cancellation case, since the
 * endpoint may stop before it reaches that event data TRB.
 *
 * The radix tree maps the upper portion of the TRB DMA address to a ring
 * segment that has the same upper portion of DMA addresses.  For example, say I
171
 * have segments of size 1KB, that are always 1KB aligned.  A segment may
G
Gerd Hoffmann 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 * pass the radix tree a key to get the right stream ID:
 *
 *	0x10c90fff >> 10 = 0x43243
 *	0x10c912c0 >> 10 = 0x43244
 *	0x10c91400 >> 10 = 0x43245
 *
 * Obviously, only those TRBs with DMA addresses that are within the segment
 * will make the radix tree return the stream ID for that ring.
 *
 * Caveats for the radix tree:
 *
 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 * extended systems (where the DMA address can be bigger than 32-bits),
 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 */
193 194 195 196
static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
		struct xhci_ring *ring,
		struct xhci_segment *seg,
		gfp_t mem_flags)
G
Gerd Hoffmann 已提交
197 198 199 200
{
	unsigned long key;
	int ret;

201 202 203
	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
	/* Skip any segments that were already added. */
	if (radix_tree_lookup(trb_address_map, key))
G
Gerd Hoffmann 已提交
204 205
		return 0;

206 207 208 209 210 211 212 213
	ret = radix_tree_maybe_preload(mem_flags);
	if (ret)
		return ret;
	ret = radix_tree_insert(trb_address_map,
			key, ring);
	radix_tree_preload_end();
	return ret;
}
G
Gerd Hoffmann 已提交
214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
		struct xhci_segment *seg)
{
	unsigned long key;

	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
	if (radix_tree_lookup(trb_address_map, key))
		radix_tree_delete(trb_address_map, key);
}

static int xhci_update_stream_segment_mapping(
		struct radix_tree_root *trb_address_map,
		struct xhci_ring *ring,
		struct xhci_segment *first_seg,
		struct xhci_segment *last_seg,
		gfp_t mem_flags)
{
	struct xhci_segment *seg;
	struct xhci_segment *failed_seg;
	int ret;

	if (WARN_ON_ONCE(trb_address_map == NULL))
		return 0;

	seg = first_seg;
	do {
		ret = xhci_insert_segment_mapping(trb_address_map,
				ring, seg, mem_flags);
G
Gerd Hoffmann 已提交
243
		if (ret)
244 245 246
			goto remove_streams;
		if (seg == last_seg)
			return 0;
G
Gerd Hoffmann 已提交
247
		seg = seg->next;
248
	} while (seg != first_seg);
G
Gerd Hoffmann 已提交
249 250

	return 0;
251 252 253 254 255 256 257 258 259 260 261 262

remove_streams:
	failed_seg = seg;
	seg = first_seg;
	do {
		xhci_remove_segment_mapping(trb_address_map, seg);
		if (seg == failed_seg)
			return ret;
		seg = seg->next;
	} while (seg != first_seg);

	return ret;
G
Gerd Hoffmann 已提交
263 264 265 266 267 268 269 270 271 272 273
}

static void xhci_remove_stream_mapping(struct xhci_ring *ring)
{
	struct xhci_segment *seg;

	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
		return;

	seg = ring->first_seg;
	do {
274
		xhci_remove_segment_mapping(ring->trb_address_map, seg);
G
Gerd Hoffmann 已提交
275 276 277 278
		seg = seg->next;
	} while (seg != ring->first_seg);
}

279 280 281 282 283 284
static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
{
	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
			ring->first_seg, ring->last_seg, mem_flags);
}

285
/* XXX: Do we need the hcd structure in all these functions? */
286
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287
{
288
	if (!ring)
289
		return;
290

G
Gerd Hoffmann 已提交
291 292 293
	if (ring->first_seg) {
		if (ring->type == TYPE_STREAM)
			xhci_remove_stream_mapping(ring);
294
		xhci_free_segments_for_ring(xhci, ring->first_seg);
G
Gerd Hoffmann 已提交
295
	}
296

297 298 299
	kfree(ring);
}

300 301
static void xhci_initialize_ring_info(struct xhci_ring *ring,
					unsigned int cycle_state)
302 303 304 305 306 307 308 309 310
{
	/* The ring is empty, so the enqueue pointer == dequeue pointer */
	ring->enqueue = ring->first_seg->trbs;
	ring->enq_seg = ring->first_seg;
	ring->dequeue = ring->enqueue;
	ring->deq_seg = ring->first_seg;
	/* The ring is initialized to 0. The producer must write 1 to the cycle
	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
311 312 313
	 *
	 * New rings are initialized with cycle state equal to 1; if we are
	 * handling ring expansion, set the cycle state equal to the old ring.
314
	 */
315
	ring->cycle_state = cycle_state;
316 317 318
	/* Not necessary for new rings, but needed for re-initialized rings */
	ring->enq_updates = 0;
	ring->deq_updates = 0;
319 320 321 322 323 324

	/*
	 * Each segment has a link TRB, and leave an extra TRB for SW
	 * accounting purpose
	 */
	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325 326
}

327 328 329
/* Allocate segments and link them for a ring */
static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
		struct xhci_segment **first, struct xhci_segment **last,
330
		unsigned int num_segs, unsigned int cycle_state,
331
		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
332 333 334
{
	struct xhci_segment *prev;

335
	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
336 337 338 339 340 341 342 343
	if (!prev)
		return -ENOMEM;
	num_segs--;

	*first = prev;
	while (num_segs > 0) {
		struct xhci_segment	*next;

344
		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
345
		if (!next) {
346 347 348 349 350 351
			prev = *first;
			while (prev) {
				next = prev->next;
				xhci_segment_free(xhci, prev);
				prev = next;
			}
352 353 354 355 356 357 358 359 360 361 362 363 364
			return -ENOMEM;
		}
		xhci_link_segments(xhci, prev, next, type);

		prev = next;
		num_segs--;
	}
	xhci_link_segments(xhci, prev, *first, type);
	*last = prev;

	return 0;
}

365 366 367 368 369 370 371 372
/**
 * Create a new ring with zero or more segments.
 *
 * Link each segment together into a ring.
 * Set the end flag and the cycle toggle bit on the last segment.
 * See section 4.9.1 and figures 15 and 16.
 */
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
373
		unsigned int num_segs, unsigned int cycle_state,
374
		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375 376
{
	struct xhci_ring	*ring;
377
	int ret;
378 379 380

	ring = kzalloc(sizeof *(ring), flags);
	if (!ring)
381
		return NULL;
382

383
	ring->num_segs = num_segs;
384
	ring->bounce_buf_len = max_packet;
385
	INIT_LIST_HEAD(&ring->td_list);
A
Andiry Xu 已提交
386
	ring->type = type;
387 388 389
	if (num_segs == 0)
		return ring;

390
	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 392
			&ring->last_seg, num_segs, cycle_state, type,
			max_packet, flags);
393
	if (ret)
394 395
		goto fail;

A
Andiry Xu 已提交
396 397
	/* Only event ring does not use link TRB */
	if (type != TYPE_EVENT) {
398
		/* See section 4.9.2.1 and 6.4.4.1 */
399
		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400
			cpu_to_le32(LINK_TOGGLE);
401
	}
402
	xhci_initialize_ring_info(ring, cycle_state);
403 404 405
	return ring;

fail:
406
	kfree(ring);
407
	return NULL;
408 409
}

410 411 412 413 414 415 416 417 418 419
void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		unsigned int ep_index)
{
	int rings_cached;

	rings_cached = virt_dev->num_rings_cached;
	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
		virt_dev->ring_cache[rings_cached] =
			virt_dev->eps[ep_index].ring;
420
		virt_dev->num_rings_cached++;
421 422
		xhci_dbg(xhci, "Cached old ring, "
				"%d ring%s cached\n",
423 424
				virt_dev->num_rings_cached,
				(virt_dev->num_rings_cached > 1) ? "s" : "");
425 426 427 428 429 430 431 432 433
	} else {
		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
		xhci_dbg(xhci, "Ring cache full (%d rings), "
				"freeing ring\n",
				virt_dev->num_rings_cached);
	}
	virt_dev->eps[ep_index].ring = NULL;
}

434 435 436 437
/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 * pointers to the beginning of the ring.
 */
static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
438 439
			struct xhci_ring *ring, unsigned int cycle_state,
			enum xhci_ring_type type)
440 441
{
	struct xhci_segment	*seg = ring->first_seg;
442 443
	int i;

444 445 446
	do {
		memset(seg->trbs, 0,
				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
447 448
		if (cycle_state == 0) {
			for (i = 0; i < TRBS_PER_SEGMENT; i++)
449 450
				seg->trbs[i].link.control |=
					cpu_to_le32(TRB_CYCLE);
451
		}
452
		/* All endpoint rings have link TRBs */
A
Andiry Xu 已提交
453
		xhci_link_segments(xhci, seg, seg->next, type);
454 455
		seg = seg->next;
	} while (seg != ring->first_seg);
A
Andiry Xu 已提交
456
	ring->type = type;
457
	xhci_initialize_ring_info(ring, cycle_state);
458 459 460 461 462 463
	/* td list should be empty since all URBs have been cancelled,
	 * but just in case...
	 */
	INIT_LIST_HEAD(&ring->td_list);
}

A
Andiry Xu 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
/*
 * Expand an existing ring.
 * Look for a cached ring or allocate a new ring which has same segment numbers
 * and link the two rings.
 */
int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
				unsigned int num_trbs, gfp_t flags)
{
	struct xhci_segment	*first;
	struct xhci_segment	*last;
	unsigned int		num_segs;
	unsigned int		num_segs_needed;
	int			ret;

	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
				(TRBS_PER_SEGMENT - 1);

	/* Allocate number of segments we needed, or double the ring size */
	num_segs = ring->num_segs > num_segs_needed ?
			ring->num_segs : num_segs_needed;

	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
486 487
			num_segs, ring->cycle_state, ring->type,
			ring->bounce_buf_len, flags);
A
Andiry Xu 已提交
488 489 490
	if (ret)
		return -ENOMEM;

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	if (ring->type == TYPE_STREAM)
		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
						ring, first, last, flags);
	if (ret) {
		struct xhci_segment *next;
		do {
			next = first->next;
			xhci_segment_free(xhci, first);
			if (first == last)
				break;
			first = next;
		} while (true);
		return ret;
	}

A
Andiry Xu 已提交
506
	xhci_link_rings(xhci, ring, first, last, num_segs);
507 508
	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
			"ring expansion succeed, now has %d segments",
A
Andiry Xu 已提交
509 510 511 512 513
			ring->num_segs);

	return 0;
}

514 515
#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)

516
static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
517 518
						    int type, gfp_t flags)
{
519 520 521 522 523 524
	struct xhci_container_ctx *ctx;

	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
		return NULL;

	ctx = kzalloc(sizeof(*ctx), flags);
525 526 527 528 529 530 531 532
	if (!ctx)
		return NULL;

	ctx->type = type;
	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
	if (type == XHCI_CTX_TYPE_INPUT)
		ctx->size += CTX_SIZE(xhci->hcc_params);

533
	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
534 535 536 537
	if (!ctx->bytes) {
		kfree(ctx);
		return NULL;
	}
538 539 540
	return ctx;
}

541
static void xhci_free_container_ctx(struct xhci_hcd *xhci,
542 543
			     struct xhci_container_ctx *ctx)
{
544 545
	if (!ctx)
		return;
546 547 548 549
	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
	kfree(ctx);
}

550
struct xhci_input_control_ctx *xhci_get_input_control_ctx(
551 552
					      struct xhci_container_ctx *ctx)
{
553 554 555
	if (ctx->type != XHCI_CTX_TYPE_INPUT)
		return NULL;

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	return (struct xhci_input_control_ctx *)ctx->bytes;
}

struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
					struct xhci_container_ctx *ctx)
{
	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
		return (struct xhci_slot_ctx *)ctx->bytes;

	return (struct xhci_slot_ctx *)
		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
}

struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
				    struct xhci_container_ctx *ctx,
				    unsigned int ep_index)
{
	/* increment ep index by offset of start of ep ctx array */
	ep_index++;
	if (ctx->type == XHCI_CTX_TYPE_INPUT)
		ep_index++;

	return (struct xhci_ep_ctx *)
		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
}

582 583 584

/***************** Streams structures manipulation *************************/

585
static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
586 587 588
		unsigned int num_stream_ctxs,
		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
{
589
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
590
	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
591

592 593
	if (size > MEDIUM_STREAM_ARRAY_SIZE)
		dma_free_coherent(dev, size,
594
				stream_ctx, dma);
595
	else if (size <= SMALL_STREAM_ARRAY_SIZE)
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
		return dma_pool_free(xhci->small_streams_pool,
				stream_ctx, dma);
	else
		return dma_pool_free(xhci->medium_streams_pool,
				stream_ctx, dma);
}

/*
 * The stream context array for each endpoint with bulk streams enabled can
 * vary in size, based on:
 *  - how many streams the endpoint supports,
 *  - the maximum primary stream array size the host controller supports,
 *  - and how many streams the device driver asks for.
 *
 * The stream context array must be a power of 2, and can be as small as
 * 64 bytes or as large as 1MB.
 */
613
static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
614 615 616
		unsigned int num_stream_ctxs, dma_addr_t *dma,
		gfp_t mem_flags)
{
617
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
618
	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
619

620 621
	if (size > MEDIUM_STREAM_ARRAY_SIZE)
		return dma_alloc_coherent(dev, size,
622
				dma, mem_flags);
623
	else if (size <= SMALL_STREAM_ARRAY_SIZE)
624 625 626 627 628 629 630
		return dma_pool_alloc(xhci->small_streams_pool,
				mem_flags, dma);
	else
		return dma_pool_alloc(xhci->medium_streams_pool,
				mem_flags, dma);
}

631 632 633 634 635 636
struct xhci_ring *xhci_dma_to_transfer_ring(
		struct xhci_virt_ep *ep,
		u64 address)
{
	if (ep->ep_state & EP_HAS_STREAMS)
		return radix_tree_lookup(&ep->stream_info->trb_address_map,
637
				address >> TRB_SEGMENT_SHIFT);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	return ep->ring;
}

struct xhci_ring *xhci_stream_id_to_ring(
		struct xhci_virt_device *dev,
		unsigned int ep_index,
		unsigned int stream_id)
{
	struct xhci_virt_ep *ep = &dev->eps[ep_index];

	if (stream_id == 0)
		return ep->ring;
	if (!ep->stream_info)
		return NULL;

	if (stream_id > ep->stream_info->num_streams)
		return NULL;
	return ep->stream_info->stream_rings[stream_id];
}

658 659 660 661 662 663 664 665 666 667 668
/*
 * Change an endpoint's internal structure so it supports stream IDs.  The
 * number of requested streams includes stream 0, which cannot be used by device
 * drivers.
 *
 * The number of stream contexts in the stream context array may be bigger than
 * the number of streams the driver wants to use.  This is because the number of
 * stream context array entries must be a power of two.
 */
struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
		unsigned int num_stream_ctxs,
669 670
		unsigned int num_streams,
		unsigned int max_packet, gfp_t mem_flags)
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
{
	struct xhci_stream_info *stream_info;
	u32 cur_stream;
	struct xhci_ring *cur_ring;
	u64 addr;
	int ret;

	xhci_dbg(xhci, "Allocating %u streams and %u "
			"stream context array entries.\n",
			num_streams, num_stream_ctxs);
	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
		return NULL;
	}
	xhci->cmd_ring_reserved_trbs++;

	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
	if (!stream_info)
		goto cleanup_trbs;

	stream_info->num_streams = num_streams;
	stream_info->num_stream_ctxs = num_stream_ctxs;

	/* Initialize the array of virtual pointers to stream rings. */
	stream_info->stream_rings = kzalloc(
			sizeof(struct xhci_ring *)*num_streams,
			mem_flags);
	if (!stream_info->stream_rings)
		goto cleanup_info;

	/* Initialize the array of DMA addresses for stream rings for the HW. */
	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
			num_stream_ctxs, &stream_info->ctx_array_dma,
			mem_flags);
	if (!stream_info->stream_ctx_array)
		goto cleanup_ctx;
	memset(stream_info->stream_ctx_array, 0,
			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);

	/* Allocate everything needed to free the stream rings later */
	stream_info->free_streams_command =
		xhci_alloc_command(xhci, true, true, mem_flags);
	if (!stream_info->free_streams_command)
		goto cleanup_ctx;

	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);

	/* Allocate rings for all the streams that the driver will use,
	 * and add their segment DMA addresses to the radix tree.
	 * Stream 0 is reserved.
	 */
722

723 724
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		stream_info->stream_rings[cur_stream] =
725 726
			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
					mem_flags);
727 728 729
		cur_ring = stream_info->stream_rings[cur_stream];
		if (!cur_ring)
			goto cleanup_rings;
730
		cur_ring->stream_id = cur_stream;
G
Gerd Hoffmann 已提交
731
		cur_ring->trb_address_map = &stream_info->trb_address_map;
732 733 734 735
		/* Set deq ptr, cycle bit, and stream context type */
		addr = cur_ring->first_seg->dma |
			SCT_FOR_CTX(SCT_PRI_TR) |
			cur_ring->cycle_state;
736 737
		stream_info->stream_ctx_array[cur_stream].stream_ring =
			cpu_to_le64(addr);
738 739 740
		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
				cur_stream, (unsigned long long) addr);

G
Gerd Hoffmann 已提交
741
		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
		if (ret) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
			goto cleanup_rings;
		}
	}
	/* Leave the other unused stream ring pointers in the stream context
	 * array initialized to zero.  This will cause the xHC to give us an
	 * error if the device asks for a stream ID we don't have setup (if it
	 * was any other way, the host controller would assume the ring is
	 * "empty" and wait forever for data to be queued to that stream ID).
	 */

	return stream_info;

cleanup_rings:
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
cleanup_ctx:
	kfree(stream_info->stream_rings);
cleanup_info:
	kfree(stream_info);
cleanup_trbs:
	xhci->cmd_ring_reserved_trbs--;
	return NULL;
}
/*
 * Sets the MaxPStreams field and the Linear Stream Array field.
 * Sets the dequeue pointer to the stream context array.
 */
void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
		struct xhci_ep_ctx *ep_ctx,
		struct xhci_stream_info *stream_info)
{
	u32 max_primary_streams;
	/* MaxPStreams is the number of stream context array entries, not the
	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
	 */
	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
788 789
	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
			"Setting number of stream ctx array entries to %u",
790
			1 << (max_primary_streams + 1));
M
Matt Evans 已提交
791 792 793 794
	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
				       | EP_HAS_LSA);
	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
795 796 797 798 799 800 801
}

/*
 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 * not at the beginning of the ring).
 */
802
void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
803 804 805
		struct xhci_virt_ep *ep)
{
	dma_addr_t addr;
M
Matt Evans 已提交
806
	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
807
	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
M
Matt Evans 已提交
808
	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
}

/* Frees all stream contexts associated with the endpoint,
 *
 * Caller should fix the endpoint context streams fields.
 */
void xhci_free_stream_info(struct xhci_hcd *xhci,
		struct xhci_stream_info *stream_info)
{
	int cur_stream;
	struct xhci_ring *cur_ring;

	if (!stream_info)
		return;

	for (cur_stream = 1; cur_stream < stream_info->num_streams;
			cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			xhci_ring_free(xhci, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}
	xhci_free_command(xhci, stream_info->free_streams_command);
	xhci->cmd_ring_reserved_trbs--;
	if (stream_info->stream_ctx_array)
		xhci_free_stream_ctx(xhci,
				stream_info->num_stream_ctxs,
				stream_info->stream_ctx_array,
				stream_info->ctx_array_dma);

840
	kfree(stream_info->stream_rings);
841 842 843 844 845 846
	kfree(stream_info);
}


/***************** Device context manipulation *************************/

847 848 849
static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
		struct xhci_virt_ep *ep)
{
J
Julia Lawall 已提交
850 851
	setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
		    (unsigned long)ep);
852 853 854
	ep->xhci = xhci;
}

855 856 857 858 859
static void xhci_free_tt_info(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		int slot_id)
{
	struct list_head *tt_list_head;
860 861
	struct xhci_tt_bw_info *tt_info, *next;
	bool slot_found = false;
862 863 864 865 866 867 868 869 870 871 872

	/* If the device never made it past the Set Address stage,
	 * it may not have the real_port set correctly.
	 */
	if (virt_dev->real_port == 0 ||
			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
		xhci_dbg(xhci, "Bad real port.\n");
		return;
	}

	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
873 874 875 876 877 878 879
	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
		/* Multi-TT hubs will have more than one entry */
		if (tt_info->slot_id == slot_id) {
			slot_found = true;
			list_del(&tt_info->tt_list);
			kfree(tt_info);
		} else if (slot_found) {
880
			break;
881
		}
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	}
}

int xhci_alloc_tt_info(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *hdev,
		struct usb_tt *tt, gfp_t mem_flags)
{
	struct xhci_tt_bw_info		*tt_info;
	unsigned int			num_ports;
	int				i, j;

	if (!tt->multi)
		num_ports = 1;
	else
		num_ports = hdev->maxchild;

	for (i = 0; i < num_ports; i++, tt_info++) {
		struct xhci_interval_bw_table *bw_table;

		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
		if (!tt_info)
			goto free_tts;
		INIT_LIST_HEAD(&tt_info->tt_list);
		list_add(&tt_info->tt_list,
				&xhci->rh_bw[virt_dev->real_port - 1].tts);
		tt_info->slot_id = virt_dev->udev->slot_id;
		if (tt->multi)
			tt_info->ttport = i+1;
		bw_table = &tt_info->bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
	}
	return 0;

free_tts:
	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
	return -ENOMEM;
}


/* All the xhci_tds in the ring's TD list should be freed at this point.
 * Should be called with xhci->lock held if there is any chance the TT lists
 * will be manipulated by the configure endpoint, allocate device, or update
 * hub functions while this function is removing the TT entries from the list.
 */
928 929 930 931
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
{
	struct xhci_virt_device *dev;
	int i;
932
	int old_active_eps = 0;
933 934 935 936 937 938

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || !xhci->devs[slot_id])
		return;

	dev = xhci->devs[slot_id];
939 940 941

	trace_xhci_free_virt_device(dev);

942
	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
943 944 945
	if (!dev)
		return;

946 947 948
	if (dev->tt_info)
		old_active_eps = dev->tt_info->active_eps;

949
	for (i = 0; i < 31; i++) {
950 951
		if (dev->eps[i].ring)
			xhci_ring_free(xhci, dev->eps[i].ring);
952 953 954
		if (dev->eps[i].stream_info)
			xhci_free_stream_info(xhci,
					dev->eps[i].stream_info);
955 956 957 958 959 960 961 962 963
		/* Endpoints on the TT/root port lists should have been removed
		 * when usb_disable_device() was called for the device.
		 * We can't drop them anyway, because the udev might have gone
		 * away by this point, and we can't tell what speed it was.
		 */
		if (!list_empty(&dev->eps[i].bw_endpoint_list))
			xhci_warn(xhci, "Slot %u endpoint %u "
					"not removed from BW list!\n",
					slot_id, i);
964
	}
965 966
	/* If this is a hub, free the TT(s) from the TT list */
	xhci_free_tt_info(xhci, dev, slot_id);
967 968
	/* If necessary, update the number of active TTs on this root port */
	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
969

970 971 972 973 974 975
	if (dev->ring_cache) {
		for (i = 0; i < dev->num_rings_cached; i++)
			xhci_ring_free(xhci, dev->ring_cache[i]);
		kfree(dev->ring_cache);
	}

976
	if (dev->in_ctx)
977
		xhci_free_container_ctx(xhci, dev->in_ctx);
978
	if (dev->out_ctx)
979 980
		xhci_free_container_ctx(xhci, dev->out_ctx);

981
	kfree(xhci->devs[slot_id]);
982
	xhci->devs[slot_id] = NULL;
983 984
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * Free a virt_device structure.
 * If the virt_device added a tt_info (a hub) and has children pointing to
 * that tt_info, then free the child first. Recursive.
 * We can't rely on udev at this point to find child-parent relationships.
 */
void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
{
	struct xhci_virt_device *vdev;
	struct list_head *tt_list_head;
	struct xhci_tt_bw_info *tt_info, *next;
	int i;

	vdev = xhci->devs[slot_id];
	if (!vdev)
		return;

	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
		/* is this a hub device that added a tt_info to the tts list */
		if (tt_info->slot_id == slot_id) {
			/* are any devices using this tt_info? */
			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
				vdev = xhci->devs[i];
				if (vdev && (vdev->tt_info == tt_info))
					xhci_free_virt_devices_depth_first(
						xhci, i);
			}
		}
	}
	/* we are now at a leaf device */
	xhci_free_virt_device(xhci, slot_id);
}

1019 1020 1021 1022
int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
		struct usb_device *udev, gfp_t flags)
{
	struct xhci_virt_device *dev;
1023
	int i;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || xhci->devs[slot_id]) {
		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
		return 0;
	}

	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
	if (!xhci->devs[slot_id])
		return 0;
	dev = xhci->devs[slot_id];

1036 1037
	/* Allocate the (output) device context that will be used in the HC. */
	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1038 1039
	if (!dev->out_ctx)
		goto fail;
1040

1041
	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1042
			(unsigned long long)dev->out_ctx->dma);
1043 1044

	/* Allocate the (input) device context for address device command */
1045
	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1046 1047
	if (!dev->in_ctx)
		goto fail;
1048

1049
	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1050
			(unsigned long long)dev->in_ctx->dma);
1051

1052 1053 1054
	/* Initialize the cancellation list and watchdog timers for each ep */
	for (i = 0; i < 31; i++) {
		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1055
		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1056
		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1057
	}
1058

1059
	/* Allocate endpoint 0 ring */
1060
	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1061
	if (!dev->eps[0].ring)
1062 1063
		goto fail;

1064 1065 1066 1067 1068 1069 1070 1071
	/* Allocate pointers to the ring cache */
	dev->ring_cache = kzalloc(
			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
			flags);
	if (!dev->ring_cache)
		goto fail;
	dev->num_rings_cached = 0;

1072
	dev->udev = udev;
1073

1074
	/* Point to output device context in dcbaa. */
M
Matt Evans 已提交
1075
	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1076
	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
M
Matt Evans 已提交
1077 1078
		 slot_id,
		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1079
		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1080

1081 1082
	trace_xhci_alloc_virt_device(dev);

1083 1084 1085 1086 1087 1088
	return 1;
fail:
	xhci_free_virt_device(xhci, slot_id);
	return 0;
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct xhci_virt_device *virt_dev;
	struct xhci_ep_ctx	*ep0_ctx;
	struct xhci_ring	*ep_ring;

	virt_dev = xhci->devs[udev->slot_id];
	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
	ep_ring = virt_dev->eps[0].ring;
	/*
	 * FIXME we don't keep track of the dequeue pointer very well after a
	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
	 * host to our enqueue pointer.  This should only be called after a
	 * configured device has reset, so all control transfers should have
	 * been completed or cancelled before the reset.
	 */
M
Matt Evans 已提交
1106 1107 1108
	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
							ep_ring->enqueue)
				   | ep_ring->cycle_state);
1109 1110
}

1111 1112 1113 1114 1115 1116 1117 1118 1119
/*
 * The xHCI roothub may have ports of differing speeds in any order in the port
 * status registers.  xhci->port_array provides an array of the port speed for
 * each offset into the port status registers.
 *
 * The xHCI hardware wants to know the roothub port number that the USB device
 * is attached to (or the roothub port its ancestor hub is attached to).  All we
 * know is the index of that port under either the USB 2.0 or the USB 3.0
 * roothub, but that doesn't give us the real index into the HW port status
1120
 * registers. Call xhci_find_raw_port_number() to get real index.
1121 1122 1123 1124 1125
 */
static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
		struct usb_device *udev)
{
	struct usb_device *top_dev;
1126 1127
	struct usb_hcd *hcd;

1128
	if (udev->speed >= USB_SPEED_SUPER)
1129 1130 1131
		hcd = xhci->shared_hcd;
	else
		hcd = xhci->main_hcd;
1132 1133 1134 1135 1136

	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;

1137
	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1138 1139
}

1140 1141 1142 1143 1144
/* Setup an xHCI virtual device for a Set Address command */
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
{
	struct xhci_virt_device *dev;
	struct xhci_ep_ctx	*ep0_ctx;
1145
	struct xhci_slot_ctx    *slot_ctx;
1146
	u32			port_num;
1147
	u32			max_packets;
1148
	struct usb_device *top_dev;
1149 1150 1151 1152 1153 1154 1155 1156

	dev = xhci->devs[udev->slot_id];
	/* Slot ID 0 is reserved */
	if (udev->slot_id == 0 || !dev) {
		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
				udev->slot_id);
		return -EINVAL;
	}
1157 1158
	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1159 1160

	/* 3) Only the control endpoint is valid - one endpoint context */
1161
	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1162
	switch (udev->speed) {
1163
	case USB_SPEED_SUPER_PLUS:
1164 1165 1166
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
		max_packets = MAX_PACKET(512);
		break;
1167
	case USB_SPEED_SUPER:
1168
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1169
		max_packets = MAX_PACKET(512);
1170 1171
		break;
	case USB_SPEED_HIGH:
1172
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1173
		max_packets = MAX_PACKET(64);
1174
		break;
1175
	/* USB core guesses at a 64-byte max packet first for FS devices */
1176
	case USB_SPEED_FULL:
1177
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1178
		max_packets = MAX_PACKET(64);
1179 1180
		break;
	case USB_SPEED_LOW:
1181
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1182
		max_packets = MAX_PACKET(8);
1183
		break;
1184
	case USB_SPEED_WIRELESS:
1185 1186 1187 1188 1189
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* Speed was set earlier, this shouldn't happen. */
1190
		return -EINVAL;
1191 1192
	}
	/* Find the root hub port this device is under */
1193 1194 1195
	port_num = xhci_find_real_port_number(xhci, udev);
	if (!port_num)
		return -EINVAL;
1196
	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1197
	/* Set the port number in the virtual_device to the faked port number */
1198 1199 1200
	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;
1201
	dev->fake_port = top_dev->portnum;
1202
	dev->real_port = port_num;
1203
	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1204
	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1205

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	/* Find the right bandwidth table that this device will be a part of.
	 * If this is a full speed device attached directly to a root port (or a
	 * decendent of one), it counts as a primary bandwidth domain, not a
	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
	 * will never be created for the HS root hub.
	 */
	if (!udev->tt || !udev->tt->hub->parent) {
		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
	} else {
		struct xhci_root_port_bw_info *rh_bw;
		struct xhci_tt_bw_info *tt_bw;

		rh_bw = &xhci->rh_bw[port_num - 1];
		/* Find the right TT. */
		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
			if (tt_bw->slot_id != udev->tt->hub->slot_id)
				continue;

			if (!dev->udev->tt->multi ||
					(udev->tt->multi &&
					 tt_bw->ttport == dev->udev->ttport)) {
				dev->bw_table = &tt_bw->bw_table;
				dev->tt_info = tt_bw;
				break;
			}
		}
		if (!dev->tt_info)
			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
	}

S
Sarah Sharp 已提交
1236 1237
	/* Is this a LS/FS device under an external HS hub? */
	if (udev->tt && udev->tt->hub->parent) {
M
Matt Evans 已提交
1238 1239
		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
						(udev->ttport << 8));
1240
		if (udev->tt->multi)
M
Matt Evans 已提交
1241
			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1242
	}
1243
	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1244 1245 1246 1247
	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);

	/* Step 4 - ring already allocated */
	/* Step 5 */
M
Matt Evans 已提交
1248
	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1249

1250
	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1251 1252
	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
					 max_packets);
1253

M
Matt Evans 已提交
1254 1255
	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
				   dev->eps[0].ring->cycle_state);
1256

1257 1258
	trace_xhci_setup_addressable_virt_device(dev);

1259 1260 1261 1262 1263
	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */

	return 0;
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/*
 * Convert interval expressed as 2^(bInterval - 1) == interval into
 * straight exponent value 2^n == interval.
 *
 */
static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	unsigned int interval;

	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
	if (interval != ep->desc.bInterval - 1)
		dev_warn(&udev->dev,
1277
			 "ep %#x - rounding interval to %d %sframes\n",
1278
			 ep->desc.bEndpointAddress,
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
			 1 << interval,
			 udev->speed == USB_SPEED_FULL ? "" : "micro");

	if (udev->speed == USB_SPEED_FULL) {
		/*
		 * Full speed isoc endpoints specify interval in frames,
		 * not microframes. We are using microframes everywhere,
		 * so adjust accordingly.
		 */
		interval += 3;	/* 1 frame = 2^3 uframes */
	}
1290 1291 1292 1293 1294

	return interval;
}

/*
1295
 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1296 1297
 * microframes, rounded down to nearest power of 2.
 */
1298 1299 1300
static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
		struct usb_host_endpoint *ep, unsigned int desc_interval,
		unsigned int min_exponent, unsigned int max_exponent)
1301 1302 1303
{
	unsigned int interval;

1304 1305 1306
	interval = fls(desc_interval) - 1;
	interval = clamp_val(interval, min_exponent, max_exponent);
	if ((1 << interval) != desc_interval)
1307
		dev_dbg(&udev->dev,
1308 1309 1310
			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
			 ep->desc.bEndpointAddress,
			 1 << interval,
1311
			 desc_interval);
1312 1313 1314 1315

	return interval;
}

1316 1317 1318
static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
1319 1320
	if (ep->desc.bInterval == 0)
		return 0;
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	return xhci_microframes_to_exponent(udev, ep,
			ep->desc.bInterval, 0, 15);
}


static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	return xhci_microframes_to_exponent(udev, ep,
			ep->desc.bInterval * 8, 3, 10);
}

1333 1334 1335 1336 1337 1338 1339 1340
/* Return the polling or NAK interval.
 *
 * The polling interval is expressed in "microframes".  If xHCI's Interval field
 * is set to N, it will service the endpoint every 2^(Interval)*125us.
 *
 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
 * is set to 0.
 */
1341
static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1342 1343 1344 1345 1346 1347 1348 1349
		struct usb_host_endpoint *ep)
{
	unsigned int interval = 0;

	switch (udev->speed) {
	case USB_SPEED_HIGH:
		/* Max NAK rate */
		if (usb_endpoint_xfer_control(&ep->desc) ||
1350
		    usb_endpoint_xfer_bulk(&ep->desc)) {
1351
			interval = xhci_parse_microframe_interval(udev, ep);
1352 1353
			break;
		}
1354
		/* Fall through - SS and HS isoc/int have same decoding */
1355

1356
	case USB_SPEED_SUPER_PLUS:
1357 1358
	case USB_SPEED_SUPER:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1359 1360
		    usb_endpoint_xfer_isoc(&ep->desc)) {
			interval = xhci_parse_exponent_interval(udev, ep);
1361 1362
		}
		break;
1363

1364
	case USB_SPEED_FULL:
1365
		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1366 1367 1368 1369
			interval = xhci_parse_exponent_interval(udev, ep);
			break;
		}
		/*
1370
		 * Fall through for interrupt endpoint interval decoding
1371 1372 1373 1374
		 * since it uses the same rules as low speed interrupt
		 * endpoints.
		 */

1375 1376
	case USB_SPEED_LOW:
		if (usb_endpoint_xfer_int(&ep->desc) ||
1377 1378 1379
		    usb_endpoint_xfer_isoc(&ep->desc)) {

			interval = xhci_parse_frame_interval(udev, ep);
1380 1381
		}
		break;
1382

1383 1384 1385
	default:
		BUG();
	}
1386
	return interval;
1387 1388
}

1389
/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1390 1391 1392 1393
 * High speed endpoint descriptors can define "the number of additional
 * transaction opportunities per microframe", but that goes in the Max Burst
 * endpoint context field.
 */
1394
static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1395 1396
		struct usb_host_endpoint *ep)
{
1397
	if (udev->speed < USB_SPEED_SUPER ||
1398
			!usb_endpoint_xfer_isoc(&ep->desc))
1399
		return 0;
1400
	return ep->ss_ep_comp.bmAttributes;
1401 1402
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
				       struct usb_host_endpoint *ep)
{
	/* Super speed and Plus have max burst in ep companion desc */
	if (udev->speed >= USB_SPEED_SUPER)
		return ep->ss_ep_comp.bMaxBurst;

	if (udev->speed == USB_SPEED_HIGH &&
	    (usb_endpoint_xfer_isoc(&ep->desc) ||
	     usb_endpoint_xfer_int(&ep->desc)))
1413
		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1414 1415 1416 1417

	return 0;
}

1418
static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1419 1420 1421 1422
{
	int in;

	in = usb_endpoint_dir_in(&ep->desc);
1423

1424 1425
	switch (usb_endpoint_type(&ep->desc)) {
	case USB_ENDPOINT_XFER_CONTROL:
1426
		return CTRL_EP;
1427
	case USB_ENDPOINT_XFER_BULK:
1428
		return in ? BULK_IN_EP : BULK_OUT_EP;
1429
	case USB_ENDPOINT_XFER_ISOC:
1430
		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1431
	case USB_ENDPOINT_XFER_INT:
1432
		return in ? INT_IN_EP : INT_OUT_EP;
1433
	}
1434
	return 0;
1435 1436
}

1437 1438 1439 1440
/* Return the maximum endpoint service interval time (ESIT) payload.
 * Basically, this is the maxpacket size, multiplied by the burst size
 * and mult size.
 */
1441
static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
		struct usb_host_endpoint *ep)
{
	int max_burst;
	int max_packet;

	/* Only applies for interrupt or isochronous endpoints */
	if (usb_endpoint_xfer_control(&ep->desc) ||
			usb_endpoint_xfer_bulk(&ep->desc))
		return 0;

1452 1453 1454 1455 1456 1457
	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
	else if (udev->speed >= USB_SPEED_SUPER)
1458
		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1459

1460
	max_packet = usb_endpoint_maxp(&ep->desc);
1461
	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1462
	/* A 0 in max burst means 1 transfer per ESIT */
1463
	return max_packet * max_burst;
1464 1465
}

1466 1467 1468
/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
 * Drivers will have to call usb_alloc_streams() to do that.
 */
1469 1470 1471
int xhci_endpoint_init(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *udev,
1472 1473
		struct usb_host_endpoint *ep,
		gfp_t mem_flags)
1474 1475 1476 1477 1478
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;
	struct xhci_ring *ep_ring;
	unsigned int max_packet;
1479
	enum xhci_ring_type ring_type;
1480
	u32 max_esit_payload;
1481
	u32 endpoint_type;
1482 1483 1484 1485 1486
	unsigned int max_burst;
	unsigned int interval;
	unsigned int mult;
	unsigned int avg_trb_len;
	unsigned int err_count = 0;
1487 1488

	ep_index = xhci_get_endpoint_index(&ep->desc);
1489
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1490

1491
	endpoint_type = xhci_get_endpoint_type(ep);
1492 1493 1494
	if (!endpoint_type)
		return -EINVAL;

1495
	ring_type = usb_endpoint_type(&ep->desc);
1496

1497 1498 1499 1500 1501 1502 1503 1504 1505
	/*
	 * Get values to fill the endpoint context, mostly from ep descriptor.
	 * The average TRB buffer lengt for bulk endpoints is unclear as we
	 * have no clue on scatter gather list entry size. For Isoc and Int,
	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
	 */
	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
	interval = xhci_get_endpoint_interval(udev, ep);
	mult = xhci_get_endpoint_mult(udev, ep);
1506
	max_packet = usb_endpoint_maxp(&ep->desc);
1507 1508
	max_burst = xhci_get_endpoint_max_burst(udev, ep);
	avg_trb_len = max_esit_payload;
1509 1510 1511

	/* FIXME dig Mult and streams info out of ep companion desc */

1512
	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1513
	if (!usb_endpoint_xfer_isoc(&ep->desc))
1514 1515 1516 1517 1518
		err_count = 3;
	/* Some devices get this wrong */
	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
		max_packet = 512;
	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1519
	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1520
		avg_trb_len = 8;
1521 1522 1523
	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
		mult = 0;
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	/* Set up the endpoint ring */
	virt_dev->eps[ep_index].new_ring =
		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
	if (!virt_dev->eps[ep_index].new_ring) {
		/* Attempt to use the ring cache */
		if (virt_dev->num_rings_cached == 0)
			return -ENOMEM;
		virt_dev->num_rings_cached--;
		virt_dev->eps[ep_index].new_ring =
			virt_dev->ring_cache[virt_dev->num_rings_cached];
		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
					1, ring_type);
	}
	virt_dev->eps[ep_index].skip = false;
	ep_ring = virt_dev->eps[ep_index].new_ring;

1542
	/* Fill the endpoint context */
1543 1544
	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
				      EP_INTERVAL(interval) |
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
				      EP_MULT(mult));
	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
				       MAX_PACKET(max_packet) |
				       MAX_BURST(max_burst) |
				       ERROR_COUNT(err_count));
	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
				  ep_ring->cycle_state);

	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
				      EP_AVG_TRB_LENGTH(avg_trb_len));
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	/* FIXME Debug endpoint context */
	return 0;
}

void xhci_endpoint_zero(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_host_endpoint *ep)
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;

	ep_index = xhci_get_endpoint_index(&ep->desc);
1568
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1569 1570 1571

	ep_ctx->ep_info = 0;
	ep_ctx->ep_info2 = 0;
1572
	ep_ctx->deq = 0;
1573 1574 1575 1576 1577 1578
	ep_ctx->tx_info = 0;
	/* Don't free the endpoint ring until the set interface or configuration
	 * request succeeds.
	 */
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
{
	bw_info->ep_interval = 0;
	bw_info->mult = 0;
	bw_info->num_packets = 0;
	bw_info->max_packet_size = 0;
	bw_info->type = 0;
	bw_info->max_esit_payload = 0;
}

void xhci_update_bw_info(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_input_control_ctx *ctrl_ctx,
		struct xhci_virt_device *virt_dev)
{
	struct xhci_bw_info *bw_info;
	struct xhci_ep_ctx *ep_ctx;
	unsigned int ep_type;
	int i;

1599
	for (i = 1; i < 31; i++) {
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
		bw_info = &virt_dev->eps[i].bw_info;

		/* We can't tell what endpoint type is being dropped, but
		 * unconditionally clearing the bandwidth info for non-periodic
		 * endpoints should be harmless because the info will never be
		 * set in the first place.
		 */
		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
			/* Dropped endpoint */
			xhci_clear_endpoint_bw_info(bw_info);
			continue;
		}

		if (EP_IS_ADDED(ctrl_ctx, i)) {
			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));

			/* Ignore non-periodic endpoints */
			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
					ep_type != ISOC_IN_EP &&
					ep_type != INT_IN_EP)
				continue;

			/* Added or changed endpoint */
			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
					le32_to_cpu(ep_ctx->ep_info));
1626 1627 1628
			/* Number of packets and mult are zero-based in the
			 * input context, but we want one-based for the
			 * interval table.
1629
			 */
1630 1631
			bw_info->mult = CTX_TO_EP_MULT(
					le32_to_cpu(ep_ctx->ep_info)) + 1;
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
			bw_info->num_packets = CTX_TO_MAX_BURST(
					le32_to_cpu(ep_ctx->ep_info2)) + 1;
			bw_info->max_packet_size = MAX_PACKET_DECODED(
					le32_to_cpu(ep_ctx->ep_info2));
			bw_info->type = ep_type;
			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
					le32_to_cpu(ep_ctx->tx_info));
		}
	}
}

1643 1644 1645 1646 1647
/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.
 */
void xhci_endpoint_copy(struct xhci_hcd *xhci,
1648 1649 1650
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx,
		unsigned int ep_index)
1651 1652 1653 1654
{
	struct xhci_ep_ctx *out_ep_ctx;
	struct xhci_ep_ctx *in_ep_ctx;

1655 1656
	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
	in_ep_ctx->deq = out_ep_ctx->deq;
	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
}

/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.  Only the context entries field matters,
 * but we'll copy the whole thing anyway.
 */
1669 1670 1671
void xhci_slot_copy(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx)
1672 1673 1674 1675
{
	struct xhci_slot_ctx *in_slot_ctx;
	struct xhci_slot_ctx *out_slot_ctx;

1676 1677
	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1678 1679 1680 1681 1682 1683 1684

	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
}

1685 1686 1687 1688 1689 1690 1691
/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	int i;
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

1692 1693
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Allocating %d scratchpad buffers", num_sp);
1694 1695 1696 1697 1698 1699 1700 1701

	if (!num_sp)
		return 0;

	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
	if (!xhci->scratchpad)
		goto fail_sp;

1702
	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1703
				     num_sp * sizeof(u64),
1704
				     &xhci->scratchpad->sp_dma, flags);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	if (!xhci->scratchpad->sp_array)
		goto fail_sp2;

	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
	if (!xhci->scratchpad->sp_buffers)
		goto fail_sp3;

	xhci->scratchpad->sp_dma_buffers =
		kzalloc(sizeof(dma_addr_t) * num_sp, flags);

	if (!xhci->scratchpad->sp_dma_buffers)
		goto fail_sp4;

M
Matt Evans 已提交
1718
	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1719 1720
	for (i = 0; i < num_sp; i++) {
		dma_addr_t dma;
1721 1722
		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
				flags);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		if (!buf)
			goto fail_sp5;

		xhci->scratchpad->sp_array[i] = dma;
		xhci->scratchpad->sp_buffers[i] = buf;
		xhci->scratchpad->sp_dma_buffers[i] = dma;
	}

	return 0;

 fail_sp5:
	for (i = i - 1; i >= 0; i--) {
1735
		dma_free_coherent(dev, xhci->page_size,
1736 1737 1738 1739 1740 1741 1742 1743 1744
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);

 fail_sp4:
	kfree(xhci->scratchpad->sp_buffers);

 fail_sp3:
1745
	dma_free_coherent(dev, num_sp * sizeof(u64),
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);

 fail_sp2:
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;

 fail_sp:
	return -ENOMEM;
}

static void scratchpad_free(struct xhci_hcd *xhci)
{
	int num_sp;
	int i;
1761
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1762 1763 1764 1765 1766 1767 1768

	if (!xhci->scratchpad)
		return;

	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	for (i = 0; i < num_sp; i++) {
1769
		dma_free_coherent(dev, xhci->page_size,
1770 1771 1772 1773 1774
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);
	kfree(xhci->scratchpad->sp_buffers);
1775
	dma_free_coherent(dev, num_sp * sizeof(u64),
1776 1777 1778 1779 1780 1781
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;
}

1782
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1783 1784
		bool allocate_in_ctx, bool allocate_completion,
		gfp_t mem_flags)
1785 1786 1787 1788 1789 1790 1791
{
	struct xhci_command *command;

	command = kzalloc(sizeof(*command), mem_flags);
	if (!command)
		return NULL;

1792 1793 1794 1795 1796 1797 1798 1799
	if (allocate_in_ctx) {
		command->in_ctx =
			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
					mem_flags);
		if (!command->in_ctx) {
			kfree(command);
			return NULL;
		}
1800
	}
1801 1802 1803 1804 1805 1806

	if (allocate_completion) {
		command->completion =
			kzalloc(sizeof(struct completion), mem_flags);
		if (!command->completion) {
			xhci_free_container_ctx(xhci, command->in_ctx);
1807
			kfree(command);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
			return NULL;
		}
		init_completion(command->completion);
	}

	command->status = 0;
	INIT_LIST_HEAD(&command->cmd_list);
	return command;
}

1818
void xhci_urb_free_priv(struct urb_priv *urb_priv)
1819
{
A
Andiry Xu 已提交
1820 1821 1822
	if (urb_priv) {
		kfree(urb_priv->td[0]);
		kfree(urb_priv);
1823 1824 1825
	}
}

1826 1827 1828 1829 1830 1831 1832 1833 1834
void xhci_free_command(struct xhci_hcd *xhci,
		struct xhci_command *command)
{
	xhci_free_container_ctx(xhci,
			command->in_ctx);
	kfree(command->completion);
	kfree(command);
}

1835 1836
void xhci_mem_cleanup(struct xhci_hcd *xhci)
{
1837
	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1838
	int size;
1839
	int i, j, num_ports;
1840

1841
	cancel_delayed_work_sync(&xhci->cmd_timer);
1842

1843 1844 1845
	/* Free the Event Ring Segment Table and the actual Event Ring */
	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
	if (xhci->erst.entries)
1846
		dma_free_coherent(dev, size,
1847 1848
				xhci->erst.entries, xhci->erst.erst_dma_addr);
	xhci->erst.entries = NULL;
1849
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1850 1851 1852
	if (xhci->event_ring)
		xhci_ring_free(xhci, xhci->event_ring);
	xhci->event_ring = NULL;
1853
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1854

1855 1856
	if (xhci->lpm_command)
		xhci_free_command(xhci, xhci->lpm_command);
1857
	xhci->lpm_command = NULL;
1858 1859 1860
	if (xhci->cmd_ring)
		xhci_ring_free(xhci, xhci->cmd_ring);
	xhci->cmd_ring = NULL;
1861
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
M
Mathias Nyman 已提交
1862
	xhci_cleanup_command_queue(xhci);
1863

1864
	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1865
	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1866 1867 1868 1869 1870 1871 1872 1873
		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
			struct list_head *ep = &bwt->interval_bw[j].endpoints;
			while (!list_empty(ep))
				list_del_init(ep->next);
		}
	}

1874 1875
	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
		xhci_free_virt_devices_depth_first(xhci, i);
1876

1877
	dma_pool_destroy(xhci->segment_pool);
1878
	xhci->segment_pool = NULL;
1879
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1880

1881
	dma_pool_destroy(xhci->device_pool);
1882
	xhci->device_pool = NULL;
1883
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1884

1885
	dma_pool_destroy(xhci->small_streams_pool);
1886
	xhci->small_streams_pool = NULL;
1887 1888
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Freed small stream array pool");
1889

1890
	dma_pool_destroy(xhci->medium_streams_pool);
1891
	xhci->medium_streams_pool = NULL;
1892 1893
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Freed medium stream array pool");
1894

1895
	if (xhci->dcbaa)
1896
		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1897 1898
				xhci->dcbaa, xhci->dcbaa->dma);
	xhci->dcbaa = NULL;
1899

1900
	scratchpad_free(xhci);
1901

1902 1903 1904
	if (!xhci->rh_bw)
		goto no_bw;

1905 1906 1907 1908 1909 1910
	for (i = 0; i < num_ports; i++) {
		struct xhci_tt_bw_info *tt, *n;
		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
			list_del(&tt->tt_list);
			kfree(tt);
		}
1911 1912
	}

1913
no_bw:
1914
	xhci->cmd_ring_reserved_trbs = 0;
1915 1916
	xhci->num_usb2_ports = 0;
	xhci->num_usb3_ports = 0;
1917
	xhci->num_active_eps = 0;
1918 1919 1920
	kfree(xhci->usb2_ports);
	kfree(xhci->usb3_ports);
	kfree(xhci->port_array);
1921
	kfree(xhci->rh_bw);
1922
	kfree(xhci->ext_caps);
1923

1924 1925 1926 1927 1928 1929
	xhci->usb2_ports = NULL;
	xhci->usb3_ports = NULL;
	xhci->port_array = NULL;
	xhci->rh_bw = NULL;
	xhci->ext_caps = NULL;

1930 1931
	xhci->page_size = 0;
	xhci->page_shift = 0;
1932
	xhci->bus_state[0].bus_suspended = 0;
1933
	xhci->bus_state[1].bus_suspended = 0;
1934 1935
}

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
		struct xhci_segment *input_seg,
		union xhci_trb *start_trb,
		union xhci_trb *end_trb,
		dma_addr_t input_dma,
		struct xhci_segment *result_seg,
		char *test_name, int test_number)
{
	unsigned long long start_dma;
	unsigned long long end_dma;
	struct xhci_segment *seg;

	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);

1951
	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	if (seg != result_seg) {
		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
				test_name, test_number);
		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
				"input DMA 0x%llx\n",
				input_seg,
				(unsigned long long) input_dma);
		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
				"ending TRB %p (0x%llx DMA)\n",
				start_trb, start_dma,
				end_trb, end_dma);
		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
				result_seg, seg);
1965 1966
		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
			  true);
1967 1968 1969 1970 1971 1972
		return -1;
	}
	return 0;
}

/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1973
static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
{
	struct {
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} simple_test_vector [] = {
		/* A zeroed DMA field should fail */
		{ 0, NULL },
		/* One TRB before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 16, NULL },
		/* One byte before the ring start should fail */
		{ xhci->event_ring->first_seg->dma - 1, NULL },
		/* Starting TRB should succeed */
		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
		/* Ending TRB should succeed */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
			xhci->event_ring->first_seg },
		/* One byte after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
		/* One TRB after the ring end should fail */
		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
		/* An address of all ones should fail */
		{ (dma_addr_t) (~0), NULL },
	};
	struct {
		struct xhci_segment	*input_seg;
		union xhci_trb		*start_trb;
		union xhci_trb		*end_trb;
		dma_addr_t		input_dma;
		struct xhci_segment	*result_seg;
	} complex_test_vector [] = {
		/* Test feeding a valid DMA address from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->event_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* Test feeding a valid start and end TRB from a different ring */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = xhci->cmd_ring->first_seg->trbs,
			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
			.input_dma = xhci->cmd_ring->first_seg->dma,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[0],
			.end_trb = &xhci->event_ring->first_seg->trbs[3],
			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[3],
			.end_trb = &xhci->event_ring->first_seg->trbs[6],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but after this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
		/* TRB in this ring, but before this wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
			.result_seg = NULL,
		},
		/* TRB not in this ring, and we have a wrapped TD */
		{	.input_seg = xhci->event_ring->first_seg,
			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
			.end_trb = &xhci->event_ring->first_seg->trbs[1],
			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
			.result_seg = NULL,
		},
	};

	unsigned int num_tests;
	int i, ret;

2065
	num_tests = ARRAY_SIZE(simple_test_vector);
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				xhci->event_ring->first_seg,
				xhci->event_ring->first_seg->trbs,
				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
				simple_test_vector[i].input_dma,
				simple_test_vector[i].result_seg,
				"Simple", i);
		if (ret < 0)
			return ret;
	}

2078
	num_tests = ARRAY_SIZE(complex_test_vector);
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	for (i = 0; i < num_tests; i++) {
		ret = xhci_test_trb_in_td(xhci,
				complex_test_vector[i].input_seg,
				complex_test_vector[i].start_trb,
				complex_test_vector[i].end_trb,
				complex_test_vector[i].input_dma,
				complex_test_vector[i].result_seg,
				"Complex", i);
		if (ret < 0)
			return ret;
	}
	xhci_dbg(xhci, "TRB math tests passed.\n");
	return 0;
}

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
{
	u64 temp;
	dma_addr_t deq;

	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
			xhci->event_ring->dequeue);
	if (deq == 0 && !in_interrupt())
		xhci_warn(xhci, "WARN something wrong with SW event ring "
				"dequeue ptr.\n");
	/* Update HC event ring dequeue pointer */
2105
	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2106 2107 2108 2109 2110
	temp &= ERST_PTR_MASK;
	/* Don't clear the EHB bit (which is RW1C) because
	 * there might be more events to service.
	 */
	temp &= ~ERST_EHB;
2111 2112 2113
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Write event ring dequeue pointer, "
			"preserving EHB bit");
2114
	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2115 2116 2117
			&xhci->ir_set->erst_dequeue);
}

2118
static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2119
		__le32 __iomem *addr, int max_caps)
2120 2121 2122
{
	u32 temp, port_offset, port_count;
	int i;
2123
	u8 major_revision;
2124
	struct xhci_hub *rhub;
2125

2126
	temp = readl(addr);
2127
	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2128

2129
	if (major_revision == 0x03) {
2130
		rhub = &xhci->usb3_rhub;
2131
	} else if (major_revision <= 0x02) {
2132 2133
		rhub = &xhci->usb2_rhub;
	} else {
2134 2135 2136 2137 2138 2139
		xhci_warn(xhci, "Ignoring unknown port speed, "
				"Ext Cap %p, revision = 0x%x\n",
				addr, major_revision);
		/* Ignoring port protocol we can't understand. FIXME */
		return;
	}
2140 2141
	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
	rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2142 2143

	/* Port offset and count in the third dword, see section 7.2 */
2144
	temp = readl(addr + 2);
2145 2146
	port_offset = XHCI_EXT_PORT_OFF(temp);
	port_count = XHCI_EXT_PORT_COUNT(temp);
2147 2148 2149
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Ext Cap %p, port offset = %u, "
			"count = %u, revision = 0x%x",
2150 2151 2152 2153 2154
			addr, port_offset, port_count, major_revision);
	/* Port count includes the current port offset */
	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
		/* WTF? "Valid values are ‘1’ to MaxPorts" */
		return;
A
Andiry Xu 已提交
2155

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
	if (rhub->psi_count) {
		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
				    GFP_KERNEL);
		if (!rhub->psi)
			rhub->psi_count = 0;

		rhub->psi_uid_count++;
		for (i = 0; i < rhub->psi_count; i++) {
			rhub->psi[i] = readl(addr + 4 + i);

			/* count unique ID values, two consecutive entries can
			 * have the same ID if link is assymetric
			 */
			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
				rhub->psi_uid_count++;

			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
				  XHCI_EXT_PORT_LP(rhub->psi[i]),
				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
		}
	}
2183 2184 2185 2186
	/* cache usb2 port capabilities */
	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
		xhci->ext_caps[xhci->num_ext_caps++] = temp;

A
Andiry Xu 已提交
2187 2188 2189
	/* Check the host's USB2 LPM capability */
	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
			(temp & XHCI_L1C)) {
2190 2191
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"xHCI 0.96: support USB2 software lpm");
A
Andiry Xu 已提交
2192 2193 2194 2195
		xhci->sw_lpm_support = 1;
	}

	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2196 2197
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"xHCI 1.0: support USB2 software lpm");
A
Andiry Xu 已提交
2198 2199
		xhci->sw_lpm_support = 1;
		if (temp & XHCI_HLC) {
2200 2201
			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
					"xHCI 1.0: support USB2 hardware lpm");
A
Andiry Xu 已提交
2202 2203 2204 2205
			xhci->hw_lpm_support = 1;
		}
	}

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	port_offset--;
	for (i = port_offset; i < (port_offset + port_count); i++) {
		/* Duplicate entry.  Ignore the port if the revisions differ. */
		if (xhci->port_array[i] != 0) {
			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
					" port %u\n", addr, i);
			xhci_warn(xhci, "Port was marked as USB %u, "
					"duplicated as USB %u\n",
					xhci->port_array[i], major_revision);
			/* Only adjust the roothub port counts if we haven't
			 * found a similar duplicate.
			 */
			if (xhci->port_array[i] != major_revision &&
2219
				xhci->port_array[i] != DUPLICATE_ENTRY) {
2220 2221 2222 2223
				if (xhci->port_array[i] == 0x03)
					xhci->num_usb3_ports--;
				else
					xhci->num_usb2_ports--;
2224
				xhci->port_array[i] = DUPLICATE_ENTRY;
2225 2226
			}
			/* FIXME: Should we disable the port? */
2227
			continue;
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
		}
		xhci->port_array[i] = major_revision;
		if (major_revision == 0x03)
			xhci->num_usb3_ports++;
		else
			xhci->num_usb2_ports++;
	}
	/* FIXME: Should we disable ports not in the Extended Capabilities? */
}

/*
 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
 * specify what speeds each port is supposed to be.  We can't count on the port
 * speed bits in the PORTSC register being correct until a device is connected,
 * but we need to set up the two fake roothubs with the correct number of USB
 * 3.0 and USB 2.0 ports at host controller initialization time.
 */
static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
{
2247 2248
	void __iomem *base;
	u32 offset;
2249
	unsigned int num_ports;
2250
	int i, j, port_index;
2251
	int cap_count = 0;
2252
	u32 cap_start;
2253 2254 2255 2256 2257 2258

	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
	if (!xhci->port_array)
		return -ENOMEM;

2259 2260 2261
	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
	if (!xhci->rh_bw)
		return -ENOMEM;
2262 2263 2264
	for (i = 0; i < num_ports; i++) {
		struct xhci_interval_bw_table *bw_table;

2265
		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2266 2267 2268 2269
		bw_table = &xhci->rh_bw[i].bw_table;
		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
	}
2270
	base = &xhci->cap_regs->hc_capbase;
2271

2272 2273 2274 2275 2276
	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
	if (!cap_start) {
		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
		return -ENODEV;
	}
2277

2278
	offset = cap_start;
2279
	/* count extended protocol capability entries for later caching */
2280 2281 2282 2283 2284
	while (offset) {
		cap_count++;
		offset = xhci_find_next_ext_cap(base, offset,
						      XHCI_EXT_CAPS_PROTOCOL);
	}
2285 2286 2287 2288 2289

	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
	if (!xhci->ext_caps)
		return -ENOMEM;

2290 2291 2292 2293 2294
	offset = cap_start;

	while (offset) {
		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2295
			break;
2296 2297
		offset = xhci_find_next_ext_cap(base, offset,
						XHCI_EXT_CAPS_PROTOCOL);
2298 2299 2300 2301 2302 2303
	}

	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
		xhci_warn(xhci, "No ports on the roothubs?\n");
		return -ENODEV;
	}
2304 2305
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2306
			xhci->num_usb2_ports, xhci->num_usb3_ports);
2307 2308 2309 2310 2311

	/* Place limits on the number of roothub ports so that the hub
	 * descriptors aren't longer than the USB core will allocate.
	 */
	if (xhci->num_usb3_ports > 15) {
2312 2313
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"Limiting USB 3.0 roothub ports to 15.");
2314 2315 2316
		xhci->num_usb3_ports = 15;
	}
	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2317 2318
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
				"Limiting USB 2.0 roothub ports to %u.",
2319 2320 2321 2322
				USB_MAXCHILDREN);
		xhci->num_usb2_ports = USB_MAXCHILDREN;
	}

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	/*
	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
	 * Not sure how the USB core will handle a hub with no ports...
	 */
	if (xhci->num_usb2_ports) {
		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
				xhci->num_usb2_ports, flags);
		if (!xhci->usb2_ports)
			return -ENOMEM;

		port_index = 0;
2334 2335 2336
		for (i = 0; i < num_ports; i++) {
			if (xhci->port_array[i] == 0x03 ||
					xhci->port_array[i] == 0 ||
2337
					xhci->port_array[i] == DUPLICATE_ENTRY)
2338 2339 2340 2341 2342
				continue;

			xhci->usb2_ports[port_index] =
				&xhci->op_regs->port_status_base +
				NUM_PORT_REGS*i;
2343 2344 2345
			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
					"USB 2.0 port at index %u, "
					"addr = %p", i,
2346 2347
					xhci->usb2_ports[port_index]);
			port_index++;
2348 2349
			if (port_index == xhci->num_usb2_ports)
				break;
2350
		}
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	}
	if (xhci->num_usb3_ports) {
		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
				xhci->num_usb3_ports, flags);
		if (!xhci->usb3_ports)
			return -ENOMEM;

		port_index = 0;
		for (i = 0; i < num_ports; i++)
			if (xhci->port_array[i] == 0x03) {
				xhci->usb3_ports[port_index] =
					&xhci->op_regs->port_status_base +
					NUM_PORT_REGS*i;
2364 2365 2366
				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
						"USB 3.0 port at index %u, "
						"addr = %p", i,
2367 2368
						xhci->usb3_ports[port_index]);
				port_index++;
2369 2370
				if (port_index == xhci->num_usb3_ports)
					break;
2371 2372 2373 2374
			}
	}
	return 0;
}
2375

2376 2377
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
{
2378 2379
	dma_addr_t	dma;
	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2380
	unsigned int	val, val2;
2381
	u64		val_64;
2382
	struct xhci_segment	*seg;
2383
	u32 page_size, temp;
2384 2385
	int i;

M
Mathias Nyman 已提交
2386
	INIT_LIST_HEAD(&xhci->cmd_list);
2387

2388 2389
	/* init command timeout work */
	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2390
	init_completion(&xhci->cmd_ring_stop_completion);
2391

2392
	page_size = readl(&xhci->op_regs->page_size);
2393 2394
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Supported page size register = 0x%x", page_size);
2395 2396 2397 2398 2399 2400
	for (i = 0; i < 16; i++) {
		if ((0x1 & page_size) != 0)
			break;
		page_size = page_size >> 1;
	}
	if (i < 16)
2401 2402
		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Supported page size of %iK", (1 << (i+12)) / 1024);
2403 2404 2405 2406 2407
	else
		xhci_warn(xhci, "WARN: no supported page size\n");
	/* Use 4K pages, since that's common and the minimum the HC supports */
	xhci->page_shift = 12;
	xhci->page_size = 1 << xhci->page_shift;
2408 2409
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"HCD page size set to %iK", xhci->page_size / 1024);
2410 2411 2412 2413 2414

	/*
	 * Program the Number of Device Slots Enabled field in the CONFIG
	 * register with the max value of slots the HC can handle.
	 */
2415
	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2416 2417
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// xHC can handle at most %d device slots.", val);
2418
	val2 = readl(&xhci->op_regs->config_reg);
2419
	val |= (val2 & ~HCS_SLOTS_MASK);
2420 2421
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Setting Max device slots reg = 0x%x.", val);
2422
	writel(val, &xhci->op_regs->config_reg);
2423

2424 2425 2426 2427
	/*
	 * Section 5.4.8 - doorbell array must be
	 * "physically contiguous and 64-byte (cache line) aligned".
	 */
2428
	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2429
			flags);
2430 2431 2432 2433
	if (!xhci->dcbaa)
		goto fail;
	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
	xhci->dcbaa->dma = dma;
2434 2435
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2436
			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2437
	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2438

2439 2440 2441
	/*
	 * Initialize the ring segment pool.  The ring must be a contiguous
	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2442 2443 2444
	 * however, the command ring segment needs 64-byte aligned segments
	 * and our use of dma addresses in the trb_address_map radix tree needs
	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2445 2446
	 */
	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2447
			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2448

2449 2450
	/* See Table 46 and Note on Figure 55 */
	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2451
			2112, 64, xhci->page_size);
2452
	if (!xhci->segment_pool || !xhci->device_pool)
2453 2454
		goto fail;

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	/* Linear stream context arrays don't have any boundary restrictions,
	 * and only need to be 16-byte aligned.
	 */
	xhci->small_streams_pool =
		dma_pool_create("xHCI 256 byte stream ctx arrays",
			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
	xhci->medium_streams_pool =
		dma_pool_create("xHCI 1KB stream ctx arrays",
			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2465
	 * will be allocated with dma_alloc_coherent()
2466 2467 2468 2469 2470
	 */

	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
		goto fail;

2471
	/* Set up the command ring to have one segments for now. */
2472
	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2473 2474
	if (!xhci->cmd_ring)
		goto fail;
2475 2476 2477
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Allocated command ring at %p", xhci->cmd_ring);
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2478
			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2479 2480

	/* Set the address in the Command Ring Control register */
2481
	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2482 2483
	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2484
		xhci->cmd_ring->cycle_state;
2485 2486
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Setting command ring address to 0x%x", val);
2487
	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2488 2489
	xhci_dbg_cmd_ptrs(xhci);

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
	if (!xhci->lpm_command)
		goto fail;

	/* Reserve one command ring TRB for disabling LPM.
	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
	 * disabling LPM, we only need to reserve one TRB for all devices.
	 */
	xhci->cmd_ring_reserved_trbs++;

2500
	val = readl(&xhci->cap_regs->db_off);
2501
	val &= DBOFF_MASK;
2502 2503 2504
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Doorbell array is located at offset 0x%x"
			" from cap regs base addr", val);
2505
	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2506 2507 2508
	xhci_dbg_regs(xhci);
	xhci_print_run_regs(xhci);
	/* Set ir_set to interrupt register set 0 */
2509
	xhci->ir_set = &xhci->run_regs->ir_set[0];
2510 2511 2512 2513 2514

	/*
	 * Event ring setup: Allocate a normal ring, but also setup
	 * the event ring segment table (ERST).  Section 4.9.3.
	 */
2515
	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2516
	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2517
					0, flags);
2518 2519
	if (!xhci->event_ring)
		goto fail;
2520
	if (xhci_check_trb_in_td_math(xhci) < 0)
2521
		goto fail;
2522

2523 2524
	xhci->erst.entries = dma_alloc_coherent(dev,
			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2525
			flags);
2526 2527
	if (!xhci->erst.entries)
		goto fail;
2528 2529
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Allocated event ring segment table at 0x%llx",
2530
			(unsigned long long)dma);
2531 2532 2533 2534

	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
	xhci->erst.num_entries = ERST_NUM_SEGS;
	xhci->erst.erst_dma_addr = dma;
2535 2536
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2537
			xhci->erst.num_entries,
2538 2539
			xhci->erst.entries,
			(unsigned long long)xhci->erst.erst_dma_addr);
2540 2541 2542 2543

	/* set ring base address and size for each segment table entry */
	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
M
Matt Evans 已提交
2544 2545
		entry->seg_addr = cpu_to_le64(seg->dma);
		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2546 2547 2548 2549 2550
		entry->rsvd = 0;
		seg = seg->next;
	}

	/* set ERST count with the number of entries in the segment table */
2551
	val = readl(&xhci->ir_set->erst_size);
2552 2553
	val &= ERST_SIZE_MASK;
	val |= ERST_NUM_SEGS;
2554 2555
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2556
			val);
2557
	writel(val, &xhci->ir_set->erst_size);
2558

2559 2560
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Set ERST entries to point to event ring.");
2561
	/* set the segment table base address */
2562 2563
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"// Set ERST base address for ir_set 0 = 0x%llx",
2564
			(unsigned long long)xhci->erst.erst_dma_addr);
2565
	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2566 2567
	val_64 &= ERST_PTR_MASK;
	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2568
	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2569 2570

	/* Set the event ring dequeue address */
2571
	xhci_set_hc_event_deq(xhci);
2572 2573
	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
			"Wrote ERST address to ir_set 0.");
2574
	xhci_print_ir_set(xhci, 0);
2575 2576 2577 2578 2579 2580

	/*
	 * XXX: Might need to set the Interrupter Moderation Register to
	 * something other than the default (~1ms minimum between interrupts).
	 * See section 5.5.1.2.
	 */
2581
	for (i = 0; i < MAX_HC_SLOTS; i++)
2582
		xhci->devs[i] = NULL;
2583
	for (i = 0; i < USB_MAXCHILDREN; i++) {
2584
		xhci->bus_state[0].resume_done[i] = 0;
2585
		xhci->bus_state[1].resume_done[i] = 0;
2586 2587
		/* Only the USB 2.0 completions will ever be used. */
		init_completion(&xhci->bus_state[1].rexit_done[i]);
2588
	}
2589

2590 2591
	if (scratchpad_alloc(xhci, flags))
		goto fail;
2592 2593
	if (xhci_setup_port_arrays(xhci, flags))
		goto fail;
2594

2595 2596 2597 2598
	/* Enable USB 3.0 device notifications for function remote wake, which
	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
	 * U3 (device suspend).
	 */
2599
	temp = readl(&xhci->op_regs->dev_notification);
2600 2601
	temp &= ~DEV_NOTE_MASK;
	temp |= DEV_NOTE_FWAKE;
2602
	writel(temp, &xhci->op_regs->dev_notification);
2603

2604
	return 0;
2605

2606 2607
fail:
	xhci_warn(xhci, "Couldn't initialize memory\n");
2608 2609
	xhci_halt(xhci);
	xhci_reset(xhci);
2610 2611 2612
	xhci_mem_cleanup(xhci);
	return -ENOMEM;
}