i915_gem.c 105.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39

40
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
41 42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 44 45
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
46 47
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
48
				struct drm_i915_gem_pwrite *args,
49
				struct drm_file *file);
50

51 52 53 54 55 56
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

57
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58
				    struct shrink_control *sc);
59
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60

61 62 63 64 65 66 67 68
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
69
	obj->fence_dirty = false;
70 71 72
	obj->fence_reg = I915_FENCE_REG_NONE;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

88 89
static int
i915_gem_wait_for_error(struct drm_device *dev)
90 91 92 93 94 95 96 97 98
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

99 100 101 102 103 104 105 106 107 108
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
109
		return ret;
110
	}
111

112 113 114 115 116 117 118 119 120 121 122
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
123 124
}

125
int i915_mutex_lock_interruptible(struct drm_device *dev)
126 127 128
{
	int ret;

129
	ret = i915_gem_wait_for_error(dev);
130 131 132 133 134 135 136
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

137
	WARN_ON(i915_verify_lists(dev));
138 139
	return 0;
}
140

141
static inline bool
142
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
143
{
144
	return !obj->active;
145 146
}

J
Jesse Barnes 已提交
147 148
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
149
		    struct drm_file *file)
J
Jesse Barnes 已提交
150 151
{
	struct drm_i915_gem_init *args = data;
152

153 154 155
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

156 157 158
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
159

160 161 162 163
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
164
	mutex_lock(&dev->struct_mutex);
165 166
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
167 168
	mutex_unlock(&dev->struct_mutex);

169
	return 0;
170 171
}

172 173
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
174
			    struct drm_file *file)
175
{
176
	struct drm_i915_private *dev_priv = dev->dev_private;
177
	struct drm_i915_gem_get_aperture *args = data;
178 179
	struct drm_i915_gem_object *obj;
	size_t pinned;
180

181
	pinned = 0;
182
	mutex_lock(&dev->struct_mutex);
183 184 185
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
		if (obj->pin_count)
			pinned += obj->gtt_space->size;
186
	mutex_unlock(&dev->struct_mutex);
187

188
	args->aper_size = dev_priv->mm.gtt_total;
189
	args->aper_available_size = args->aper_size - pinned;
190

191 192 193
	return 0;
}

194 195 196 197 198
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
199
{
200
	struct drm_i915_gem_object *obj;
201 202
	int ret;
	u32 handle;
203

204
	size = roundup(size, PAGE_SIZE);
205 206
	if (size == 0)
		return -EINVAL;
207 208

	/* Allocate the new object */
209
	obj = i915_gem_alloc_object(dev, size);
210 211 212
	if (obj == NULL)
		return -ENOMEM;

213
	ret = drm_gem_handle_create(file, &obj->base, &handle);
214
	if (ret) {
215 216
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
217
		kfree(obj);
218
		return ret;
219
	}
220

221
	/* drop reference from allocate - handle holds it now */
222
	drm_gem_object_unreference(&obj->base);
223 224
	trace_i915_gem_object_create(obj);

225
	*handle_p = handle;
226 227 228
	return 0;
}

229 230 231 232 233 234
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
235
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
256

257 258 259 260
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

261
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
262
{
263
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
264 265

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
266
		obj->tiling_mode != I915_TILING_NONE;
267 268
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

295
static inline int
296 297
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

321 322 323
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
324
static int
325 326 327 328 329 330 331
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

332
	if (unlikely(page_do_bit17_swizzling))
333 334 335 336 337 338 339 340 341 342 343 344 345 346
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

347 348 349 350
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
351
	if (unlikely(swizzled)) {
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

369 370 371 372 373 374 375 376 377 378 379 380
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
381 382 383
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
384 385 386 387 388 389 390 391 392 393 394 395 396 397

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

398
static int
399 400 401 402
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
403
{
404
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
405
	char __user *user_data;
406
	ssize_t remain;
407
	loff_t offset;
408
	int shmem_page_offset, page_length, ret = 0;
409
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410
	int hit_slowpath = 0;
411
	int prefaulted = 0;
412
	int needs_clflush = 0;
413
	int release_page;
414

415
	user_data = (char __user *) (uintptr_t) args->data_ptr;
416 417
	remain = args->size;

418
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
419

420 421 422 423 424 425 426 427 428 429 430
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			return ret;
	}
431

432
	offset = args->offset;
433 434

	while (remain > 0) {
435 436
		struct page *page;

437 438 439 440 441
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
442
		shmem_page_offset = offset_in_page(offset);
443 444 445 446
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

447 448 449 450 451 452 453 454 455 456
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
457
		}
458

459 460 461
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

462 463 464 465 466
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
467 468

		hit_slowpath = 1;
469
		page_cache_get(page);
470 471
		mutex_unlock(&dev->struct_mutex);

472
		if (!prefaulted) {
473
			ret = fault_in_multipages_writeable(user_data, remain);
474 475 476 477 478 479 480
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
481

482 483 484
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
485

486
		mutex_lock(&dev->struct_mutex);
487
		page_cache_release(page);
488
next_page:
489
		mark_page_accessed(page);
490 491
		if (release_page)
			page_cache_release(page);
492

493 494 495 496 497
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

498
		remain -= page_length;
499
		user_data += page_length;
500 501 502
		offset += page_length;
	}

503
out:
504 505 506 507 508
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
509 510 511 512

	return ret;
}

513 514 515 516 517 518 519
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
520
		     struct drm_file *file)
521 522
{
	struct drm_i915_gem_pread *args = data;
523
	struct drm_i915_gem_object *obj;
524
	int ret = 0;
525

526 527 528 529 530 531 532 533
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

534
	ret = i915_mutex_lock_interruptible(dev);
535
	if (ret)
536
		return ret;
537

538
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
539
	if (&obj->base == NULL) {
540 541
		ret = -ENOENT;
		goto unlock;
542
	}
543

544
	/* Bounds check source.  */
545 546
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
547
		ret = -EINVAL;
548
		goto out;
C
Chris Wilson 已提交
549 550
	}

551 552 553 554 555 556 557 558
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
559 560
	trace_i915_gem_object_pread(obj, args->offset, args->size);

561
	ret = i915_gem_shmem_pread(dev, obj, args, file);
562

563
out:
564
	drm_gem_object_unreference(&obj->base);
565
unlock:
566
	mutex_unlock(&dev->struct_mutex);
567
	return ret;
568 569
}

570 571
/* This is the fast write path which cannot handle
 * page faults in the source data
572
 */
573 574 575 576 577 578

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
579
{
580 581
	void __iomem *vaddr_atomic;
	void *vaddr;
582
	unsigned long unwritten;
583

P
Peter Zijlstra 已提交
584
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
585 586 587
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
588
						      user_data, length);
P
Peter Zijlstra 已提交
589
	io_mapping_unmap_atomic(vaddr_atomic);
590
	return unwritten;
591 592
}

593 594 595 596
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
597
static int
598 599
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
600
			 struct drm_i915_gem_pwrite *args,
601
			 struct drm_file *file)
602
{
603
	drm_i915_private_t *dev_priv = dev->dev_private;
604
	ssize_t remain;
605
	loff_t offset, page_base;
606
	char __user *user_data;
D
Daniel Vetter 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619
	int page_offset, page_length, ret;

	ret = i915_gem_object_pin(obj, 0, true);
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
620 621 622 623

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

624
	offset = obj->gtt_offset + args->offset;
625 626 627 628

	while (remain > 0) {
		/* Operation in this page
		 *
629 630 631
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
632
		 */
633 634
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
635 636 637 638 639
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
640 641
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
642
		 */
643
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
644 645 646 647
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
648

649 650 651
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
652 653
	}

D
Daniel Vetter 已提交
654 655 656
out_unpin:
	i915_gem_object_unpin(obj);
out:
657
	return ret;
658 659
}

660 661 662 663
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
664
static int
665 666 667 668 669
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
670
{
671
	char *vaddr;
672
	int ret;
673

674
	if (unlikely(page_do_bit17_swizzling))
675
		return -EINVAL;
676

677 678 679 680 681 682 683 684 685 686 687
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
688 689 690 691

	return ret;
}

692 693
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
694
static int
695 696 697 698 699
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
700
{
701 702
	char *vaddr;
	int ret;
703

704
	vaddr = kmap(page);
705
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
706 707 708
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
709 710
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
711 712
						user_data,
						page_length);
713 714 715 716 717
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
718 719 720
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
721
	kunmap(page);
722

723
	return ret;
724 725 726
}

static int
727 728 729 730
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
731
{
732
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
733
	ssize_t remain;
734 735
	loff_t offset;
	char __user *user_data;
736
	int shmem_page_offset, page_length, ret = 0;
737
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738
	int hit_slowpath = 0;
739 740
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
741
	int release_page;
742

743
	user_data = (char __user *) (uintptr_t) args->data_ptr;
744 745
	remain = args->size;

746
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
747

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			return ret;
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

765
	offset = args->offset;
766
	obj->dirty = 1;
767

768
	while (remain > 0) {
769
		struct page *page;
770
		int partial_cacheline_write;
771

772 773 774 775 776
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
777
		shmem_page_offset = offset_in_page(offset);
778 779 780 781 782

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

783 784 785 786 787 788 789
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

790 791 792 793 794 795 796 797 798 799
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
800 801
		}

802 803 804
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

805 806 807 808 809 810
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
811 812

		hit_slowpath = 1;
813
		page_cache_get(page);
814 815
		mutex_unlock(&dev->struct_mutex);

816 817 818 819
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
820

821
		mutex_lock(&dev->struct_mutex);
822
		page_cache_release(page);
823
next_page:
824 825
		set_page_dirty(page);
		mark_page_accessed(page);
826 827
		if (release_page)
			page_cache_release(page);
828

829 830 831 832 833
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

834
		remain -= page_length;
835
		user_data += page_length;
836
		offset += page_length;
837 838
	}

839
out:
840 841 842 843 844 845 846 847 848 849
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
850
	}
851

852 853 854
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

855
	return ret;
856 857 858 859 860 861 862 863 864
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865
		      struct drm_file *file)
866 867
{
	struct drm_i915_gem_pwrite *args = data;
868
	struct drm_i915_gem_object *obj;
869 870 871 872 873 874 875 876 877 878
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

879 880
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
881 882
	if (ret)
		return -EFAULT;
883

884
	ret = i915_mutex_lock_interruptible(dev);
885
	if (ret)
886
		return ret;
887

888
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889
	if (&obj->base == NULL) {
890 891
		ret = -ENOENT;
		goto unlock;
892
	}
893

894
	/* Bounds check destination. */
895 896
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
897
		ret = -EINVAL;
898
		goto out;
C
Chris Wilson 已提交
899 900
	}

901 902 903 904 905 906 907 908
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
909 910
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
911
	ret = -EFAULT;
912 913 914 915 916 917
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
918
	if (obj->phys_obj) {
919
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
920 921 922 923
		goto out;
	}

	if (obj->gtt_space &&
924
	    obj->cache_level == I915_CACHE_NONE &&
925
	    obj->tiling_mode == I915_TILING_NONE &&
926
	    obj->map_and_fenceable &&
927
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
928
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
929 930 931
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
932
	}
933

934
	if (ret == -EFAULT)
D
Daniel Vetter 已提交
935
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
936

937
out:
938
	drm_gem_object_unreference(&obj->base);
939
unlock:
940
	mutex_unlock(&dev->struct_mutex);
941 942 943 944
	return ret;
}

/**
945 946
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
947 948 949
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
950
			  struct drm_file *file)
951 952
{
	struct drm_i915_gem_set_domain *args = data;
953
	struct drm_i915_gem_object *obj;
954 955
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
956 957
	int ret;

958
	/* Only handle setting domains to types used by the CPU. */
959
	if (write_domain & I915_GEM_GPU_DOMAINS)
960 961
		return -EINVAL;

962
	if (read_domains & I915_GEM_GPU_DOMAINS)
963 964 965 966 967 968 969 970
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

971
	ret = i915_mutex_lock_interruptible(dev);
972
	if (ret)
973
		return ret;
974

975
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
976
	if (&obj->base == NULL) {
977 978
		ret = -ENOENT;
		goto unlock;
979
	}
980

981 982
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
983 984 985 986 987 988 989

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
990
	} else {
991
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
992 993
	}

994
	drm_gem_object_unreference(&obj->base);
995
unlock:
996 997 998 999 1000 1001 1002 1003 1004
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1005
			 struct drm_file *file)
1006 1007
{
	struct drm_i915_gem_sw_finish *args = data;
1008
	struct drm_i915_gem_object *obj;
1009 1010
	int ret = 0;

1011
	ret = i915_mutex_lock_interruptible(dev);
1012
	if (ret)
1013
		return ret;
1014

1015
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1016
	if (&obj->base == NULL) {
1017 1018
		ret = -ENOENT;
		goto unlock;
1019 1020 1021
	}

	/* Pinned buffers may be scanout, so flush the cache */
1022
	if (obj->pin_count)
1023 1024
		i915_gem_object_flush_cpu_write_domain(obj);

1025
	drm_gem_object_unreference(&obj->base);
1026
unlock:
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1040
		    struct drm_file *file)
1041 1042 1043 1044 1045
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1046
	obj = drm_gem_object_lookup(dev, file, args->handle);
1047
	if (obj == NULL)
1048
		return -ENOENT;
1049

1050 1051 1052 1053 1054 1055 1056 1057
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1058
	addr = vm_mmap(obj->filp, 0, args->size,
1059 1060
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1061
	drm_gem_object_unreference_unlocked(obj);
1062 1063 1064 1065 1066 1067 1068 1069
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1088 1089
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1090
	drm_i915_private_t *dev_priv = dev->dev_private;
1091 1092 1093
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1094
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1095 1096 1097 1098 1099

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1100 1101 1102
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1103

C
Chris Wilson 已提交
1104 1105
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1106
	/* Now bind it into the GTT if needed */
1107 1108 1109 1110
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1111
	}
1112
	if (!obj->gtt_space) {
1113
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1114 1115
		if (ret)
			goto unlock;
1116

1117 1118 1119 1120
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1121

1122 1123 1124
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1125
	ret = i915_gem_object_get_fence(obj);
1126 1127
	if (ret)
		goto unlock;
1128

1129 1130
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1131

1132 1133
	obj->fault_mappable = true;

1134
	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1135 1136 1137 1138
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1139
unlock:
1140
	mutex_unlock(&dev->struct_mutex);
1141
out:
1142
	switch (ret) {
1143
	case -EIO:
1144 1145 1146 1147 1148
		/* If this -EIO is due to a gpu hang, give the reset code a
		 * chance to clean up the mess. Otherwise return the proper
		 * SIGBUS. */
		if (!atomic_read(&dev_priv->mm.wedged))
			return VM_FAULT_SIGBUS;
1149
	case -EAGAIN:
1150 1151 1152 1153 1154 1155 1156
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1157
		set_need_resched();
1158 1159
	case 0:
	case -ERESTARTSYS:
1160
	case -EINTR:
1161
		return VM_FAULT_NOPAGE;
1162 1163 1164
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1165
		return VM_FAULT_SIGBUS;
1166 1167 1168
	}
}

1169 1170 1171 1172
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1173
 * Preserve the reservation of the mmapping with the DRM core code, but
1174 1175 1176 1177 1178 1179 1180 1181 1182
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1183
void
1184
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1185
{
1186 1187
	if (!obj->fault_mappable)
		return;
1188

1189 1190 1191 1192
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1193

1194
	obj->fault_mappable = false;
1195 1196
}

1197
static uint32_t
1198
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1199
{
1200
	uint32_t gtt_size;
1201 1202

	if (INTEL_INFO(dev)->gen >= 4 ||
1203 1204
	    tiling_mode == I915_TILING_NONE)
		return size;
1205 1206 1207

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1208
		gtt_size = 1024*1024;
1209
	else
1210
		gtt_size = 512*1024;
1211

1212 1213
	while (gtt_size < size)
		gtt_size <<= 1;
1214

1215
	return gtt_size;
1216 1217
}

1218 1219 1220 1221 1222
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1223
 * potential fence register mapping.
1224 1225
 */
static uint32_t
1226 1227 1228
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1229 1230 1231 1232 1233
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1234
	if (INTEL_INFO(dev)->gen >= 4 ||
1235
	    tiling_mode == I915_TILING_NONE)
1236 1237
		return 4096;

1238 1239 1240 1241
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1242
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1243 1244
}

1245 1246 1247
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1248 1249 1250
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1251 1252 1253 1254
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1255
uint32_t
1256 1257 1258
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1259 1260 1261 1262 1263
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1264
	    tiling_mode == I915_TILING_NONE)
1265 1266
		return 4096;

1267 1268 1269
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1270
	 */
1271
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1272 1273
}

1274
int
1275 1276 1277 1278
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1279
{
1280
	struct drm_i915_private *dev_priv = dev->dev_private;
1281
	struct drm_i915_gem_object *obj;
1282 1283
	int ret;

1284
	ret = i915_mutex_lock_interruptible(dev);
1285
	if (ret)
1286
		return ret;
1287

1288
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1289
	if (&obj->base == NULL) {
1290 1291 1292
		ret = -ENOENT;
		goto unlock;
	}
1293

1294
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1295
		ret = -E2BIG;
1296
		goto out;
1297 1298
	}

1299
	if (obj->madv != I915_MADV_WILLNEED) {
1300
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1301 1302
		ret = -EINVAL;
		goto out;
1303 1304
	}

1305
	if (!obj->base.map_list.map) {
1306
		ret = drm_gem_create_mmap_offset(&obj->base);
1307 1308
		if (ret)
			goto out;
1309 1310
	}

1311
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1312

1313
out:
1314
	drm_gem_object_unreference(&obj->base);
1315
unlock:
1316
	mutex_unlock(&dev->struct_mutex);
1317
	return ret;
1318 1319
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

1344
int
1345
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1346 1347 1348 1349 1350 1351 1352
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

1353 1354 1355
	if (obj->pages || obj->sg_table)
		return 0;

1356 1357 1358
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1359 1360 1361 1362
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1363 1364
		return -ENOMEM;

1365
	inode = obj->base.filp->f_path.dentry->d_inode;
1366
	mapping = inode->i_mapping;
1367 1368
	gfpmask |= mapping_gfp_mask(mapping);

1369
	for (i = 0; i < page_count; i++) {
1370
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1371 1372 1373
		if (IS_ERR(page))
			goto err_pages;

1374
		obj->pages[i] = page;
1375 1376
	}

1377
	if (i915_gem_object_needs_bit17_swizzle(obj))
1378 1379 1380 1381 1382 1383
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1384
		page_cache_release(obj->pages[i]);
1385

1386 1387
	drm_free_large(obj->pages);
	obj->pages = NULL;
1388 1389 1390
	return PTR_ERR(page);
}

1391
static void
1392
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1393
{
1394
	int page_count = obj->base.size / PAGE_SIZE;
1395 1396
	int i;

1397 1398 1399
	if (!obj->pages)
		return;

1400
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1401

1402
	if (i915_gem_object_needs_bit17_swizzle(obj))
1403 1404
		i915_gem_object_save_bit_17_swizzle(obj);

1405 1406
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1407 1408

	for (i = 0; i < page_count; i++) {
1409 1410
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1411

1412 1413
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1414

1415
		page_cache_release(obj->pages[i]);
1416
	}
1417
	obj->dirty = 0;
1418

1419 1420
	drm_free_large(obj->pages);
	obj->pages = NULL;
1421 1422
}

1423
void
1424
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1425 1426
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1427
{
1428
	struct drm_device *dev = obj->base.dev;
1429
	struct drm_i915_private *dev_priv = dev->dev_private;
1430

1431
	BUG_ON(ring == NULL);
1432
	obj->ring = ring;
1433 1434

	/* Add a reference if we're newly entering the active list. */
1435 1436 1437
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1438
	}
1439

1440
	/* Move from whatever list we were on to the tail of execution. */
1441 1442
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1443

1444
	obj->last_read_seqno = seqno;
1445

1446
	if (obj->fenced_gpu_access) {
1447 1448
		obj->last_fenced_seqno = seqno;

1449 1450 1451 1452 1453 1454 1455 1456
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1457 1458 1459 1460 1461 1462 1463 1464 1465
	}
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1466
	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1467 1468

	BUG_ON(!list_empty(&obj->gpu_write_list));
1469
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1470
	BUG_ON(!obj->active);
1471 1472

	list_del_init(&obj->ring_list);
1473 1474
	obj->ring = NULL;

1475 1476 1477 1478 1479
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
1480 1481 1482 1483 1484 1485
	obj->fenced_gpu_access = false;

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1486
}
1487

1488 1489
/* Immediately discard the backing storage */
static void
1490
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1491
{
C
Chris Wilson 已提交
1492
	struct inode *inode;
1493

1494 1495 1496
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1497
	 * backing pages, *now*.
1498
	 */
1499
	inode = obj->base.filp->f_path.dentry->d_inode;
1500
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1501

1502 1503 1504
	if (obj->base.map_list.map)
		drm_gem_free_mmap_offset(&obj->base);

1505
	obj->madv = __I915_MADV_PURGED;
1506 1507 1508
}

static inline int
1509
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1510
{
1511
	return obj->madv == I915_MADV_DONTNEED;
1512 1513
}

1514
static void
C
Chris Wilson 已提交
1515 1516
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1517
{
1518
	struct drm_i915_gem_object *obj, *next;
1519

1520
	list_for_each_entry_safe(obj, next,
1521
				 &ring->gpu_write_list,
1522
				 gpu_write_list) {
1523 1524
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1525

1526 1527
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1528
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1529
						       i915_gem_next_request_seqno(ring));
1530 1531

			trace_i915_gem_object_change_domain(obj,
1532
							    obj->base.read_domains,
1533 1534 1535 1536
							    old_write_domain);
		}
	}
}
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1560
int
C
Chris Wilson 已提交
1561
i915_add_request(struct intel_ring_buffer *ring,
1562
		 struct drm_file *file,
C
Chris Wilson 已提交
1563
		 struct drm_i915_gem_request *request)
1564
{
C
Chris Wilson 已提交
1565
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1566
	uint32_t seqno;
1567
	u32 request_ring_position;
1568
	int was_empty;
1569 1570
	int ret;

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (ring->gpu_caches_dirty) {
		ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
		if (ret)
			return ret;

		ring->gpu_caches_dirty = false;
	}

1586 1587 1588 1589 1590 1591
	if (request == NULL) {
		request = kmalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;
	}

1592
	seqno = i915_gem_next_request_seqno(ring);
1593

1594 1595 1596 1597 1598 1599 1600
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1601
	ret = ring->add_request(ring, &seqno);
1602 1603 1604 1605
	if (ret) {
		kfree(request);
		return ret;
	}
1606

C
Chris Wilson 已提交
1607
	trace_i915_gem_request_add(ring, seqno);
1608 1609

	request->seqno = seqno;
1610
	request->ring = ring;
1611
	request->tail = request_ring_position;
1612
	request->emitted_jiffies = jiffies;
1613 1614
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);
1615
	request->file_priv = NULL;
1616

C
Chris Wilson 已提交
1617 1618 1619
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1620
		spin_lock(&file_priv->mm.lock);
1621
		request->file_priv = file_priv;
1622
		list_add_tail(&request->client_list,
1623
			      &file_priv->mm.request_list);
1624
		spin_unlock(&file_priv->mm.lock);
1625
	}
1626

1627
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
1628

B
Ben Gamari 已提交
1629
	if (!dev_priv->mm.suspended) {
1630 1631 1632 1633 1634
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1635
		if (was_empty)
1636 1637
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1638
	}
1639 1640 1641

	WARN_ON(!list_empty(&ring->gpu_write_list));

1642
	return 0;
1643 1644
}

1645 1646
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1647
{
1648
	struct drm_i915_file_private *file_priv = request->file_priv;
1649

1650 1651
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1652

1653
	spin_lock(&file_priv->mm.lock);
1654 1655 1656 1657
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1658
	spin_unlock(&file_priv->mm.lock);
1659 1660
}

1661 1662
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1663
{
1664 1665
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1666

1667 1668 1669
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1670

1671
		list_del(&request->list);
1672
		i915_gem_request_remove_from_client(request);
1673 1674
		kfree(request);
	}
1675

1676
	while (!list_empty(&ring->active_list)) {
1677
		struct drm_i915_gem_object *obj;
1678

1679 1680 1681
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1682

1683 1684
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1685 1686 1687
	}
}

1688 1689 1690 1691 1692
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1693
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1694
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1695

1696
		i915_gem_write_fence(dev, i, NULL);
1697

1698 1699
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
1700

1701 1702 1703
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
1704
	}
1705 1706

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1707 1708
}

1709
void i915_gem_reset(struct drm_device *dev)
1710
{
1711
	struct drm_i915_private *dev_priv = dev->dev_private;
1712
	struct drm_i915_gem_object *obj;
1713
	struct intel_ring_buffer *ring;
1714
	int i;
1715

1716 1717
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_lists(dev_priv, ring);
1718 1719 1720 1721

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1722
	list_for_each_entry(obj,
1723
			    &dev_priv->mm.inactive_list,
1724
			    mm_list)
1725
	{
1726
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1727
	}
1728 1729

	/* The fence registers are invalidated so clear them out */
1730
	i915_gem_reset_fences(dev);
1731 1732 1733 1734 1735
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1736
void
C
Chris Wilson 已提交
1737
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1738 1739
{
	uint32_t seqno;
1740
	int i;
1741

C
Chris Wilson 已提交
1742
	if (list_empty(&ring->request_list))
1743 1744
		return;

C
Chris Wilson 已提交
1745
	WARN_ON(i915_verify_lists(ring->dev));
1746

1747
	seqno = ring->get_seqno(ring);
1748

1749
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1750 1751 1752
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1753
	while (!list_empty(&ring->request_list)) {
1754 1755
		struct drm_i915_gem_request *request;

1756
		request = list_first_entry(&ring->request_list,
1757 1758 1759
					   struct drm_i915_gem_request,
					   list);

1760
		if (!i915_seqno_passed(seqno, request->seqno))
1761 1762
			break;

C
Chris Wilson 已提交
1763
		trace_i915_gem_request_retire(ring, request->seqno);
1764 1765 1766 1767 1768 1769
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
1770 1771

		list_del(&request->list);
1772
		i915_gem_request_remove_from_client(request);
1773 1774
		kfree(request);
	}
1775

1776 1777 1778 1779
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1780
		struct drm_i915_gem_object *obj;
1781

1782
		obj = list_first_entry(&ring->active_list,
1783 1784
				      struct drm_i915_gem_object,
				      ring_list);
1785

1786
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
1787
			break;
1788

1789
		i915_gem_object_move_to_inactive(obj);
1790
	}
1791

C
Chris Wilson 已提交
1792 1793
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1794
		ring->irq_put(ring);
C
Chris Wilson 已提交
1795
		ring->trace_irq_seqno = 0;
1796
	}
1797

C
Chris Wilson 已提交
1798
	WARN_ON(i915_verify_lists(ring->dev));
1799 1800
}

1801 1802 1803 1804
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1805
	struct intel_ring_buffer *ring;
1806
	int i;
1807

1808 1809
	for_each_ring(ring, dev_priv, i)
		i915_gem_retire_requests_ring(ring);
1810 1811
}

1812
static void
1813 1814 1815 1816
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1817
	struct intel_ring_buffer *ring;
1818 1819
	bool idle;
	int i;
1820 1821 1822 1823 1824

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1825 1826 1827 1828 1829 1830
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1831
	i915_gem_retire_requests(dev);
1832

1833 1834 1835 1836
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
1837
	for_each_ring(ring, dev_priv, i) {
1838 1839
		if (ring->gpu_caches_dirty)
			i915_add_request(ring, NULL, NULL);
1840 1841 1842 1843 1844

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1845
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1846

1847 1848 1849
	mutex_unlock(&dev->struct_mutex);
}

1850 1851 1852
int
i915_gem_check_wedge(struct drm_i915_private *dev_priv,
		     bool interruptible)
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
{
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

		/* Recovery complete, but still wedged means reset failure. */
		if (recovery_complete)
			return -EIO;

		return -EAGAIN;
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
1886
	int ret;
1887 1888 1889

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

1890 1891 1892
	ret = 0;
	if (seqno == ring->outstanding_lazy_request)
		ret = i915_add_request(ring, NULL, NULL);
1893 1894 1895 1896

	return ret;
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
1907
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1908
			bool interruptible, struct timespec *timeout)
1909 1910
{
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1911 1912 1913 1914
	struct timespec before, now, wait_time={1,0};
	unsigned long timeout_jiffies;
	long end;
	bool wait_forever = true;
1915
	int ret;
1916 1917 1918 1919 1920

	if (i915_seqno_passed(ring->get_seqno(ring), seqno))
		return 0;

	trace_i915_gem_request_wait_begin(ring, seqno);
1921 1922 1923 1924 1925 1926 1927 1928

	if (timeout != NULL) {
		wait_time = *timeout;
		wait_forever = false;
	}

	timeout_jiffies = timespec_to_jiffies(&wait_time);

1929 1930 1931
	if (WARN_ON(!ring->irq_get(ring)))
		return -ENODEV;

1932 1933 1934
	/* Record current time in case interrupted by signal, or wedged * */
	getrawmonotonic(&before);

1935 1936 1937
#define EXIT_COND \
	(i915_seqno_passed(ring->get_seqno(ring), seqno) || \
	atomic_read(&dev_priv->mm.wedged))
1938 1939 1940 1941 1942 1943 1944 1945
	do {
		if (interruptible)
			end = wait_event_interruptible_timeout(ring->irq_queue,
							       EXIT_COND,
							       timeout_jiffies);
		else
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
						 timeout_jiffies);
1946

1947 1948 1949
		ret = i915_gem_check_wedge(dev_priv, interruptible);
		if (ret)
			end = ret;
1950 1951 1952
	} while (end == 0 && wait_forever);

	getrawmonotonic(&now);
1953 1954 1955 1956 1957

	ring->irq_put(ring);
	trace_i915_gem_request_wait_end(ring, seqno);
#undef EXIT_COND

1958 1959 1960 1961 1962 1963
	if (timeout) {
		struct timespec sleep_time = timespec_sub(now, before);
		*timeout = timespec_sub(*timeout, sleep_time);
	}

	switch (end) {
1964
	case -EIO:
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	case -EAGAIN: /* Wedged */
	case -ERESTARTSYS: /* Signal */
		return (int)end;
	case 0: /* Timeout */
		if (timeout)
			set_normalized_timespec(timeout, 0, 0);
		return -ETIME;
	default: /* Completed */
		WARN_ON(end < 0); /* We're not aware of other errors */
		return 0;
	}
1976 1977
}

C
Chris Wilson 已提交
1978 1979 1980 1981
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1982
int
1983
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1984
{
C
Chris Wilson 已提交
1985
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1986 1987 1988 1989
	int ret = 0;

	BUG_ON(seqno == 0);

1990
	ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1991 1992
	if (ret)
		return ret;
1993

1994 1995 1996
	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;
1997

1998
	ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
1999 2000 2001 2002 2003 2004 2005 2006

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2007 2008 2009
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
2010
{
2011
	u32 seqno;
2012 2013
	int ret;

2014 2015
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2016
	 */
2017
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2018 2019 2020 2021

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	if (readonly)
		seqno = obj->last_write_seqno;
	else
		seqno = obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(obj->ring, seqno);
	if (ret)
		return ret;

	/* Manually manage the write flush as we may have not yet retired
	 * the buffer.
	 */
	if (obj->last_write_seqno &&
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
		obj->last_write_seqno = 0;
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
2040 2041
	}

2042
	i915_gem_retire_requests_ring(obj->ring);
2043 2044 2045
	return 0;
}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
		ret = i915_gem_object_flush_gpu_write_domain(obj);
		if (ret)
			return ret;

2061
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2062 2063
		if (ret)
			return ret;
2064

2065 2066 2067 2068 2069 2070
		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
	struct intel_ring_buffer *ring = NULL;
2099
	struct timespec timeout_stack, *timeout = NULL;
2100 2101 2102
	u32 seqno = 0;
	int ret = 0;

2103 2104 2105 2106
	if (args->timeout_ns >= 0) {
		timeout_stack = ns_to_timespec(args->timeout_ns);
		timeout = &timeout_stack;
	}
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2118 2119
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2120 2121 2122 2123
	if (ret)
		goto out;

	if (obj->active) {
2124
		seqno = obj->last_read_seqno;
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
	 * on this IOCTL with a 0 timeout (like busy ioctl)
	 */
	if (!args->timeout_ns) {
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

2142 2143 2144 2145 2146
	ret = __wait_seqno(ring, seqno, true, timeout);
	if (timeout) {
		WARN_ON(!timespec_valid(timeout));
		args->timeout_ns = timespec_to_ns(timeout);
	}
2147 2148 2149 2150 2151 2152 2153 2154
	return ret;

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2178
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2179
		return i915_gem_object_wait_rendering(obj, false);
2180 2181 2182

	idx = intel_ring_sync_index(from, to);

2183
	seqno = obj->last_read_seqno;
2184 2185 2186
	if (seqno <= from->sync_seqno[idx])
		return 0;

2187 2188 2189
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2190

2191
	ret = to->sync_to(to, from, seqno);
2192 2193
	if (!ret)
		from->sync_seqno[idx] = seqno;
2194

2195
	return ret;
2196 2197
}

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2208 2209 2210
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2222 2223 2224
/**
 * Unbinds an object from the GTT aperture.
 */
2225
int
2226
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2227
{
2228
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2229 2230
	int ret = 0;

2231
	if (obj->gtt_space == NULL)
2232 2233
		return 0;

2234 2235
	if (obj->pin_count)
		return -EBUSY;
2236

2237
	ret = i915_gem_object_finish_gpu(obj);
2238
	if (ret)
2239 2240 2241 2242 2243 2244
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2245
	i915_gem_object_finish_gtt(obj);
2246

2247 2248
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2249
	 * are flushed when we go to remap it.
2250
	 */
2251 2252
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2253
	if (ret == -ERESTARTSYS)
2254
		return ret;
2255
	if (ret) {
2256 2257 2258
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2259
		i915_gem_clflush_object(obj);
2260
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2261
	}
2262

2263
	/* release the fence reg _after_ flushing */
2264
	ret = i915_gem_object_put_fence(obj);
2265
	if (ret)
2266
		return ret;
2267

C
Chris Wilson 已提交
2268 2269
	trace_i915_gem_object_unbind(obj);

2270 2271
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2272 2273 2274 2275
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2276
	i915_gem_gtt_finish_object(obj);
2277

2278
	i915_gem_object_put_pages_gtt(obj);
2279

2280
	list_del_init(&obj->gtt_list);
2281
	list_del_init(&obj->mm_list);
2282
	/* Avoid an unnecessary call to unbind on rebind. */
2283
	obj->map_and_fenceable = true;
2284

2285 2286 2287
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2288

2289
	if (i915_gem_object_is_purgeable(obj))
2290 2291
		i915_gem_object_truncate(obj);

2292
	return ret;
2293 2294
}

2295
int
C
Chris Wilson 已提交
2296
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2297 2298 2299
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2300 2301
	int ret;

2302 2303 2304
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2305 2306
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2307 2308 2309 2310
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2311 2312 2313
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2314
	return 0;
2315 2316
}

2317
static int i915_ring_idle(struct intel_ring_buffer *ring)
2318
{
2319 2320
	int ret;

2321
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2322 2323
		return 0;

2324
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2325
		ret = i915_gem_flush_ring(ring,
2326
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2327 2328 2329 2330
		if (ret)
			return ret;
	}

2331
	return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2332 2333
}

2334
int i915_gpu_idle(struct drm_device *dev)
2335 2336
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2337
	struct intel_ring_buffer *ring;
2338
	int ret, i;
2339 2340

	/* Flush everything onto the inactive list. */
2341 2342
	for_each_ring(ring, dev_priv, i) {
		ret = i915_ring_idle(ring);
2343 2344
		if (ret)
			return ret;
2345 2346 2347 2348

		/* Is the device fubar? */
		if (WARN_ON(!list_empty(&ring->gpu_write_list)))
			return -EBUSY;
2349 2350 2351 2352

		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
		if (ret)
			return ret;
2353
	}
2354

2355
	return 0;
2356 2357
}

2358 2359
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2360 2361 2362 2363
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2364 2365
	if (obj) {
		u32 size = obj->gtt_space->size;
2366

2367 2368 2369 2370 2371
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2372

2373 2374 2375 2376 2377
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2378

2379 2380
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2381 2382
}

2383 2384
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2385 2386 2387 2388
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2389 2390
	if (obj) {
		u32 size = obj->gtt_space->size;
2391

2392 2393 2394 2395 2396 2397 2398 2399 2400
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2401

2402 2403
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2404 2405
}

2406 2407
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2408 2409
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2410
	u32 val;
2411

2412 2413 2414 2415
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2416

2417 2418 2419 2420 2421
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2422

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2448 2449
}

2450 2451
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2452 2453 2454 2455
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2456 2457 2458
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2459

2460 2461 2462 2463 2464
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2465

2466 2467
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2468

2469 2470 2471 2472 2473 2474 2475 2476
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2477

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2494 2495
}

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2522
static int
C
Chris Wilson 已提交
2523
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2524 2525 2526 2527
{
	int ret;

	if (obj->fenced_gpu_access) {
2528
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2529
			ret = i915_gem_flush_ring(obj->ring,
2530 2531 2532 2533
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2534 2535 2536 2537

		obj->fenced_gpu_access = false;
	}

2538
	if (obj->last_fenced_seqno) {
2539
		ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2540 2541
		if (ret)
			return ret;
2542 2543 2544 2545

		obj->last_fenced_seqno = 0;
	}

2546 2547 2548 2549 2550 2551
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2552 2553 2554 2555 2556 2557
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2558
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2559 2560
	int ret;

C
Chris Wilson 已提交
2561
	ret = i915_gem_object_flush_fence(obj);
2562 2563 2564
	if (ret)
		return ret;

2565 2566
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2567

2568 2569 2570 2571
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2572 2573 2574 2575 2576

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2577
i915_find_fence_reg(struct drm_device *dev)
2578 2579
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2580
	struct drm_i915_fence_reg *reg, *avail;
2581
	int i;
2582 2583

	/* First try to find a free reg */
2584
	avail = NULL;
2585 2586 2587
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2588
			return reg;
2589

2590
		if (!reg->pin_count)
2591
			avail = reg;
2592 2593
	}

2594 2595
	if (avail == NULL)
		return NULL;
2596 2597

	/* None available, try to steal one or wait for a user to finish */
2598
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2599
		if (reg->pin_count)
2600 2601
			continue;

C
Chris Wilson 已提交
2602
		return reg;
2603 2604
	}

C
Chris Wilson 已提交
2605
	return NULL;
2606 2607
}

2608
/**
2609
 * i915_gem_object_get_fence - set up fencing for an object
2610 2611 2612 2613 2614 2615 2616 2617 2618
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2619 2620
 *
 * For an untiled surface, this removes any existing fence.
2621
 */
2622
int
2623
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2624
{
2625
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2626
	struct drm_i915_private *dev_priv = dev->dev_private;
2627
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2628
	struct drm_i915_fence_reg *reg;
2629
	int ret;
2630

2631 2632 2633
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2634
	if (obj->fence_dirty) {
2635 2636 2637 2638
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2639

2640
	/* Just update our place in the LRU if our fence is getting reused. */
2641 2642
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2643
		if (!obj->fence_dirty) {
2644 2645 2646 2647 2648 2649 2650 2651
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2652

2653 2654 2655 2656
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2657 2658 2659
			if (ret)
				return ret;

2660
			i915_gem_object_fence_lost(old);
2661
		}
2662
	} else
2663 2664
		return 0;

2665
	i915_gem_object_update_fence(obj, reg, enable);
2666
	obj->fence_dirty = false;
2667

2668
	return 0;
2669 2670
}

2671 2672 2673 2674
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2675
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2676
			    unsigned alignment,
2677
			    bool map_and_fenceable)
2678
{
2679
	struct drm_device *dev = obj->base.dev;
2680 2681
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2682
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2683
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2684
	bool mappable, fenceable;
2685
	int ret;
2686

2687
	if (obj->madv != I915_MADV_WILLNEED) {
2688 2689 2690 2691
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2702

2703
	if (alignment == 0)
2704 2705
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2706
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2707 2708 2709 2710
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2711
	size = map_and_fenceable ? fence_size : obj->base.size;
2712

2713 2714 2715
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2716
	if (obj->base.size >
2717
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2718 2719 2720 2721
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2722
 search_free:
2723
	if (map_and_fenceable)
2724 2725
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2726 2727
						    size, alignment,
						    0, dev_priv->mm.gtt_mappable_end,
2728 2729 2730
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2731
						size, alignment, 0);
2732 2733

	if (free_space != NULL) {
2734
		if (map_and_fenceable)
2735
			obj->gtt_space =
2736
				drm_mm_get_block_range_generic(free_space,
2737
							       size, alignment, 0,
2738
							       0, dev_priv->mm.gtt_mappable_end,
2739 2740
							       0);
		else
2741
			obj->gtt_space =
2742
				drm_mm_get_block(free_space, size, alignment);
2743
	}
2744
	if (obj->gtt_space == NULL) {
2745 2746 2747
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2748 2749
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2750
		if (ret)
2751
			return ret;
2752

2753 2754 2755
		goto search_free;
	}

2756
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2757
	if (ret) {
2758 2759
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2760 2761

		if (ret == -ENOMEM) {
2762 2763
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2764 2765
			if (ret) {
				/* now try to shrink everyone else */
2766 2767 2768
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2769 2770
				}

2771
				return -ENOMEM;
2772 2773 2774 2775 2776
			}

			goto search_free;
		}

2777 2778 2779
		return ret;
	}

2780
	ret = i915_gem_gtt_prepare_object(obj);
2781
	if (ret) {
2782
		i915_gem_object_put_pages_gtt(obj);
2783 2784
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2785

2786
		if (i915_gem_evict_everything(dev, false))
2787 2788 2789
			return ret;

		goto search_free;
2790 2791
	}

2792 2793
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2794

2795
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2796
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2797

2798 2799 2800 2801
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2802 2803
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2804

2805
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2806

2807
	fenceable =
2808
		obj->gtt_space->size == fence_size &&
2809
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2810

2811
	mappable =
2812
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2813

2814
	obj->map_and_fenceable = mappable && fenceable;
2815

C
Chris Wilson 已提交
2816
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2817 2818 2819 2820
	return 0;
}

void
2821
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2822 2823 2824 2825 2826
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2827
	if (obj->pages == NULL)
2828 2829
		return;

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2841
	trace_i915_gem_object_clflush(obj);
2842

2843
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2844 2845
}

2846
/** Flushes any GPU write domain for the object if it's dirty. */
2847
static int
2848
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2849
{
2850
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2851
		return 0;
2852 2853

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2854
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2855 2856 2857 2858
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2859
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2860
{
C
Chris Wilson 已提交
2861 2862
	uint32_t old_write_domain;

2863
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2864 2865
		return;

2866
	/* No actual flushing is required for the GTT write domain.  Writes
2867 2868
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2869 2870 2871 2872
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2873
	 */
2874 2875
	wmb();

2876 2877
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2878 2879

	trace_i915_gem_object_change_domain(obj,
2880
					    obj->base.read_domains,
C
Chris Wilson 已提交
2881
					    old_write_domain);
2882 2883 2884 2885
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2886
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2887
{
C
Chris Wilson 已提交
2888
	uint32_t old_write_domain;
2889

2890
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2891 2892 2893
		return;

	i915_gem_clflush_object(obj);
2894
	intel_gtt_chipset_flush();
2895 2896
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2897 2898

	trace_i915_gem_object_change_domain(obj,
2899
					    obj->base.read_domains,
C
Chris Wilson 已提交
2900
					    old_write_domain);
2901 2902
}

2903 2904 2905 2906 2907 2908
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2909
int
2910
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2911
{
2912
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
2913
	uint32_t old_write_domain, old_read_domains;
2914
	int ret;
2915

2916
	/* Not valid to be called on unbound objects. */
2917
	if (obj->gtt_space == NULL)
2918 2919
		return -EINVAL;

2920 2921 2922
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2923 2924 2925 2926
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2927 2928 2929
	ret = i915_gem_object_wait_rendering(obj, !write);
	if (ret)
		return ret;
2930

2931
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2932

2933 2934
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2935

2936 2937 2938
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2939 2940
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2941
	if (write) {
2942 2943 2944
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2945 2946
	}

C
Chris Wilson 已提交
2947 2948 2949 2950
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2951 2952 2953 2954
	/* And bump the LRU for this access */
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

2955 2956 2957
	return 0;
}

2958 2959 2960
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
2961 2962
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

2990 2991
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
2992 2993 2994
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

3024
/*
3025 3026 3027
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3028 3029
 */
int
3030 3031
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3032
				     struct intel_ring_buffer *pipelined)
3033
{
3034
	u32 old_read_domains, old_write_domain;
3035 3036
	int ret;

3037 3038 3039 3040
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3041
	if (pipelined != obj->ring) {
3042 3043
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3044 3045 3046
			return ret;
	}

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

3060 3061 3062 3063 3064 3065 3066 3067
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

3068 3069
	i915_gem_object_flush_cpu_write_domain(obj);

3070
	old_write_domain = obj->base.write_domain;
3071
	old_read_domains = obj->base.read_domains;
3072 3073 3074 3075

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3076
	obj->base.write_domain = 0;
3077
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3078 3079 3080

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3081
					    old_write_domain);
3082 3083 3084 3085

	return 0;
}

3086
int
3087
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3088
{
3089 3090
	int ret;

3091
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3092 3093
		return 0;

3094
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3095
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3096 3097 3098
		if (ret)
			return ret;
	}
3099

3100
	ret = i915_gem_object_wait_rendering(obj, false);
3101 3102 3103
	if (ret)
		return ret;

3104 3105
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3106
	return 0;
3107 3108
}

3109 3110 3111 3112 3113 3114
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3115
int
3116
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3117
{
C
Chris Wilson 已提交
3118
	uint32_t old_write_domain, old_read_domains;
3119 3120
	int ret;

3121 3122 3123
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3124 3125 3126 3127
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3128 3129 3130
	ret = i915_gem_object_wait_rendering(obj, !write);
	if (ret)
		return ret;
3131

3132
	i915_gem_object_flush_gtt_write_domain(obj);
3133

3134 3135
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3136

3137
	/* Flush the CPU cache if it's still invalid. */
3138
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3139 3140
		i915_gem_clflush_object(obj);

3141
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3142 3143 3144 3145 3146
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3147
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3148 3149 3150 3151 3152

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3153 3154
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3155
	}
3156

C
Chris Wilson 已提交
3157 3158 3159 3160
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3161 3162 3163
	return 0;
}

3164 3165 3166
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3167 3168 3169 3170
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3171 3172 3173
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3174
static int
3175
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3176
{
3177 3178
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3179
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3180 3181 3182 3183
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3184

3185 3186 3187
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3188
	spin_lock(&file_priv->mm.lock);
3189
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3190 3191
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3192

3193 3194
		ring = request->ring;
		seqno = request->seqno;
3195
	}
3196
	spin_unlock(&file_priv->mm.lock);
3197

3198 3199
	if (seqno == 0)
		return 0;
3200

3201
	ret = __wait_seqno(ring, seqno, true, NULL);
3202 3203
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3204 3205 3206 3207

	return ret;
}

3208
int
3209 3210
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3211
		    bool map_and_fenceable)
3212 3213 3214
{
	int ret;

3215
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3216

3217 3218 3219 3220
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3221
			     "bo is already pinned with incorrect alignment:"
3222 3223
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3224
			     obj->gtt_offset, alignment,
3225
			     map_and_fenceable,
3226
			     obj->map_and_fenceable);
3227 3228 3229 3230 3231 3232
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3233
	if (obj->gtt_space == NULL) {
3234
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3235
						  map_and_fenceable);
3236
		if (ret)
3237
			return ret;
3238
	}
J
Jesse Barnes 已提交
3239

3240 3241 3242
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3243
	obj->pin_count++;
3244
	obj->pin_mappable |= map_and_fenceable;
3245 3246 3247 3248 3249

	return 0;
}

void
3250
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3251
{
3252 3253
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3254

3255
	if (--obj->pin_count == 0)
3256
		obj->pin_mappable = false;
3257 3258 3259 3260
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3261
		   struct drm_file *file)
3262 3263
{
	struct drm_i915_gem_pin *args = data;
3264
	struct drm_i915_gem_object *obj;
3265 3266
	int ret;

3267 3268 3269
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3270

3271
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3272
	if (&obj->base == NULL) {
3273 3274
		ret = -ENOENT;
		goto unlock;
3275 3276
	}

3277
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3278
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3279 3280
		ret = -EINVAL;
		goto out;
3281 3282
	}

3283
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3284 3285
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3286 3287
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3288 3289
	}

3290 3291 3292
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3293
		ret = i915_gem_object_pin(obj, args->alignment, true);
3294 3295
		if (ret)
			goto out;
3296 3297 3298 3299 3300
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3301
	i915_gem_object_flush_cpu_write_domain(obj);
3302
	args->offset = obj->gtt_offset;
3303
out:
3304
	drm_gem_object_unreference(&obj->base);
3305
unlock:
3306
	mutex_unlock(&dev->struct_mutex);
3307
	return ret;
3308 3309 3310 3311
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3312
		     struct drm_file *file)
3313 3314
{
	struct drm_i915_gem_pin *args = data;
3315
	struct drm_i915_gem_object *obj;
3316
	int ret;
3317

3318 3319 3320
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3321

3322
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3323
	if (&obj->base == NULL) {
3324 3325
		ret = -ENOENT;
		goto unlock;
3326
	}
3327

3328
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3329 3330
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3331 3332
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3333
	}
3334 3335 3336
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3337 3338
		i915_gem_object_unpin(obj);
	}
3339

3340
out:
3341
	drm_gem_object_unreference(&obj->base);
3342
unlock:
3343
	mutex_unlock(&dev->struct_mutex);
3344
	return ret;
3345 3346 3347 3348
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3349
		    struct drm_file *file)
3350 3351
{
	struct drm_i915_gem_busy *args = data;
3352
	struct drm_i915_gem_object *obj;
3353 3354
	int ret;

3355
	ret = i915_mutex_lock_interruptible(dev);
3356
	if (ret)
3357
		return ret;
3358

3359
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3360
	if (&obj->base == NULL) {
3361 3362
		ret = -ENOENT;
		goto unlock;
3363
	}
3364

3365 3366 3367 3368
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3369
	 */
3370
	ret = i915_gem_object_flush_active(obj);
3371

3372
	args->busy = obj->active;
3373 3374 3375 3376
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
3377

3378
	drm_gem_object_unreference(&obj->base);
3379
unlock:
3380
	mutex_unlock(&dev->struct_mutex);
3381
	return ret;
3382 3383 3384 3385 3386 3387
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3388
	return i915_gem_ring_throttle(dev, file_priv);
3389 3390
}

3391 3392 3393 3394 3395
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3396
	struct drm_i915_gem_object *obj;
3397
	int ret;
3398 3399 3400 3401 3402 3403 3404 3405 3406

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3407 3408 3409 3410
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3411
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3412
	if (&obj->base == NULL) {
3413 3414
		ret = -ENOENT;
		goto unlock;
3415 3416
	}

3417
	if (obj->pin_count) {
3418 3419
		ret = -EINVAL;
		goto out;
3420 3421
	}

3422 3423
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3424

3425
	/* if the object is no longer bound, discard its backing storage */
3426 3427
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3428 3429
		i915_gem_object_truncate(obj);

3430
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3431

3432
out:
3433
	drm_gem_object_unreference(&obj->base);
3434
unlock:
3435
	mutex_unlock(&dev->struct_mutex);
3436
	return ret;
3437 3438
}

3439 3440
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3441
{
3442
	struct drm_i915_private *dev_priv = dev->dev_private;
3443
	struct drm_i915_gem_object *obj;
3444
	struct address_space *mapping;
3445
	u32 mask;
3446

3447 3448 3449
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3450

3451 3452 3453 3454
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3455

3456 3457 3458 3459 3460 3461 3462
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3463
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3464
	mapping_set_gfp_mask(mapping, mask);
3465

3466 3467
	i915_gem_info_add_obj(dev_priv, size);

3468 3469
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3470

3471 3472
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3488
	obj->base.driver_private = NULL;
3489
	obj->fence_reg = I915_FENCE_REG_NONE;
3490
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3491
	INIT_LIST_HEAD(&obj->gtt_list);
3492
	INIT_LIST_HEAD(&obj->ring_list);
3493
	INIT_LIST_HEAD(&obj->exec_list);
3494 3495
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3496 3497
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3498

3499
	return obj;
3500 3501 3502 3503 3504
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3505

3506 3507 3508
	return 0;
}

3509
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3510
{
3511
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3512
	struct drm_device *dev = obj->base.dev;
3513
	drm_i915_private_t *dev_priv = dev->dev_private;
3514

3515 3516
	trace_i915_gem_object_destroy(obj);

3517 3518 3519
	if (gem_obj->import_attach)
		drm_prime_gem_destroy(gem_obj, obj->sg_table);

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	obj->pin_count = 0;
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		WARN_ON(i915_gem_object_unbind(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

3535
	if (obj->base.map_list.map)
3536
		drm_gem_free_mmap_offset(&obj->base);
3537

3538 3539
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3540

3541 3542
	kfree(obj->bit_17);
	kfree(obj);
3543 3544
}

3545 3546 3547 3548 3549
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3550

3551
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3552

3553
	if (dev_priv->mm.suspended) {
3554 3555
		mutex_unlock(&dev->struct_mutex);
		return 0;
3556 3557
	}

3558
	ret = i915_gpu_idle(dev);
3559 3560
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3561
		return ret;
3562
	}
3563
	i915_gem_retire_requests(dev);
3564

3565
	/* Under UMS, be paranoid and evict. */
3566 3567
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_gem_evict_everything(dev, false);
3568

3569 3570
	i915_gem_reset_fences(dev);

3571 3572 3573 3574 3575
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3576
	del_timer_sync(&dev_priv->hangcheck_timer);
3577 3578

	i915_kernel_lost_context(dev);
3579
	i915_gem_cleanup_ringbuffer(dev);
3580

3581 3582
	mutex_unlock(&dev->struct_mutex);

3583 3584 3585
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3586 3587 3588
	return 0;
}

B
Ben Widawsky 已提交
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
void i915_gem_l3_remap(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 misccpctl;
	int i;

	if (!IS_IVYBRIDGE(dev))
		return;

	if (!dev_priv->mm.l3_remap_info)
		return;

	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	POSTING_READ(GEN7_MISCCPCTL);

	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
		if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG("0x%x was already programmed to %x\n",
				  GEN7_L3LOG_BASE + i, remap);
		if (remap && !dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
	}

	/* Make sure all the writes land before disabling dop clock gating */
	POSTING_READ(GEN7_L3LOG_BASE);

	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

3621 3622 3623 3624
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3625
	if (INTEL_INFO(dev)->gen < 5 ||
3626 3627 3628 3629 3630 3631
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3632 3633 3634
	if (IS_GEN5(dev))
		return;

3635 3636
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
3637
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3638
	else
3639
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3640
}
D
Daniel Vetter 已提交
3641 3642 3643 3644 3645 3646

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3647 3648 3649
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3650 3651 3652 3653 3654
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3673 3674 3675 3676
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3677 3678 3679 3680
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3681 3682 3683 3684 3685

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3686 3687
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
3688
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3689 3690 3691 3692 3693
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

3694
	for_each_ring(ring, dev_priv, i) {
D
Daniel Vetter 已提交
3695 3696
		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
3697
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3698 3699 3700 3701 3702 3703

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

3720
int
3721
i915_gem_init_hw(struct drm_device *dev)
3722 3723 3724
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3725

D
Daniel Vetter 已提交
3726 3727 3728
	if (!intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
3729 3730
	i915_gem_l3_remap(dev);

3731 3732
	i915_gem_init_swizzling(dev);

3733
	ret = intel_init_render_ring_buffer(dev);
3734
	if (ret)
3735
		return ret;
3736 3737

	if (HAS_BSD(dev)) {
3738
		ret = intel_init_bsd_ring_buffer(dev);
3739 3740
		if (ret)
			goto cleanup_render_ring;
3741
	}
3742

3743
	if (intel_enable_blt(dev)) {
3744 3745 3746 3747 3748
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3749 3750
	dev_priv->next_seqno = 1;

3751 3752 3753 3754 3755
	/*
	 * XXX: There was some w/a described somewhere suggesting loading
	 * contexts before PPGTT.
	 */
	i915_gem_context_init(dev);
D
Daniel Vetter 已提交
3756 3757
	i915_gem_init_ppgtt(dev);

3758 3759
	return 0;

3760
cleanup_bsd_ring:
3761
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3762
cleanup_render_ring:
3763
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3764 3765 3766
	return ret;
}

3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
	if (i915_enable_ppgtt >= 0)
		return i915_enable_ppgtt;

#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;
	int ret;

	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;

	mutex_lock(&dev->struct_mutex);
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
		 * aperture accordingly when using aliasing ppgtt. */
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;

		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);

		ret = i915_gem_init_aliasing_ppgtt(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	} else {
		/* Let GEM Manage all of the aperture.
		 *
		 * However, leave one page at the end still bound to the scratch
		 * page.  There are a number of places where the hardware
		 * apparently prefetches past the end of the object, and we've
		 * seen multiple hangs with the GPU head pointer stuck in a
		 * batchbuffer bound at the last page of the aperture.  One page
		 * should be enough to keep any prefetching inside of the
		 * aperture.
		 */
		i915_gem_init_global_gtt(dev, 0, mappable_size,
					 gtt_size);
	}

	ret = i915_gem_init_hw(dev);
	mutex_unlock(&dev->struct_mutex);
	if (ret) {
		i915_gem_cleanup_aliasing_ppgtt(dev);
		return ret;
	}

3826 3827 3828
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
3829 3830 3831
	return 0;
}

3832 3833 3834 3835
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3836
	struct intel_ring_buffer *ring;
3837
	int i;
3838

3839 3840
	for_each_ring(ring, dev_priv, i)
		intel_cleanup_ring_buffer(ring);
3841 3842
}

3843 3844 3845 3846 3847
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3848
	int ret;
3849

J
Jesse Barnes 已提交
3850 3851 3852
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3853
	if (atomic_read(&dev_priv->mm.wedged)) {
3854
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3855
		atomic_set(&dev_priv->mm.wedged, 0);
3856 3857 3858
	}

	mutex_lock(&dev->struct_mutex);
3859 3860
	dev_priv->mm.suspended = 0;

3861
	ret = i915_gem_init_hw(dev);
3862 3863
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3864
		return ret;
3865
	}
3866

3867
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3868 3869
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	mutex_unlock(&dev->struct_mutex);
3870

3871 3872 3873
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3874

3875
	return 0;
3876 3877 3878 3879 3880 3881 3882 3883

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3884 3885 3886 3887 3888 3889
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3890 3891 3892
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3893
	drm_irq_uninstall(dev);
3894
	return i915_gem_idle(dev);
3895 3896 3897 3898 3899 3900 3901
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3902 3903 3904
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3905 3906 3907
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3908 3909
}

3910 3911 3912 3913 3914 3915 3916 3917
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3918 3919 3920
void
i915_gem_load(struct drm_device *dev)
{
3921
	int i;
3922 3923
	drm_i915_private_t *dev_priv = dev->dev_private;

3924
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3925
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3926
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
D
Daniel Vetter 已提交
3927
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3928 3929
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3930
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3931
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3932 3933
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3934
	init_completion(&dev_priv->error_completion);
3935

3936 3937
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
3938 3939
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3940 3941
	}

3942 3943
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3944
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3945 3946
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3947

3948
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3949 3950 3951 3952
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3953
	/* Initialize fence registers to zero */
3954
	i915_gem_reset_fences(dev);
3955

3956
	i915_gem_detect_bit_6_swizzle(dev);
3957
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3958

3959 3960
	dev_priv->mm.interruptible = true;

3961 3962 3963
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3964
}
3965 3966 3967 3968 3969

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3970 3971
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3972 3973 3974 3975 3976 3977 3978 3979
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3980
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3981 3982 3983 3984 3985
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3986
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3999
	kfree(phys_obj);
4000 4001 4002
	return ret;
}

4003
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4028
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4029 4030 4031 4032
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
4033
				 struct drm_i915_gem_object *obj)
4034
{
4035
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4036
	char *vaddr;
4037 4038 4039
	int i;
	int page_count;

4040
	if (!obj->phys_obj)
4041
		return;
4042
	vaddr = obj->phys_obj->handle->vaddr;
4043

4044
	page_count = obj->base.size / PAGE_SIZE;
4045
	for (i = 0; i < page_count; i++) {
4046
		struct page *page = shmem_read_mapping_page(mapping, i);
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4058
	}
4059
	intel_gtt_chipset_flush();
4060

4061 4062
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4063 4064 4065 4066
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4067
			    struct drm_i915_gem_object *obj,
4068 4069
			    int id,
			    int align)
4070
{
4071
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4072 4073 4074 4075 4076 4077 4078 4079
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4080 4081
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4082 4083 4084 4085 4086 4087 4088
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4089
						obj->base.size, align);
4090
		if (ret) {
4091 4092
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4093
			return ret;
4094 4095 4096 4097
		}
	}

	/* bind to the object */
4098 4099
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4100

4101
	page_count = obj->base.size / PAGE_SIZE;
4102 4103

	for (i = 0; i < page_count; i++) {
4104 4105 4106
		struct page *page;
		char *dst, *src;

4107
		page = shmem_read_mapping_page(mapping, i);
4108 4109
		if (IS_ERR(page))
			return PTR_ERR(page);
4110

4111
		src = kmap_atomic(page);
4112
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4113
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4114
		kunmap_atomic(src);
4115

4116 4117 4118
		mark_page_accessed(page);
		page_cache_release(page);
	}
4119

4120 4121 4122 4123
	return 0;
}

static int
4124 4125
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4126 4127 4128
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4129
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4130
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4131

4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4145

4146
	intel_gtt_chipset_flush();
4147 4148
	return 0;
}
4149

4150
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4151
{
4152
	struct drm_i915_file_private *file_priv = file->driver_priv;
4153 4154 4155 4156 4157

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4158
	spin_lock(&file_priv->mm.lock);
4159 4160 4161 4162 4163 4164 4165 4166 4167
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4168
	spin_unlock(&file_priv->mm.lock);
4169
}
4170

4171 4172 4173 4174
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4175
	return !list_empty(&dev_priv->mm.active_list);
4176 4177
}

4178
static int
4179
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4180
{
4181 4182 4183 4184 4185 4186
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
4187
	int nr_to_scan = sc->nr_to_scan;
4188 4189 4190
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4191
		return 0;
4192 4193 4194

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4195 4196 4197 4198 4199 4200 4201
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4202 4203
	}

4204
rescan:
4205
	/* first scan for clean buffers */
4206
	i915_gem_retire_requests(dev);
4207

4208 4209 4210 4211
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4212 4213
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4214
				break;
4215 4216 4217 4218
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4219 4220 4221 4222
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4223 4224
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4225
			nr_to_scan--;
4226
		else
4227 4228 4229 4230
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4231 4232 4233 4234 4235 4236
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4237
		if (i915_gpu_idle(dev) == 0)
4238 4239
			goto rescan;
	}
4240 4241
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4242
}