switch.c 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
#include <linux/arm-smccc.h>
19
#include <linux/types.h>
20
#include <linux/jump_label.h>
21
#include <uapi/linux/psci.h>
22

23 24
#include <kvm/arm_psci.h>

25
#include <asm/barrier.h>
26
#include <asm/cpufeature.h>
27
#include <asm/kprobes.h>
28
#include <asm/kvm_asm.h>
29
#include <asm/kvm_emulate.h>
30
#include <asm/kvm_host.h>
31
#include <asm/kvm_hyp.h>
32
#include <asm/kvm_mmu.h>
33
#include <asm/fpsimd.h>
34
#include <asm/debug-monitors.h>
35
#include <asm/processor.h>
36
#include <asm/thread_info.h>
37

38 39
/* Check whether the FP regs were dirtied while in the host-side run loop: */
static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
40
{
41 42 43
	if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
		vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
				      KVM_ARM64_FP_HOST);
44

45
	return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
46 47
}

48 49 50 51 52 53 54 55 56
/* Save the 32-bit only FPSIMD system register state */
static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
	if (!vcpu_el1_is_32bit(vcpu))
		return;

	vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
{
	/*
	 * We are about to set CPTR_EL2.TFP to trap all floating point
	 * register accesses to EL2, however, the ARM ARM clearly states that
	 * traps are only taken to EL2 if the operation would not otherwise
	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
	 * it will cause an exception.
	 */
	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
		write_sysreg(1 << 30, fpexc32_el2);
		isb();
	}
}

static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
{
	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
	write_sysreg(1 << 15, hstr_el2);

	/*
	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
	 * PMSELR_EL0 to make sure it never contains the cycle
	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
	 * EL1 instead of being trapped to EL2.
	 */
	write_sysreg(0, pmselr_el0);
	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
}

static void __hyp_text __deactivate_traps_common(void)
{
	write_sysreg(0, hstr_el2);
	write_sysreg(0, pmuserenr_el0);
}

96
static void activate_traps_vhe(struct kvm_vcpu *vcpu)
97 98 99 100 101
{
	u64 val;

	val = read_sysreg(cpacr_el1);
	val |= CPACR_EL1_TTA;
102
	val &= ~CPACR_EL1_ZEN;
103
	if (!update_fp_enabled(vcpu)) {
104
		val &= ~CPACR_EL1_FPEN;
105 106
		__activate_traps_fpsimd32(vcpu);
	}
107

108 109
	write_sysreg(val, cpacr_el1);

110
	write_sysreg(kvm_get_hyp_vector(), vbar_el1);
111
}
112
NOKPROBE_SYMBOL(activate_traps_vhe);
113

114
static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
115 116 117
{
	u64 val;

118 119
	__activate_traps_common(vcpu);

120
	val = CPTR_EL2_DEFAULT;
121
	val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
122
	if (!update_fp_enabled(vcpu)) {
123
		val |= CPTR_EL2_TFP;
124 125
		__activate_traps_fpsimd32(vcpu);
	}
126

127 128 129
	write_sysreg(val, cptr_el2);
}

130 131
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
{
132
	u64 hcr = vcpu->arch.hcr_el2;
133

134
	write_sysreg(hcr, hcr_el2);
135

136
	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
137 138
		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);

139 140 141 142
	if (has_vhe())
		activate_traps_vhe(vcpu);
	else
		__activate_traps_nvhe(vcpu);
143
}
144

145
static void deactivate_traps_vhe(void)
146 147 148
{
	extern char vectors[];	/* kernel exception vectors */
	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
149
	write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
150
	write_sysreg(vectors, vbar_el1);
151
}
152
NOKPROBE_SYMBOL(deactivate_traps_vhe);
153

154
static void __hyp_text __deactivate_traps_nvhe(void)
155
{
156 157
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

158 159
	__deactivate_traps_common();

160 161 162 163
	mdcr_el2 &= MDCR_EL2_HPMN_MASK;
	mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;

	write_sysreg(mdcr_el2, mdcr_el2);
164
	write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
165 166 167 168 169
	write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
}

static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
{
170 171 172 173 174 175 176 177 178
	/*
	 * If we pended a virtual abort, preserve it until it gets
	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
	 * the crucial bit is "On taking a vSError interrupt,
	 * HCR_EL2.VSE is cleared to 0."
	 */
	if (vcpu->arch.hcr_el2 & HCR_VSE)
		vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);

179 180 181 182
	if (has_vhe())
		deactivate_traps_vhe();
	else
		__deactivate_traps_nvhe();
183 184
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
{
	__activate_traps_common(vcpu);
}

void deactivate_traps_vhe_put(void)
{
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

	mdcr_el2 &= MDCR_EL2_HPMN_MASK |
		    MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
		    MDCR_EL2_TPMS;

	write_sysreg(mdcr_el2, mdcr_el2);

	__deactivate_traps_common();
}

203
static void __hyp_text __activate_vm(struct kvm *kvm)
204 205 206 207 208 209 210 211 212
{
	write_sysreg(kvm->arch.vttbr, vttbr_el2);
}

static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
{
	write_sysreg(0, vttbr_el2);
}

213 214
/* Save VGICv3 state on non-VHE systems */
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
215
{
216
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
217
		__vgic_v3_save_state(vcpu);
218 219
		__vgic_v3_deactivate_traps(vcpu);
	}
220 221
}

222 223
/* Restore VGICv3 state on non_VEH systems */
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
224
{
225 226
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
		__vgic_v3_activate_traps(vcpu);
227
		__vgic_v3_restore_state(vcpu);
228
	}
229 230
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
static bool __hyp_text __true_value(void)
{
	return true;
}

static bool __hyp_text __false_value(void)
{
	return false;
}

static hyp_alternate_select(__check_arm_834220,
			    __false_value, __true_value,
			    ARM64_WORKAROUND_834220);

static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
{
	u64 par, tmp;

	/*
	 * Resolve the IPA the hard way using the guest VA.
	 *
	 * Stage-1 translation already validated the memory access
	 * rights. As such, we can use the EL1 translation regime, and
	 * don't have to distinguish between EL0 and EL1 access.
	 *
	 * We do need to save/restore PAR_EL1 though, as we haven't
	 * saved the guest context yet, and we may return early...
	 */
	par = read_sysreg(par_el1);
	asm volatile("at s1e1r, %0" : : "r" (far));
	isb();

	tmp = read_sysreg(par_el1);
	write_sysreg(par, par_el1);

	if (unlikely(tmp & 1))
		return false; /* Translation failed, back to guest */

	/* Convert PAR to HPFAR format */
	*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
	return true;
}

static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
{
276 277
	u8 ec;
	u64 esr;
278 279
	u64 hpfar, far;

280 281
	esr = vcpu->arch.fault.esr_el2;
	ec = ESR_ELx_EC(esr);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
		return true;

	far = read_sysreg_el2(far);

	/*
	 * The HPFAR can be invalid if the stage 2 fault did not
	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
	 * bit is clear) and one of the two following cases are true:
	 *   1. The fault was due to a permission fault
	 *   2. The processor carries errata 834220
	 *
	 * Therefore, for all non S1PTW faults where we either have a
	 * permission fault or the errata workaround is enabled, we
	 * resolve the IPA using the AT instruction.
	 */
	if (!(esr & ESR_ELx_S1PTW) &&
	    (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
		if (!__translate_far_to_hpfar(far, &hpfar))
			return false;
	} else {
		hpfar = read_sysreg(hpfar_el2);
	}

	vcpu->arch.fault.far_el2 = far;
	vcpu->arch.fault.hpfar_el2 = hpfar;
	return true;
}

312
static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
313
{
314 315
	struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;

316 317 318 319 320 321 322 323 324
	if (has_vhe())
		write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
			     cpacr_el1);
	else
		write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
			     cptr_el2);

	isb();

325
	if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
		/*
		 * In the SVE case, VHE is assumed: it is enforced by
		 * Kconfig and kvm_arch_init().
		 */
		if (system_supports_sve() &&
		    (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
			struct thread_struct *thread = container_of(
				host_fpsimd,
				struct thread_struct, uw.fpsimd_state);

			sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
		} else {
			__fpsimd_save_state(host_fpsimd);
		}

341 342 343
		vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
	}

344 345 346 347 348 349
	__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);

	/* Skip restoring fpexc32 for AArch64 guests */
	if (!(read_sysreg(hcr_el2) & HCR_RW))
		write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
			     fpexc32_el2);
350 351

	vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
352 353

	return true;
354 355
}

356 357 358 359 360 361
/*
 * Return true when we were able to fixup the guest exit and should return to
 * the guest, false when we should restore the host state and return to the
 * main run loop.
 */
static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
362
{
363
	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
364
		vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
365

366 367 368 369 370 371
	/*
	 * We're using the raw exception code in order to only process
	 * the trap if no SError is pending. We will come back to the
	 * same PC once the SError has been injected, and replay the
	 * trapping instruction.
	 */
372 373 374
	if (*exit_code != ARM_EXCEPTION_TRAP)
		goto exit;

375 376 377 378 379 380 381 382 383 384
	/*
	 * We trap the first access to the FP/SIMD to save the host context
	 * and restore the guest context lazily.
	 * If FP/SIMD is not implemented, handle the trap and inject an
	 * undefined instruction exception to the guest.
	 */
	if (system_supports_fpsimd() &&
	    kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
		return __hyp_switch_fpsimd(vcpu);

385
	if (!__populate_fault_info(vcpu))
386
		return true;
387

388
	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
389 390 391 392 393 394 395 396
		bool valid;

		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
			kvm_vcpu_dabt_isvalid(vcpu) &&
			!kvm_vcpu_dabt_isextabt(vcpu) &&
			!kvm_vcpu_dabt_iss1tw(vcpu);

397 398 399
		if (valid) {
			int ret = __vgic_v2_perform_cpuif_access(vcpu);

400
			if (ret == 1)
401
				return true;
402

403 404
			/* Promote an illegal access to an SError.*/
			if (ret == -1)
405
				*exit_code = ARM_EXCEPTION_EL1_SERROR;
406 407

			goto exit;
408 409 410
		}
	}

411 412 413 414 415
	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
		int ret = __vgic_v3_perform_cpuif_access(vcpu);

416
		if (ret == 1)
417
			return true;
418 419
	}

420
exit:
421 422 423 424
	/* Return to the host kernel and handle the exit */
	return false;
}

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
{
	if (!cpus_have_const_cap(ARM64_SSBD))
		return false;

	return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
}

static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
	/*
	 * The host runs with the workaround always present. If the
	 * guest wants it disabled, so be it...
	 */
	if (__needs_ssbd_off(vcpu) &&
	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
#endif
}

static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
	/*
	 * If the guest has disabled the workaround, bring it back on.
	 */
	if (__needs_ssbd_off(vcpu) &&
	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
#endif
}

458 459 460 461 462 463 464
/* Switch to the guest for VHE systems running in EL2 */
int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

465
	host_ctxt = vcpu->arch.host_cpu_context;
466 467 468
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

469
	sysreg_save_host_state_vhe(host_ctxt);
470 471

	__activate_traps(vcpu);
472
	__activate_vm(vcpu->kvm);
473

474
	sysreg_restore_guest_state_vhe(guest_ctxt);
475 476
	__debug_switch_to_guest(vcpu);

477 478
	__set_guest_arch_workaround_state(vcpu);

479 480 481 482 483 484 485
	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

486 487
	__set_host_arch_workaround_state(vcpu);

488
	sysreg_save_guest_state_vhe(guest_ctxt);
489 490 491

	__deactivate_traps(vcpu);

492
	sysreg_restore_host_state_vhe(host_ctxt);
493

494
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
495
		__fpsimd_save_fpexc32(vcpu);
496 497 498 499 500

	__debug_switch_to_host(vcpu);

	return exit_code;
}
501
NOKPROBE_SYMBOL(kvm_vcpu_run_vhe);
502 503 504

/* Switch to the guest for legacy non-VHE systems */
int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
505 506 507 508 509
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

510 511 512 513 514 515 516
	/*
	 * Having IRQs masked via PMR when entering the guest means the GIC
	 * will not signal the CPU of interrupts of lower priority, and the
	 * only way to get out will be via guest exceptions.
	 * Naturally, we want to avoid this.
	 */
	if (system_uses_irq_prio_masking()) {
517
		gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
518
		pmr_sync();
519 520
	}

521 522 523 524 525 526
	vcpu = kern_hyp_va(vcpu);

	host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

527
	__sysreg_save_state_nvhe(host_ctxt);
528 529

	__activate_traps(vcpu);
530
	__activate_vm(kern_hyp_va(vcpu->kvm));
531

532
	__hyp_vgic_restore_state(vcpu);
533 534 535 536 537 538 539
	__timer_enable_traps(vcpu);

	/*
	 * We must restore the 32-bit state before the sysregs, thanks
	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
	 */
	__sysreg32_restore_state(vcpu);
540
	__sysreg_restore_state_nvhe(guest_ctxt);
541 542
	__debug_switch_to_guest(vcpu);

543 544
	__set_guest_arch_workaround_state(vcpu);

545 546 547 548 549 550 551
	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

552 553
	__set_host_arch_workaround_state(vcpu);

554
	__sysreg_save_state_nvhe(guest_ctxt);
555
	__sysreg32_save_state(vcpu);
556
	__timer_disable_traps(vcpu);
557
	__hyp_vgic_save_state(vcpu);
558 559 560 561

	__deactivate_traps(vcpu);
	__deactivate_vm(vcpu);

562
	__sysreg_restore_state_nvhe(host_ctxt);
563

564
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
565
		__fpsimd_save_fpexc32(vcpu);
566

567 568 569 570
	/*
	 * This must come after restoring the host sysregs, since a non-VHE
	 * system may enable SPE here and make use of the TTBRs.
	 */
571
	__debug_switch_to_host(vcpu);
572

573 574 575 576
	/* Returning to host will clear PSR.I, remask PMR if needed */
	if (system_uses_irq_prio_masking())
		gic_write_pmr(GIC_PRIO_IRQOFF);

577 578
	return exit_code;
}
M
Marc Zyngier 已提交
579 580 581

static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";

582
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
583
					     struct kvm_cpu_context *__host_ctxt)
M
Marc Zyngier 已提交
584
{
585
	struct kvm_vcpu *vcpu;
586
	unsigned long str_va;
587

588 589 590 591 592 593
	vcpu = __host_ctxt->__hyp_running_vcpu;

	if (read_sysreg(vttbr_el2)) {
		__timer_disable_traps(vcpu);
		__deactivate_traps(vcpu);
		__deactivate_vm(vcpu);
594
		__sysreg_restore_state_nvhe(__host_ctxt);
595 596
	}

597 598 599 600 601 602 603 604
	/*
	 * Force the panic string to be loaded from the literal pool,
	 * making sure it is a kernel address and not a PC-relative
	 * reference.
	 */
	asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));

	__hyp_do_panic(str_va,
605 606
		       spsr,  elr,
		       read_sysreg(esr_el2),   read_sysreg_el2(far),
607
		       read_sysreg(hpfar_el2), par, vcpu);
608 609
}

610 611
static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
				 struct kvm_cpu_context *host_ctxt)
612
{
613 614 615 616
	struct kvm_vcpu *vcpu;
	vcpu = host_ctxt->__hyp_running_vcpu;

	__deactivate_traps(vcpu);
617
	sysreg_restore_host_state_vhe(host_ctxt);
618

619 620 621
	panic(__hyp_panic_string,
	      spsr,  elr,
	      read_sysreg_el2(esr),   read_sysreg_el2(far),
622
	      read_sysreg(hpfar_el2), par, vcpu);
623
}
624
NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
625

626
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
627 628 629
{
	u64 spsr = read_sysreg_el2(spsr);
	u64 elr = read_sysreg_el2(elr);
M
Marc Zyngier 已提交
630 631
	u64 par = read_sysreg(par_el1);

632 633 634 635
	if (!has_vhe())
		__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
	else
		__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
M
Marc Zyngier 已提交
636 637 638

	unreachable();
}