switch.c 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
#include <linux/types.h>
19
#include <linux/jump_label.h>
20
#include <uapi/linux/psci.h>
21

22 23
#include <kvm/arm_psci.h>

24
#include <asm/kvm_asm.h>
25
#include <asm/kvm_emulate.h>
26
#include <asm/kvm_hyp.h>
27
#include <asm/kvm_mmu.h>
28
#include <asm/fpsimd.h>
29
#include <asm/debug-monitors.h>
30

31 32 33 34 35
static bool __hyp_text __fpsimd_enabled_nvhe(void)
{
	return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
}

36
static bool fpsimd_enabled_vhe(void)
37 38 39 40
{
	return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
}

41 42 43 44 45 46 47 48 49
/* Save the 32-bit only FPSIMD system register state */
static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
	if (!vcpu_el1_is_32bit(vcpu))
		return;

	vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
}

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
{
	/*
	 * We are about to set CPTR_EL2.TFP to trap all floating point
	 * register accesses to EL2, however, the ARM ARM clearly states that
	 * traps are only taken to EL2 if the operation would not otherwise
	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
	 * it will cause an exception.
	 */
	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
		write_sysreg(1 << 30, fpexc32_el2);
		isb();
	}
}

static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
{
	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
	write_sysreg(1 << 15, hstr_el2);

	/*
	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
	 * PMSELR_EL0 to make sure it never contains the cycle
	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
	 * EL1 instead of being trapped to EL2.
	 */
	write_sysreg(0, pmselr_el0);
	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
}

static void __hyp_text __deactivate_traps_common(void)
{
	write_sysreg(0, hstr_el2);
	write_sysreg(0, pmuserenr_el0);
}

89
static void activate_traps_vhe(struct kvm_vcpu *vcpu)
90 91 92 93 94
{
	u64 val;

	val = read_sysreg(cpacr_el1);
	val |= CPACR_EL1_TTA;
95
	val &= ~(CPACR_EL1_FPEN | CPACR_EL1_ZEN);
96 97
	write_sysreg(val, cpacr_el1);

98
	write_sysreg(kvm_get_hyp_vector(), vbar_el1);
99 100
}

101
static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
102 103 104
{
	u64 val;

105 106
	__activate_traps_common(vcpu);

107
	val = CPTR_EL2_DEFAULT;
108
	val |= CPTR_EL2_TTA | CPTR_EL2_TFP | CPTR_EL2_TZ;
109 110 111
	write_sysreg(val, cptr_el2);
}

112 113
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
{
114
	u64 hcr = vcpu->arch.hcr_el2;
115

116
	write_sysreg(hcr, hcr_el2);
117

118
	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
119 120
		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);

121
	__activate_traps_fpsimd32(vcpu);
122 123 124 125
	if (has_vhe())
		activate_traps_vhe(vcpu);
	else
		__activate_traps_nvhe(vcpu);
126
}
127

128
static void deactivate_traps_vhe(void)
129 130 131
{
	extern char vectors[];	/* kernel exception vectors */
	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
132
	write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
133
	write_sysreg(vectors, vbar_el1);
134 135
}

136
static void __hyp_text __deactivate_traps_nvhe(void)
137
{
138 139
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

140 141
	__deactivate_traps_common();

142 143 144 145
	mdcr_el2 &= MDCR_EL2_HPMN_MASK;
	mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;

	write_sysreg(mdcr_el2, mdcr_el2);
146
	write_sysreg(HCR_RW, hcr_el2);
147 148 149 150 151
	write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
}

static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
{
152 153 154 155 156 157 158 159 160
	/*
	 * If we pended a virtual abort, preserve it until it gets
	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
	 * the crucial bit is "On taking a vSError interrupt,
	 * HCR_EL2.VSE is cleared to 0."
	 */
	if (vcpu->arch.hcr_el2 & HCR_VSE)
		vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);

161 162 163 164
	if (has_vhe())
		deactivate_traps_vhe();
	else
		__deactivate_traps_nvhe();
165 166
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
{
	__activate_traps_common(vcpu);
}

void deactivate_traps_vhe_put(void)
{
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

	mdcr_el2 &= MDCR_EL2_HPMN_MASK |
		    MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
		    MDCR_EL2_TPMS;

	write_sysreg(mdcr_el2, mdcr_el2);

	__deactivate_traps_common();
}

185
static void __hyp_text __activate_vm(struct kvm *kvm)
186 187 188 189 190 191 192 193 194
{
	write_sysreg(kvm->arch.vttbr, vttbr_el2);
}

static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
{
	write_sysreg(0, vttbr_el2);
}

195 196
/* Save VGICv3 state on non-VHE systems */
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
197
{
198 199
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
		__vgic_v3_save_state(vcpu);
200 201
}

202 203
/* Restore VGICv3 state on non_VEH systems */
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
204
{
205 206
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
		__vgic_v3_restore_state(vcpu);
207 208
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static bool __hyp_text __true_value(void)
{
	return true;
}

static bool __hyp_text __false_value(void)
{
	return false;
}

static hyp_alternate_select(__check_arm_834220,
			    __false_value, __true_value,
			    ARM64_WORKAROUND_834220);

static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
{
	u64 par, tmp;

	/*
	 * Resolve the IPA the hard way using the guest VA.
	 *
	 * Stage-1 translation already validated the memory access
	 * rights. As such, we can use the EL1 translation regime, and
	 * don't have to distinguish between EL0 and EL1 access.
	 *
	 * We do need to save/restore PAR_EL1 though, as we haven't
	 * saved the guest context yet, and we may return early...
	 */
	par = read_sysreg(par_el1);
	asm volatile("at s1e1r, %0" : : "r" (far));
	isb();

	tmp = read_sysreg(par_el1);
	write_sysreg(par, par_el1);

	if (unlikely(tmp & 1))
		return false; /* Translation failed, back to guest */

	/* Convert PAR to HPFAR format */
	*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
	return true;
}

static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
{
254 255
	u8 ec;
	u64 esr;
256 257
	u64 hpfar, far;

258 259
	esr = vcpu->arch.fault.esr_el2;
	ec = ESR_ELx_EC(esr);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
		return true;

	far = read_sysreg_el2(far);

	/*
	 * The HPFAR can be invalid if the stage 2 fault did not
	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
	 * bit is clear) and one of the two following cases are true:
	 *   1. The fault was due to a permission fault
	 *   2. The processor carries errata 834220
	 *
	 * Therefore, for all non S1PTW faults where we either have a
	 * permission fault or the errata workaround is enabled, we
	 * resolve the IPA using the AT instruction.
	 */
	if (!(esr & ESR_ELx_S1PTW) &&
	    (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
		if (!__translate_far_to_hpfar(far, &hpfar))
			return false;
	} else {
		hpfar = read_sysreg(hpfar_el2);
	}

	vcpu->arch.fault.far_el2 = far;
	vcpu->arch.fault.hpfar_el2 = hpfar;
	return true;
}

290 291 292 293 294
/* Skip an instruction which has been emulated. Returns true if
 * execution can continue or false if we need to exit hyp mode because
 * single-step was in effect.
 */
static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
295 296 297 298 299 300 301 302 303 304 305 306
{
	*vcpu_pc(vcpu) = read_sysreg_el2(elr);

	if (vcpu_mode_is_32bit(vcpu)) {
		vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
		kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
		write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
	} else {
		*vcpu_pc(vcpu) += 4;
	}

	write_sysreg_el2(*vcpu_pc(vcpu), elr);
307 308 309 310 311 312 313 314

	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		vcpu->arch.fault.esr_el2 =
			(ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
		return false;
	} else {
		return true;
	}
315 316
}

317 318 319 320 321 322
/*
 * Return true when we were able to fixup the guest exit and should return to
 * the guest, false when we should restore the host state and return to the
 * main run loop.
 */
static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
323
{
324
	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
325
		vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
326

327 328 329 330 331 332
	/*
	 * We're using the raw exception code in order to only process
	 * the trap if no SError is pending. We will come back to the
	 * same PC once the SError has been injected, and replay the
	 * trapping instruction.
	 */
333 334
	if (*exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
		return true;
335

336
	if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
337
	    *exit_code == ARM_EXCEPTION_TRAP) {
338 339 340 341 342 343 344 345
		bool valid;

		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
			kvm_vcpu_dabt_isvalid(vcpu) &&
			!kvm_vcpu_dabt_isextabt(vcpu) &&
			!kvm_vcpu_dabt_iss1tw(vcpu);

346 347 348 349
		if (valid) {
			int ret = __vgic_v2_perform_cpuif_access(vcpu);

			if (ret == 1) {
350
				if (__skip_instr(vcpu))
351
					return true;
352
				else
353
					*exit_code = ARM_EXCEPTION_TRAP;
354 355 356
			}

			if (ret == -1) {
357 358 359 360 361 362 363 364
				/* Promote an illegal access to an
				 * SError. If we would be returning
				 * due to single-step clear the SS
				 * bit so handle_exit knows what to
				 * do after dealing with the error.
				 */
				if (!__skip_instr(vcpu))
					*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
365
				*exit_code = ARM_EXCEPTION_EL1_SERROR;
366
			}
367 368 369
		}
	}

370
	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
371
	    *exit_code == ARM_EXCEPTION_TRAP &&
372 373 374 375 376
	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
		int ret = __vgic_v3_perform_cpuif_access(vcpu);

		if (ret == 1) {
377
			if (__skip_instr(vcpu))
378
				return true;
379
			else
380
				*exit_code = ARM_EXCEPTION_TRAP;
381 382 383
		}
	}

384 385 386 387
	/* Return to the host kernel and handle the exit */
	return false;
}

388 389 390 391 392 393 394 395
/* Switch to the guest for VHE systems running in EL2 */
int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	bool fp_enabled;
	u64 exit_code;

396
	host_ctxt = vcpu->arch.host_cpu_context;
397 398 399
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

400
	sysreg_save_host_state_vhe(host_ctxt);
401 402

	__activate_traps(vcpu);
403
	__activate_vm(vcpu->kvm);
404

405
	sysreg_restore_guest_state_vhe(guest_ctxt);
406 407 408 409 410 411 412 413 414
	__debug_switch_to_guest(vcpu);

	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

415
	fp_enabled = fpsimd_enabled_vhe();
416

417
	sysreg_save_guest_state_vhe(guest_ctxt);
418 419 420

	__deactivate_traps(vcpu);

421
	sysreg_restore_host_state_vhe(host_ctxt);
422 423 424 425

	if (fp_enabled) {
		__fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
		__fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
426
		__fpsimd_save_fpexc32(vcpu);
427 428 429 430 431 432 433 434 435
	}

	__debug_switch_to_host(vcpu);

	return exit_code;
}

/* Switch to the guest for legacy non-VHE systems */
int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
436 437 438 439 440 441 442 443 444 445 446 447
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	bool fp_enabled;
	u64 exit_code;

	vcpu = kern_hyp_va(vcpu);

	host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

448
	__sysreg_save_state_nvhe(host_ctxt);
449 450

	__activate_traps(vcpu);
451
	__activate_vm(kern_hyp_va(vcpu->kvm));
452

453
	__hyp_vgic_restore_state(vcpu);
454 455 456 457 458 459 460
	__timer_enable_traps(vcpu);

	/*
	 * We must restore the 32-bit state before the sysregs, thanks
	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
	 */
	__sysreg32_restore_state(vcpu);
461
	__sysreg_restore_state_nvhe(guest_ctxt);
462 463 464 465 466 467 468 469 470
	__debug_switch_to_guest(vcpu);

	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

471 472 473 474
	if (cpus_have_const_cap(ARM64_HARDEN_BP_POST_GUEST_EXIT)) {
		u32 midr = read_cpuid_id();

		/* Apply BTAC predictors mitigation to all Falkor chips */
475 476
		if (((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR) ||
		    ((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR_V1)) {
477
			__qcom_hyp_sanitize_btac_predictors();
478
		}
479 480
	}

481
	fp_enabled = __fpsimd_enabled_nvhe();
482

483
	__sysreg_save_state_nvhe(guest_ctxt);
484
	__sysreg32_save_state(vcpu);
485
	__timer_disable_traps(vcpu);
486
	__hyp_vgic_save_state(vcpu);
487 488 489 490

	__deactivate_traps(vcpu);
	__deactivate_vm(vcpu);

491
	__sysreg_restore_state_nvhe(host_ctxt);
492

493 494 495
	if (fp_enabled) {
		__fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
		__fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
496
		__fpsimd_save_fpexc32(vcpu);
497 498
	}

499 500 501 502
	/*
	 * This must come after restoring the host sysregs, since a non-VHE
	 * system may enable SPE here and make use of the TTBRs.
	 */
503
	__debug_switch_to_host(vcpu);
504 505 506

	return exit_code;
}
M
Marc Zyngier 已提交
507 508 509

static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";

510
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
511
					     struct kvm_cpu_context *__host_ctxt)
M
Marc Zyngier 已提交
512
{
513
	struct kvm_vcpu *vcpu;
514
	unsigned long str_va;
515

516 517 518 519 520 521
	vcpu = __host_ctxt->__hyp_running_vcpu;

	if (read_sysreg(vttbr_el2)) {
		__timer_disable_traps(vcpu);
		__deactivate_traps(vcpu);
		__deactivate_vm(vcpu);
522
		__sysreg_restore_state_nvhe(__host_ctxt);
523 524
	}

525 526 527 528 529 530 531 532
	/*
	 * Force the panic string to be loaded from the literal pool,
	 * making sure it is a kernel address and not a PC-relative
	 * reference.
	 */
	asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));

	__hyp_do_panic(str_va,
533 534
		       spsr,  elr,
		       read_sysreg(esr_el2),   read_sysreg_el2(far),
535
		       read_sysreg(hpfar_el2), par, vcpu);
536 537
}

538 539
static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
				 struct kvm_cpu_context *host_ctxt)
540
{
541 542 543 544
	struct kvm_vcpu *vcpu;
	vcpu = host_ctxt->__hyp_running_vcpu;

	__deactivate_traps(vcpu);
545
	sysreg_restore_host_state_vhe(host_ctxt);
546

547 548 549
	panic(__hyp_panic_string,
	      spsr,  elr,
	      read_sysreg_el2(esr),   read_sysreg_el2(far),
550
	      read_sysreg(hpfar_el2), par, vcpu);
551 552
}

553
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
554 555 556
{
	u64 spsr = read_sysreg_el2(spsr);
	u64 elr = read_sysreg_el2(elr);
M
Marc Zyngier 已提交
557 558
	u64 par = read_sysreg(par_el1);

559 560 561 562
	if (!has_vhe())
		__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
	else
		__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
M
Marc Zyngier 已提交
563 564 565

	unreachable();
}