switch.c 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
#include <linux/arm-smccc.h>
19
#include <linux/types.h>
20
#include <linux/jump_label.h>
21
#include <uapi/linux/psci.h>
22

23 24
#include <kvm/arm_psci.h>

25
#include <asm/cpufeature.h>
26
#include <asm/kprobes.h>
27
#include <asm/kvm_asm.h>
28
#include <asm/kvm_emulate.h>
29
#include <asm/kvm_host.h>
30
#include <asm/kvm_hyp.h>
31
#include <asm/kvm_mmu.h>
32
#include <asm/fpsimd.h>
33
#include <asm/debug-monitors.h>
34
#include <asm/processor.h>
35
#include <asm/thread_info.h>
36

37 38
/* Check whether the FP regs were dirtied while in the host-side run loop: */
static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
39
{
40 41 42
	if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
		vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
				      KVM_ARM64_FP_HOST);
43

44
	return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
45 46
}

47 48 49 50 51 52 53 54 55
/* Save the 32-bit only FPSIMD system register state */
static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
	if (!vcpu_el1_is_32bit(vcpu))
		return;

	vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
}

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
{
	/*
	 * We are about to set CPTR_EL2.TFP to trap all floating point
	 * register accesses to EL2, however, the ARM ARM clearly states that
	 * traps are only taken to EL2 if the operation would not otherwise
	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
	 * it will cause an exception.
	 */
	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
		write_sysreg(1 << 30, fpexc32_el2);
		isb();
	}
}

static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
{
	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
	write_sysreg(1 << 15, hstr_el2);

	/*
	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
	 * PMSELR_EL0 to make sure it never contains the cycle
	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
	 * EL1 instead of being trapped to EL2.
	 */
	write_sysreg(0, pmselr_el0);
	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
}

static void __hyp_text __deactivate_traps_common(void)
{
	write_sysreg(0, hstr_el2);
	write_sysreg(0, pmuserenr_el0);
}

95
static void activate_traps_vhe(struct kvm_vcpu *vcpu)
96 97 98 99 100
{
	u64 val;

	val = read_sysreg(cpacr_el1);
	val |= CPACR_EL1_TTA;
101
	val &= ~CPACR_EL1_ZEN;
102
	if (!update_fp_enabled(vcpu)) {
103
		val &= ~CPACR_EL1_FPEN;
104 105
		__activate_traps_fpsimd32(vcpu);
	}
106

107 108
	write_sysreg(val, cpacr_el1);

109
	write_sysreg(kvm_get_hyp_vector(), vbar_el1);
110
}
111
NOKPROBE_SYMBOL(activate_traps_vhe);
112

113
static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
114 115 116
{
	u64 val;

117 118
	__activate_traps_common(vcpu);

119
	val = CPTR_EL2_DEFAULT;
120
	val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
121
	if (!update_fp_enabled(vcpu)) {
122
		val |= CPTR_EL2_TFP;
123 124
		__activate_traps_fpsimd32(vcpu);
	}
125

126 127 128
	write_sysreg(val, cptr_el2);
}

129 130
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
{
131
	u64 hcr = vcpu->arch.hcr_el2;
132

133
	write_sysreg(hcr, hcr_el2);
134

135
	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
136 137
		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);

138 139 140 141
	if (has_vhe())
		activate_traps_vhe(vcpu);
	else
		__activate_traps_nvhe(vcpu);
142
}
143

144
static void deactivate_traps_vhe(void)
145 146 147
{
	extern char vectors[];	/* kernel exception vectors */
	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
148
	write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
149
	write_sysreg(vectors, vbar_el1);
150
}
151
NOKPROBE_SYMBOL(deactivate_traps_vhe);
152

153
static void __hyp_text __deactivate_traps_nvhe(void)
154
{
155 156
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

157 158
	__deactivate_traps_common();

159 160 161 162
	mdcr_el2 &= MDCR_EL2_HPMN_MASK;
	mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;

	write_sysreg(mdcr_el2, mdcr_el2);
163
	write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
164 165 166 167 168
	write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
}

static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
{
169 170 171 172 173 174 175 176 177
	/*
	 * If we pended a virtual abort, preserve it until it gets
	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
	 * the crucial bit is "On taking a vSError interrupt,
	 * HCR_EL2.VSE is cleared to 0."
	 */
	if (vcpu->arch.hcr_el2 & HCR_VSE)
		vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);

178 179 180 181
	if (has_vhe())
		deactivate_traps_vhe();
	else
		__deactivate_traps_nvhe();
182 183
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
{
	__activate_traps_common(vcpu);
}

void deactivate_traps_vhe_put(void)
{
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

	mdcr_el2 &= MDCR_EL2_HPMN_MASK |
		    MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
		    MDCR_EL2_TPMS;

	write_sysreg(mdcr_el2, mdcr_el2);

	__deactivate_traps_common();
}

202
static void __hyp_text __activate_vm(struct kvm *kvm)
203 204 205 206 207 208 209 210 211
{
	write_sysreg(kvm->arch.vttbr, vttbr_el2);
}

static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
{
	write_sysreg(0, vttbr_el2);
}

212 213
/* Save VGICv3 state on non-VHE systems */
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
214
{
215
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
216
		__vgic_v3_save_state(vcpu);
217 218
		__vgic_v3_deactivate_traps(vcpu);
	}
219 220
}

221 222
/* Restore VGICv3 state on non_VEH systems */
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
223
{
224 225
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
		__vgic_v3_activate_traps(vcpu);
226
		__vgic_v3_restore_state(vcpu);
227
	}
228 229
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
static bool __hyp_text __true_value(void)
{
	return true;
}

static bool __hyp_text __false_value(void)
{
	return false;
}

static hyp_alternate_select(__check_arm_834220,
			    __false_value, __true_value,
			    ARM64_WORKAROUND_834220);

static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
{
	u64 par, tmp;

	/*
	 * Resolve the IPA the hard way using the guest VA.
	 *
	 * Stage-1 translation already validated the memory access
	 * rights. As such, we can use the EL1 translation regime, and
	 * don't have to distinguish between EL0 and EL1 access.
	 *
	 * We do need to save/restore PAR_EL1 though, as we haven't
	 * saved the guest context yet, and we may return early...
	 */
	par = read_sysreg(par_el1);
	asm volatile("at s1e1r, %0" : : "r" (far));
	isb();

	tmp = read_sysreg(par_el1);
	write_sysreg(par, par_el1);

	if (unlikely(tmp & 1))
		return false; /* Translation failed, back to guest */

	/* Convert PAR to HPFAR format */
	*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
	return true;
}

static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
{
275 276
	u8 ec;
	u64 esr;
277 278
	u64 hpfar, far;

279 280
	esr = vcpu->arch.fault.esr_el2;
	ec = ESR_ELx_EC(esr);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
		return true;

	far = read_sysreg_el2(far);

	/*
	 * The HPFAR can be invalid if the stage 2 fault did not
	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
	 * bit is clear) and one of the two following cases are true:
	 *   1. The fault was due to a permission fault
	 *   2. The processor carries errata 834220
	 *
	 * Therefore, for all non S1PTW faults where we either have a
	 * permission fault or the errata workaround is enabled, we
	 * resolve the IPA using the AT instruction.
	 */
	if (!(esr & ESR_ELx_S1PTW) &&
	    (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
		if (!__translate_far_to_hpfar(far, &hpfar))
			return false;
	} else {
		hpfar = read_sysreg(hpfar_el2);
	}

	vcpu->arch.fault.far_el2 = far;
	vcpu->arch.fault.hpfar_el2 = hpfar;
	return true;
}

311 312 313 314 315
/* Skip an instruction which has been emulated. Returns true if
 * execution can continue or false if we need to exit hyp mode because
 * single-step was in effect.
 */
static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
316 317 318 319 320 321 322 323 324 325 326 327
{
	*vcpu_pc(vcpu) = read_sysreg_el2(elr);

	if (vcpu_mode_is_32bit(vcpu)) {
		vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
		kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
		write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
	} else {
		*vcpu_pc(vcpu) += 4;
	}

	write_sysreg_el2(*vcpu_pc(vcpu), elr);
328 329 330 331 332 333 334 335

	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		vcpu->arch.fault.esr_el2 =
			(ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
		return false;
	} else {
		return true;
	}
336 337
}

338
static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
339
{
340 341
	struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;

342 343 344 345 346 347 348 349 350
	if (has_vhe())
		write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
			     cpacr_el1);
	else
		write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
			     cptr_el2);

	isb();

351
	if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
		/*
		 * In the SVE case, VHE is assumed: it is enforced by
		 * Kconfig and kvm_arch_init().
		 */
		if (system_supports_sve() &&
		    (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
			struct thread_struct *thread = container_of(
				host_fpsimd,
				struct thread_struct, uw.fpsimd_state);

			sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
		} else {
			__fpsimd_save_state(host_fpsimd);
		}

367 368 369
		vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
	}

370 371 372 373 374 375
	__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);

	/* Skip restoring fpexc32 for AArch64 guests */
	if (!(read_sysreg(hcr_el2) & HCR_RW))
		write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
			     fpexc32_el2);
376 377

	vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
378 379

	return true;
380 381
}

382 383 384 385 386 387
/*
 * Return true when we were able to fixup the guest exit and should return to
 * the guest, false when we should restore the host state and return to the
 * main run loop.
 */
static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
388
{
389
	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
390
		vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
391

392 393 394 395 396 397
	/*
	 * We're using the raw exception code in order to only process
	 * the trap if no SError is pending. We will come back to the
	 * same PC once the SError has been injected, and replay the
	 * trapping instruction.
	 */
398 399 400
	if (*exit_code != ARM_EXCEPTION_TRAP)
		goto exit;

401 402 403 404 405 406 407 408 409 410
	/*
	 * We trap the first access to the FP/SIMD to save the host context
	 * and restore the guest context lazily.
	 * If FP/SIMD is not implemented, handle the trap and inject an
	 * undefined instruction exception to the guest.
	 */
	if (system_supports_fpsimd() &&
	    kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
		return __hyp_switch_fpsimd(vcpu);

411
	if (!__populate_fault_info(vcpu))
412
		return true;
413

414
	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
415 416 417 418 419 420 421 422
		bool valid;

		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
			kvm_vcpu_dabt_isvalid(vcpu) &&
			!kvm_vcpu_dabt_isextabt(vcpu) &&
			!kvm_vcpu_dabt_iss1tw(vcpu);

423 424 425
		if (valid) {
			int ret = __vgic_v2_perform_cpuif_access(vcpu);

426 427
			if (ret ==  1 && __skip_instr(vcpu))
				return true;
428 429

			if (ret == -1) {
430 431 432 433 434 435 436 437
				/* Promote an illegal access to an
				 * SError. If we would be returning
				 * due to single-step clear the SS
				 * bit so handle_exit knows what to
				 * do after dealing with the error.
				 */
				if (!__skip_instr(vcpu))
					*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
438
				*exit_code = ARM_EXCEPTION_EL1_SERROR;
439
			}
440 441

			goto exit;
442 443 444
		}
	}

445 446 447 448 449
	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
		int ret = __vgic_v3_perform_cpuif_access(vcpu);

450 451
		if (ret == 1 && __skip_instr(vcpu))
			return true;
452 453
	}

454
exit:
455 456 457 458
	/* Return to the host kernel and handle the exit */
	return false;
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
{
	if (!cpus_have_const_cap(ARM64_SSBD))
		return false;

	return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
}

static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
	/*
	 * The host runs with the workaround always present. If the
	 * guest wants it disabled, so be it...
	 */
	if (__needs_ssbd_off(vcpu) &&
	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
#endif
}

static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
	/*
	 * If the guest has disabled the workaround, bring it back on.
	 */
	if (__needs_ssbd_off(vcpu) &&
	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
#endif
}

492 493 494 495 496 497 498
/* Switch to the guest for VHE systems running in EL2 */
int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

499
	host_ctxt = vcpu->arch.host_cpu_context;
500 501 502
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

503
	sysreg_save_host_state_vhe(host_ctxt);
504 505

	__activate_traps(vcpu);
506
	__activate_vm(vcpu->kvm);
507

508
	sysreg_restore_guest_state_vhe(guest_ctxt);
509 510
	__debug_switch_to_guest(vcpu);

511 512
	__set_guest_arch_workaround_state(vcpu);

513 514 515 516 517 518 519
	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

520 521
	__set_host_arch_workaround_state(vcpu);

522
	sysreg_save_guest_state_vhe(guest_ctxt);
523 524 525

	__deactivate_traps(vcpu);

526
	sysreg_restore_host_state_vhe(host_ctxt);
527

528
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
529
		__fpsimd_save_fpexc32(vcpu);
530 531 532 533 534

	__debug_switch_to_host(vcpu);

	return exit_code;
}
535
NOKPROBE_SYMBOL(kvm_vcpu_run_vhe);
536 537 538

/* Switch to the guest for legacy non-VHE systems */
int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
539 540 541 542 543 544 545 546 547 548 549
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

	vcpu = kern_hyp_va(vcpu);

	host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

550
	__sysreg_save_state_nvhe(host_ctxt);
551 552

	__activate_traps(vcpu);
553
	__activate_vm(kern_hyp_va(vcpu->kvm));
554

555
	__hyp_vgic_restore_state(vcpu);
556 557 558 559 560 561 562
	__timer_enable_traps(vcpu);

	/*
	 * We must restore the 32-bit state before the sysregs, thanks
	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
	 */
	__sysreg32_restore_state(vcpu);
563
	__sysreg_restore_state_nvhe(guest_ctxt);
564 565
	__debug_switch_to_guest(vcpu);

566 567
	__set_guest_arch_workaround_state(vcpu);

568 569 570 571 572 573 574
	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

575 576
	__set_host_arch_workaround_state(vcpu);

577
	__sysreg_save_state_nvhe(guest_ctxt);
578
	__sysreg32_save_state(vcpu);
579
	__timer_disable_traps(vcpu);
580
	__hyp_vgic_save_state(vcpu);
581 582 583 584

	__deactivate_traps(vcpu);
	__deactivate_vm(vcpu);

585
	__sysreg_restore_state_nvhe(host_ctxt);
586

587
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
588
		__fpsimd_save_fpexc32(vcpu);
589

590 591 592 593
	/*
	 * This must come after restoring the host sysregs, since a non-VHE
	 * system may enable SPE here and make use of the TTBRs.
	 */
594
	__debug_switch_to_host(vcpu);
595 596 597

	return exit_code;
}
M
Marc Zyngier 已提交
598 599 600

static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";

601
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
602
					     struct kvm_cpu_context *__host_ctxt)
M
Marc Zyngier 已提交
603
{
604
	struct kvm_vcpu *vcpu;
605
	unsigned long str_va;
606

607 608 609 610 611 612
	vcpu = __host_ctxt->__hyp_running_vcpu;

	if (read_sysreg(vttbr_el2)) {
		__timer_disable_traps(vcpu);
		__deactivate_traps(vcpu);
		__deactivate_vm(vcpu);
613
		__sysreg_restore_state_nvhe(__host_ctxt);
614 615
	}

616 617 618 619 620 621 622 623
	/*
	 * Force the panic string to be loaded from the literal pool,
	 * making sure it is a kernel address and not a PC-relative
	 * reference.
	 */
	asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));

	__hyp_do_panic(str_va,
624 625
		       spsr,  elr,
		       read_sysreg(esr_el2),   read_sysreg_el2(far),
626
		       read_sysreg(hpfar_el2), par, vcpu);
627 628
}

629 630
static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
				 struct kvm_cpu_context *host_ctxt)
631
{
632 633 634 635
	struct kvm_vcpu *vcpu;
	vcpu = host_ctxt->__hyp_running_vcpu;

	__deactivate_traps(vcpu);
636
	sysreg_restore_host_state_vhe(host_ctxt);
637

638 639 640
	panic(__hyp_panic_string,
	      spsr,  elr,
	      read_sysreg_el2(esr),   read_sysreg_el2(far),
641
	      read_sysreg(hpfar_el2), par, vcpu);
642
}
643
NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
644

645
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
646 647 648
{
	u64 spsr = read_sysreg_el2(spsr);
	u64 elr = read_sysreg_el2(elr);
M
Marc Zyngier 已提交
649 650
	u64 par = read_sysreg(par_el1);

651 652 653 654
	if (!has_vhe())
		__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
	else
		__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
M
Marc Zyngier 已提交
655 656 657

	unreachable();
}