switch.c 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
#include <linux/arm-smccc.h>
19
#include <linux/types.h>
20
#include <linux/jump_label.h>
21
#include <uapi/linux/psci.h>
22

23 24
#include <kvm/arm_psci.h>

25
#include <asm/cpufeature.h>
26
#include <asm/kprobes.h>
27
#include <asm/kvm_asm.h>
28
#include <asm/kvm_emulate.h>
29
#include <asm/kvm_host.h>
30
#include <asm/kvm_hyp.h>
31
#include <asm/kvm_mmu.h>
32
#include <asm/fpsimd.h>
33
#include <asm/debug-monitors.h>
34
#include <asm/processor.h>
35
#include <asm/thread_info.h>
36

37 38
/* Check whether the FP regs were dirtied while in the host-side run loop: */
static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
39
{
40 41 42
	if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
		vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
				      KVM_ARM64_FP_HOST);
43

44
	return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
45 46
}

47 48 49 50 51 52 53 54 55
/* Save the 32-bit only FPSIMD system register state */
static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
	if (!vcpu_el1_is_32bit(vcpu))
		return;

	vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
}

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
{
	/*
	 * We are about to set CPTR_EL2.TFP to trap all floating point
	 * register accesses to EL2, however, the ARM ARM clearly states that
	 * traps are only taken to EL2 if the operation would not otherwise
	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
	 * it will cause an exception.
	 */
	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
		write_sysreg(1 << 30, fpexc32_el2);
		isb();
	}
}

static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
{
	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
	write_sysreg(1 << 15, hstr_el2);

	/*
	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
	 * PMSELR_EL0 to make sure it never contains the cycle
	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
	 * EL1 instead of being trapped to EL2.
	 */
	write_sysreg(0, pmselr_el0);
	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
}

static void __hyp_text __deactivate_traps_common(void)
{
	write_sysreg(0, hstr_el2);
	write_sysreg(0, pmuserenr_el0);
}

95
static void activate_traps_vhe(struct kvm_vcpu *vcpu)
96 97 98 99 100
{
	u64 val;

	val = read_sysreg(cpacr_el1);
	val |= CPACR_EL1_TTA;
101
	val &= ~CPACR_EL1_ZEN;
102
	if (!update_fp_enabled(vcpu)) {
103
		val &= ~CPACR_EL1_FPEN;
104 105
		__activate_traps_fpsimd32(vcpu);
	}
106

107 108
	write_sysreg(val, cpacr_el1);

109
	write_sysreg(kvm_get_hyp_vector(), vbar_el1);
110
}
111
NOKPROBE_SYMBOL(activate_traps_vhe);
112

113
static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
114 115 116
{
	u64 val;

117 118
	__activate_traps_common(vcpu);

119
	val = CPTR_EL2_DEFAULT;
120
	val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
121
	if (!update_fp_enabled(vcpu)) {
122
		val |= CPTR_EL2_TFP;
123 124
		__activate_traps_fpsimd32(vcpu);
	}
125

126 127 128
	write_sysreg(val, cptr_el2);
}

129 130
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
{
131
	u64 hcr = vcpu->arch.hcr_el2;
132

133
	write_sysreg(hcr, hcr_el2);
134

135
	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
136 137
		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);

138 139 140 141
	if (has_vhe())
		activate_traps_vhe(vcpu);
	else
		__activate_traps_nvhe(vcpu);
142
}
143

144
static void deactivate_traps_vhe(void)
145 146 147
{
	extern char vectors[];	/* kernel exception vectors */
	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
148
	write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
149
	write_sysreg(vectors, vbar_el1);
150
}
151
NOKPROBE_SYMBOL(deactivate_traps_vhe);
152

153
static void __hyp_text __deactivate_traps_nvhe(void)
154
{
155 156
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

157 158
	__deactivate_traps_common();

159 160 161 162
	mdcr_el2 &= MDCR_EL2_HPMN_MASK;
	mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;

	write_sysreg(mdcr_el2, mdcr_el2);
163
	write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
164 165 166 167 168
	write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
}

static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
{
169 170 171 172 173 174 175 176 177
	/*
	 * If we pended a virtual abort, preserve it until it gets
	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
	 * the crucial bit is "On taking a vSError interrupt,
	 * HCR_EL2.VSE is cleared to 0."
	 */
	if (vcpu->arch.hcr_el2 & HCR_VSE)
		vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);

178 179 180 181
	if (has_vhe())
		deactivate_traps_vhe();
	else
		__deactivate_traps_nvhe();
182 183
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
{
	__activate_traps_common(vcpu);
}

void deactivate_traps_vhe_put(void)
{
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

	mdcr_el2 &= MDCR_EL2_HPMN_MASK |
		    MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
		    MDCR_EL2_TPMS;

	write_sysreg(mdcr_el2, mdcr_el2);

	__deactivate_traps_common();
}

202
static void __hyp_text __activate_vm(struct kvm *kvm)
203 204 205 206 207 208 209 210 211
{
	write_sysreg(kvm->arch.vttbr, vttbr_el2);
}

static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
{
	write_sysreg(0, vttbr_el2);
}

212 213
/* Save VGICv3 state on non-VHE systems */
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
214
{
215
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
216
		__vgic_v3_save_state(vcpu);
217 218
		__vgic_v3_deactivate_traps(vcpu);
	}
219 220
}

221 222
/* Restore VGICv3 state on non_VEH systems */
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
223
{
224 225
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
		__vgic_v3_activate_traps(vcpu);
226
		__vgic_v3_restore_state(vcpu);
227
	}
228 229
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
static bool __hyp_text __true_value(void)
{
	return true;
}

static bool __hyp_text __false_value(void)
{
	return false;
}

static hyp_alternate_select(__check_arm_834220,
			    __false_value, __true_value,
			    ARM64_WORKAROUND_834220);

static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
{
	u64 par, tmp;

	/*
	 * Resolve the IPA the hard way using the guest VA.
	 *
	 * Stage-1 translation already validated the memory access
	 * rights. As such, we can use the EL1 translation regime, and
	 * don't have to distinguish between EL0 and EL1 access.
	 *
	 * We do need to save/restore PAR_EL1 though, as we haven't
	 * saved the guest context yet, and we may return early...
	 */
	par = read_sysreg(par_el1);
	asm volatile("at s1e1r, %0" : : "r" (far));
	isb();

	tmp = read_sysreg(par_el1);
	write_sysreg(par, par_el1);

	if (unlikely(tmp & 1))
		return false; /* Translation failed, back to guest */

	/* Convert PAR to HPFAR format */
	*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
	return true;
}

static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
{
275 276
	u8 ec;
	u64 esr;
277 278
	u64 hpfar, far;

279 280
	esr = vcpu->arch.fault.esr_el2;
	ec = ESR_ELx_EC(esr);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
		return true;

	far = read_sysreg_el2(far);

	/*
	 * The HPFAR can be invalid if the stage 2 fault did not
	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
	 * bit is clear) and one of the two following cases are true:
	 *   1. The fault was due to a permission fault
	 *   2. The processor carries errata 834220
	 *
	 * Therefore, for all non S1PTW faults where we either have a
	 * permission fault or the errata workaround is enabled, we
	 * resolve the IPA using the AT instruction.
	 */
	if (!(esr & ESR_ELx_S1PTW) &&
	    (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
		if (!__translate_far_to_hpfar(far, &hpfar))
			return false;
	} else {
		hpfar = read_sysreg(hpfar_el2);
	}

	vcpu->arch.fault.far_el2 = far;
	vcpu->arch.fault.hpfar_el2 = hpfar;
	return true;
}

311
static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
312
{
313 314
	struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;

315 316 317 318 319 320 321 322 323
	if (has_vhe())
		write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
			     cpacr_el1);
	else
		write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
			     cptr_el2);

	isb();

324
	if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
		/*
		 * In the SVE case, VHE is assumed: it is enforced by
		 * Kconfig and kvm_arch_init().
		 */
		if (system_supports_sve() &&
		    (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
			struct thread_struct *thread = container_of(
				host_fpsimd,
				struct thread_struct, uw.fpsimd_state);

			sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
		} else {
			__fpsimd_save_state(host_fpsimd);
		}

340 341 342
		vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
	}

343 344 345 346 347 348
	__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);

	/* Skip restoring fpexc32 for AArch64 guests */
	if (!(read_sysreg(hcr_el2) & HCR_RW))
		write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
			     fpexc32_el2);
349 350

	vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
351 352

	return true;
353 354
}

355 356 357 358 359 360
/*
 * Return true when we were able to fixup the guest exit and should return to
 * the guest, false when we should restore the host state and return to the
 * main run loop.
 */
static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
361
{
362
	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
363
		vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
364

365 366 367 368 369 370
	/*
	 * We're using the raw exception code in order to only process
	 * the trap if no SError is pending. We will come back to the
	 * same PC once the SError has been injected, and replay the
	 * trapping instruction.
	 */
371 372 373
	if (*exit_code != ARM_EXCEPTION_TRAP)
		goto exit;

374 375 376 377 378 379 380 381 382 383
	/*
	 * We trap the first access to the FP/SIMD to save the host context
	 * and restore the guest context lazily.
	 * If FP/SIMD is not implemented, handle the trap and inject an
	 * undefined instruction exception to the guest.
	 */
	if (system_supports_fpsimd() &&
	    kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
		return __hyp_switch_fpsimd(vcpu);

384
	if (!__populate_fault_info(vcpu))
385
		return true;
386

387
	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
388 389 390 391 392 393 394 395
		bool valid;

		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
			kvm_vcpu_dabt_isvalid(vcpu) &&
			!kvm_vcpu_dabt_isextabt(vcpu) &&
			!kvm_vcpu_dabt_iss1tw(vcpu);

396 397 398
		if (valid) {
			int ret = __vgic_v2_perform_cpuif_access(vcpu);

399
			if (ret == 1)
400
				return true;
401

402 403
			/* Promote an illegal access to an SError.*/
			if (ret == -1)
404
				*exit_code = ARM_EXCEPTION_EL1_SERROR;
405 406

			goto exit;
407 408 409
		}
	}

410 411 412 413 414
	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
		int ret = __vgic_v3_perform_cpuif_access(vcpu);

415
		if (ret == 1)
416
			return true;
417 418
	}

419
exit:
420 421 422 423
	/* Return to the host kernel and handle the exit */
	return false;
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
{
	if (!cpus_have_const_cap(ARM64_SSBD))
		return false;

	return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
}

static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
	/*
	 * The host runs with the workaround always present. If the
	 * guest wants it disabled, so be it...
	 */
	if (__needs_ssbd_off(vcpu) &&
	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
#endif
}

static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
	/*
	 * If the guest has disabled the workaround, bring it back on.
	 */
	if (__needs_ssbd_off(vcpu) &&
	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
#endif
}

457 458 459 460 461 462 463
/* Switch to the guest for VHE systems running in EL2 */
int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

464
	host_ctxt = vcpu->arch.host_cpu_context;
465 466 467
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

468
	sysreg_save_host_state_vhe(host_ctxt);
469 470

	__activate_traps(vcpu);
471
	__activate_vm(vcpu->kvm);
472

473
	sysreg_restore_guest_state_vhe(guest_ctxt);
474 475
	__debug_switch_to_guest(vcpu);

476 477
	__set_guest_arch_workaround_state(vcpu);

478 479 480 481 482 483 484
	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

485 486
	__set_host_arch_workaround_state(vcpu);

487
	sysreg_save_guest_state_vhe(guest_ctxt);
488 489 490

	__deactivate_traps(vcpu);

491
	sysreg_restore_host_state_vhe(host_ctxt);
492

493
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
494
		__fpsimd_save_fpexc32(vcpu);
495 496 497 498 499

	__debug_switch_to_host(vcpu);

	return exit_code;
}
500
NOKPROBE_SYMBOL(kvm_vcpu_run_vhe);
501 502 503

/* Switch to the guest for legacy non-VHE systems */
int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
504 505 506 507 508 509 510 511 512 513 514
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

	vcpu = kern_hyp_va(vcpu);

	host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

515
	__sysreg_save_state_nvhe(host_ctxt);
516 517

	__activate_traps(vcpu);
518
	__activate_vm(kern_hyp_va(vcpu->kvm));
519

520
	__hyp_vgic_restore_state(vcpu);
521 522 523 524 525 526 527
	__timer_enable_traps(vcpu);

	/*
	 * We must restore the 32-bit state before the sysregs, thanks
	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
	 */
	__sysreg32_restore_state(vcpu);
528
	__sysreg_restore_state_nvhe(guest_ctxt);
529 530
	__debug_switch_to_guest(vcpu);

531 532
	__set_guest_arch_workaround_state(vcpu);

533 534 535 536 537 538 539
	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

540 541
	__set_host_arch_workaround_state(vcpu);

542
	__sysreg_save_state_nvhe(guest_ctxt);
543
	__sysreg32_save_state(vcpu);
544
	__timer_disable_traps(vcpu);
545
	__hyp_vgic_save_state(vcpu);
546 547 548 549

	__deactivate_traps(vcpu);
	__deactivate_vm(vcpu);

550
	__sysreg_restore_state_nvhe(host_ctxt);
551

552
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
553
		__fpsimd_save_fpexc32(vcpu);
554

555 556 557 558
	/*
	 * This must come after restoring the host sysregs, since a non-VHE
	 * system may enable SPE here and make use of the TTBRs.
	 */
559
	__debug_switch_to_host(vcpu);
560 561 562

	return exit_code;
}
M
Marc Zyngier 已提交
563 564 565

static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";

566
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
567
					     struct kvm_cpu_context *__host_ctxt)
M
Marc Zyngier 已提交
568
{
569
	struct kvm_vcpu *vcpu;
570
	unsigned long str_va;
571

572 573 574 575 576 577
	vcpu = __host_ctxt->__hyp_running_vcpu;

	if (read_sysreg(vttbr_el2)) {
		__timer_disable_traps(vcpu);
		__deactivate_traps(vcpu);
		__deactivate_vm(vcpu);
578
		__sysreg_restore_state_nvhe(__host_ctxt);
579 580
	}

581 582 583 584 585 586 587 588
	/*
	 * Force the panic string to be loaded from the literal pool,
	 * making sure it is a kernel address and not a PC-relative
	 * reference.
	 */
	asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));

	__hyp_do_panic(str_va,
589 590
		       spsr,  elr,
		       read_sysreg(esr_el2),   read_sysreg_el2(far),
591
		       read_sysreg(hpfar_el2), par, vcpu);
592 593
}

594 595
static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
				 struct kvm_cpu_context *host_ctxt)
596
{
597 598 599 600
	struct kvm_vcpu *vcpu;
	vcpu = host_ctxt->__hyp_running_vcpu;

	__deactivate_traps(vcpu);
601
	sysreg_restore_host_state_vhe(host_ctxt);
602

603 604 605
	panic(__hyp_panic_string,
	      spsr,  elr,
	      read_sysreg_el2(esr),   read_sysreg_el2(far),
606
	      read_sysreg(hpfar_el2), par, vcpu);
607
}
608
NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
609

610
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
611 612 613
{
	u64 spsr = read_sysreg_el2(spsr);
	u64 elr = read_sysreg_el2(elr);
M
Marc Zyngier 已提交
614 615
	u64 par = read_sysreg(par_el1);

616 617 618 619
	if (!has_vhe())
		__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
	else
		__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
M
Marc Zyngier 已提交
620 621 622

	unreachable();
}