switch.c 15.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
#include <linux/types.h>
19
#include <linux/jump_label.h>
20
#include <uapi/linux/psci.h>
21

22 23
#include <kvm/arm_psci.h>

24
#include <asm/cpufeature.h>
25
#include <asm/kvm_asm.h>
26
#include <asm/kvm_emulate.h>
27
#include <asm/kvm_host.h>
28
#include <asm/kvm_hyp.h>
29
#include <asm/kvm_mmu.h>
30
#include <asm/fpsimd.h>
31
#include <asm/debug-monitors.h>
32
#include <asm/processor.h>
33
#include <asm/thread_info.h>
34

35 36
/* Check whether the FP regs were dirtied while in the host-side run loop: */
static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
37
{
38 39 40
	if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
		vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
				      KVM_ARM64_FP_HOST);
41

42
	return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
43 44
}

45 46 47 48 49 50 51 52 53
/* Save the 32-bit only FPSIMD system register state */
static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
	if (!vcpu_el1_is_32bit(vcpu))
		return;

	vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
}

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
{
	/*
	 * We are about to set CPTR_EL2.TFP to trap all floating point
	 * register accesses to EL2, however, the ARM ARM clearly states that
	 * traps are only taken to EL2 if the operation would not otherwise
	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
	 * it will cause an exception.
	 */
	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
		write_sysreg(1 << 30, fpexc32_el2);
		isb();
	}
}

static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
{
	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
	write_sysreg(1 << 15, hstr_el2);

	/*
	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
	 * PMSELR_EL0 to make sure it never contains the cycle
	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
	 * EL1 instead of being trapped to EL2.
	 */
	write_sysreg(0, pmselr_el0);
	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
}

static void __hyp_text __deactivate_traps_common(void)
{
	write_sysreg(0, hstr_el2);
	write_sysreg(0, pmuserenr_el0);
}

93
static void activate_traps_vhe(struct kvm_vcpu *vcpu)
94 95 96 97 98
{
	u64 val;

	val = read_sysreg(cpacr_el1);
	val |= CPACR_EL1_TTA;
99 100 101 102
	val &= ~CPACR_EL1_ZEN;
	if (!update_fp_enabled(vcpu))
		val &= ~CPACR_EL1_FPEN;

103 104
	write_sysreg(val, cpacr_el1);

105
	write_sysreg(kvm_get_hyp_vector(), vbar_el1);
106 107
}

108
static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
109 110 111
{
	u64 val;

112 113
	__activate_traps_common(vcpu);

114
	val = CPTR_EL2_DEFAULT;
115 116 117 118
	val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
	if (!update_fp_enabled(vcpu))
		val |= CPTR_EL2_TFP;

119 120 121
	write_sysreg(val, cptr_el2);
}

122 123
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
{
124
	u64 hcr = vcpu->arch.hcr_el2;
125

126
	write_sysreg(hcr, hcr_el2);
127

128
	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
129 130
		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);

131
	__activate_traps_fpsimd32(vcpu);
132 133 134 135
	if (has_vhe())
		activate_traps_vhe(vcpu);
	else
		__activate_traps_nvhe(vcpu);
136
}
137

138
static void deactivate_traps_vhe(void)
139 140 141
{
	extern char vectors[];	/* kernel exception vectors */
	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
142
	write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
143
	write_sysreg(vectors, vbar_el1);
144 145
}

146
static void __hyp_text __deactivate_traps_nvhe(void)
147
{
148 149
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

150 151
	__deactivate_traps_common();

152 153 154 155
	mdcr_el2 &= MDCR_EL2_HPMN_MASK;
	mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;

	write_sysreg(mdcr_el2, mdcr_el2);
156
	write_sysreg(HCR_RW, hcr_el2);
157 158 159 160 161
	write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
}

static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
{
162 163 164 165 166 167 168 169 170
	/*
	 * If we pended a virtual abort, preserve it until it gets
	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
	 * the crucial bit is "On taking a vSError interrupt,
	 * HCR_EL2.VSE is cleared to 0."
	 */
	if (vcpu->arch.hcr_el2 & HCR_VSE)
		vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);

171 172 173 174
	if (has_vhe())
		deactivate_traps_vhe();
	else
		__deactivate_traps_nvhe();
175 176
}

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
{
	__activate_traps_common(vcpu);
}

void deactivate_traps_vhe_put(void)
{
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

	mdcr_el2 &= MDCR_EL2_HPMN_MASK |
		    MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
		    MDCR_EL2_TPMS;

	write_sysreg(mdcr_el2, mdcr_el2);

	__deactivate_traps_common();
}

195
static void __hyp_text __activate_vm(struct kvm *kvm)
196 197 198 199 200 201 202 203 204
{
	write_sysreg(kvm->arch.vttbr, vttbr_el2);
}

static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
{
	write_sysreg(0, vttbr_el2);
}

205 206
/* Save VGICv3 state on non-VHE systems */
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
207
{
208
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
209
		__vgic_v3_save_state(vcpu);
210 211
		__vgic_v3_deactivate_traps(vcpu);
	}
212 213
}

214 215
/* Restore VGICv3 state on non_VEH systems */
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
216
{
217 218
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
		__vgic_v3_activate_traps(vcpu);
219
		__vgic_v3_restore_state(vcpu);
220
	}
221 222
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
static bool __hyp_text __true_value(void)
{
	return true;
}

static bool __hyp_text __false_value(void)
{
	return false;
}

static hyp_alternate_select(__check_arm_834220,
			    __false_value, __true_value,
			    ARM64_WORKAROUND_834220);

static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
{
	u64 par, tmp;

	/*
	 * Resolve the IPA the hard way using the guest VA.
	 *
	 * Stage-1 translation already validated the memory access
	 * rights. As such, we can use the EL1 translation regime, and
	 * don't have to distinguish between EL0 and EL1 access.
	 *
	 * We do need to save/restore PAR_EL1 though, as we haven't
	 * saved the guest context yet, and we may return early...
	 */
	par = read_sysreg(par_el1);
	asm volatile("at s1e1r, %0" : : "r" (far));
	isb();

	tmp = read_sysreg(par_el1);
	write_sysreg(par, par_el1);

	if (unlikely(tmp & 1))
		return false; /* Translation failed, back to guest */

	/* Convert PAR to HPFAR format */
	*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
	return true;
}

static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
{
268 269
	u8 ec;
	u64 esr;
270 271
	u64 hpfar, far;

272 273
	esr = vcpu->arch.fault.esr_el2;
	ec = ESR_ELx_EC(esr);
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
		return true;

	far = read_sysreg_el2(far);

	/*
	 * The HPFAR can be invalid if the stage 2 fault did not
	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
	 * bit is clear) and one of the two following cases are true:
	 *   1. The fault was due to a permission fault
	 *   2. The processor carries errata 834220
	 *
	 * Therefore, for all non S1PTW faults where we either have a
	 * permission fault or the errata workaround is enabled, we
	 * resolve the IPA using the AT instruction.
	 */
	if (!(esr & ESR_ELx_S1PTW) &&
	    (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
		if (!__translate_far_to_hpfar(far, &hpfar))
			return false;
	} else {
		hpfar = read_sysreg(hpfar_el2);
	}

	vcpu->arch.fault.far_el2 = far;
	vcpu->arch.fault.hpfar_el2 = hpfar;
	return true;
}

304 305 306 307 308
/* Skip an instruction which has been emulated. Returns true if
 * execution can continue or false if we need to exit hyp mode because
 * single-step was in effect.
 */
static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
309 310 311 312 313 314 315 316 317 318 319 320
{
	*vcpu_pc(vcpu) = read_sysreg_el2(elr);

	if (vcpu_mode_is_32bit(vcpu)) {
		vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
		kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
		write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
	} else {
		*vcpu_pc(vcpu) += 4;
	}

	write_sysreg_el2(*vcpu_pc(vcpu), elr);
321 322 323 324 325 326 327 328

	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		vcpu->arch.fault.esr_el2 =
			(ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
		return false;
	} else {
		return true;
	}
329 330
}

331 332 333
void __hyp_text __hyp_switch_fpsimd(u64 esr __always_unused,
				    struct kvm_vcpu *vcpu)
{
334 335
	struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;

336 337 338 339 340 341 342 343 344
	if (has_vhe())
		write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
			     cpacr_el1);
	else
		write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
			     cptr_el2);

	isb();

345
	if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
		/*
		 * In the SVE case, VHE is assumed: it is enforced by
		 * Kconfig and kvm_arch_init().
		 */
		if (system_supports_sve() &&
		    (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
			struct thread_struct *thread = container_of(
				host_fpsimd,
				struct thread_struct, uw.fpsimd_state);

			sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
		} else {
			__fpsimd_save_state(host_fpsimd);
		}

361 362 363
		vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
	}

364 365 366 367 368 369
	__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);

	/* Skip restoring fpexc32 for AArch64 guests */
	if (!(read_sysreg(hcr_el2) & HCR_RW))
		write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
			     fpexc32_el2);
370 371

	vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
372 373
}

374 375 376 377 378 379
/*
 * Return true when we were able to fixup the guest exit and should return to
 * the guest, false when we should restore the host state and return to the
 * main run loop.
 */
static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
380
{
381
	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
382
		vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
383

384 385 386 387 388 389
	/*
	 * We're using the raw exception code in order to only process
	 * the trap if no SError is pending. We will come back to the
	 * same PC once the SError has been injected, and replay the
	 * trapping instruction.
	 */
390 391
	if (*exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
		return true;
392

393
	if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
394
	    *exit_code == ARM_EXCEPTION_TRAP) {
395 396 397 398 399 400 401 402
		bool valid;

		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
			kvm_vcpu_dabt_isvalid(vcpu) &&
			!kvm_vcpu_dabt_isextabt(vcpu) &&
			!kvm_vcpu_dabt_iss1tw(vcpu);

403 404 405 406
		if (valid) {
			int ret = __vgic_v2_perform_cpuif_access(vcpu);

			if (ret == 1) {
407
				if (__skip_instr(vcpu))
408
					return true;
409
				else
410
					*exit_code = ARM_EXCEPTION_TRAP;
411 412 413
			}

			if (ret == -1) {
414 415 416 417 418 419 420 421
				/* Promote an illegal access to an
				 * SError. If we would be returning
				 * due to single-step clear the SS
				 * bit so handle_exit knows what to
				 * do after dealing with the error.
				 */
				if (!__skip_instr(vcpu))
					*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
422
				*exit_code = ARM_EXCEPTION_EL1_SERROR;
423
			}
424 425 426
		}
	}

427
	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
428
	    *exit_code == ARM_EXCEPTION_TRAP &&
429 430 431 432 433
	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
		int ret = __vgic_v3_perform_cpuif_access(vcpu);

		if (ret == 1) {
434
			if (__skip_instr(vcpu))
435
				return true;
436
			else
437
				*exit_code = ARM_EXCEPTION_TRAP;
438 439 440
		}
	}

441 442 443 444
	/* Return to the host kernel and handle the exit */
	return false;
}

445 446 447 448 449 450 451
/* Switch to the guest for VHE systems running in EL2 */
int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

452
	host_ctxt = vcpu->arch.host_cpu_context;
453 454 455
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

456
	sysreg_save_host_state_vhe(host_ctxt);
457 458

	__activate_traps(vcpu);
459
	__activate_vm(vcpu->kvm);
460

461
	sysreg_restore_guest_state_vhe(guest_ctxt);
462 463 464 465 466 467 468 469 470
	__debug_switch_to_guest(vcpu);

	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

471
	sysreg_save_guest_state_vhe(guest_ctxt);
472 473 474

	__deactivate_traps(vcpu);

475
	sysreg_restore_host_state_vhe(host_ctxt);
476

477
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
478
		__fpsimd_save_fpexc32(vcpu);
479 480 481 482 483 484 485 486

	__debug_switch_to_host(vcpu);

	return exit_code;
}

/* Switch to the guest for legacy non-VHE systems */
int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
487 488 489 490 491 492 493 494 495 496 497
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

	vcpu = kern_hyp_va(vcpu);

	host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

498
	__sysreg_save_state_nvhe(host_ctxt);
499 500

	__activate_traps(vcpu);
501
	__activate_vm(kern_hyp_va(vcpu->kvm));
502

503
	__hyp_vgic_restore_state(vcpu);
504 505 506 507 508 509 510
	__timer_enable_traps(vcpu);

	/*
	 * We must restore the 32-bit state before the sysregs, thanks
	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
	 */
	__sysreg32_restore_state(vcpu);
511
	__sysreg_restore_state_nvhe(guest_ctxt);
512 513 514 515 516 517 518 519 520
	__debug_switch_to_guest(vcpu);

	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

521
	__sysreg_save_state_nvhe(guest_ctxt);
522
	__sysreg32_save_state(vcpu);
523
	__timer_disable_traps(vcpu);
524
	__hyp_vgic_save_state(vcpu);
525 526 527 528

	__deactivate_traps(vcpu);
	__deactivate_vm(vcpu);

529
	__sysreg_restore_state_nvhe(host_ctxt);
530

531
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
532
		__fpsimd_save_fpexc32(vcpu);
533

534 535 536 537
	/*
	 * This must come after restoring the host sysregs, since a non-VHE
	 * system may enable SPE here and make use of the TTBRs.
	 */
538
	__debug_switch_to_host(vcpu);
539 540 541

	return exit_code;
}
M
Marc Zyngier 已提交
542 543 544

static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";

545
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
546
					     struct kvm_cpu_context *__host_ctxt)
M
Marc Zyngier 已提交
547
{
548
	struct kvm_vcpu *vcpu;
549
	unsigned long str_va;
550

551 552 553 554 555 556
	vcpu = __host_ctxt->__hyp_running_vcpu;

	if (read_sysreg(vttbr_el2)) {
		__timer_disable_traps(vcpu);
		__deactivate_traps(vcpu);
		__deactivate_vm(vcpu);
557
		__sysreg_restore_state_nvhe(__host_ctxt);
558 559
	}

560 561 562 563 564 565 566 567
	/*
	 * Force the panic string to be loaded from the literal pool,
	 * making sure it is a kernel address and not a PC-relative
	 * reference.
	 */
	asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));

	__hyp_do_panic(str_va,
568 569
		       spsr,  elr,
		       read_sysreg(esr_el2),   read_sysreg_el2(far),
570
		       read_sysreg(hpfar_el2), par, vcpu);
571 572
}

573 574
static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
				 struct kvm_cpu_context *host_ctxt)
575
{
576 577 578 579
	struct kvm_vcpu *vcpu;
	vcpu = host_ctxt->__hyp_running_vcpu;

	__deactivate_traps(vcpu);
580
	sysreg_restore_host_state_vhe(host_ctxt);
581

582 583 584
	panic(__hyp_panic_string,
	      spsr,  elr,
	      read_sysreg_el2(esr),   read_sysreg_el2(far),
585
	      read_sysreg(hpfar_el2), par, vcpu);
586 587
}

588
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
589 590 591
{
	u64 spsr = read_sysreg_el2(spsr);
	u64 elr = read_sysreg_el2(elr);
M
Marc Zyngier 已提交
592 593
	u64 par = read_sysreg(par_el1);

594 595 596 597
	if (!has_vhe())
		__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
	else
		__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
M
Marc Zyngier 已提交
598 599 600

	unreachable();
}