switch.c 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
#include <linux/arm-smccc.h>
19
#include <linux/types.h>
20
#include <linux/jump_label.h>
21
#include <uapi/linux/psci.h>
22

23 24
#include <kvm/arm_psci.h>

25
#include <asm/cpufeature.h>
26
#include <asm/kvm_asm.h>
27
#include <asm/kvm_emulate.h>
28
#include <asm/kvm_host.h>
29
#include <asm/kvm_hyp.h>
30
#include <asm/kvm_mmu.h>
31
#include <asm/fpsimd.h>
32
#include <asm/debug-monitors.h>
33
#include <asm/processor.h>
34
#include <asm/thread_info.h>
35

36 37
/* Check whether the FP regs were dirtied while in the host-side run loop: */
static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
38
{
39 40 41
	if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
		vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
				      KVM_ARM64_FP_HOST);
42

43
	return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
44 45
}

46 47 48 49 50 51 52 53 54
/* Save the 32-bit only FPSIMD system register state */
static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
	if (!vcpu_el1_is_32bit(vcpu))
		return;

	vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
{
	/*
	 * We are about to set CPTR_EL2.TFP to trap all floating point
	 * register accesses to EL2, however, the ARM ARM clearly states that
	 * traps are only taken to EL2 if the operation would not otherwise
	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
	 * it will cause an exception.
	 */
	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
		write_sysreg(1 << 30, fpexc32_el2);
		isb();
	}
}

static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
{
	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
	write_sysreg(1 << 15, hstr_el2);

	/*
	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
	 * PMSELR_EL0 to make sure it never contains the cycle
	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
	 * EL1 instead of being trapped to EL2.
	 */
	write_sysreg(0, pmselr_el0);
	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
}

static void __hyp_text __deactivate_traps_common(void)
{
	write_sysreg(0, hstr_el2);
	write_sysreg(0, pmuserenr_el0);
}

94
static void activate_traps_vhe(struct kvm_vcpu *vcpu)
95 96 97 98 99
{
	u64 val;

	val = read_sysreg(cpacr_el1);
	val |= CPACR_EL1_TTA;
100 101 102 103
	val &= ~CPACR_EL1_ZEN;
	if (!update_fp_enabled(vcpu))
		val &= ~CPACR_EL1_FPEN;

104 105
	write_sysreg(val, cpacr_el1);

106
	write_sysreg(kvm_get_hyp_vector(), vbar_el1);
107 108
}

109
static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
110 111 112
{
	u64 val;

113 114
	__activate_traps_common(vcpu);

115
	val = CPTR_EL2_DEFAULT;
116 117 118 119
	val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
	if (!update_fp_enabled(vcpu))
		val |= CPTR_EL2_TFP;

120 121 122
	write_sysreg(val, cptr_el2);
}

123 124
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
{
125
	u64 hcr = vcpu->arch.hcr_el2;
126

127
	write_sysreg(hcr, hcr_el2);
128

129
	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
130 131
		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);

132
	__activate_traps_fpsimd32(vcpu);
133 134 135 136
	if (has_vhe())
		activate_traps_vhe(vcpu);
	else
		__activate_traps_nvhe(vcpu);
137
}
138

139
static void deactivate_traps_vhe(void)
140 141 142
{
	extern char vectors[];	/* kernel exception vectors */
	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
143
	write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
144
	write_sysreg(vectors, vbar_el1);
145 146
}

147
static void __hyp_text __deactivate_traps_nvhe(void)
148
{
149 150
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

151 152
	__deactivate_traps_common();

153 154 155 156
	mdcr_el2 &= MDCR_EL2_HPMN_MASK;
	mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;

	write_sysreg(mdcr_el2, mdcr_el2);
157
	write_sysreg(HCR_RW, hcr_el2);
158 159 160 161 162
	write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
}

static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
{
163 164 165 166 167 168 169 170 171
	/*
	 * If we pended a virtual abort, preserve it until it gets
	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
	 * the crucial bit is "On taking a vSError interrupt,
	 * HCR_EL2.VSE is cleared to 0."
	 */
	if (vcpu->arch.hcr_el2 & HCR_VSE)
		vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);

172 173 174 175
	if (has_vhe())
		deactivate_traps_vhe();
	else
		__deactivate_traps_nvhe();
176 177
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
{
	__activate_traps_common(vcpu);
}

void deactivate_traps_vhe_put(void)
{
	u64 mdcr_el2 = read_sysreg(mdcr_el2);

	mdcr_el2 &= MDCR_EL2_HPMN_MASK |
		    MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
		    MDCR_EL2_TPMS;

	write_sysreg(mdcr_el2, mdcr_el2);

	__deactivate_traps_common();
}

196
static void __hyp_text __activate_vm(struct kvm *kvm)
197 198 199 200 201 202 203 204 205
{
	write_sysreg(kvm->arch.vttbr, vttbr_el2);
}

static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
{
	write_sysreg(0, vttbr_el2);
}

206 207
/* Save VGICv3 state on non-VHE systems */
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
208
{
209
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
210
		__vgic_v3_save_state(vcpu);
211 212
		__vgic_v3_deactivate_traps(vcpu);
	}
213 214
}

215 216
/* Restore VGICv3 state on non_VEH systems */
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
217
{
218 219
	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
		__vgic_v3_activate_traps(vcpu);
220
		__vgic_v3_restore_state(vcpu);
221
	}
222 223
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
static bool __hyp_text __true_value(void)
{
	return true;
}

static bool __hyp_text __false_value(void)
{
	return false;
}

static hyp_alternate_select(__check_arm_834220,
			    __false_value, __true_value,
			    ARM64_WORKAROUND_834220);

static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
{
	u64 par, tmp;

	/*
	 * Resolve the IPA the hard way using the guest VA.
	 *
	 * Stage-1 translation already validated the memory access
	 * rights. As such, we can use the EL1 translation regime, and
	 * don't have to distinguish between EL0 and EL1 access.
	 *
	 * We do need to save/restore PAR_EL1 though, as we haven't
	 * saved the guest context yet, and we may return early...
	 */
	par = read_sysreg(par_el1);
	asm volatile("at s1e1r, %0" : : "r" (far));
	isb();

	tmp = read_sysreg(par_el1);
	write_sysreg(par, par_el1);

	if (unlikely(tmp & 1))
		return false; /* Translation failed, back to guest */

	/* Convert PAR to HPFAR format */
	*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
	return true;
}

static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
{
269 270
	u8 ec;
	u64 esr;
271 272
	u64 hpfar, far;

273 274
	esr = vcpu->arch.fault.esr_el2;
	ec = ESR_ELx_EC(esr);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
		return true;

	far = read_sysreg_el2(far);

	/*
	 * The HPFAR can be invalid if the stage 2 fault did not
	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
	 * bit is clear) and one of the two following cases are true:
	 *   1. The fault was due to a permission fault
	 *   2. The processor carries errata 834220
	 *
	 * Therefore, for all non S1PTW faults where we either have a
	 * permission fault or the errata workaround is enabled, we
	 * resolve the IPA using the AT instruction.
	 */
	if (!(esr & ESR_ELx_S1PTW) &&
	    (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
		if (!__translate_far_to_hpfar(far, &hpfar))
			return false;
	} else {
		hpfar = read_sysreg(hpfar_el2);
	}

	vcpu->arch.fault.far_el2 = far;
	vcpu->arch.fault.hpfar_el2 = hpfar;
	return true;
}

305 306 307 308 309
/* Skip an instruction which has been emulated. Returns true if
 * execution can continue or false if we need to exit hyp mode because
 * single-step was in effect.
 */
static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
310 311 312 313 314 315 316 317 318 319 320 321
{
	*vcpu_pc(vcpu) = read_sysreg_el2(elr);

	if (vcpu_mode_is_32bit(vcpu)) {
		vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
		kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
		write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
	} else {
		*vcpu_pc(vcpu) += 4;
	}

	write_sysreg_el2(*vcpu_pc(vcpu), elr);
322 323 324 325 326 327 328 329

	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		vcpu->arch.fault.esr_el2 =
			(ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
		return false;
	} else {
		return true;
	}
330 331
}

332
static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
333
{
334 335
	struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;

336 337 338 339 340 341 342 343 344
	if (has_vhe())
		write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
			     cpacr_el1);
	else
		write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
			     cptr_el2);

	isb();

345
	if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
		/*
		 * In the SVE case, VHE is assumed: it is enforced by
		 * Kconfig and kvm_arch_init().
		 */
		if (system_supports_sve() &&
		    (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
			struct thread_struct *thread = container_of(
				host_fpsimd,
				struct thread_struct, uw.fpsimd_state);

			sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
		} else {
			__fpsimd_save_state(host_fpsimd);
		}

361 362 363
		vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
	}

364 365 366 367 368 369
	__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);

	/* Skip restoring fpexc32 for AArch64 guests */
	if (!(read_sysreg(hcr_el2) & HCR_RW))
		write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
			     fpexc32_el2);
370 371

	vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
372 373

	return true;
374 375
}

376 377 378 379 380 381
/*
 * Return true when we were able to fixup the guest exit and should return to
 * the guest, false when we should restore the host state and return to the
 * main run loop.
 */
static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
382
{
383
	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
384
		vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
385

386 387 388 389 390 391
	/*
	 * We're using the raw exception code in order to only process
	 * the trap if no SError is pending. We will come back to the
	 * same PC once the SError has been injected, and replay the
	 * trapping instruction.
	 */
392 393 394
	if (*exit_code != ARM_EXCEPTION_TRAP)
		goto exit;

395 396 397 398 399 400 401 402 403 404
	/*
	 * We trap the first access to the FP/SIMD to save the host context
	 * and restore the guest context lazily.
	 * If FP/SIMD is not implemented, handle the trap and inject an
	 * undefined instruction exception to the guest.
	 */
	if (system_supports_fpsimd() &&
	    kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
		return __hyp_switch_fpsimd(vcpu);

405
	if (!__populate_fault_info(vcpu))
406
		return true;
407

408
	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
409 410 411 412 413 414 415 416
		bool valid;

		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
			kvm_vcpu_dabt_isvalid(vcpu) &&
			!kvm_vcpu_dabt_isextabt(vcpu) &&
			!kvm_vcpu_dabt_iss1tw(vcpu);

417 418 419
		if (valid) {
			int ret = __vgic_v2_perform_cpuif_access(vcpu);

420 421
			if (ret ==  1 && __skip_instr(vcpu))
				return true;
422 423

			if (ret == -1) {
424 425 426 427 428 429 430 431
				/* Promote an illegal access to an
				 * SError. If we would be returning
				 * due to single-step clear the SS
				 * bit so handle_exit knows what to
				 * do after dealing with the error.
				 */
				if (!__skip_instr(vcpu))
					*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
432
				*exit_code = ARM_EXCEPTION_EL1_SERROR;
433
			}
434 435

			goto exit;
436 437 438
		}
	}

439 440 441 442 443
	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
		int ret = __vgic_v3_perform_cpuif_access(vcpu);

444 445
		if (ret == 1 && __skip_instr(vcpu))
			return true;
446 447
	}

448
exit:
449 450 451 452
	/* Return to the host kernel and handle the exit */
	return false;
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
{
	if (!cpus_have_const_cap(ARM64_SSBD))
		return false;

	return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
}

static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
	/*
	 * The host runs with the workaround always present. If the
	 * guest wants it disabled, so be it...
	 */
	if (__needs_ssbd_off(vcpu) &&
	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
#endif
}

static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
	/*
	 * If the guest has disabled the workaround, bring it back on.
	 */
	if (__needs_ssbd_off(vcpu) &&
	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
#endif
}

486 487 488 489 490 491 492
/* Switch to the guest for VHE systems running in EL2 */
int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

493
	host_ctxt = vcpu->arch.host_cpu_context;
494 495 496
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

497
	sysreg_save_host_state_vhe(host_ctxt);
498 499

	__activate_traps(vcpu);
500
	__activate_vm(vcpu->kvm);
501

502
	sysreg_restore_guest_state_vhe(guest_ctxt);
503 504
	__debug_switch_to_guest(vcpu);

505 506
	__set_guest_arch_workaround_state(vcpu);

507 508 509 510 511 512 513
	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

514 515
	__set_host_arch_workaround_state(vcpu);

516
	sysreg_save_guest_state_vhe(guest_ctxt);
517 518 519

	__deactivate_traps(vcpu);

520
	sysreg_restore_host_state_vhe(host_ctxt);
521

522
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
523
		__fpsimd_save_fpexc32(vcpu);
524 525 526 527 528 529 530 531

	__debug_switch_to_host(vcpu);

	return exit_code;
}

/* Switch to the guest for legacy non-VHE systems */
int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
532 533 534 535 536 537 538 539 540 541 542
{
	struct kvm_cpu_context *host_ctxt;
	struct kvm_cpu_context *guest_ctxt;
	u64 exit_code;

	vcpu = kern_hyp_va(vcpu);

	host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
	host_ctxt->__hyp_running_vcpu = vcpu;
	guest_ctxt = &vcpu->arch.ctxt;

543
	__sysreg_save_state_nvhe(host_ctxt);
544 545

	__activate_traps(vcpu);
546
	__activate_vm(kern_hyp_va(vcpu->kvm));
547

548
	__hyp_vgic_restore_state(vcpu);
549 550 551 552 553 554 555
	__timer_enable_traps(vcpu);

	/*
	 * We must restore the 32-bit state before the sysregs, thanks
	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
	 */
	__sysreg32_restore_state(vcpu);
556
	__sysreg_restore_state_nvhe(guest_ctxt);
557 558
	__debug_switch_to_guest(vcpu);

559 560
	__set_guest_arch_workaround_state(vcpu);

561 562 563 564 565 566 567
	do {
		/* Jump in the fire! */
		exit_code = __guest_enter(vcpu, host_ctxt);

		/* And we're baaack! */
	} while (fixup_guest_exit(vcpu, &exit_code));

568 569
	__set_host_arch_workaround_state(vcpu);

570
	__sysreg_save_state_nvhe(guest_ctxt);
571
	__sysreg32_save_state(vcpu);
572
	__timer_disable_traps(vcpu);
573
	__hyp_vgic_save_state(vcpu);
574 575 576 577

	__deactivate_traps(vcpu);
	__deactivate_vm(vcpu);

578
	__sysreg_restore_state_nvhe(host_ctxt);
579

580
	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
581
		__fpsimd_save_fpexc32(vcpu);
582

583 584 585 586
	/*
	 * This must come after restoring the host sysregs, since a non-VHE
	 * system may enable SPE here and make use of the TTBRs.
	 */
587
	__debug_switch_to_host(vcpu);
588 589 590

	return exit_code;
}
M
Marc Zyngier 已提交
591 592 593

static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";

594
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
595
					     struct kvm_cpu_context *__host_ctxt)
M
Marc Zyngier 已提交
596
{
597
	struct kvm_vcpu *vcpu;
598
	unsigned long str_va;
599

600 601 602 603 604 605
	vcpu = __host_ctxt->__hyp_running_vcpu;

	if (read_sysreg(vttbr_el2)) {
		__timer_disable_traps(vcpu);
		__deactivate_traps(vcpu);
		__deactivate_vm(vcpu);
606
		__sysreg_restore_state_nvhe(__host_ctxt);
607 608
	}

609 610 611 612 613 614 615 616
	/*
	 * Force the panic string to be loaded from the literal pool,
	 * making sure it is a kernel address and not a PC-relative
	 * reference.
	 */
	asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));

	__hyp_do_panic(str_va,
617 618
		       spsr,  elr,
		       read_sysreg(esr_el2),   read_sysreg_el2(far),
619
		       read_sysreg(hpfar_el2), par, vcpu);
620 621
}

622 623
static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
				 struct kvm_cpu_context *host_ctxt)
624
{
625 626 627 628
	struct kvm_vcpu *vcpu;
	vcpu = host_ctxt->__hyp_running_vcpu;

	__deactivate_traps(vcpu);
629
	sysreg_restore_host_state_vhe(host_ctxt);
630

631 632 633
	panic(__hyp_panic_string,
	      spsr,  elr,
	      read_sysreg_el2(esr),   read_sysreg_el2(far),
634
	      read_sysreg(hpfar_el2), par, vcpu);
635 636
}

637
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
638 639 640
{
	u64 spsr = read_sysreg_el2(spsr);
	u64 elr = read_sysreg_el2(elr);
M
Marc Zyngier 已提交
641 642
	u64 par = read_sysreg(par_el1);

643 644 645 646
	if (!has_vhe())
		__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
	else
		__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
M
Marc Zyngier 已提交
647 648 649

	unreachable();
}