cpuset.c 77.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46
#include <linux/sched.h>
47
#include <linux/sched/mm.h>
48
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
49
#include <linux/seq_file.h>
50
#include <linux/security.h>
L
Linus Torvalds 已提交
51 52 53 54 55
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
56
#include <linux/time64.h>
L
Linus Torvalds 已提交
57 58
#include <linux/backing-dev.h>
#include <linux/sort.h>
59
#include <linux/oom.h>
60
#include <linux/sched/isolation.h>
61
#include <linux/uaccess.h>
A
Arun Sharma 已提交
62
#include <linux/atomic.h>
63
#include <linux/mutex.h>
64
#include <linux/cgroup.h>
65
#include <linux/wait.h>
L
Linus Torvalds 已提交
66

67
DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
68
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
69

70 71 72 73 74
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
75
	time64_t time;		/* clock (secs) when val computed */
76 77 78
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
79
struct cpuset {
80 81
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
82
	unsigned long flags;		/* "unsigned long" so bitops work */
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

104 105 106 107 108 109 110
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
111

112 113 114 115 116 117 118 119 120 121 122 123
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

124
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
125

126 127 128 129 130 131
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
132 133
	/* partition number for rebuild_sched_domains() */
	int pn;
134

135 136
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
137 138
};

139
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
140
{
141
	return css ? container_of(css, struct cpuset, css) : NULL;
142 143 144 145 146
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
147
	return css_cs(task_css(task, cpuset_cgrp_id));
148 149
}

150
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
151
{
T
Tejun Heo 已提交
152
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
153 154
}

155 156 157 158 159 160 161 162 163 164 165 166 167
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
168 169
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
170
	CS_ONLINE,
L
Linus Torvalds 已提交
171 172
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
173
	CS_MEM_HARDWALL,
174
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
175
	CS_SCHED_LOAD_BALANCE,
176 177
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
178 179 180
} cpuset_flagbits_t;

/* convenient tests for these bits */
181
static inline bool is_cpuset_online(struct cpuset *cs)
T
Tejun Heo 已提交
182
{
183
	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
T
Tejun Heo 已提交
184 185
}

L
Linus Torvalds 已提交
186 187
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
188
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
189 190 191 192
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
193
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
194 195
}

196 197 198 199 200
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
201 202 203 204 205
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

206 207
static inline int is_memory_migrate(const struct cpuset *cs)
{
208
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
209 210
}

211 212 213 214 215 216 217 218 219 220
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
221
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
222 223
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
224 225
};

226 227 228
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
229
 * @pos_css: used for iteration
230 231 232 233 234
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
235 236 237
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
238

239 240 241
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
242
 * @pos_css: used for iteration
243 244 245
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
246
 * with RCU read locked.  The caller may modify @pos_css by calling
247 248
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
249
 */
250 251 252
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
253

L
Linus Torvalds 已提交
254
/*
255 256 257 258
 * There are two global locks guarding cpuset structures - cpuset_mutex and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.
259
 *
260
 * A task must hold both locks to modify cpusets.  If a task holds
261
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
262
 * is the only task able to also acquire callback_lock and be able to
263 264 265
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
266 267
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
268
 * everyone else.
269 270
 *
 * Calls to the kernel memory allocator can not be made while holding
271
 * callback_lock, as that would risk double tripping on callback_lock
272 273 274
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
275
 * If a task is only holding callback_lock, then it has read-only
276 277
 * access to cpusets.
 *
278 279 280
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
281
 *
282
 * The cpuset_common_file_read() handlers only hold callback_lock across
283 284 285
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
286 287
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
288 289
 */

290
static DEFINE_MUTEX(cpuset_mutex);
291
static DEFINE_SPINLOCK(callback_lock);
292

293 294
static struct workqueue_struct *cpuset_migrate_mm_wq;

295 296 297 298 299 300
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

301 302
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

303 304 305 306 307 308 309 310 311 312
/*
 * Cgroup v2 behavior is used when on default hierarchy or the
 * cgroup_v2_mode flag is set.
 */
static inline bool is_in_v2_mode(void)
{
	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
}

313 314
/*
 * This is ugly, but preserves the userspace API for existing cpuset
315
 * users. If someone tries to mount the "cpuset" filesystem, we
316 317
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
318 319
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
320
{
321
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
322
	struct dentry *ret = ERR_PTR(-ENODEV);
323 324 325 326
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
327 328
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
329 330 331
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
332 333 334 335
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
336
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
337 338 339
};

/*
340
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
341
 * are online.  If none are online, walk up the cpuset hierarchy
342
 * until we find one that does have some online cpus.
L
Linus Torvalds 已提交
343 344
 *
 * One way or another, we guarantee to return some non-empty subset
345
 * of cpu_online_mask.
L
Linus Torvalds 已提交
346
 *
347
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
348
 */
349
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
350
{
351
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
T
Tejun Heo 已提交
352
		cs = parent_cs(cs);
353 354 355 356 357 358 359 360 361 362 363 364
		if (unlikely(!cs)) {
			/*
			 * The top cpuset doesn't have any online cpu as a
			 * consequence of a race between cpuset_hotplug_work
			 * and cpu hotplug notifier.  But we know the top
			 * cpuset's effective_cpus is on its way to to be
			 * identical to cpu_online_mask.
			 */
			cpumask_copy(pmask, cpu_online_mask);
			return;
		}
	}
365
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
366 367 368 369
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
370 371
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
372
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
373 374
 *
 * One way or another, we guarantee to return some non-empty subset
375
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
376
 *
377
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
378
 */
379
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
380
{
381
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
382
		cs = parent_cs(cs);
383
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
384 385
}

386 387 388
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
389
 * Call with callback_lock or cpuset_mutex held.
390 391 392 393 394
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
395
		task_set_spread_page(tsk);
396
	else
397 398
		task_clear_spread_page(tsk);

399
	if (is_spread_slab(cs))
400
		task_set_spread_slab(tsk);
401
	else
402
		task_clear_spread_slab(tsk);
403 404
}

L
Linus Torvalds 已提交
405 406 407 408 409
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
410
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
411 412 413 414
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
415
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
416 417 418 419 420
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

421 422 423 424
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
425
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
426
{
427 428 429 430 431 432
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

433 434 435 436
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
437

438 439
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
440
	return trial;
441 442 443 444 445 446

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
447 448 449 450 451 452 453 454
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
455
	free_cpumask_var(trial->effective_cpus);
456
	free_cpumask_var(trial->cpus_allowed);
457 458 459
	kfree(trial);
}

L
Linus Torvalds 已提交
460 461 462 463 464 465 466
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
467
 * cpuset_mutex held.
L
Linus Torvalds 已提交
468 469 470 471 472 473 474 475 476 477 478 479
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

480
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
481
{
482
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
483
	struct cpuset *c, *par;
484 485 486
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
487 488

	/* Each of our child cpusets must be a subset of us */
489
	ret = -EBUSY;
490
	cpuset_for_each_child(c, css, cur)
491 492
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
493 494

	/* Remaining checks don't apply to root cpuset */
495
	ret = 0;
496
	if (cur == &top_cpuset)
497
		goto out;
L
Linus Torvalds 已提交
498

T
Tejun Heo 已提交
499
	par = parent_cs(cur);
500

501
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
502
	ret = -EACCES;
503
	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
504
		goto out;
L
Linus Torvalds 已提交
505

506 507 508 509
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
510
	ret = -EINVAL;
511
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
512 513
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
514
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
515
			goto out;
L
Linus Torvalds 已提交
516 517 518
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
519
			goto out;
L
Linus Torvalds 已提交
520 521
	}

522 523
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
524
	 * be changed to have empty cpus_allowed or mems_allowed.
525
	 */
526
	ret = -ENOSPC;
527
	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
528 529 530 531 532 533 534
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
535

536 537 538 539 540 541 542 543 544 545
	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

546 547 548 549
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
550 551
}

552
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
553
/*
554
 * Helper routine for generate_sched_domains().
555
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
556 557 558
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
559
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
560 561
}

562 563 564 565 566 567 568 569
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

570 571
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
572
{
573
	struct cpuset *cp;
574
	struct cgroup_subsys_state *pos_css;
575

576
	rcu_read_lock();
577
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
578 579
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
580
			pos_css = css_rightmost_descendant(pos_css);
581
			continue;
582
		}
583 584 585 586

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
587
	rcu_read_unlock();
588 589
}

P
Paolo Bonzini 已提交
590 591 592 593 594 595 596
/* Must be called with cpuset_mutex held.  */
static inline int nr_cpusets(void)
{
	/* jump label reference count + the top-level cpuset */
	return static_key_count(&cpusets_enabled_key.key) + 1;
}

P
Paul Jackson 已提交
597
/*
598 599 600 601 602
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
603
 * The output of this function needs to be passed to kernel/sched/core.c
604 605 606
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
607
 *
608
 * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt
P
Paul Jackson 已提交
609 610 611 612 613 614 615
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
616
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
617 618
 *
 * The three key local variables below are:
619
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
620 621 622 623 624 625 626 627 628 629 630 631
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
632
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
651
static int generate_sched_domains(cpumask_var_t **domains,
652
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
653 654 655 656 657
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
658
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
659
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
660
	int ndoms = 0;		/* number of sched domains in result */
661
	int nslot;		/* next empty doms[] struct cpumask slot */
662
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
663 664

	doms = NULL;
665
	dattr = NULL;
666
	csa = NULL;
P
Paul Jackson 已提交
667 668 669

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
670 671
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
672
		if (!doms)
673 674
			goto done;

675 676 677
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
678
			update_domain_attr_tree(dattr, &top_cpuset);
679
		}
680
		cpumask_and(doms[0], top_cpuset.effective_cpus,
681
			    housekeeping_cpumask(HK_FLAG_DOMAIN));
682 683

		goto done;
P
Paul Jackson 已提交
684 685
	}

686
	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
687 688 689 690
	if (!csa)
		goto done;
	csn = 0;

691
	rcu_read_lock();
692
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
693 694
		if (cp == &top_cpuset)
			continue;
695
		/*
696 697 698 699 700 701
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
702
		 */
703
		if (!cpumask_empty(cp->cpus_allowed) &&
704
		    !(is_sched_load_balance(cp) &&
705 706
		      cpumask_intersects(cp->cpus_allowed,
					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
707
			continue;
708

709 710 711 712
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
713
		pos_css = css_rightmost_descendant(pos_css);
714 715
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

744 745 746 747
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
748
	doms = alloc_sched_domains(ndoms);
749
	if (!doms)
750 751 752 753 754 755
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
756 757
	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
			      GFP_KERNEL);
P
Paul Jackson 已提交
758 759 760

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
761
		struct cpumask *dp;
P
Paul Jackson 已提交
762 763
		int apn = a->pn;

764 765 766 767 768
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

769
		dp = doms[nslot];
770 771 772 773

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
774 775
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
776
				warnings--;
P
Paul Jackson 已提交
777
			}
778 779
			continue;
		}
P
Paul Jackson 已提交
780

781
		cpumask_clear(dp);
782 783 784 785 786 787
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
788
				cpumask_or(dp, dp, b->effective_cpus);
789
				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
790 791 792 793 794
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
795 796
			}
		}
797
		nslot++;
P
Paul Jackson 已提交
798 799 800
	}
	BUG_ON(nslot != ndoms);

801 802 803
done:
	kfree(csa);

804 805 806 807 808 809 810
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

811 812 813 814 815 816 817 818
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
819 820 821 822 823
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
824
 *
825
 * Call with cpuset_mutex held.  Takes get_online_cpus().
826
 */
827
static void rebuild_sched_domains_locked(void)
828 829
{
	struct sched_domain_attr *attr;
830
	cpumask_var_t *doms;
831 832
	int ndoms;

833
	lockdep_assert_held(&cpuset_mutex);
834
	get_online_cpus();
835

836 837 838 839 840
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
841
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
842 843
		goto out;

844 845 846 847 848
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
849
out:
850
	put_online_cpus();
851
}
852
#else /* !CONFIG_SMP */
853
static void rebuild_sched_domains_locked(void)
854 855 856
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
857

858 859
void rebuild_sched_domains(void)
{
860
	mutex_lock(&cpuset_mutex);
861
	rebuild_sched_domains_locked();
862
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
863 864
}

865 866 867 868
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
869 870 871
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
872
 */
873
static void update_tasks_cpumask(struct cpuset *cs)
874
{
875 876 877
	struct css_task_iter it;
	struct task_struct *task;

878
	css_task_iter_start(&cs->css, 0, &it);
879
	while ((task = css_task_iter_next(&it)))
880
		set_cpus_allowed_ptr(task, cs->effective_cpus);
881
	css_task_iter_end(&it);
882 883
}

884
/*
885 886 887 888 889 890
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
891
 *
892
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
893 894 895
 *
 * Called with cpuset_mutex held
 */
896
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
897 898
{
	struct cpuset *cp;
899
	struct cpumask added, deleted, old_cpus;
900
	struct cgroup_subsys_state *pos_css;
901
	bool need_rebuild_sched_domains = false;
902 903

	rcu_read_lock();
904 905 906 907 908
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

909 910 911 912
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
913
		if (is_in_v2_mode() && cpumask_empty(new_cpus))
914 915
			cpumask_copy(new_cpus, parent->effective_cpus);

916 917 918 919 920
		if (cpumask_empty(cp->effective_cpus))
			cpumask_copy(&old_cpus, parent->effective_cpus);
		else
			cpumask_copy(&old_cpus, cp->effective_cpus);

921 922 923 924
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
925
		}
926

927
		if (!css_tryget_online(&cp->css))
928 929 930
			continue;
		rcu_read_unlock();

931
		spin_lock_irq(&callback_lock);
932
		cpumask_copy(cp->effective_cpus, new_cpus);
933
		spin_unlock_irq(&callback_lock);
934

935
		WARN_ON(!is_in_v2_mode() &&
936 937
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

938 939 940 941
		/* add = new - old = new & (~old) */
		cpumask_andnot(&added, new_cpus, &old_cpus);
		cpuacct_cpuset_changed(cs->css.cgroup, NULL, &added);

942
		update_tasks_cpumask(cp);
943

944 945 946 947
		/* deleted = old - new = old & (~new) */
		cpumask_andnot(&deleted, &old_cpus, new_cpus);
		cpuacct_cpuset_changed(cs->css.cgroup, &deleted, NULL);

948 949 950 951 952 953 954 955
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

956 957 958 959
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
960 961 962

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
963 964
}

C
Cliff Wickman 已提交
965 966 967
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
968
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
969 970
 * @buf: buffer of cpu numbers written to this cpuset
 */
971 972
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
973
{
C
Cliff Wickman 已提交
974
	int retval;
L
Linus Torvalds 已提交
975

976
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
977 978 979
	if (cs == &top_cpuset)
		return -EACCES;

980
	/*
981
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
982 983 984
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
985
	 */
986
	if (!*buf) {
987
		cpumask_clear(trialcs->cpus_allowed);
988
	} else {
989
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
990 991
		if (retval < 0)
			return retval;
992

993 994
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
995
			return -EINVAL;
996
	}
P
Paul Jackson 已提交
997

P
Paul Menage 已提交
998
	/* Nothing to do if the cpus didn't change */
999
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
1000
		return 0;
C
Cliff Wickman 已提交
1001

1002 1003 1004 1005
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

1006
	spin_lock_irq(&callback_lock);
1007
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1008
	spin_unlock_irq(&callback_lock);
P
Paul Jackson 已提交
1009

1010 1011
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
1012
	return 0;
L
Linus Torvalds 已提交
1013 1014
}

1015
/*
1016 1017 1018 1019 1020
 * Migrate memory region from one set of nodes to another.  This is
 * performed asynchronously as it can be called from process migration path
 * holding locks involved in process management.  All mm migrations are
 * performed in the queued order and can be waited for by flushing
 * cpuset_migrate_mm_wq.
1021 1022
 */

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
struct cpuset_migrate_mm_work {
	struct work_struct	work;
	struct mm_struct	*mm;
	nodemask_t		from;
	nodemask_t		to;
};

static void cpuset_migrate_mm_workfn(struct work_struct *work)
{
	struct cpuset_migrate_mm_work *mwork =
		container_of(work, struct cpuset_migrate_mm_work, work);

	/* on a wq worker, no need to worry about %current's mems_allowed */
	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
	mmput(mwork->mm);
	kfree(mwork);
}

1041 1042 1043
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
1044
	struct cpuset_migrate_mm_work *mwork;
1045

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
	if (mwork) {
		mwork->mm = mm;
		mwork->from = *from;
		mwork->to = *to;
		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
		queue_work(cpuset_migrate_mm_wq, &mwork->work);
	} else {
		mmput(mm);
	}
}
1057

1058
static void cpuset_post_attach(void)
1059 1060
{
	flush_workqueue(cpuset_migrate_mm_wq);
1061 1062
}

1063
/*
1064 1065 1066 1067
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
1068 1069 1070 1071
 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
 * and rebind an eventual tasks' mempolicy. If the task is allocating in
 * parallel, it might temporarily see an empty intersection, which results in
 * a seqlock check and retry before OOM or allocation failure.
1072 1073 1074 1075
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1076 1077
	task_lock(tsk);

1078 1079
	local_irq_disable();
	write_seqcount_begin(&tsk->mems_allowed_seq);
1080

1081
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1082
	mpol_rebind_task(tsk, newmems);
1083
	tsk->mems_allowed = *newmems;
1084

1085 1086
	write_seqcount_end(&tsk->mems_allowed_seq);
	local_irq_enable();
1087

1088
	task_unlock(tsk);
1089 1090
}

1091 1092
static void *cpuset_being_rebound;

1093 1094 1095 1096
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1097 1098 1099
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1100
 */
1101
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1102
{
1103
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1104 1105
	struct css_task_iter it;
	struct task_struct *task;
1106

1107
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1108

1109
	guarantee_online_mems(cs, &newmems);
1110

1111
	/*
1112 1113 1114 1115
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1116
	 * the global cpuset_mutex, we know that no other rebind effort
1117
	 * will be contending for the global variable cpuset_being_rebound.
1118
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1119
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1120
	 */
1121
	css_task_iter_start(&cs->css, 0, &it);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1137 1138
		else
			mmput(mm);
1139 1140
	}
	css_task_iter_end(&it);
1141

1142 1143 1144 1145 1146 1147
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1148
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1149
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1150 1151
}

1152
/*
1153 1154 1155
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1156
 *
1157 1158
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1159
 *
1160
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1161 1162 1163
 *
 * Called with cpuset_mutex held
 */
1164
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1165 1166
{
	struct cpuset *cp;
1167
	struct cgroup_subsys_state *pos_css;
1168 1169

	rcu_read_lock();
1170 1171 1172 1173 1174
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1175 1176 1177 1178
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
1179
		if (is_in_v2_mode() && nodes_empty(*new_mems))
1180 1181
			*new_mems = parent->effective_mems;

1182 1183 1184 1185
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1186
		}
1187

1188
		if (!css_tryget_online(&cp->css))
1189 1190 1191
			continue;
		rcu_read_unlock();

1192
		spin_lock_irq(&callback_lock);
1193
		cp->effective_mems = *new_mems;
1194
		spin_unlock_irq(&callback_lock);
1195

1196
		WARN_ON(!is_in_v2_mode() &&
1197
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1198

1199
		update_tasks_nodemask(cp);
1200 1201 1202 1203 1204 1205 1206

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1207 1208 1209
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1210 1211 1212 1213
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1214
 *
1215
 * Call with cpuset_mutex held. May take callback_lock during call.
1216 1217 1218 1219
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1220 1221
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1222 1223 1224 1225
{
	int retval;

	/*
1226
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1227 1228
	 * it's read-only
	 */
1229 1230 1231 1232
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1233 1234 1235 1236 1237 1238 1239 1240

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1241
		nodes_clear(trialcs->mems_allowed);
1242
	} else {
1243
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1244 1245 1246
		if (retval < 0)
			goto done;

1247
		if (!nodes_subset(trialcs->mems_allowed,
1248 1249
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1250 1251
			goto done;
		}
1252
	}
1253 1254

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1255 1256 1257
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1258
	retval = validate_change(cs, trialcs);
1259 1260 1261
	if (retval < 0)
		goto done;

1262
	spin_lock_irq(&callback_lock);
1263
	cs->mems_allowed = trialcs->mems_allowed;
1264
	spin_unlock_irq(&callback_lock);
1265

1266
	/* use trialcs->mems_allowed as a temp variable */
1267
	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1268 1269 1270 1271
done:
	return retval;
}

1272
bool current_cpuset_is_being_rebound(void)
1273
{
1274
	bool ret;
1275 1276 1277 1278 1279 1280

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1281 1282
}

1283
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1284
{
1285
#ifdef CONFIG_SMP
1286
	if (val < -1 || val >= sched_domain_level_max)
1287
		return -EINVAL;
1288
#endif
1289 1290 1291

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1292 1293
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1294
			rebuild_sched_domains_locked();
1295 1296 1297 1298 1299
	}

	return 0;
}

1300
/**
1301 1302 1303
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1304 1305 1306
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1307
 */
1308
static void update_tasks_flags(struct cpuset *cs)
1309
{
1310 1311 1312
	struct css_task_iter it;
	struct task_struct *task;

1313
	css_task_iter_start(&cs->css, 0, &it);
1314 1315 1316
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1317 1318
}

L
Linus Torvalds 已提交
1319 1320
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1321 1322 1323
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1324
 *
1325
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1326 1327
 */

1328 1329
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1330
{
1331
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1332
	int balance_flag_changed;
1333 1334
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1335

1336 1337 1338 1339
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1340
	if (turning_on)
1341
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1342
	else
1343
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1344

1345
	err = validate_change(cs, trialcs);
1346
	if (err < 0)
1347
		goto out;
P
Paul Jackson 已提交
1348 1349

	balance_flag_changed = (is_sched_load_balance(cs) !=
1350
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1351

1352 1353 1354
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1355
	spin_lock_irq(&callback_lock);
1356
	cs->flags = trialcs->flags;
1357
	spin_unlock_irq(&callback_lock);
1358

1359
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1360
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1361

1362
	if (spread_flag_changed)
1363
		update_tasks_flags(cs);
1364 1365 1366
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1367 1368
}

1369
/*
A
Adrian Bunk 已提交
1370
 * Frequency meter - How fast is some event occurring?
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1415
#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
1431 1432 1433 1434 1435
	time64_t now;
	u32 ticks;

	now = ktime_get_seconds();
	ticks = now - fmp->time;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1470 1471
static struct cpuset *cpuset_attach_old_cs;

1472
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1473
static int cpuset_can_attach(struct cgroup_taskset *tset)
1474
{
1475 1476
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1477 1478
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1479

1480
	/* used later by cpuset_attach() */
1481 1482
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
	cs = css_cs(css);
1483

1484 1485
	mutex_lock(&cpuset_mutex);

1486
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1487
	ret = -ENOSPC;
1488
	if (!is_in_v2_mode() &&
1489
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1490
		goto out_unlock;
1491

1492
	cgroup_taskset_for_each(task, css, tset) {
1493 1494
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
1495 1496 1497 1498
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1499
	}
1500

1501 1502 1503 1504 1505
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1506 1507 1508 1509
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1510
}
1511

1512
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1513
{
1514 1515 1516 1517 1518 1519
	struct cgroup_subsys_state *css;
	struct cpuset *cs;

	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1520
	mutex_lock(&cpuset_mutex);
1521
	css_cs(css)->attach_in_progress--;
1522
	mutex_unlock(&cpuset_mutex);
1523
}
L
Linus Torvalds 已提交
1524

1525
/*
1526
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1527 1528 1529 1530 1531
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1532
static void cpuset_attach(struct cgroup_taskset *tset)
1533
{
1534
	/* static buf protected by cpuset_mutex */
1535
	static nodemask_t cpuset_attach_nodemask_to;
1536
	struct task_struct *task;
1537
	struct task_struct *leader;
1538 1539
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1540
	struct cpuset *oldcs = cpuset_attach_old_cs;
1541

1542 1543 1544
	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1545 1546
	mutex_lock(&cpuset_mutex);

1547 1548 1549 1550
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1551
		guarantee_online_cpus(cs, cpus_attach);
1552

1553
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1554

1555
	cgroup_taskset_for_each(task, css, tset) {
1556 1557 1558 1559 1560 1561 1562 1563 1564
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1565

1566
	/*
1567 1568
	 * Change mm for all threadgroup leaders. This is expensive and may
	 * sleep and should be moved outside migration path proper.
1569
	 */
1570
	cpuset_attach_nodemask_to = cs->effective_mems;
1571
	cgroup_taskset_for_each_leader(leader, css, tset) {
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		struct mm_struct *mm = get_task_mm(leader);

		if (mm) {
			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);

			/*
			 * old_mems_allowed is the same with mems_allowed
			 * here, except if this task is being moved
			 * automatically due to hotplug.  In that case
			 * @mems_allowed has been updated and is empty, so
			 * @old_mems_allowed is the right nodesets that we
			 * migrate mm from.
			 */
1585
			if (is_memory_migrate(cs))
1586 1587
				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
						  &cpuset_attach_nodemask_to);
1588 1589
			else
				mmput(mm);
1590
		}
1591
	}
1592

1593
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1594

1595
	cs->attach_in_progress--;
1596 1597
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1598 1599

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1600 1601 1602 1603 1604
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1605
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1606 1607
	FILE_CPULIST,
	FILE_MEMLIST,
1608 1609
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1610 1611
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1612
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1613
	FILE_SCHED_LOAD_BALANCE,
1614
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1615 1616
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1617 1618
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1619 1620
} cpuset_filetype_t;

1621 1622
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1623
{
1624
	struct cpuset *cs = css_cs(css);
1625
	cpuset_filetype_t type = cft->private;
1626
	int retval = 0;
1627

1628
	mutex_lock(&cpuset_mutex);
1629 1630
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1631
		goto out_unlock;
1632
	}
1633 1634

	switch (type) {
L
Linus Torvalds 已提交
1635
	case FILE_CPU_EXCLUSIVE:
1636
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1637 1638
		break;
	case FILE_MEM_EXCLUSIVE:
1639
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1640
		break;
1641 1642 1643
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1644
	case FILE_SCHED_LOAD_BALANCE:
1645
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1646
		break;
1647
	case FILE_MEMORY_MIGRATE:
1648
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1649
		break;
1650
	case FILE_MEMORY_PRESSURE_ENABLED:
1651
		cpuset_memory_pressure_enabled = !!val;
1652
		break;
1653
	case FILE_SPREAD_PAGE:
1654
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1655 1656
		break;
	case FILE_SPREAD_SLAB:
1657
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1658
		break;
L
Linus Torvalds 已提交
1659 1660
	default:
		retval = -EINVAL;
1661
		break;
L
Linus Torvalds 已提交
1662
	}
1663 1664
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1665 1666 1667
	return retval;
}

1668 1669
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1670
{
1671
	struct cpuset *cs = css_cs(css);
1672
	cpuset_filetype_t type = cft->private;
1673
	int retval = -ENODEV;
1674

1675 1676 1677
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1678

1679 1680 1681 1682 1683 1684 1685 1686
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1687 1688
out_unlock:
	mutex_unlock(&cpuset_mutex);
1689 1690 1691
	return retval;
}

1692 1693 1694
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1695 1696
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1697
{
1698
	struct cpuset *cs = css_cs(of_css(of));
1699
	struct cpuset *trialcs;
1700
	int retval = -ENODEV;
1701

1702 1703
	buf = strstrip(buf);

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1714 1715 1716 1717 1718 1719 1720 1721
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1722
	 */
1723 1724
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1725 1726
	flush_work(&cpuset_hotplug_work);

1727 1728 1729
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1730

1731
	trialcs = alloc_trial_cpuset(cs);
1732 1733
	if (!trialcs) {
		retval = -ENOMEM;
1734
		goto out_unlock;
1735
	}
1736

1737
	switch (of_cft(of)->private) {
1738
	case FILE_CPULIST:
1739
		retval = update_cpumask(cs, trialcs, buf);
1740 1741
		break;
	case FILE_MEMLIST:
1742
		retval = update_nodemask(cs, trialcs, buf);
1743 1744 1745 1746 1747
		break;
	default:
		retval = -EINVAL;
		break;
	}
1748 1749

	free_trial_cpuset(trialcs);
1750 1751
out_unlock:
	mutex_unlock(&cpuset_mutex);
1752 1753
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1754
	flush_workqueue(cpuset_migrate_mm_wq);
1755
	return retval ?: nbytes;
1756 1757
}

L
Linus Torvalds 已提交
1758 1759 1760 1761 1762 1763 1764 1765
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1766
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1767
{
1768 1769
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1770
	int ret = 0;
L
Linus Torvalds 已提交
1771

1772
	spin_lock_irq(&callback_lock);
L
Linus Torvalds 已提交
1773 1774 1775

	switch (type) {
	case FILE_CPULIST:
1776
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
L
Linus Torvalds 已提交
1777 1778
		break;
	case FILE_MEMLIST:
1779
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
L
Linus Torvalds 已提交
1780
		break;
1781
	case FILE_EFFECTIVE_CPULIST:
1782
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1783 1784
		break;
	case FILE_EFFECTIVE_MEMLIST:
1785
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1786
		break;
L
Linus Torvalds 已提交
1787
	default:
1788
		ret = -EINVAL;
L
Linus Torvalds 已提交
1789 1790
	}

1791
	spin_unlock_irq(&callback_lock);
1792
	return ret;
L
Linus Torvalds 已提交
1793 1794
}

1795
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1796
{
1797
	struct cpuset *cs = css_cs(css);
1798 1799 1800 1801 1802 1803
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1804 1805
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1821 1822 1823

	/* Unreachable but makes gcc happy */
	return 0;
1824
}
L
Linus Torvalds 已提交
1825

1826
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1827
{
1828
	struct cpuset *cs = css_cs(css);
1829 1830 1831 1832 1833 1834 1835
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1836 1837 1838

	/* Unrechable but makes gcc happy */
	return 0;
1839 1840
}

L
Linus Torvalds 已提交
1841 1842 1843 1844 1845

/*
 * for the common functions, 'private' gives the type of file
 */

1846 1847 1848
static struct cftype files[] = {
	{
		.name = "cpus",
1849
		.seq_show = cpuset_common_seq_show,
1850
		.write = cpuset_write_resmask,
1851
		.max_write_len = (100U + 6 * NR_CPUS),
1852 1853 1854 1855 1856
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1857
		.seq_show = cpuset_common_seq_show,
1858
		.write = cpuset_write_resmask,
1859
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1860 1861 1862
		.private = FILE_MEMLIST,
	},

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1889 1890 1891 1892 1893 1894 1895
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1896 1897 1898 1899 1900 1901 1902 1903 1904
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1905 1906
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
1920
		.private = FILE_MEMORY_PRESSURE,
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1936

1937 1938 1939 1940 1941 1942 1943
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1944

1945 1946
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1947 1948

/*
1949
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1950
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1951 1952
 */

1953 1954
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1955
{
T
Tejun Heo 已提交
1956
	struct cpuset *cs;
L
Linus Torvalds 已提交
1957

1958
	if (!parent_css)
1959
		return &top_cpuset.css;
1960

T
Tejun Heo 已提交
1961
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1962
	if (!cs)
1963
		return ERR_PTR(-ENOMEM);
1964 1965 1966 1967
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1968

P
Paul Jackson 已提交
1969
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1970
	cpumask_clear(cs->cpus_allowed);
1971
	nodes_clear(cs->mems_allowed);
1972 1973
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1974
	fmeter_init(&cs->fmeter);
1975
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1976

T
Tejun Heo 已提交
1977
	return &cs->css;
1978 1979 1980 1981 1982 1983

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1984 1985
}

1986
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1987
{
1988
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1989
	struct cpuset *parent = parent_cs(cs);
1990
	struct cpuset *tmp_cs;
1991
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1992 1993 1994 1995

	if (!parent)
		return 0;

1996 1997
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1998
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1999 2000 2001 2002
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
2003

2004
	cpuset_inc();
2005

2006
	spin_lock_irq(&callback_lock);
2007
	if (is_in_v2_mode()) {
2008 2009 2010
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
2011
	spin_unlock_irq(&callback_lock);
2012

2013
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2014
		goto out_unlock;
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
2029
	rcu_read_lock();
2030
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2031 2032
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
2033
			goto out_unlock;
2034
		}
2035
	}
2036
	rcu_read_unlock();
2037

2038
	spin_lock_irq(&callback_lock);
2039
	cs->mems_allowed = parent->mems_allowed;
2040
	cs->effective_mems = parent->mems_allowed;
2041
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2042
	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2043
	cpuacct_cpuset_changed(cs->css.cgroup, NULL, cs->effective_cpus);
D
Dan Carpenter 已提交
2044
	spin_unlock_irq(&callback_lock);
2045 2046
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2047 2048 2049
	return 0;
}

2050 2051 2052 2053 2054 2055
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2056
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2057
{
2058
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2059

2060
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2061 2062 2063 2064

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2065
	cpuset_dec();
T
Tejun Heo 已提交
2066
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2067

2068
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2069 2070
}

2071
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2072
{
2073
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2074

2075
	free_cpumask_var(cs->effective_cpus);
2076
	free_cpumask_var(cs->cpus_allowed);
2077
	kfree(cs);
L
Linus Torvalds 已提交
2078 2079
}

2080 2081 2082
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
2083
	spin_lock_irq(&callback_lock);
2084

2085
	if (is_in_v2_mode()) {
2086 2087 2088 2089 2090 2091 2092 2093
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

2094
	spin_unlock_irq(&callback_lock);
2095 2096 2097
	mutex_unlock(&cpuset_mutex);
}

2098 2099 2100 2101 2102
/*
 * Make sure the new task conform to the current state of its parent,
 * which could have been changed by cpuset just after it inherits the
 * state from the parent and before it sits on the cgroup's task list.
 */
2103
static void cpuset_fork(struct task_struct *task)
2104 2105 2106 2107 2108 2109 2110 2111
{
	if (task_css_is_root(task, cpuset_cgrp_id))
		return;

	set_cpus_allowed_ptr(task, &current->cpus_allowed);
	task->mems_allowed = current->mems_allowed;
}

2112
struct cgroup_subsys cpuset_cgrp_subsys = {
2113 2114 2115 2116 2117 2118 2119
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
2120
	.post_attach	= cpuset_post_attach,
2121
	.bind		= cpuset_bind,
2122
	.fork		= cpuset_fork,
2123
	.legacy_cftypes	= files,
2124
	.early_init	= true,
2125 2126
};

L
Linus Torvalds 已提交
2127 2128 2129 2130 2131 2132 2133 2134
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2135
	int err = 0;
L
Linus Torvalds 已提交
2136

N
Nicholas Mc Guire 已提交
2137 2138
	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2139

2140
	cpumask_setall(top_cpuset.cpus_allowed);
2141
	nodes_setall(top_cpuset.mems_allowed);
2142 2143
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2144

2145
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2146
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2147
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2148 2149 2150

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2151 2152
		return err;

N
Nicholas Mc Guire 已提交
2153
	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2154

2155
	return 0;
L
Linus Torvalds 已提交
2156 2157
}

2158
/*
2159
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2160 2161
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2162 2163
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2164
 */
2165 2166 2167 2168 2169 2170 2171 2172
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2173
	parent = parent_cs(cs);
2174
	while (cpumask_empty(parent->cpus_allowed) ||
2175
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2176
		parent = parent_cs(parent);
2177

2178
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2179
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2180 2181
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2182
	}
2183 2184
}

2185 2186 2187 2188
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2189 2190 2191
{
	bool is_empty;

2192
	spin_lock_irq(&callback_lock);
2193 2194 2195 2196
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2197
	spin_unlock_irq(&callback_lock);
2198 2199 2200 2201 2202

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2203
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2204
		update_tasks_cpumask(cs);
2205
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2224 2225 2226 2227
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2228
{
2229 2230 2231 2232 2233
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2234
	spin_lock_irq(&callback_lock);
2235 2236
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2237
	spin_unlock_irq(&callback_lock);
2238

2239
	if (cpus_updated)
2240
		update_tasks_cpumask(cs);
2241
	if (mems_updated)
2242 2243 2244
		update_tasks_nodemask(cs);
}

2245
/**
2246
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2247
 * @cs: cpuset in interest
2248
 *
2249 2250 2251
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2252
 */
2253
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2254
{
2255 2256 2257 2258
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2259 2260
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2261

2262
	mutex_lock(&cpuset_mutex);
2263

2264 2265 2266 2267 2268 2269 2270 2271 2272
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2273 2274
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2275

2276 2277
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2278

2279
	if (is_in_v2_mode())
2280 2281
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2282
	else
2283 2284
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2285

2286
	mutex_unlock(&cpuset_mutex);
2287 2288
}

2289 2290 2291 2292 2293 2294 2295
static bool force_rebuild;

void cpuset_force_rebuild(void)
{
	force_rebuild = true;
}

2296
/**
2297
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2298
 *
2299 2300 2301 2302 2303
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2304
 *
2305
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2306 2307
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2308
 *
2309 2310
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2311
 */
2312
static void cpuset_hotplug_workfn(struct work_struct *work)
2313
{
2314 2315
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2316
	bool cpus_updated, mems_updated;
2317
	bool on_dfl = is_in_v2_mode();
2318

2319
	mutex_lock(&cpuset_mutex);
2320

2321 2322 2323
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2324

2325 2326
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2327

2328 2329
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
2330
		spin_lock_irq(&callback_lock);
2331 2332
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2333
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2334
		spin_unlock_irq(&callback_lock);
2335 2336
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2337

2338 2339
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
2340
		spin_lock_irq(&callback_lock);
2341 2342
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2343
		top_cpuset.effective_mems = new_mems;
2344
		spin_unlock_irq(&callback_lock);
2345
		update_tasks_nodemask(&top_cpuset);
2346
	}
2347

2348 2349
	mutex_unlock(&cpuset_mutex);

2350 2351
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2352
		struct cpuset *cs;
2353
		struct cgroup_subsys_state *pos_css;
2354

2355
		rcu_read_lock();
2356
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2357
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2358 2359
				continue;
			rcu_read_unlock();
2360

2361
			cpuset_hotplug_update_tasks(cs);
2362

2363 2364 2365 2366 2367
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2368

2369
	/* rebuild sched domains if cpus_allowed has changed */
2370 2371
	if (cpus_updated || force_rebuild) {
		force_rebuild = false;
2372
		rebuild_sched_domains();
2373
	}
2374 2375
}

2376
void cpuset_update_active_cpus(void)
2377
{
2378 2379 2380 2381 2382 2383
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 */
	schedule_work(&cpuset_hotplug_work);
2384 2385
}

2386 2387 2388 2389 2390
void cpuset_wait_for_hotplug(void)
{
	flush_work(&cpuset_hotplug_work);
}

2391
/*
2392 2393
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2394
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2395
 */
2396 2397
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2398
{
2399
	schedule_work(&cpuset_hotplug_work);
2400
	return NOTIFY_OK;
2401
}
2402 2403 2404 2405 2406

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2407

L
Linus Torvalds 已提交
2408 2409 2410 2411
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2412
 */
L
Linus Torvalds 已提交
2413 2414
void __init cpuset_init_smp(void)
{
2415
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2416
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2417
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2418

2419 2420 2421
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2422
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2423 2424 2425

	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
	BUG_ON(!cpuset_migrate_mm_wq);
L
Linus Torvalds 已提交
2426 2427 2428 2429 2430
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2431
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2432
 *
2433
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2434
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2435
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2436 2437 2438
 * tasks cpuset.
 **/

2439
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2440
{
2441 2442 2443
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
2444
	rcu_read_lock();
2445
	guarantee_online_cpus(task_cs(tsk), pmask);
2446
	rcu_read_unlock();
2447
	spin_unlock_irqrestore(&callback_lock, flags);
L
Linus Torvalds 已提交
2448 2449
}

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
/**
 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
 * @tsk: pointer to task_struct with which the scheduler is struggling
 *
 * Description: In the case that the scheduler cannot find an allowed cpu in
 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
 * which will not contain a sane cpumask during cases such as cpu hotplugging.
 * This is the absolute last resort for the scheduler and it is only used if
 * _every_ other avenue has been traveled.
 **/

2462
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2463 2464
{
	rcu_read_lock();
2465 2466
	do_set_cpus_allowed(tsk, is_in_v2_mode() ?
		task_cs(tsk)->cpus_allowed : cpu_possible_mask);
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2482 2483 2484
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2485 2486 2487
	 */
}

2488
void __init cpuset_init_current_mems_allowed(void)
L
Linus Torvalds 已提交
2489
{
2490
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2491 2492
}

2493 2494 2495 2496 2497 2498
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2499
 * subset of node_states[N_MEMORY], even if this means going outside the
2500 2501 2502 2503 2504 2505
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
2506
	unsigned long flags;
2507

2508
	spin_lock_irqsave(&callback_lock, flags);
2509
	rcu_read_lock();
2510
	guarantee_online_mems(task_cs(tsk), &mask);
2511
	rcu_read_unlock();
2512
	spin_unlock_irqrestore(&callback_lock, flags);
2513 2514 2515 2516

	return mask;
}

2517
/**
2518 2519
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2520
 *
2521
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2522
 */
2523
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2524
{
2525
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2526 2527
}

2528
/*
2529 2530
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
2531
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2532
 * (an unusual configuration), then returns the root cpuset.
2533
 */
2534
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2535
{
T
Tejun Heo 已提交
2536 2537
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2538 2539 2540
	return cs;
}

2541
/**
2542
 * cpuset_node_allowed - Can we allocate on a memory node?
2543
 * @node: is this an allowed node?
2544
 * @gfp_mask: memory allocation flags
2545
 *
2546 2547 2548
 * If we're in interrupt, yes, we can always allocate.  If @node is set in
 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2549
 * yes.  If current has access to memory reserves as an oom victim, yes.
2550 2551 2552
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2553
 * and do not allow allocations outside the current tasks cpuset
2554
 * unless the task has been OOM killed.
2555
 * GFP_KERNEL allocations are not so marked, so can escape to the
2556
 * nearest enclosing hardwalled ancestor cpuset.
2557
 *
2558
 * Scanning up parent cpusets requires callback_lock.  The
2559 2560 2561 2562
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2563
 * cpuset are short of memory, might require taking the callback_lock.
2564
 *
2565
 * The first call here from mm/page_alloc:get_page_from_freelist()
2566 2567 2568
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2569 2570 2571 2572 2573 2574
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2575 2576
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2577
 *	tsk_is_oom_victim   - any node ok
2578
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2579
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2580
 */
2581
bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2582
{
2583
	struct cpuset *cs;		/* current cpuset ancestors */
2584
	int allowed;			/* is allocation in zone z allowed? */
2585
	unsigned long flags;
2586

2587
	if (in_interrupt())
2588
		return true;
2589
	if (node_isset(node, current->mems_allowed))
2590
		return true;
2591 2592 2593 2594
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
2595
	if (unlikely(tsk_is_oom_victim(current)))
2596
		return true;
2597
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2598
		return false;
2599

2600
	if (current->flags & PF_EXITING) /* Let dying task have memory */
2601
		return true;
2602

2603
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2604
	spin_lock_irqsave(&callback_lock, flags);
2605

2606
	rcu_read_lock();
2607
	cs = nearest_hardwall_ancestor(task_cs(current));
2608
	allowed = node_isset(node, cs->mems_allowed);
2609
	rcu_read_unlock();
2610

2611
	spin_unlock_irqrestore(&callback_lock, flags);
2612
	return allowed;
L
Linus Torvalds 已提交
2613 2614
}

2615
/**
2616 2617
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2642
static int cpuset_spread_node(int *rotor)
2643
{
2644
	return *rotor = next_node_in(*rotor, current->mems_allowed);
2645
}
2646 2647 2648

int cpuset_mem_spread_node(void)
{
2649 2650 2651 2652
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2653 2654 2655 2656 2657
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2658 2659 2660 2661
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2662 2663 2664
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2665 2666
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2667
/**
2668 2669 2670 2671 2672 2673 2674 2675
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2676 2677
 **/

2678 2679
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2680
{
2681
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2682 2683
}

2684
/**
2685
 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2686
 *
2687
 * Description: Prints current's name, cpuset name, and cached copy of its
2688
 * mems_allowed to the kernel log.
2689
 */
2690
void cpuset_print_current_mems_allowed(void)
2691
{
2692
	struct cgroup *cgrp;
2693

2694
	rcu_read_lock();
2695

2696 2697
	cgrp = task_cs(current)->css.cgroup;
	pr_info("%s cpuset=", current->comm);
T
Tejun Heo 已提交
2698
	pr_cont_cgroup_name(cgrp);
2699 2700
	pr_cont(" mems_allowed=%*pbl\n",
		nodemask_pr_args(&current->mems_allowed));
2701

2702
	rcu_read_unlock();
2703 2704
}

2705 2706 2707 2708 2709 2710
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2711
int cpuset_memory_pressure_enabled __read_mostly;
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2733
	rcu_read_lock();
2734
	fmeter_markevent(&task_cs(current)->fmeter);
2735
	rcu_read_unlock();
2736 2737
}

2738
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2739 2740 2741 2742
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2743 2744
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2745
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2746
 *    anyway.
L
Linus Torvalds 已提交
2747
 */
Z
Zefan Li 已提交
2748 2749
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
2750
{
2751
	char *buf;
2752
	struct cgroup_subsys_state *css;
2753
	int retval;
L
Linus Torvalds 已提交
2754

2755
	retval = -ENOMEM;
T
Tejun Heo 已提交
2756
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2757
	if (!buf)
2758 2759
		goto out;

2760
	css = task_get_css(tsk, cpuset_cgrp_id);
2761 2762
	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
				current->nsproxy->cgroup_ns);
2763
	css_put(css);
2764
	if (retval >= PATH_MAX)
2765 2766
		retval = -ENAMETOOLONG;
	if (retval < 0)
Z
Zefan Li 已提交
2767
		goto out_free;
2768
	seq_puts(m, buf);
L
Linus Torvalds 已提交
2769
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2770
	retval = 0;
2771
out_free:
L
Linus Torvalds 已提交
2772
	kfree(buf);
2773
out:
L
Linus Torvalds 已提交
2774 2775
	return retval;
}
2776
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2777

2778
/* Display task mems_allowed in /proc/<pid>/status file. */
2779 2780
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2781 2782 2783 2784
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
L
Linus Torvalds 已提交
2785
}