cpuset.c 76.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46
#include <linux/sched.h>
47
#include <linux/sched/mm.h>
48
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
49
#include <linux/seq_file.h>
50
#include <linux/security.h>
L
Linus Torvalds 已提交
51 52 53 54 55
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
56
#include <linux/time64.h>
L
Linus Torvalds 已提交
57 58
#include <linux/backing-dev.h>
#include <linux/sort.h>
59
#include <linux/oom.h>
60
#include <linux/sched/isolation.h>
61
#include <linux/uaccess.h>
A
Arun Sharma 已提交
62
#include <linux/atomic.h>
63
#include <linux/mutex.h>
64
#include <linux/cgroup.h>
65
#include <linux/wait.h>
L
Linus Torvalds 已提交
66

67
DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
68
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
69

70 71 72 73 74
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
75
	time64_t time;		/* clock (secs) when val computed */
76 77 78
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
79
struct cpuset {
80 81
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
82
	unsigned long flags;		/* "unsigned long" so bitops work */
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

104 105 106 107 108 109 110
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
111

112 113 114 115 116 117 118 119 120 121 122 123
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

124
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
125

126 127 128 129 130 131
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
132 133
	/* partition number for rebuild_sched_domains() */
	int pn;
134

135 136
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
137 138
};

139
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
140
{
141
	return css ? container_of(css, struct cpuset, css) : NULL;
142 143 144 145 146
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
147
	return css_cs(task_css(task, cpuset_cgrp_id));
148 149
}

150
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
151
{
T
Tejun Heo 已提交
152
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
153 154
}

155 156 157 158 159 160 161 162 163 164 165 166 167
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
168 169
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
170
	CS_ONLINE,
L
Linus Torvalds 已提交
171 172
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
173
	CS_MEM_HARDWALL,
174
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
175
	CS_SCHED_LOAD_BALANCE,
176 177
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
178 179 180
} cpuset_flagbits_t;

/* convenient tests for these bits */
181
static inline bool is_cpuset_online(struct cpuset *cs)
T
Tejun Heo 已提交
182
{
183
	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
T
Tejun Heo 已提交
184 185
}

L
Linus Torvalds 已提交
186 187
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
188
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
189 190 191 192
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
193
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
194 195
}

196 197 198 199 200
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
201 202 203 204 205
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

206 207
static inline int is_memory_migrate(const struct cpuset *cs)
{
208
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
209 210
}

211 212 213 214 215 216 217 218 219 220
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
221
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
222 223
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
224 225
};

226 227 228
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
229
 * @pos_css: used for iteration
230 231 232 233 234
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
235 236 237
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
238

239 240 241
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
242
 * @pos_css: used for iteration
243 244 245
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
246
 * with RCU read locked.  The caller may modify @pos_css by calling
247 248
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
249
 */
250 251 252
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
253

L
Linus Torvalds 已提交
254
/*
255 256 257 258
 * There are two global locks guarding cpuset structures - cpuset_mutex and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.
259
 *
260
 * A task must hold both locks to modify cpusets.  If a task holds
261
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
262
 * is the only task able to also acquire callback_lock and be able to
263 264 265
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
266 267
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
268
 * everyone else.
269 270
 *
 * Calls to the kernel memory allocator can not be made while holding
271
 * callback_lock, as that would risk double tripping on callback_lock
272 273 274
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
275
 * If a task is only holding callback_lock, then it has read-only
276 277
 * access to cpusets.
 *
278 279 280
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
281
 *
282
 * The cpuset_common_file_read() handlers only hold callback_lock across
283 284 285
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
286 287
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
288 289
 */

290
static DEFINE_MUTEX(cpuset_mutex);
291
static DEFINE_SPINLOCK(callback_lock);
292

293 294
static struct workqueue_struct *cpuset_migrate_mm_wq;

295 296 297 298 299 300
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

301 302
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

303 304 305 306 307 308 309 310 311 312
/*
 * Cgroup v2 behavior is used when on default hierarchy or the
 * cgroup_v2_mode flag is set.
 */
static inline bool is_in_v2_mode(void)
{
	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
}

313 314
/*
 * This is ugly, but preserves the userspace API for existing cpuset
315
 * users. If someone tries to mount the "cpuset" filesystem, we
316 317
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
318 319
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
320
{
321
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
322
	struct dentry *ret = ERR_PTR(-ENODEV);
323 324 325 326
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
327 328
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
329 330 331
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
332 333 334 335
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
336
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
337 338 339
};

/*
340
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
341
 * are online.  If none are online, walk up the cpuset hierarchy
342
 * until we find one that does have some online cpus.
L
Linus Torvalds 已提交
343 344
 *
 * One way or another, we guarantee to return some non-empty subset
345
 * of cpu_online_mask.
L
Linus Torvalds 已提交
346
 *
347
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
348
 */
349
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
350
{
351
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
T
Tejun Heo 已提交
352
		cs = parent_cs(cs);
353 354 355 356 357 358 359 360 361 362 363 364
		if (unlikely(!cs)) {
			/*
			 * The top cpuset doesn't have any online cpu as a
			 * consequence of a race between cpuset_hotplug_work
			 * and cpu hotplug notifier.  But we know the top
			 * cpuset's effective_cpus is on its way to to be
			 * identical to cpu_online_mask.
			 */
			cpumask_copy(pmask, cpu_online_mask);
			return;
		}
	}
365
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
366 367 368 369
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
370 371
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
372
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
373 374
 *
 * One way or another, we guarantee to return some non-empty subset
375
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
376
 *
377
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
378
 */
379
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
380
{
381
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
382
		cs = parent_cs(cs);
383
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
384 385
}

386 387 388
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
389
 * Call with callback_lock or cpuset_mutex held.
390 391 392 393 394
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
395
		task_set_spread_page(tsk);
396
	else
397 398
		task_clear_spread_page(tsk);

399
	if (is_spread_slab(cs))
400
		task_set_spread_slab(tsk);
401
	else
402
		task_clear_spread_slab(tsk);
403 404
}

L
Linus Torvalds 已提交
405 406 407 408 409
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
410
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
411 412 413 414
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
415
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
416 417 418 419 420
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

421 422 423 424
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
425
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
426
{
427 428 429 430 431 432
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

433 434 435 436
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
437

438 439
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
440
	return trial;
441 442 443 444 445 446

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
447 448 449 450 451 452 453 454
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
455
	free_cpumask_var(trial->effective_cpus);
456
	free_cpumask_var(trial->cpus_allowed);
457 458 459
	kfree(trial);
}

L
Linus Torvalds 已提交
460 461 462 463 464 465 466
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
467
 * cpuset_mutex held.
L
Linus Torvalds 已提交
468 469 470 471 472 473 474 475 476 477 478 479
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

480
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
481
{
482
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
483
	struct cpuset *c, *par;
484 485 486
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
487 488

	/* Each of our child cpusets must be a subset of us */
489
	ret = -EBUSY;
490
	cpuset_for_each_child(c, css, cur)
491 492
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
493 494

	/* Remaining checks don't apply to root cpuset */
495
	ret = 0;
496
	if (cur == &top_cpuset)
497
		goto out;
L
Linus Torvalds 已提交
498

T
Tejun Heo 已提交
499
	par = parent_cs(cur);
500

501
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
502
	ret = -EACCES;
503
	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
504
		goto out;
L
Linus Torvalds 已提交
505

506 507 508 509
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
510
	ret = -EINVAL;
511
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
512 513
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
514
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
515
			goto out;
L
Linus Torvalds 已提交
516 517 518
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
519
			goto out;
L
Linus Torvalds 已提交
520 521
	}

522 523
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
524
	 * be changed to have empty cpus_allowed or mems_allowed.
525
	 */
526
	ret = -ENOSPC;
527
	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
528 529 530 531 532 533 534
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
535

536 537 538 539 540 541 542 543 544 545
	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

546 547 548 549
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
550 551
}

552
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
553
/*
554
 * Helper routine for generate_sched_domains().
555
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
556 557 558
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
559
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
560 561
}

562 563 564 565 566 567 568 569
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

570 571
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
572
{
573
	struct cpuset *cp;
574
	struct cgroup_subsys_state *pos_css;
575

576
	rcu_read_lock();
577
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
578 579
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
580
			pos_css = css_rightmost_descendant(pos_css);
581
			continue;
582
		}
583 584 585 586

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
587
	rcu_read_unlock();
588 589
}

P
Paolo Bonzini 已提交
590 591 592 593 594 595 596
/* Must be called with cpuset_mutex held.  */
static inline int nr_cpusets(void)
{
	/* jump label reference count + the top-level cpuset */
	return static_key_count(&cpusets_enabled_key.key) + 1;
}

P
Paul Jackson 已提交
597
/*
598 599 600 601 602
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
603
 * The output of this function needs to be passed to kernel/sched/core.c
604 605 606
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
607
 *
L
Li Zefan 已提交
608
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
609 610 611 612 613 614 615
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
616
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
617 618
 *
 * The three key local variables below are:
619
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
620 621 622 623 624 625 626 627 628 629 630 631
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
632
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
651
static int generate_sched_domains(cpumask_var_t **domains,
652
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
653 654 655 656 657
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
658
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
659
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
660
	int ndoms = 0;		/* number of sched domains in result */
661
	int nslot;		/* next empty doms[] struct cpumask slot */
662
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
663 664

	doms = NULL;
665
	dattr = NULL;
666
	csa = NULL;
P
Paul Jackson 已提交
667 668 669

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
670 671
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
672
		if (!doms)
673 674
			goto done;

675 676 677
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
678
			update_domain_attr_tree(dattr, &top_cpuset);
679
		}
680
		cpumask_and(doms[0], top_cpuset.effective_cpus,
681
			    housekeeping_cpumask(HK_FLAG_DOMAIN));
682 683

		goto done;
P
Paul Jackson 已提交
684 685
	}

686
	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
687 688 689 690
	if (!csa)
		goto done;
	csn = 0;

691
	rcu_read_lock();
692
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
693 694
		if (cp == &top_cpuset)
			continue;
695
		/*
696 697 698 699 700 701
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
702
		 */
703
		if (!cpumask_empty(cp->cpus_allowed) &&
704
		    !(is_sched_load_balance(cp) &&
705 706
		      cpumask_intersects(cp->cpus_allowed,
					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
707
			continue;
708

709 710 711 712
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
713
		pos_css = css_rightmost_descendant(pos_css);
714 715
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

744 745 746 747
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
748
	doms = alloc_sched_domains(ndoms);
749
	if (!doms)
750 751 752 753 754 755
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
756 757
	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
			      GFP_KERNEL);
P
Paul Jackson 已提交
758 759 760

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
761
		struct cpumask *dp;
P
Paul Jackson 已提交
762 763
		int apn = a->pn;

764 765 766 767 768
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

769
		dp = doms[nslot];
770 771 772 773

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
774 775
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
776
				warnings--;
P
Paul Jackson 已提交
777
			}
778 779
			continue;
		}
P
Paul Jackson 已提交
780

781
		cpumask_clear(dp);
782 783 784 785 786 787
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
788
				cpumask_or(dp, dp, b->effective_cpus);
789
				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
790 791 792 793 794
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
795 796
			}
		}
797
		nslot++;
P
Paul Jackson 已提交
798 799 800
	}
	BUG_ON(nslot != ndoms);

801 802 803
done:
	kfree(csa);

804 805 806 807 808 809 810
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

811 812 813 814 815 816 817 818
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
819 820 821 822 823
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
824
 *
825
 * Call with cpuset_mutex held.  Takes get_online_cpus().
826
 */
827
static void rebuild_sched_domains_locked(void)
828 829
{
	struct sched_domain_attr *attr;
830
	cpumask_var_t *doms;
831 832
	int ndoms;

833
	lockdep_assert_held(&cpuset_mutex);
834
	get_online_cpus();
835

836 837 838 839 840
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
841
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
842 843
		goto out;

844 845 846 847 848
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
849
out:
850
	put_online_cpus();
851
}
852
#else /* !CONFIG_SMP */
853
static void rebuild_sched_domains_locked(void)
854 855 856
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
857

858 859
void rebuild_sched_domains(void)
{
860
	mutex_lock(&cpuset_mutex);
861
	rebuild_sched_domains_locked();
862
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
863 864
}

865 866 867 868
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
869 870 871
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
872
 */
873
static void update_tasks_cpumask(struct cpuset *cs)
874
{
875 876 877
	struct css_task_iter it;
	struct task_struct *task;

878
	css_task_iter_start(&cs->css, 0, &it);
879
	while ((task = css_task_iter_next(&it)))
880
		set_cpus_allowed_ptr(task, cs->effective_cpus);
881
	css_task_iter_end(&it);
882 883
}

884
/*
885 886 887 888 889 890
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
891
 *
892
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
893 894 895
 *
 * Called with cpuset_mutex held
 */
896
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
897 898
{
	struct cpuset *cp;
899
	struct cgroup_subsys_state *pos_css;
900
	bool need_rebuild_sched_domains = false;
901 902

	rcu_read_lock();
903 904 905 906 907
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

908 909 910 911
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
912
		if (is_in_v2_mode() && cpumask_empty(new_cpus))
913 914
			cpumask_copy(new_cpus, parent->effective_cpus);

915 916 917 918
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
919
		}
920

921
		if (!css_tryget_online(&cp->css))
922 923 924
			continue;
		rcu_read_unlock();

925
		spin_lock_irq(&callback_lock);
926
		cpumask_copy(cp->effective_cpus, new_cpus);
927
		spin_unlock_irq(&callback_lock);
928

929
		WARN_ON(!is_in_v2_mode() &&
930 931
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

932
		update_tasks_cpumask(cp);
933

934 935 936 937 938 939 940 941
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

942 943 944 945
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
946 947 948

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
949 950
}

C
Cliff Wickman 已提交
951 952 953
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
954
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
955 956
 * @buf: buffer of cpu numbers written to this cpuset
 */
957 958
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
959
{
C
Cliff Wickman 已提交
960
	int retval;
L
Linus Torvalds 已提交
961

962
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
963 964 965
	if (cs == &top_cpuset)
		return -EACCES;

966
	/*
967
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
968 969 970
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
971
	 */
972
	if (!*buf) {
973
		cpumask_clear(trialcs->cpus_allowed);
974
	} else {
975
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
976 977
		if (retval < 0)
			return retval;
978

979 980
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
981
			return -EINVAL;
982
	}
P
Paul Jackson 已提交
983

P
Paul Menage 已提交
984
	/* Nothing to do if the cpus didn't change */
985
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
986
		return 0;
C
Cliff Wickman 已提交
987

988 989 990 991
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

992
	spin_lock_irq(&callback_lock);
993
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
994
	spin_unlock_irq(&callback_lock);
P
Paul Jackson 已提交
995

996 997
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
998
	return 0;
L
Linus Torvalds 已提交
999 1000
}

1001
/*
1002 1003 1004 1005 1006
 * Migrate memory region from one set of nodes to another.  This is
 * performed asynchronously as it can be called from process migration path
 * holding locks involved in process management.  All mm migrations are
 * performed in the queued order and can be waited for by flushing
 * cpuset_migrate_mm_wq.
1007 1008
 */

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
struct cpuset_migrate_mm_work {
	struct work_struct	work;
	struct mm_struct	*mm;
	nodemask_t		from;
	nodemask_t		to;
};

static void cpuset_migrate_mm_workfn(struct work_struct *work)
{
	struct cpuset_migrate_mm_work *mwork =
		container_of(work, struct cpuset_migrate_mm_work, work);

	/* on a wq worker, no need to worry about %current's mems_allowed */
	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
	mmput(mwork->mm);
	kfree(mwork);
}

1027 1028 1029
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
1030
	struct cpuset_migrate_mm_work *mwork;
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
	if (mwork) {
		mwork->mm = mm;
		mwork->from = *from;
		mwork->to = *to;
		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
		queue_work(cpuset_migrate_mm_wq, &mwork->work);
	} else {
		mmput(mm);
	}
}
1043

1044
static void cpuset_post_attach(void)
1045 1046
{
	flush_workqueue(cpuset_migrate_mm_wq);
1047 1048
}

1049
/*
1050 1051 1052 1053
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
1054 1055 1056 1057
 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
 * and rebind an eventual tasks' mempolicy. If the task is allocating in
 * parallel, it might temporarily see an empty intersection, which results in
 * a seqlock check and retry before OOM or allocation failure.
1058 1059 1060 1061
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1062 1063
	task_lock(tsk);

1064 1065
	local_irq_disable();
	write_seqcount_begin(&tsk->mems_allowed_seq);
1066

1067
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1068
	mpol_rebind_task(tsk, newmems);
1069
	tsk->mems_allowed = *newmems;
1070

1071 1072
	write_seqcount_end(&tsk->mems_allowed_seq);
	local_irq_enable();
1073

1074
	task_unlock(tsk);
1075 1076
}

1077 1078
static void *cpuset_being_rebound;

1079 1080 1081 1082
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1083 1084 1085
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1086
 */
1087
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1088
{
1089
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1090 1091
	struct css_task_iter it;
	struct task_struct *task;
1092

1093
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1094

1095
	guarantee_online_mems(cs, &newmems);
1096

1097
	/*
1098 1099 1100 1101
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1102
	 * the global cpuset_mutex, we know that no other rebind effort
1103
	 * will be contending for the global variable cpuset_being_rebound.
1104
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1105
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1106
	 */
1107
	css_task_iter_start(&cs->css, 0, &it);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1123 1124
		else
			mmput(mm);
1125 1126
	}
	css_task_iter_end(&it);
1127

1128 1129 1130 1131 1132 1133
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1134
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1135
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1136 1137
}

1138
/*
1139 1140 1141
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1142
 *
1143 1144
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1145
 *
1146
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1147 1148 1149
 *
 * Called with cpuset_mutex held
 */
1150
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1151 1152
{
	struct cpuset *cp;
1153
	struct cgroup_subsys_state *pos_css;
1154 1155

	rcu_read_lock();
1156 1157 1158 1159 1160
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1161 1162 1163 1164
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
1165
		if (is_in_v2_mode() && nodes_empty(*new_mems))
1166 1167
			*new_mems = parent->effective_mems;

1168 1169 1170 1171
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1172
		}
1173

1174
		if (!css_tryget_online(&cp->css))
1175 1176 1177
			continue;
		rcu_read_unlock();

1178
		spin_lock_irq(&callback_lock);
1179
		cp->effective_mems = *new_mems;
1180
		spin_unlock_irq(&callback_lock);
1181

1182
		WARN_ON(!is_in_v2_mode() &&
1183
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1184

1185
		update_tasks_nodemask(cp);
1186 1187 1188 1189 1190 1191 1192

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1193 1194 1195
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1196 1197 1198 1199
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1200
 *
1201
 * Call with cpuset_mutex held. May take callback_lock during call.
1202 1203 1204 1205
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1206 1207
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1208 1209 1210 1211
{
	int retval;

	/*
1212
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1213 1214
	 * it's read-only
	 */
1215 1216 1217 1218
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1219 1220 1221 1222 1223 1224 1225 1226

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1227
		nodes_clear(trialcs->mems_allowed);
1228
	} else {
1229
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1230 1231 1232
		if (retval < 0)
			goto done;

1233
		if (!nodes_subset(trialcs->mems_allowed,
1234 1235
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1236 1237
			goto done;
		}
1238
	}
1239 1240

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1241 1242 1243
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1244
	retval = validate_change(cs, trialcs);
1245 1246 1247
	if (retval < 0)
		goto done;

1248
	spin_lock_irq(&callback_lock);
1249
	cs->mems_allowed = trialcs->mems_allowed;
1250
	spin_unlock_irq(&callback_lock);
1251

1252
	/* use trialcs->mems_allowed as a temp variable */
1253
	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1254 1255 1256 1257
done:
	return retval;
}

1258
bool current_cpuset_is_being_rebound(void)
1259
{
1260
	bool ret;
1261 1262 1263 1264 1265 1266

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1267 1268
}

1269
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1270
{
1271
#ifdef CONFIG_SMP
1272
	if (val < -1 || val >= sched_domain_level_max)
1273
		return -EINVAL;
1274
#endif
1275 1276 1277

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1278 1279
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1280
			rebuild_sched_domains_locked();
1281 1282 1283 1284 1285
	}

	return 0;
}

1286
/**
1287 1288 1289
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1290 1291 1292
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1293
 */
1294
static void update_tasks_flags(struct cpuset *cs)
1295
{
1296 1297 1298
	struct css_task_iter it;
	struct task_struct *task;

1299
	css_task_iter_start(&cs->css, 0, &it);
1300 1301 1302
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1303 1304
}

L
Linus Torvalds 已提交
1305 1306
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1307 1308 1309
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1310
 *
1311
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1312 1313
 */

1314 1315
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1316
{
1317
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1318
	int balance_flag_changed;
1319 1320
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1321

1322 1323 1324 1325
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1326
	if (turning_on)
1327
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1328
	else
1329
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1330

1331
	err = validate_change(cs, trialcs);
1332
	if (err < 0)
1333
		goto out;
P
Paul Jackson 已提交
1334 1335

	balance_flag_changed = (is_sched_load_balance(cs) !=
1336
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1337

1338 1339 1340
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1341
	spin_lock_irq(&callback_lock);
1342
	cs->flags = trialcs->flags;
1343
	spin_unlock_irq(&callback_lock);
1344

1345
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1346
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1347

1348
	if (spread_flag_changed)
1349
		update_tasks_flags(cs);
1350 1351 1352
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1353 1354
}

1355
/*
A
Adrian Bunk 已提交
1356
 * Frequency meter - How fast is some event occurring?
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1401
#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
1417 1418 1419 1420 1421
	time64_t now;
	u32 ticks;

	now = ktime_get_seconds();
	ticks = now - fmp->time;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1456 1457
static struct cpuset *cpuset_attach_old_cs;

1458
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1459
static int cpuset_can_attach(struct cgroup_taskset *tset)
1460
{
1461 1462
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1463 1464
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1465

1466
	/* used later by cpuset_attach() */
1467 1468
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
	cs = css_cs(css);
1469

1470 1471
	mutex_lock(&cpuset_mutex);

1472
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1473
	ret = -ENOSPC;
1474
	if (!is_in_v2_mode() &&
1475
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1476
		goto out_unlock;
1477

1478
	cgroup_taskset_for_each(task, css, tset) {
1479 1480
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
1481 1482 1483 1484
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1485
	}
1486

1487 1488 1489 1490 1491
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1492 1493 1494 1495
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1496
}
1497

1498
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1499
{
1500 1501 1502 1503 1504 1505
	struct cgroup_subsys_state *css;
	struct cpuset *cs;

	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1506
	mutex_lock(&cpuset_mutex);
1507
	css_cs(css)->attach_in_progress--;
1508
	mutex_unlock(&cpuset_mutex);
1509
}
L
Linus Torvalds 已提交
1510

1511
/*
1512
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1513 1514 1515 1516 1517
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1518
static void cpuset_attach(struct cgroup_taskset *tset)
1519
{
1520
	/* static buf protected by cpuset_mutex */
1521
	static nodemask_t cpuset_attach_nodemask_to;
1522
	struct task_struct *task;
1523
	struct task_struct *leader;
1524 1525
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1526
	struct cpuset *oldcs = cpuset_attach_old_cs;
1527

1528 1529 1530
	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1531 1532
	mutex_lock(&cpuset_mutex);

1533 1534 1535 1536
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1537
		guarantee_online_cpus(cs, cpus_attach);
1538

1539
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1540

1541
	cgroup_taskset_for_each(task, css, tset) {
1542 1543 1544 1545 1546 1547 1548 1549 1550
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1551

1552
	/*
1553 1554
	 * Change mm for all threadgroup leaders. This is expensive and may
	 * sleep and should be moved outside migration path proper.
1555
	 */
1556
	cpuset_attach_nodemask_to = cs->effective_mems;
1557
	cgroup_taskset_for_each_leader(leader, css, tset) {
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
		struct mm_struct *mm = get_task_mm(leader);

		if (mm) {
			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);

			/*
			 * old_mems_allowed is the same with mems_allowed
			 * here, except if this task is being moved
			 * automatically due to hotplug.  In that case
			 * @mems_allowed has been updated and is empty, so
			 * @old_mems_allowed is the right nodesets that we
			 * migrate mm from.
			 */
1571
			if (is_memory_migrate(cs))
1572 1573
				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
						  &cpuset_attach_nodemask_to);
1574 1575
			else
				mmput(mm);
1576
		}
1577
	}
1578

1579
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1580

1581
	cs->attach_in_progress--;
1582 1583
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1584 1585

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1586 1587 1588 1589 1590
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1591
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1592 1593
	FILE_CPULIST,
	FILE_MEMLIST,
1594 1595
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1596 1597
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1598
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1599
	FILE_SCHED_LOAD_BALANCE,
1600
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1601 1602
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1603 1604
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1605 1606
} cpuset_filetype_t;

1607 1608
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1609
{
1610
	struct cpuset *cs = css_cs(css);
1611
	cpuset_filetype_t type = cft->private;
1612
	int retval = 0;
1613

1614
	mutex_lock(&cpuset_mutex);
1615 1616
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1617
		goto out_unlock;
1618
	}
1619 1620

	switch (type) {
L
Linus Torvalds 已提交
1621
	case FILE_CPU_EXCLUSIVE:
1622
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1623 1624
		break;
	case FILE_MEM_EXCLUSIVE:
1625
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1626
		break;
1627 1628 1629
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1630
	case FILE_SCHED_LOAD_BALANCE:
1631
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1632
		break;
1633
	case FILE_MEMORY_MIGRATE:
1634
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1635
		break;
1636
	case FILE_MEMORY_PRESSURE_ENABLED:
1637
		cpuset_memory_pressure_enabled = !!val;
1638
		break;
1639
	case FILE_SPREAD_PAGE:
1640
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1641 1642
		break;
	case FILE_SPREAD_SLAB:
1643
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1644
		break;
L
Linus Torvalds 已提交
1645 1646
	default:
		retval = -EINVAL;
1647
		break;
L
Linus Torvalds 已提交
1648
	}
1649 1650
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1651 1652 1653
	return retval;
}

1654 1655
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1656
{
1657
	struct cpuset *cs = css_cs(css);
1658
	cpuset_filetype_t type = cft->private;
1659
	int retval = -ENODEV;
1660

1661 1662 1663
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1664

1665 1666 1667 1668 1669 1670 1671 1672
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1673 1674
out_unlock:
	mutex_unlock(&cpuset_mutex);
1675 1676 1677
	return retval;
}

1678 1679 1680
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1681 1682
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1683
{
1684
	struct cpuset *cs = css_cs(of_css(of));
1685
	struct cpuset *trialcs;
1686
	int retval = -ENODEV;
1687

1688 1689
	buf = strstrip(buf);

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1700 1701 1702 1703 1704 1705 1706 1707
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1708
	 */
1709 1710
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1711 1712
	flush_work(&cpuset_hotplug_work);

1713 1714 1715
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1716

1717
	trialcs = alloc_trial_cpuset(cs);
1718 1719
	if (!trialcs) {
		retval = -ENOMEM;
1720
		goto out_unlock;
1721
	}
1722

1723
	switch (of_cft(of)->private) {
1724
	case FILE_CPULIST:
1725
		retval = update_cpumask(cs, trialcs, buf);
1726 1727
		break;
	case FILE_MEMLIST:
1728
		retval = update_nodemask(cs, trialcs, buf);
1729 1730 1731 1732 1733
		break;
	default:
		retval = -EINVAL;
		break;
	}
1734 1735

	free_trial_cpuset(trialcs);
1736 1737
out_unlock:
	mutex_unlock(&cpuset_mutex);
1738 1739
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1740
	flush_workqueue(cpuset_migrate_mm_wq);
1741
	return retval ?: nbytes;
1742 1743
}

L
Linus Torvalds 已提交
1744 1745 1746 1747 1748 1749 1750 1751
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1752
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1753
{
1754 1755
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1756
	int ret = 0;
L
Linus Torvalds 已提交
1757

1758
	spin_lock_irq(&callback_lock);
L
Linus Torvalds 已提交
1759 1760 1761

	switch (type) {
	case FILE_CPULIST:
1762
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
L
Linus Torvalds 已提交
1763 1764
		break;
	case FILE_MEMLIST:
1765
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
L
Linus Torvalds 已提交
1766
		break;
1767
	case FILE_EFFECTIVE_CPULIST:
1768
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1769 1770
		break;
	case FILE_EFFECTIVE_MEMLIST:
1771
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1772
		break;
L
Linus Torvalds 已提交
1773
	default:
1774
		ret = -EINVAL;
L
Linus Torvalds 已提交
1775 1776
	}

1777
	spin_unlock_irq(&callback_lock);
1778
	return ret;
L
Linus Torvalds 已提交
1779 1780
}

1781
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1782
{
1783
	struct cpuset *cs = css_cs(css);
1784 1785 1786 1787 1788 1789
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1790 1791
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1807 1808 1809

	/* Unreachable but makes gcc happy */
	return 0;
1810
}
L
Linus Torvalds 已提交
1811

1812
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1813
{
1814
	struct cpuset *cs = css_cs(css);
1815 1816 1817 1818 1819 1820 1821
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1822 1823 1824

	/* Unrechable but makes gcc happy */
	return 0;
1825 1826
}

L
Linus Torvalds 已提交
1827 1828 1829 1830 1831

/*
 * for the common functions, 'private' gives the type of file
 */

1832 1833 1834
static struct cftype files[] = {
	{
		.name = "cpus",
1835
		.seq_show = cpuset_common_seq_show,
1836
		.write = cpuset_write_resmask,
1837
		.max_write_len = (100U + 6 * NR_CPUS),
1838 1839 1840 1841 1842
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1843
		.seq_show = cpuset_common_seq_show,
1844
		.write = cpuset_write_resmask,
1845
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1846 1847 1848
		.private = FILE_MEMLIST,
	},

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1875 1876 1877 1878 1879 1880 1881
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1882 1883 1884 1885 1886 1887 1888 1889 1890
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1891 1892
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
1906
		.private = FILE_MEMORY_PRESSURE,
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1922

1923 1924 1925 1926 1927 1928 1929
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1930

1931 1932
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1933 1934

/*
1935
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1936
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1937 1938
 */

1939 1940
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1941
{
T
Tejun Heo 已提交
1942
	struct cpuset *cs;
L
Linus Torvalds 已提交
1943

1944
	if (!parent_css)
1945
		return &top_cpuset.css;
1946

T
Tejun Heo 已提交
1947
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1948
	if (!cs)
1949
		return ERR_PTR(-ENOMEM);
1950 1951 1952 1953
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1954

P
Paul Jackson 已提交
1955
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1956
	cpumask_clear(cs->cpus_allowed);
1957
	nodes_clear(cs->mems_allowed);
1958 1959
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1960
	fmeter_init(&cs->fmeter);
1961
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1962

T
Tejun Heo 已提交
1963
	return &cs->css;
1964 1965 1966 1967 1968 1969

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1970 1971
}

1972
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1973
{
1974
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1975
	struct cpuset *parent = parent_cs(cs);
1976
	struct cpuset *tmp_cs;
1977
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1978 1979 1980 1981

	if (!parent)
		return 0;

1982 1983
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1984
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1985 1986 1987 1988
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1989

1990
	cpuset_inc();
1991

1992
	spin_lock_irq(&callback_lock);
1993
	if (is_in_v2_mode()) {
1994 1995 1996
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
1997
	spin_unlock_irq(&callback_lock);
1998

1999
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2000
		goto out_unlock;
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
2015
	rcu_read_lock();
2016
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2017 2018
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
2019
			goto out_unlock;
2020
		}
2021
	}
2022
	rcu_read_unlock();
2023

2024
	spin_lock_irq(&callback_lock);
2025
	cs->mems_allowed = parent->mems_allowed;
2026
	cs->effective_mems = parent->mems_allowed;
2027
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2028
	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
D
Dan Carpenter 已提交
2029
	spin_unlock_irq(&callback_lock);
2030 2031
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2032 2033 2034
	return 0;
}

2035 2036 2037 2038 2039 2040
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2041
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2042
{
2043
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2044

2045
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2046 2047 2048 2049

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2050
	cpuset_dec();
T
Tejun Heo 已提交
2051
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2052

2053
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2054 2055
}

2056
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2057
{
2058
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2059

2060
	free_cpumask_var(cs->effective_cpus);
2061
	free_cpumask_var(cs->cpus_allowed);
2062
	kfree(cs);
L
Linus Torvalds 已提交
2063 2064
}

2065 2066 2067
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
2068
	spin_lock_irq(&callback_lock);
2069

2070
	if (is_in_v2_mode()) {
2071 2072 2073 2074 2075 2076 2077 2078
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

2079
	spin_unlock_irq(&callback_lock);
2080 2081 2082
	mutex_unlock(&cpuset_mutex);
}

2083 2084 2085 2086 2087
/*
 * Make sure the new task conform to the current state of its parent,
 * which could have been changed by cpuset just after it inherits the
 * state from the parent and before it sits on the cgroup's task list.
 */
2088
static void cpuset_fork(struct task_struct *task)
2089 2090 2091 2092 2093 2094 2095 2096
{
	if (task_css_is_root(task, cpuset_cgrp_id))
		return;

	set_cpus_allowed_ptr(task, &current->cpus_allowed);
	task->mems_allowed = current->mems_allowed;
}

2097
struct cgroup_subsys cpuset_cgrp_subsys = {
2098 2099 2100 2101 2102 2103 2104
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
2105
	.post_attach	= cpuset_post_attach,
2106
	.bind		= cpuset_bind,
2107
	.fork		= cpuset_fork,
2108
	.legacy_cftypes	= files,
2109
	.early_init	= true,
2110 2111
};

L
Linus Torvalds 已提交
2112 2113 2114 2115 2116 2117 2118 2119
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2120
	int err = 0;
L
Linus Torvalds 已提交
2121

N
Nicholas Mc Guire 已提交
2122 2123
	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2124

2125
	cpumask_setall(top_cpuset.cpus_allowed);
2126
	nodes_setall(top_cpuset.mems_allowed);
2127 2128
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2129

2130
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2131
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2132
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2133 2134 2135

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2136 2137
		return err;

N
Nicholas Mc Guire 已提交
2138
	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2139

2140
	return 0;
L
Linus Torvalds 已提交
2141 2142
}

2143
/*
2144
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2145 2146
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2147 2148
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2149
 */
2150 2151 2152 2153 2154 2155 2156 2157
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2158
	parent = parent_cs(cs);
2159
	while (cpumask_empty(parent->cpus_allowed) ||
2160
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2161
		parent = parent_cs(parent);
2162

2163
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2164
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2165 2166
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2167
	}
2168 2169
}

2170 2171 2172 2173
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2174 2175 2176
{
	bool is_empty;

2177
	spin_lock_irq(&callback_lock);
2178 2179 2180 2181
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2182
	spin_unlock_irq(&callback_lock);
2183 2184 2185 2186 2187

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2188
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2189
		update_tasks_cpumask(cs);
2190
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2209 2210 2211 2212
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2213
{
2214 2215 2216 2217 2218
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2219
	spin_lock_irq(&callback_lock);
2220 2221
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2222
	spin_unlock_irq(&callback_lock);
2223

2224
	if (cpus_updated)
2225
		update_tasks_cpumask(cs);
2226
	if (mems_updated)
2227 2228 2229
		update_tasks_nodemask(cs);
}

2230
/**
2231
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2232
 * @cs: cpuset in interest
2233
 *
2234 2235 2236
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2237
 */
2238
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2239
{
2240 2241 2242 2243
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2244 2245
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2246

2247
	mutex_lock(&cpuset_mutex);
2248

2249 2250 2251 2252 2253 2254 2255 2256 2257
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2258 2259
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2260

2261 2262
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2263

2264
	if (is_in_v2_mode())
2265 2266
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2267
	else
2268 2269
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2270

2271
	mutex_unlock(&cpuset_mutex);
2272 2273
}

2274 2275 2276 2277 2278 2279 2280
static bool force_rebuild;

void cpuset_force_rebuild(void)
{
	force_rebuild = true;
}

2281
/**
2282
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2283
 *
2284 2285 2286 2287 2288
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2289
 *
2290
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2291 2292
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2293
 *
2294 2295
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2296
 */
2297
static void cpuset_hotplug_workfn(struct work_struct *work)
2298
{
2299 2300
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2301
	bool cpus_updated, mems_updated;
2302
	bool on_dfl = is_in_v2_mode();
2303

2304
	mutex_lock(&cpuset_mutex);
2305

2306 2307 2308
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2309

2310 2311
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2312

2313 2314
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
2315
		spin_lock_irq(&callback_lock);
2316 2317
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2318
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2319
		spin_unlock_irq(&callback_lock);
2320 2321
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2322

2323 2324
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
2325
		spin_lock_irq(&callback_lock);
2326 2327
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2328
		top_cpuset.effective_mems = new_mems;
2329
		spin_unlock_irq(&callback_lock);
2330
		update_tasks_nodemask(&top_cpuset);
2331
	}
2332

2333 2334
	mutex_unlock(&cpuset_mutex);

2335 2336
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2337
		struct cpuset *cs;
2338
		struct cgroup_subsys_state *pos_css;
2339

2340
		rcu_read_lock();
2341
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2342
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2343 2344
				continue;
			rcu_read_unlock();
2345

2346
			cpuset_hotplug_update_tasks(cs);
2347

2348 2349 2350 2351 2352
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2353

2354
	/* rebuild sched domains if cpus_allowed has changed */
2355 2356
	if (cpus_updated || force_rebuild) {
		force_rebuild = false;
2357
		rebuild_sched_domains();
2358
	}
2359 2360
}

2361
void cpuset_update_active_cpus(void)
2362
{
2363 2364 2365 2366 2367 2368
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 */
	schedule_work(&cpuset_hotplug_work);
2369 2370
}

2371 2372 2373 2374 2375
void cpuset_wait_for_hotplug(void)
{
	flush_work(&cpuset_hotplug_work);
}

2376
/*
2377 2378
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2379
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2380
 */
2381 2382
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2383
{
2384
	schedule_work(&cpuset_hotplug_work);
2385
	return NOTIFY_OK;
2386
}
2387 2388 2389 2390 2391

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2392

L
Linus Torvalds 已提交
2393 2394 2395 2396
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2397
 */
L
Linus Torvalds 已提交
2398 2399
void __init cpuset_init_smp(void)
{
2400
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2401
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2402
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2403

2404 2405 2406
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2407
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2408 2409 2410

	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
	BUG_ON(!cpuset_migrate_mm_wq);
L
Linus Torvalds 已提交
2411 2412 2413 2414 2415
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2416
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2417
 *
2418
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2419
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2420
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2421 2422 2423
 * tasks cpuset.
 **/

2424
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2425
{
2426 2427 2428
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
2429
	rcu_read_lock();
2430
	guarantee_online_cpus(task_cs(tsk), pmask);
2431
	rcu_read_unlock();
2432
	spin_unlock_irqrestore(&callback_lock, flags);
L
Linus Torvalds 已提交
2433 2434
}

2435
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2436 2437
{
	rcu_read_lock();
2438
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2454 2455 2456
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2457 2458 2459
	 */
}

2460
void __init cpuset_init_current_mems_allowed(void)
L
Linus Torvalds 已提交
2461
{
2462
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2463 2464
}

2465 2466 2467 2468 2469 2470
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2471
 * subset of node_states[N_MEMORY], even if this means going outside the
2472 2473 2474 2475 2476 2477
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
2478
	unsigned long flags;
2479

2480
	spin_lock_irqsave(&callback_lock, flags);
2481
	rcu_read_lock();
2482
	guarantee_online_mems(task_cs(tsk), &mask);
2483
	rcu_read_unlock();
2484
	spin_unlock_irqrestore(&callback_lock, flags);
2485 2486 2487 2488

	return mask;
}

2489
/**
2490 2491
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2492
 *
2493
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2494
 */
2495
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2496
{
2497
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2498 2499
}

2500
/*
2501 2502
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
2503
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2504
 * (an unusual configuration), then returns the root cpuset.
2505
 */
2506
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2507
{
T
Tejun Heo 已提交
2508 2509
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2510 2511 2512
	return cs;
}

2513
/**
2514
 * cpuset_node_allowed - Can we allocate on a memory node?
2515
 * @node: is this an allowed node?
2516
 * @gfp_mask: memory allocation flags
2517
 *
2518 2519 2520
 * If we're in interrupt, yes, we can always allocate.  If @node is set in
 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2521
 * yes.  If current has access to memory reserves as an oom victim, yes.
2522 2523 2524
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2525
 * and do not allow allocations outside the current tasks cpuset
2526
 * unless the task has been OOM killed.
2527
 * GFP_KERNEL allocations are not so marked, so can escape to the
2528
 * nearest enclosing hardwalled ancestor cpuset.
2529
 *
2530
 * Scanning up parent cpusets requires callback_lock.  The
2531 2532 2533 2534
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2535
 * cpuset are short of memory, might require taking the callback_lock.
2536
 *
2537
 * The first call here from mm/page_alloc:get_page_from_freelist()
2538 2539 2540
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2541 2542 2543 2544 2545 2546
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2547 2548
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2549
 *	tsk_is_oom_victim   - any node ok
2550
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2551
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2552
 */
2553
bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2554
{
2555
	struct cpuset *cs;		/* current cpuset ancestors */
2556
	int allowed;			/* is allocation in zone z allowed? */
2557
	unsigned long flags;
2558

2559
	if (in_interrupt())
2560
		return true;
2561
	if (node_isset(node, current->mems_allowed))
2562
		return true;
2563 2564 2565 2566
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
2567
	if (unlikely(tsk_is_oom_victim(current)))
2568
		return true;
2569
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2570
		return false;
2571

2572
	if (current->flags & PF_EXITING) /* Let dying task have memory */
2573
		return true;
2574

2575
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2576
	spin_lock_irqsave(&callback_lock, flags);
2577

2578
	rcu_read_lock();
2579
	cs = nearest_hardwall_ancestor(task_cs(current));
2580
	allowed = node_isset(node, cs->mems_allowed);
2581
	rcu_read_unlock();
2582

2583
	spin_unlock_irqrestore(&callback_lock, flags);
2584
	return allowed;
L
Linus Torvalds 已提交
2585 2586
}

2587
/**
2588 2589
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2614
static int cpuset_spread_node(int *rotor)
2615
{
2616
	return *rotor = next_node_in(*rotor, current->mems_allowed);
2617
}
2618 2619 2620

int cpuset_mem_spread_node(void)
{
2621 2622 2623 2624
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2625 2626 2627 2628 2629
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2630 2631 2632 2633
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2634 2635 2636
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2637 2638
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2639
/**
2640 2641 2642 2643 2644 2645 2646 2647
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2648 2649
 **/

2650 2651
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2652
{
2653
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2654 2655
}

2656
/**
2657
 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2658
 *
2659
 * Description: Prints current's name, cpuset name, and cached copy of its
2660
 * mems_allowed to the kernel log.
2661
 */
2662
void cpuset_print_current_mems_allowed(void)
2663
{
2664
	struct cgroup *cgrp;
2665

2666
	rcu_read_lock();
2667

2668 2669
	cgrp = task_cs(current)->css.cgroup;
	pr_info("%s cpuset=", current->comm);
T
Tejun Heo 已提交
2670
	pr_cont_cgroup_name(cgrp);
2671 2672
	pr_cont(" mems_allowed=%*pbl\n",
		nodemask_pr_args(&current->mems_allowed));
2673

2674
	rcu_read_unlock();
2675 2676
}

2677 2678 2679 2680 2681 2682
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2683
int cpuset_memory_pressure_enabled __read_mostly;
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2705
	rcu_read_lock();
2706
	fmeter_markevent(&task_cs(current)->fmeter);
2707
	rcu_read_unlock();
2708 2709
}

2710
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2711 2712 2713 2714
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2715 2716
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2717
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2718
 *    anyway.
L
Linus Torvalds 已提交
2719
 */
Z
Zefan Li 已提交
2720 2721
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
2722
{
2723
	char *buf;
2724
	struct cgroup_subsys_state *css;
2725
	int retval;
L
Linus Torvalds 已提交
2726

2727
	retval = -ENOMEM;
T
Tejun Heo 已提交
2728
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2729
	if (!buf)
2730 2731
		goto out;

2732
	css = task_get_css(tsk, cpuset_cgrp_id);
2733 2734
	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
				current->nsproxy->cgroup_ns);
2735
	css_put(css);
2736
	if (retval >= PATH_MAX)
2737 2738
		retval = -ENAMETOOLONG;
	if (retval < 0)
Z
Zefan Li 已提交
2739
		goto out_free;
2740
	seq_puts(m, buf);
L
Linus Torvalds 已提交
2741
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2742
	retval = 0;
2743
out_free:
L
Linus Torvalds 已提交
2744
	kfree(buf);
2745
out:
L
Linus Torvalds 已提交
2746 2747
	return retval;
}
2748
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2749

2750
/* Display task mems_allowed in /proc/<pid>/status file. */
2751 2752
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2753 2754 2755 2756
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
L
Linus Torvalds 已提交
2757
}