cpuset.c 76.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
54
#include <linux/time64.h>
L
Linus Torvalds 已提交
55 56 57
#include <linux/backing-dev.h>
#include <linux/sort.h>

58
#include <linux/uaccess.h>
A
Arun Sharma 已提交
59
#include <linux/atomic.h>
60
#include <linux/mutex.h>
61
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
65

66 67 68 69 70
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
71
	time64_t time;		/* clock (secs) when val computed */
72 73 74
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
75
struct cpuset {
76 77
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
78
	unsigned long flags;		/* "unsigned long" so bitops work */
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

100 101 102 103 104 105 106
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
107

108 109 110 111 112 113 114 115 116 117 118 119
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

120
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
121

122 123 124 125 126 127
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
128 129
	/* partition number for rebuild_sched_domains() */
	int pn;
130

131 132
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
133 134
};

135
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
136
{
137
	return css ? container_of(css, struct cpuset, css) : NULL;
138 139 140 141 142
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
143
	return css_cs(task_css(task, cpuset_cgrp_id));
144 145
}

146
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
147
{
T
Tejun Heo 已提交
148
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
164 165
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
166
	CS_ONLINE,
L
Linus Torvalds 已提交
167 168
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
169
	CS_MEM_HARDWALL,
170
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
171
	CS_SCHED_LOAD_BALANCE,
172 173
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
174 175 176
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
177 178 179 180 181
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
182 183
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
184
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
185 186 187 188
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
189
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
190 191
}

192 193 194 195 196
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
197 198 199 200 201
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

202 203
static inline int is_memory_migrate(const struct cpuset *cs)
{
204
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
205 206
}

207 208 209 210 211 212 213 214 215 216
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
217
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
218 219
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
220 221
};

222 223 224
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
225
 * @pos_css: used for iteration
226 227 228 229 230
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
231 232 233
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
234

235 236 237
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
238
 * @pos_css: used for iteration
239 240 241
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
242
 * with RCU read locked.  The caller may modify @pos_css by calling
243 244
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
245
 */
246 247 248
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
249

L
Linus Torvalds 已提交
250
/*
251 252 253 254
 * There are two global locks guarding cpuset structures - cpuset_mutex and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.
255
 *
256
 * A task must hold both locks to modify cpusets.  If a task holds
257
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258
 * is the only task able to also acquire callback_lock and be able to
259 260 261
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
262 263
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
264
 * everyone else.
265 266
 *
 * Calls to the kernel memory allocator can not be made while holding
267
 * callback_lock, as that would risk double tripping on callback_lock
268 269 270
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
271
 * If a task is only holding callback_lock, then it has read-only
272 273
 * access to cpusets.
 *
274 275 276
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
277
 *
278
 * The cpuset_common_file_read() handlers only hold callback_lock across
279 280 281
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
282 283
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
284 285
 */

286
static DEFINE_MUTEX(cpuset_mutex);
287
static DEFINE_SPINLOCK(callback_lock);
288

289 290
static struct workqueue_struct *cpuset_migrate_mm_wq;

291 292 293 294 295 296
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

297 298
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

299 300
/*
 * This is ugly, but preserves the userspace API for existing cpuset
301
 * users. If someone tries to mount the "cpuset" filesystem, we
302 303
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
304 305
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
306
{
307
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
308
	struct dentry *ret = ERR_PTR(-ENODEV);
309 310 311 312
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
313 314
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
315 316 317
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
318 319 320 321
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
322
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
323 324 325
};

/*
326
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
327
 * are online.  If none are online, walk up the cpuset hierarchy
328
 * until we find one that does have some online cpus.
L
Linus Torvalds 已提交
329 330
 *
 * One way or another, we guarantee to return some non-empty subset
331
 * of cpu_online_mask.
L
Linus Torvalds 已提交
332
 *
333
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
334
 */
335
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
336
{
337
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
T
Tejun Heo 已提交
338
		cs = parent_cs(cs);
339 340 341 342 343 344 345 346 347 348 349 350
		if (unlikely(!cs)) {
			/*
			 * The top cpuset doesn't have any online cpu as a
			 * consequence of a race between cpuset_hotplug_work
			 * and cpu hotplug notifier.  But we know the top
			 * cpuset's effective_cpus is on its way to to be
			 * identical to cpu_online_mask.
			 */
			cpumask_copy(pmask, cpu_online_mask);
			return;
		}
	}
351
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
352 353 354 355
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
356 357
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
358
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
359 360
 *
 * One way or another, we guarantee to return some non-empty subset
361
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
362
 *
363
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
364
 */
365
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
366
{
367
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
368
		cs = parent_cs(cs);
369
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
370 371
}

372 373 374
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
375
 * Call with callback_lock or cpuset_mutex held.
376 377 378 379 380
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
381
		task_set_spread_page(tsk);
382
	else
383 384
		task_clear_spread_page(tsk);

385
	if (is_spread_slab(cs))
386
		task_set_spread_slab(tsk);
387
	else
388
		task_clear_spread_slab(tsk);
389 390
}

L
Linus Torvalds 已提交
391 392 393 394 395
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
396
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
397 398 399 400
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
401
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
402 403 404 405 406
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

407 408 409 410
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
411
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
412
{
413 414 415 416 417 418
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

419 420 421 422
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
423

424 425
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
426
	return trial;
427 428 429 430 431 432

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
433 434 435 436 437 438 439 440
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
441
	free_cpumask_var(trial->effective_cpus);
442
	free_cpumask_var(trial->cpus_allowed);
443 444 445
	kfree(trial);
}

L
Linus Torvalds 已提交
446 447 448 449 450 451 452
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
453
 * cpuset_mutex held.
L
Linus Torvalds 已提交
454 455 456 457 458 459 460 461 462 463 464 465
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

466
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
467
{
468
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
469
	struct cpuset *c, *par;
470 471 472
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
473 474

	/* Each of our child cpusets must be a subset of us */
475
	ret = -EBUSY;
476
	cpuset_for_each_child(c, css, cur)
477 478
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
479 480

	/* Remaining checks don't apply to root cpuset */
481
	ret = 0;
482
	if (cur == &top_cpuset)
483
		goto out;
L
Linus Torvalds 已提交
484

T
Tejun Heo 已提交
485
	par = parent_cs(cur);
486

487
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
488
	ret = -EACCES;
489 490
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
	    !is_cpuset_subset(trial, par))
491
		goto out;
L
Linus Torvalds 已提交
492

493 494 495 496
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
497
	ret = -EINVAL;
498
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
499 500
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
501
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
502
			goto out;
L
Linus Torvalds 已提交
503 504 505
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
506
			goto out;
L
Linus Torvalds 已提交
507 508
	}

509 510
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
511
	 * be changed to have empty cpus_allowed or mems_allowed.
512
	 */
513
	ret = -ENOSPC;
514
	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
515 516 517 518 519 520 521
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
522

523 524 525 526 527 528 529 530 531 532
	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

533 534 535 536
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
537 538
}

539
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
540
/*
541
 * Helper routine for generate_sched_domains().
542
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
543 544 545
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
546
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
547 548
}

549 550 551 552 553 554 555 556
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

557 558
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
559
{
560
	struct cpuset *cp;
561
	struct cgroup_subsys_state *pos_css;
562

563
	rcu_read_lock();
564
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
565 566
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
567
			pos_css = css_rightmost_descendant(pos_css);
568
			continue;
569
		}
570 571 572 573

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
574
	rcu_read_unlock();
575 576
}

P
Paul Jackson 已提交
577
/*
578 579 580 581 582
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
583
 * The output of this function needs to be passed to kernel/sched/core.c
584 585 586
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
587
 *
L
Li Zefan 已提交
588
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
589 590 591 592 593 594 595
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
596
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
597 598
 *
 * The three key local variables below are:
599
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
600 601 602 603 604 605 606 607 608 609 610 611
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
612
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
631
static int generate_sched_domains(cpumask_var_t **domains,
632
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
633 634 635 636 637
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
638
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
639
	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
640
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
641
	int ndoms = 0;		/* number of sched domains in result */
642
	int nslot;		/* next empty doms[] struct cpumask slot */
643
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
644 645

	doms = NULL;
646
	dattr = NULL;
647
	csa = NULL;
P
Paul Jackson 已提交
648

649 650 651 652
	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
		goto done;
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);

P
Paul Jackson 已提交
653 654
	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
655 656
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
657
		if (!doms)
658 659
			goto done;

660 661 662
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
663
			update_domain_attr_tree(dattr, &top_cpuset);
664
		}
665 666
		cpumask_and(doms[0], top_cpuset.effective_cpus,
				     non_isolated_cpus);
667 668

		goto done;
P
Paul Jackson 已提交
669 670
	}

671
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
672 673 674 675
	if (!csa)
		goto done;
	csn = 0;

676
	rcu_read_lock();
677
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
678 679
		if (cp == &top_cpuset)
			continue;
680
		/*
681 682 683 684 685 686
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
687
		 */
688
		if (!cpumask_empty(cp->cpus_allowed) &&
689 690
		    !(is_sched_load_balance(cp) &&
		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
691
			continue;
692

693 694 695 696
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
697
		pos_css = css_rightmost_descendant(pos_css);
698 699
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

728 729 730 731
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
732
	doms = alloc_sched_domains(ndoms);
733
	if (!doms)
734 735 736 737 738 739
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
740
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
741 742 743

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
744
		struct cpumask *dp;
P
Paul Jackson 已提交
745 746
		int apn = a->pn;

747 748 749 750 751
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

752
		dp = doms[nslot];
753 754 755 756

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
757 758
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
759
				warnings--;
P
Paul Jackson 已提交
760
			}
761 762
			continue;
		}
P
Paul Jackson 已提交
763

764
		cpumask_clear(dp);
765 766 767 768 769 770
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
771
				cpumask_or(dp, dp, b->effective_cpus);
772
				cpumask_and(dp, dp, non_isolated_cpus);
773 774 775 776 777
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
778 779
			}
		}
780
		nslot++;
P
Paul Jackson 已提交
781 782 783
	}
	BUG_ON(nslot != ndoms);

784
done:
785
	free_cpumask_var(non_isolated_cpus);
786 787
	kfree(csa);

788 789 790 791 792 793 794
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

795 796 797 798 799 800 801 802
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
803 804 805 806 807
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
808
 *
809
 * Call with cpuset_mutex held.  Takes get_online_cpus().
810
 */
811
static void rebuild_sched_domains_locked(void)
812 813
{
	struct sched_domain_attr *attr;
814
	cpumask_var_t *doms;
815 816
	int ndoms;

817
	lockdep_assert_held(&cpuset_mutex);
818
	get_online_cpus();
819

820 821 822 823 824
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
825
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
826 827
		goto out;

828 829 830 831 832
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
833
out:
834
	put_online_cpus();
835
}
836
#else /* !CONFIG_SMP */
837
static void rebuild_sched_domains_locked(void)
838 839 840
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
841

842 843
void rebuild_sched_domains(void)
{
844
	mutex_lock(&cpuset_mutex);
845
	rebuild_sched_domains_locked();
846
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
847 848
}

849 850 851 852
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
853 854 855
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
856
 */
857
static void update_tasks_cpumask(struct cpuset *cs)
858
{
859 860 861 862 863
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
864
		set_cpus_allowed_ptr(task, cs->effective_cpus);
865
	css_task_iter_end(&it);
866 867
}

868
/*
869 870 871 872 873 874
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
875
 *
876
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
877 878 879
 *
 * Called with cpuset_mutex held
 */
880
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
881 882
{
	struct cpuset *cp;
883
	struct cgroup_subsys_state *pos_css;
884
	bool need_rebuild_sched_domains = false;
885 886

	rcu_read_lock();
887 888 889 890 891
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

892 893 894 895
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
896 897
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    cpumask_empty(new_cpus))
898 899
			cpumask_copy(new_cpus, parent->effective_cpus);

900 901 902 903
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
904
		}
905

906
		if (!css_tryget_online(&cp->css))
907 908 909
			continue;
		rcu_read_unlock();

910
		spin_lock_irq(&callback_lock);
911
		cpumask_copy(cp->effective_cpus, new_cpus);
912
		spin_unlock_irq(&callback_lock);
913

914
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
915 916
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

917
		update_tasks_cpumask(cp);
918

919 920 921 922 923 924 925 926
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

927 928 929 930
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
931 932 933

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
934 935
}

C
Cliff Wickman 已提交
936 937 938
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
939
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
940 941
 * @buf: buffer of cpu numbers written to this cpuset
 */
942 943
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
944
{
C
Cliff Wickman 已提交
945
	int retval;
L
Linus Torvalds 已提交
946

947
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
948 949 950
	if (cs == &top_cpuset)
		return -EACCES;

951
	/*
952
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
953 954 955
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
956
	 */
957
	if (!*buf) {
958
		cpumask_clear(trialcs->cpus_allowed);
959
	} else {
960
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
961 962
		if (retval < 0)
			return retval;
963

964 965
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
966
			return -EINVAL;
967
	}
P
Paul Jackson 已提交
968

P
Paul Menage 已提交
969
	/* Nothing to do if the cpus didn't change */
970
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
971
		return 0;
C
Cliff Wickman 已提交
972

973 974 975 976
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

977
	spin_lock_irq(&callback_lock);
978
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
979
	spin_unlock_irq(&callback_lock);
P
Paul Jackson 已提交
980

981 982
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
983
	return 0;
L
Linus Torvalds 已提交
984 985
}

986
/*
987 988 989 990 991
 * Migrate memory region from one set of nodes to another.  This is
 * performed asynchronously as it can be called from process migration path
 * holding locks involved in process management.  All mm migrations are
 * performed in the queued order and can be waited for by flushing
 * cpuset_migrate_mm_wq.
992 993
 */

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
struct cpuset_migrate_mm_work {
	struct work_struct	work;
	struct mm_struct	*mm;
	nodemask_t		from;
	nodemask_t		to;
};

static void cpuset_migrate_mm_workfn(struct work_struct *work)
{
	struct cpuset_migrate_mm_work *mwork =
		container_of(work, struct cpuset_migrate_mm_work, work);

	/* on a wq worker, no need to worry about %current's mems_allowed */
	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
	mmput(mwork->mm);
	kfree(mwork);
}

1012 1013 1014
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
1015
	struct cpuset_migrate_mm_work *mwork;
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
	if (mwork) {
		mwork->mm = mm;
		mwork->from = *from;
		mwork->to = *to;
		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
		queue_work(cpuset_migrate_mm_wq, &mwork->work);
	} else {
		mmput(mm);
	}
}
1028

1029
static void cpuset_post_attach(void)
1030 1031
{
	flush_workqueue(cpuset_migrate_mm_wq);
1032 1033
}

1034
/*
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1046
	bool need_loop;
1047

1048
	task_lock(tsk);
1049 1050
	/*
	 * Determine if a loop is necessary if another thread is doing
1051
	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1052 1053 1054 1055 1056
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1057

1058 1059
	if (need_loop) {
		local_irq_disable();
1060
		write_seqcount_begin(&tsk->mems_allowed_seq);
1061
	}
1062

1063 1064
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1065 1066

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1067
	tsk->mems_allowed = *newmems;
1068

1069
	if (need_loop) {
1070
		write_seqcount_end(&tsk->mems_allowed_seq);
1071 1072
		local_irq_enable();
	}
1073

1074
	task_unlock(tsk);
1075 1076
}

1077 1078
static void *cpuset_being_rebound;

1079 1080 1081 1082
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1083 1084 1085
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1086
 */
1087
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1088
{
1089
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1090 1091
	struct css_task_iter it;
	struct task_struct *task;
1092

1093
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1094

1095
	guarantee_online_mems(cs, &newmems);
1096

1097
	/*
1098 1099 1100 1101
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1102
	 * the global cpuset_mutex, we know that no other rebind effort
1103
	 * will be contending for the global variable cpuset_being_rebound.
1104
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1105
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1106
	 */
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1123 1124
		else
			mmput(mm);
1125 1126
	}
	css_task_iter_end(&it);
1127

1128 1129 1130 1131 1132 1133
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1134
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1135
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1136 1137
}

1138
/*
1139 1140 1141
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1142
 *
1143 1144
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1145
 *
1146
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1147 1148 1149
 *
 * Called with cpuset_mutex held
 */
1150
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1151 1152
{
	struct cpuset *cp;
1153
	struct cgroup_subsys_state *pos_css;
1154 1155

	rcu_read_lock();
1156 1157 1158 1159 1160
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1161 1162 1163 1164
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
1165 1166
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    nodes_empty(*new_mems))
1167 1168
			*new_mems = parent->effective_mems;

1169 1170 1171 1172
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1173
		}
1174

1175
		if (!css_tryget_online(&cp->css))
1176 1177 1178
			continue;
		rcu_read_unlock();

1179
		spin_lock_irq(&callback_lock);
1180
		cp->effective_mems = *new_mems;
1181
		spin_unlock_irq(&callback_lock);
1182

1183
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1184
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1185

1186
		update_tasks_nodemask(cp);
1187 1188 1189 1190 1191 1192 1193

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1194 1195 1196
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1197 1198 1199 1200
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1201
 *
1202
 * Call with cpuset_mutex held. May take callback_lock during call.
1203 1204 1205 1206
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1207 1208
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1209 1210 1211 1212
{
	int retval;

	/*
1213
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1214 1215
	 * it's read-only
	 */
1216 1217 1218 1219
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1220 1221 1222 1223 1224 1225 1226 1227

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1228
		nodes_clear(trialcs->mems_allowed);
1229
	} else {
1230
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1231 1232 1233
		if (retval < 0)
			goto done;

1234
		if (!nodes_subset(trialcs->mems_allowed,
1235 1236
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1237 1238
			goto done;
		}
1239
	}
1240 1241

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1242 1243 1244
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1245
	retval = validate_change(cs, trialcs);
1246 1247 1248
	if (retval < 0)
		goto done;

1249
	spin_lock_irq(&callback_lock);
1250
	cs->mems_allowed = trialcs->mems_allowed;
1251
	spin_unlock_irq(&callback_lock);
1252

1253
	/* use trialcs->mems_allowed as a temp variable */
1254
	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1255 1256 1257 1258
done:
	return retval;
}

1259 1260
int current_cpuset_is_being_rebound(void)
{
1261 1262 1263 1264 1265 1266 1267
	int ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1268 1269
}

1270
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1271
{
1272
#ifdef CONFIG_SMP
1273
	if (val < -1 || val >= sched_domain_level_max)
1274
		return -EINVAL;
1275
#endif
1276 1277 1278

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1279 1280
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1281
			rebuild_sched_domains_locked();
1282 1283 1284 1285 1286
	}

	return 0;
}

1287
/**
1288 1289 1290
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1291 1292 1293
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1294
 */
1295
static void update_tasks_flags(struct cpuset *cs)
1296
{
1297 1298 1299 1300 1301 1302 1303
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1304 1305
}

L
Linus Torvalds 已提交
1306 1307
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1308 1309 1310
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1311
 *
1312
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1313 1314
 */

1315 1316
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1317
{
1318
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1319
	int balance_flag_changed;
1320 1321
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1322

1323 1324 1325 1326
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1327
	if (turning_on)
1328
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1329
	else
1330
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1331

1332
	err = validate_change(cs, trialcs);
1333
	if (err < 0)
1334
		goto out;
P
Paul Jackson 已提交
1335 1336

	balance_flag_changed = (is_sched_load_balance(cs) !=
1337
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1338

1339 1340 1341
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1342
	spin_lock_irq(&callback_lock);
1343
	cs->flags = trialcs->flags;
1344
	spin_unlock_irq(&callback_lock);
1345

1346
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1347
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1348

1349
	if (spread_flag_changed)
1350
		update_tasks_flags(cs);
1351 1352 1353
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1354 1355
}

1356
/*
A
Adrian Bunk 已提交
1357
 * Frequency meter - How fast is some event occurring?
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1402
#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
1418 1419 1420 1421 1422
	time64_t now;
	u32 ticks;

	now = ktime_get_seconds();
	ticks = now - fmp->time;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1457 1458
static struct cpuset *cpuset_attach_old_cs;

1459
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1460
static int cpuset_can_attach(struct cgroup_taskset *tset)
1461
{
1462 1463
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1464 1465
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1466

1467
	/* used later by cpuset_attach() */
1468 1469
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
	cs = css_cs(css);
1470

1471 1472
	mutex_lock(&cpuset_mutex);

1473
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1474
	ret = -ENOSPC;
1475
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1476
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1477
		goto out_unlock;
1478

1479
	cgroup_taskset_for_each(task, css, tset) {
1480 1481
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
1482 1483 1484 1485
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1486
	}
1487

1488 1489 1490 1491 1492
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1493 1494 1495 1496
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1497
}
1498

1499
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1500
{
1501 1502 1503 1504 1505 1506
	struct cgroup_subsys_state *css;
	struct cpuset *cs;

	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1507
	mutex_lock(&cpuset_mutex);
1508
	css_cs(css)->attach_in_progress--;
1509
	mutex_unlock(&cpuset_mutex);
1510
}
L
Linus Torvalds 已提交
1511

1512
/*
1513
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1514 1515 1516 1517 1518
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1519
static void cpuset_attach(struct cgroup_taskset *tset)
1520
{
1521
	/* static buf protected by cpuset_mutex */
1522
	static nodemask_t cpuset_attach_nodemask_to;
1523
	struct task_struct *task;
1524
	struct task_struct *leader;
1525 1526
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1527
	struct cpuset *oldcs = cpuset_attach_old_cs;
1528

1529 1530 1531
	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1532 1533
	mutex_lock(&cpuset_mutex);

1534 1535 1536 1537
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1538
		guarantee_online_cpus(cs, cpus_attach);
1539

1540
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1541

1542
	cgroup_taskset_for_each(task, css, tset) {
1543 1544 1545 1546 1547 1548 1549 1550 1551
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1552

1553
	/*
1554 1555
	 * Change mm for all threadgroup leaders. This is expensive and may
	 * sleep and should be moved outside migration path proper.
1556
	 */
1557
	cpuset_attach_nodemask_to = cs->effective_mems;
1558
	cgroup_taskset_for_each_leader(leader, css, tset) {
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
		struct mm_struct *mm = get_task_mm(leader);

		if (mm) {
			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);

			/*
			 * old_mems_allowed is the same with mems_allowed
			 * here, except if this task is being moved
			 * automatically due to hotplug.  In that case
			 * @mems_allowed has been updated and is empty, so
			 * @old_mems_allowed is the right nodesets that we
			 * migrate mm from.
			 */
1572
			if (is_memory_migrate(cs))
1573 1574
				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
						  &cpuset_attach_nodemask_to);
1575 1576
			else
				mmput(mm);
1577
		}
1578
	}
1579

1580
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1581

1582
	cs->attach_in_progress--;
1583 1584
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1585 1586

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1592
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1593 1594
	FILE_CPULIST,
	FILE_MEMLIST,
1595 1596
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1597 1598
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1599
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1600
	FILE_SCHED_LOAD_BALANCE,
1601
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1602 1603
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1604 1605
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1606 1607
} cpuset_filetype_t;

1608 1609
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1610
{
1611
	struct cpuset *cs = css_cs(css);
1612
	cpuset_filetype_t type = cft->private;
1613
	int retval = 0;
1614

1615
	mutex_lock(&cpuset_mutex);
1616 1617
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1618
		goto out_unlock;
1619
	}
1620 1621

	switch (type) {
L
Linus Torvalds 已提交
1622
	case FILE_CPU_EXCLUSIVE:
1623
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1624 1625
		break;
	case FILE_MEM_EXCLUSIVE:
1626
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1627
		break;
1628 1629 1630
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1631
	case FILE_SCHED_LOAD_BALANCE:
1632
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1633
		break;
1634
	case FILE_MEMORY_MIGRATE:
1635
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1636
		break;
1637
	case FILE_MEMORY_PRESSURE_ENABLED:
1638
		cpuset_memory_pressure_enabled = !!val;
1639
		break;
1640
	case FILE_SPREAD_PAGE:
1641
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1642 1643
		break;
	case FILE_SPREAD_SLAB:
1644
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1645
		break;
L
Linus Torvalds 已提交
1646 1647
	default:
		retval = -EINVAL;
1648
		break;
L
Linus Torvalds 已提交
1649
	}
1650 1651
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1652 1653 1654
	return retval;
}

1655 1656
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1657
{
1658
	struct cpuset *cs = css_cs(css);
1659
	cpuset_filetype_t type = cft->private;
1660
	int retval = -ENODEV;
1661

1662 1663 1664
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1665

1666 1667 1668 1669 1670 1671 1672 1673
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1674 1675
out_unlock:
	mutex_unlock(&cpuset_mutex);
1676 1677 1678
	return retval;
}

1679 1680 1681
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1682 1683
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1684
{
1685
	struct cpuset *cs = css_cs(of_css(of));
1686
	struct cpuset *trialcs;
1687
	int retval = -ENODEV;
1688

1689 1690
	buf = strstrip(buf);

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1701 1702 1703 1704 1705 1706 1707 1708
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1709
	 */
1710 1711
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1712 1713
	flush_work(&cpuset_hotplug_work);

1714 1715 1716
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1717

1718
	trialcs = alloc_trial_cpuset(cs);
1719 1720
	if (!trialcs) {
		retval = -ENOMEM;
1721
		goto out_unlock;
1722
	}
1723

1724
	switch (of_cft(of)->private) {
1725
	case FILE_CPULIST:
1726
		retval = update_cpumask(cs, trialcs, buf);
1727 1728
		break;
	case FILE_MEMLIST:
1729
		retval = update_nodemask(cs, trialcs, buf);
1730 1731 1732 1733 1734
		break;
	default:
		retval = -EINVAL;
		break;
	}
1735 1736

	free_trial_cpuset(trialcs);
1737 1738
out_unlock:
	mutex_unlock(&cpuset_mutex);
1739 1740
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1741
	flush_workqueue(cpuset_migrate_mm_wq);
1742
	return retval ?: nbytes;
1743 1744
}

L
Linus Torvalds 已提交
1745 1746 1747 1748 1749 1750 1751 1752
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1753
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1754
{
1755 1756
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1757
	int ret = 0;
L
Linus Torvalds 已提交
1758

1759
	spin_lock_irq(&callback_lock);
L
Linus Torvalds 已提交
1760 1761 1762

	switch (type) {
	case FILE_CPULIST:
1763
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
L
Linus Torvalds 已提交
1764 1765
		break;
	case FILE_MEMLIST:
1766
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
L
Linus Torvalds 已提交
1767
		break;
1768
	case FILE_EFFECTIVE_CPULIST:
1769
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1770 1771
		break;
	case FILE_EFFECTIVE_MEMLIST:
1772
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1773
		break;
L
Linus Torvalds 已提交
1774
	default:
1775
		ret = -EINVAL;
L
Linus Torvalds 已提交
1776 1777
	}

1778
	spin_unlock_irq(&callback_lock);
1779
	return ret;
L
Linus Torvalds 已提交
1780 1781
}

1782
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1783
{
1784
	struct cpuset *cs = css_cs(css);
1785 1786 1787 1788 1789 1790
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1791 1792
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1808 1809 1810

	/* Unreachable but makes gcc happy */
	return 0;
1811
}
L
Linus Torvalds 已提交
1812

1813
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1814
{
1815
	struct cpuset *cs = css_cs(css);
1816 1817 1818 1819 1820 1821 1822
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1823 1824 1825

	/* Unrechable but makes gcc happy */
	return 0;
1826 1827
}

L
Linus Torvalds 已提交
1828 1829 1830 1831 1832

/*
 * for the common functions, 'private' gives the type of file
 */

1833 1834 1835
static struct cftype files[] = {
	{
		.name = "cpus",
1836
		.seq_show = cpuset_common_seq_show,
1837
		.write = cpuset_write_resmask,
1838
		.max_write_len = (100U + 6 * NR_CPUS),
1839 1840 1841 1842 1843
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1844
		.seq_show = cpuset_common_seq_show,
1845
		.write = cpuset_write_resmask,
1846
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1847 1848 1849
		.private = FILE_MEMLIST,
	},

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1876 1877 1878 1879 1880 1881 1882
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1883 1884 1885 1886 1887 1888 1889 1890 1891
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1892 1893
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1922

1923 1924 1925 1926 1927 1928 1929
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1930

1931 1932
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1933 1934

/*
1935
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1936
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1937 1938
 */

1939 1940
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1941
{
T
Tejun Heo 已提交
1942
	struct cpuset *cs;
L
Linus Torvalds 已提交
1943

1944
	if (!parent_css)
1945
		return &top_cpuset.css;
1946

T
Tejun Heo 已提交
1947
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1948
	if (!cs)
1949
		return ERR_PTR(-ENOMEM);
1950 1951 1952 1953
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1954

P
Paul Jackson 已提交
1955
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1956
	cpumask_clear(cs->cpus_allowed);
1957
	nodes_clear(cs->mems_allowed);
1958 1959
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1960
	fmeter_init(&cs->fmeter);
1961
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1962

T
Tejun Heo 已提交
1963
	return &cs->css;
1964 1965 1966 1967 1968 1969

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1970 1971
}

1972
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1973
{
1974
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1975
	struct cpuset *parent = parent_cs(cs);
1976
	struct cpuset *tmp_cs;
1977
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1978 1979 1980 1981

	if (!parent)
		return 0;

1982 1983
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1984
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1985 1986 1987 1988
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1989

1990
	cpuset_inc();
1991

1992
	spin_lock_irq(&callback_lock);
1993
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1994 1995 1996
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
1997
	spin_unlock_irq(&callback_lock);
1998

1999
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2000
		goto out_unlock;
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
2015
	rcu_read_lock();
2016
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2017 2018
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
2019
			goto out_unlock;
2020
		}
2021
	}
2022
	rcu_read_unlock();
2023

2024
	spin_lock_irq(&callback_lock);
2025
	cs->mems_allowed = parent->mems_allowed;
2026
	cs->effective_mems = parent->mems_allowed;
2027
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2028
	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
D
Dan Carpenter 已提交
2029
	spin_unlock_irq(&callback_lock);
2030 2031
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2032 2033 2034
	return 0;
}

2035 2036 2037 2038 2039 2040
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2041
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2042
{
2043
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2044

2045
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2046 2047 2048 2049

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2050
	cpuset_dec();
T
Tejun Heo 已提交
2051
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2052

2053
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2054 2055
}

2056
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2057
{
2058
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2059

2060
	free_cpumask_var(cs->effective_cpus);
2061
	free_cpumask_var(cs->cpus_allowed);
2062
	kfree(cs);
L
Linus Torvalds 已提交
2063 2064
}

2065 2066 2067
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
2068
	spin_lock_irq(&callback_lock);
2069

2070
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2071 2072 2073 2074 2075 2076 2077 2078
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

2079
	spin_unlock_irq(&callback_lock);
2080 2081 2082
	mutex_unlock(&cpuset_mutex);
}

2083 2084 2085 2086 2087
/*
 * Make sure the new task conform to the current state of its parent,
 * which could have been changed by cpuset just after it inherits the
 * state from the parent and before it sits on the cgroup's task list.
 */
2088
static void cpuset_fork(struct task_struct *task)
2089 2090 2091 2092 2093 2094 2095 2096
{
	if (task_css_is_root(task, cpuset_cgrp_id))
		return;

	set_cpus_allowed_ptr(task, &current->cpus_allowed);
	task->mems_allowed = current->mems_allowed;
}

2097
struct cgroup_subsys cpuset_cgrp_subsys = {
2098 2099 2100 2101 2102 2103 2104
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
2105
	.post_attach	= cpuset_post_attach,
2106
	.bind		= cpuset_bind,
2107
	.fork		= cpuset_fork,
2108
	.legacy_cftypes	= files,
2109
	.early_init	= true,
2110 2111
};

L
Linus Torvalds 已提交
2112 2113 2114 2115 2116 2117 2118 2119
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2120
	int err = 0;
L
Linus Torvalds 已提交
2121

2122 2123
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();
2124 2125
	if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
		BUG();
2126

2127
	cpumask_setall(top_cpuset.cpus_allowed);
2128
	nodes_setall(top_cpuset.mems_allowed);
2129 2130
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2131

2132
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2133
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2134
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2135 2136 2137

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2138 2139
		return err;

2140 2141 2142
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2143
	return 0;
L
Linus Torvalds 已提交
2144 2145
}

2146
/*
2147
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2148 2149
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2150 2151
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2152
 */
2153 2154 2155 2156 2157 2158 2159 2160
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2161
	parent = parent_cs(cs);
2162
	while (cpumask_empty(parent->cpus_allowed) ||
2163
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2164
		parent = parent_cs(parent);
2165

2166
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2167
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2168 2169
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2170
	}
2171 2172
}

2173 2174 2175 2176
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2177 2178 2179
{
	bool is_empty;

2180
	spin_lock_irq(&callback_lock);
2181 2182 2183 2184
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2185
	spin_unlock_irq(&callback_lock);
2186 2187 2188 2189 2190

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2191
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2192
		update_tasks_cpumask(cs);
2193
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2212 2213 2214 2215
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2216
{
2217 2218 2219 2220 2221
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2222
	spin_lock_irq(&callback_lock);
2223 2224
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2225
	spin_unlock_irq(&callback_lock);
2226

2227
	if (cpus_updated)
2228
		update_tasks_cpumask(cs);
2229
	if (mems_updated)
2230 2231 2232
		update_tasks_nodemask(cs);
}

2233
/**
2234
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2235
 * @cs: cpuset in interest
2236
 *
2237 2238 2239
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2240
 */
2241
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2242
{
2243 2244 2245 2246
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2247 2248
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2249

2250
	mutex_lock(&cpuset_mutex);
2251

2252 2253 2254 2255 2256 2257 2258 2259 2260
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2261 2262
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2263

2264 2265
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2266

2267
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2268 2269
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2270
	else
2271 2272
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2273

2274
	mutex_unlock(&cpuset_mutex);
2275 2276
}

2277
/**
2278
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2279
 *
2280 2281 2282 2283 2284
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2285
 *
2286
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2287 2288
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2289
 *
2290 2291
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2292
 */
2293
static void cpuset_hotplug_workfn(struct work_struct *work)
2294
{
2295 2296
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2297
	bool cpus_updated, mems_updated;
2298
	bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2299

2300
	mutex_lock(&cpuset_mutex);
2301

2302 2303 2304
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2305

2306 2307
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2308

2309 2310
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
2311
		spin_lock_irq(&callback_lock);
2312 2313
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2314
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2315
		spin_unlock_irq(&callback_lock);
2316 2317
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2318

2319 2320
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
2321
		spin_lock_irq(&callback_lock);
2322 2323
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2324
		top_cpuset.effective_mems = new_mems;
2325
		spin_unlock_irq(&callback_lock);
2326
		update_tasks_nodemask(&top_cpuset);
2327
	}
2328

2329 2330
	mutex_unlock(&cpuset_mutex);

2331 2332
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2333
		struct cpuset *cs;
2334
		struct cgroup_subsys_state *pos_css;
2335

2336
		rcu_read_lock();
2337
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2338
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2339 2340
				continue;
			rcu_read_unlock();
2341

2342
			cpuset_hotplug_update_tasks(cs);
2343

2344 2345 2346 2347 2348
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2349

2350
	/* rebuild sched domains if cpus_allowed has changed */
2351 2352
	if (cpus_updated)
		rebuild_sched_domains();
2353 2354
}

2355
void cpuset_update_active_cpus(bool cpu_online)
2356
{
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2369 2370
}

2371
/*
2372 2373
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2374
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2375
 */
2376 2377
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2378
{
2379
	schedule_work(&cpuset_hotplug_work);
2380
	return NOTIFY_OK;
2381
}
2382 2383 2384 2385 2386

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2387

L
Linus Torvalds 已提交
2388 2389 2390 2391
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2392
 */
L
Linus Torvalds 已提交
2393 2394
void __init cpuset_init_smp(void)
{
2395
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2396
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2397
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2398

2399 2400 2401
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2402
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2403 2404 2405

	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
	BUG_ON(!cpuset_migrate_mm_wq);
L
Linus Torvalds 已提交
2406 2407 2408 2409 2410
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2411
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2412
 *
2413
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2414
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2415
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2416 2417 2418
 * tasks cpuset.
 **/

2419
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2420
{
2421 2422 2423
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
2424
	rcu_read_lock();
2425
	guarantee_online_cpus(task_cs(tsk), pmask);
2426
	rcu_read_unlock();
2427
	spin_unlock_irqrestore(&callback_lock, flags);
L
Linus Torvalds 已提交
2428 2429
}

2430
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2431 2432
{
	rcu_read_lock();
2433
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2449 2450 2451
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2452 2453 2454
	 */
}

2455
void __init cpuset_init_current_mems_allowed(void)
L
Linus Torvalds 已提交
2456
{
2457
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2458 2459
}

2460 2461 2462 2463 2464 2465
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2466
 * subset of node_states[N_MEMORY], even if this means going outside the
2467 2468 2469 2470 2471 2472
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
2473
	unsigned long flags;
2474

2475
	spin_lock_irqsave(&callback_lock, flags);
2476
	rcu_read_lock();
2477
	guarantee_online_mems(task_cs(tsk), &mask);
2478
	rcu_read_unlock();
2479
	spin_unlock_irqrestore(&callback_lock, flags);
2480 2481 2482 2483

	return mask;
}

2484
/**
2485 2486
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2487
 *
2488
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2489
 */
2490
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2491
{
2492
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2493 2494
}

2495
/*
2496 2497
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
2498
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2499
 * (an unusual configuration), then returns the root cpuset.
2500
 */
2501
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2502
{
T
Tejun Heo 已提交
2503 2504
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2505 2506 2507
	return cs;
}

2508
/**
2509
 * cpuset_node_allowed - Can we allocate on a memory node?
2510
 * @node: is this an allowed node?
2511
 * @gfp_mask: memory allocation flags
2512
 *
2513 2514 2515 2516
 * If we're in interrupt, yes, we can always allocate.  If @node is set in
 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
 * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2517 2518 2519
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2520 2521
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2522
 * GFP_KERNEL allocations are not so marked, so can escape to the
2523
 * nearest enclosing hardwalled ancestor cpuset.
2524
 *
2525
 * Scanning up parent cpusets requires callback_lock.  The
2526 2527 2528 2529
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2530
 * cpuset are short of memory, might require taking the callback_lock.
2531
 *
2532
 * The first call here from mm/page_alloc:get_page_from_freelist()
2533 2534 2535
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2536 2537 2538 2539 2540 2541
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2542 2543
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2544
 *	TIF_MEMDIE   - any node ok
2545
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2546
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2547
 */
2548
bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2549
{
2550
	struct cpuset *cs;		/* current cpuset ancestors */
2551
	int allowed;			/* is allocation in zone z allowed? */
2552
	unsigned long flags;
2553

2554
	if (in_interrupt())
2555
		return true;
2556
	if (node_isset(node, current->mems_allowed))
2557
		return true;
2558 2559 2560 2561 2562
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2563
		return true;
2564
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2565
		return false;
2566

2567
	if (current->flags & PF_EXITING) /* Let dying task have memory */
2568
		return true;
2569

2570
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2571
	spin_lock_irqsave(&callback_lock, flags);
2572

2573
	rcu_read_lock();
2574
	cs = nearest_hardwall_ancestor(task_cs(current));
2575
	allowed = node_isset(node, cs->mems_allowed);
2576
	rcu_read_unlock();
2577

2578
	spin_unlock_irqrestore(&callback_lock, flags);
2579
	return allowed;
L
Linus Torvalds 已提交
2580 2581
}

2582
/**
2583 2584
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2609
static int cpuset_spread_node(int *rotor)
2610
{
2611
	return *rotor = next_node_in(*rotor, current->mems_allowed);
2612
}
2613 2614 2615

int cpuset_mem_spread_node(void)
{
2616 2617 2618 2619
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2620 2621 2622 2623 2624
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2625 2626 2627 2628
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2629 2630 2631
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2632 2633
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2634
/**
2635 2636 2637 2638 2639 2640 2641 2642
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2643 2644
 **/

2645 2646
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2647
{
2648
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2649 2650
}

2651
/**
2652
 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2653
 *
2654
 * Description: Prints current's name, cpuset name, and cached copy of its
2655
 * mems_allowed to the kernel log.
2656
 */
2657
void cpuset_print_current_mems_allowed(void)
2658
{
2659
	struct cgroup *cgrp;
2660

2661
	rcu_read_lock();
2662

2663 2664
	cgrp = task_cs(current)->css.cgroup;
	pr_info("%s cpuset=", current->comm);
T
Tejun Heo 已提交
2665
	pr_cont_cgroup_name(cgrp);
2666 2667
	pr_cont(" mems_allowed=%*pbl\n",
		nodemask_pr_args(&current->mems_allowed));
2668

2669
	rcu_read_unlock();
2670 2671
}

2672 2673 2674 2675 2676 2677
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2678
int cpuset_memory_pressure_enabled __read_mostly;
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2700
	rcu_read_lock();
2701
	fmeter_markevent(&task_cs(current)->fmeter);
2702
	rcu_read_unlock();
2703 2704
}

2705
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2706 2707 2708 2709
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2710 2711
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2712
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2713
 *    anyway.
L
Linus Torvalds 已提交
2714
 */
Z
Zefan Li 已提交
2715 2716
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
2717
{
2718
	char *buf;
2719
	struct cgroup_subsys_state *css;
2720
	int retval;
L
Linus Torvalds 已提交
2721

2722
	retval = -ENOMEM;
T
Tejun Heo 已提交
2723
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2724
	if (!buf)
2725 2726
		goto out;

2727
	css = task_get_css(tsk, cpuset_cgrp_id);
2728 2729
	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
				current->nsproxy->cgroup_ns);
2730
	css_put(css);
2731
	if (retval >= PATH_MAX)
2732 2733
		retval = -ENAMETOOLONG;
	if (retval < 0)
Z
Zefan Li 已提交
2734
		goto out_free;
2735
	seq_puts(m, buf);
L
Linus Torvalds 已提交
2736
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2737
	retval = 0;
2738
out_free:
L
Linus Torvalds 已提交
2739
	kfree(buf);
2740
out:
L
Linus Torvalds 已提交
2741 2742
	return retval;
}
2743
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2744

2745
/* Display task mems_allowed in /proc/<pid>/status file. */
2746 2747
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2748 2749 2750 2751
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
L
Linus Torvalds 已提交
2752
}