cpuset.c 76.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46
#include <linux/sched.h>
47
#include <linux/sched/mm.h>
48
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
49
#include <linux/seq_file.h>
50
#include <linux/security.h>
L
Linus Torvalds 已提交
51 52 53 54 55
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
56
#include <linux/time64.h>
L
Linus Torvalds 已提交
57 58 59
#include <linux/backing-dev.h>
#include <linux/sort.h>

60
#include <linux/uaccess.h>
A
Arun Sharma 已提交
61
#include <linux/atomic.h>
62
#include <linux/mutex.h>
63
#include <linux/cgroup.h>
64
#include <linux/wait.h>
L
Linus Torvalds 已提交
65

66
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
67

68 69 70 71 72
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
73
	time64_t time;		/* clock (secs) when val computed */
74 75 76
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
77
struct cpuset {
78 79
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
80
	unsigned long flags;		/* "unsigned long" so bitops work */
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

102 103 104 105 106 107 108
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
109

110 111 112 113 114 115 116 117 118 119 120 121
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

122
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
123

124 125 126 127 128 129
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
130 131
	/* partition number for rebuild_sched_domains() */
	int pn;
132

133 134
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
135 136
};

137
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
138
{
139
	return css ? container_of(css, struct cpuset, css) : NULL;
140 141 142 143 144
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
145
	return css_cs(task_css(task, cpuset_cgrp_id));
146 147
}

148
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
149
{
T
Tejun Heo 已提交
150
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
166 167
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
168
	CS_ONLINE,
L
Linus Torvalds 已提交
169 170
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
171
	CS_MEM_HARDWALL,
172
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
173
	CS_SCHED_LOAD_BALANCE,
174 175
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
176 177 178
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
179 180 181 182 183
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
184 185
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
186
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
187 188 189 190
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
191
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
192 193
}

194 195 196 197 198
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
199 200 201 202 203
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

204 205
static inline int is_memory_migrate(const struct cpuset *cs)
{
206
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
207 208
}

209 210 211 212 213 214 215 216 217 218
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
219
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
220 221
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
222 223
};

224 225 226
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
227
 * @pos_css: used for iteration
228 229 230 231 232
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
233 234 235
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
236

237 238 239
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
240
 * @pos_css: used for iteration
241 242 243
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
244
 * with RCU read locked.  The caller may modify @pos_css by calling
245 246
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
247
 */
248 249 250
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
251

L
Linus Torvalds 已提交
252
/*
253 254 255 256
 * There are two global locks guarding cpuset structures - cpuset_mutex and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.
257
 *
258
 * A task must hold both locks to modify cpusets.  If a task holds
259
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
260
 * is the only task able to also acquire callback_lock and be able to
261 262 263
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
264 265
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
266
 * everyone else.
267 268
 *
 * Calls to the kernel memory allocator can not be made while holding
269
 * callback_lock, as that would risk double tripping on callback_lock
270 271 272
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
273
 * If a task is only holding callback_lock, then it has read-only
274 275
 * access to cpusets.
 *
276 277 278
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
279
 *
280
 * The cpuset_common_file_read() handlers only hold callback_lock across
281 282 283
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
284 285
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
286 287
 */

288
static DEFINE_MUTEX(cpuset_mutex);
289
static DEFINE_SPINLOCK(callback_lock);
290

291 292
static struct workqueue_struct *cpuset_migrate_mm_wq;

293 294 295 296 297 298
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

299 300
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

301 302
/*
 * This is ugly, but preserves the userspace API for existing cpuset
303
 * users. If someone tries to mount the "cpuset" filesystem, we
304 305
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
306 307
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
308
{
309
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
310
	struct dentry *ret = ERR_PTR(-ENODEV);
311 312 313 314
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
315 316
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
317 318 319
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
320 321 322 323
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
324
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
325 326 327
};

/*
328
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
329
 * are online.  If none are online, walk up the cpuset hierarchy
330
 * until we find one that does have some online cpus.
L
Linus Torvalds 已提交
331 332
 *
 * One way or another, we guarantee to return some non-empty subset
333
 * of cpu_online_mask.
L
Linus Torvalds 已提交
334
 *
335
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
336
 */
337
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
338
{
339
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
T
Tejun Heo 已提交
340
		cs = parent_cs(cs);
341 342 343 344 345 346 347 348 349 350 351 352
		if (unlikely(!cs)) {
			/*
			 * The top cpuset doesn't have any online cpu as a
			 * consequence of a race between cpuset_hotplug_work
			 * and cpu hotplug notifier.  But we know the top
			 * cpuset's effective_cpus is on its way to to be
			 * identical to cpu_online_mask.
			 */
			cpumask_copy(pmask, cpu_online_mask);
			return;
		}
	}
353
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
354 355 356 357
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
358 359
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
360
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
361 362
 *
 * One way or another, we guarantee to return some non-empty subset
363
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
364
 *
365
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
366
 */
367
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
368
{
369
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
370
		cs = parent_cs(cs);
371
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
372 373
}

374 375 376
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
377
 * Call with callback_lock or cpuset_mutex held.
378 379 380 381 382
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
383
		task_set_spread_page(tsk);
384
	else
385 386
		task_clear_spread_page(tsk);

387
	if (is_spread_slab(cs))
388
		task_set_spread_slab(tsk);
389
	else
390
		task_clear_spread_slab(tsk);
391 392
}

L
Linus Torvalds 已提交
393 394 395 396 397
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
398
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
399 400 401 402
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
403
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
404 405 406 407 408
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

409 410 411 412
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
413
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
414
{
415 416 417 418 419 420
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

421 422 423 424
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
425

426 427
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
428
	return trial;
429 430 431 432 433 434

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
435 436 437 438 439 440 441 442
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
443
	free_cpumask_var(trial->effective_cpus);
444
	free_cpumask_var(trial->cpus_allowed);
445 446 447
	kfree(trial);
}

L
Linus Torvalds 已提交
448 449 450 451 452 453 454
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
455
 * cpuset_mutex held.
L
Linus Torvalds 已提交
456 457 458 459 460 461 462 463 464 465 466 467
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

468
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
469
{
470
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
471
	struct cpuset *c, *par;
472 473 474
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
475 476

	/* Each of our child cpusets must be a subset of us */
477
	ret = -EBUSY;
478
	cpuset_for_each_child(c, css, cur)
479 480
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
481 482

	/* Remaining checks don't apply to root cpuset */
483
	ret = 0;
484
	if (cur == &top_cpuset)
485
		goto out;
L
Linus Torvalds 已提交
486

T
Tejun Heo 已提交
487
	par = parent_cs(cur);
488

489
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
490
	ret = -EACCES;
491 492
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
	    !is_cpuset_subset(trial, par))
493
		goto out;
L
Linus Torvalds 已提交
494

495 496 497 498
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
499
	ret = -EINVAL;
500
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
501 502
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
503
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
504
			goto out;
L
Linus Torvalds 已提交
505 506 507
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
508
			goto out;
L
Linus Torvalds 已提交
509 510
	}

511 512
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
513
	 * be changed to have empty cpus_allowed or mems_allowed.
514
	 */
515
	ret = -ENOSPC;
516
	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
517 518 519 520 521 522 523
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
524

525 526 527 528 529 530 531 532 533 534
	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

535 536 537 538
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
539 540
}

541
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
542
/*
543
 * Helper routine for generate_sched_domains().
544
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
545 546 547
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
548
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
549 550
}

551 552 553 554 555 556 557 558
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

559 560
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
561
{
562
	struct cpuset *cp;
563
	struct cgroup_subsys_state *pos_css;
564

565
	rcu_read_lock();
566
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
567 568
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
569
			pos_css = css_rightmost_descendant(pos_css);
570
			continue;
571
		}
572 573 574 575

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
576
	rcu_read_unlock();
577 578
}

P
Paul Jackson 已提交
579
/*
580 581 582 583 584
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
585
 * The output of this function needs to be passed to kernel/sched/core.c
586 587 588
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
589
 *
L
Li Zefan 已提交
590
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
591 592 593 594 595 596 597
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
598
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
599 600
 *
 * The three key local variables below are:
601
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
602 603 604 605 606 607 608 609 610 611 612 613
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
614
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
633
static int generate_sched_domains(cpumask_var_t **domains,
634
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
635 636 637 638 639
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
640
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
641
	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
642
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
643
	int ndoms = 0;		/* number of sched domains in result */
644
	int nslot;		/* next empty doms[] struct cpumask slot */
645
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
646 647

	doms = NULL;
648
	dattr = NULL;
649
	csa = NULL;
P
Paul Jackson 已提交
650

651 652 653 654
	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
		goto done;
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);

P
Paul Jackson 已提交
655 656
	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
657 658
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
659
		if (!doms)
660 661
			goto done;

662 663 664
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
665
			update_domain_attr_tree(dattr, &top_cpuset);
666
		}
667 668
		cpumask_and(doms[0], top_cpuset.effective_cpus,
				     non_isolated_cpus);
669 670

		goto done;
P
Paul Jackson 已提交
671 672
	}

673
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
674 675 676 677
	if (!csa)
		goto done;
	csn = 0;

678
	rcu_read_lock();
679
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
680 681
		if (cp == &top_cpuset)
			continue;
682
		/*
683 684 685 686 687 688
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
689
		 */
690
		if (!cpumask_empty(cp->cpus_allowed) &&
691 692
		    !(is_sched_load_balance(cp) &&
		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
693
			continue;
694

695 696 697 698
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
699
		pos_css = css_rightmost_descendant(pos_css);
700 701
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

730 731 732 733
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
734
	doms = alloc_sched_domains(ndoms);
735
	if (!doms)
736 737 738 739 740 741
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
742
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
743 744 745

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
746
		struct cpumask *dp;
P
Paul Jackson 已提交
747 748
		int apn = a->pn;

749 750 751 752 753
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

754
		dp = doms[nslot];
755 756 757 758

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
759 760
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
761
				warnings--;
P
Paul Jackson 已提交
762
			}
763 764
			continue;
		}
P
Paul Jackson 已提交
765

766
		cpumask_clear(dp);
767 768 769 770 771 772
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
773
				cpumask_or(dp, dp, b->effective_cpus);
774
				cpumask_and(dp, dp, non_isolated_cpus);
775 776 777 778 779
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
780 781
			}
		}
782
		nslot++;
P
Paul Jackson 已提交
783 784 785
	}
	BUG_ON(nslot != ndoms);

786
done:
787
	free_cpumask_var(non_isolated_cpus);
788 789
	kfree(csa);

790 791 792 793 794 795 796
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

797 798 799 800 801 802 803 804
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
805 806 807 808 809
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
810
 *
811
 * Call with cpuset_mutex held.  Takes get_online_cpus().
812
 */
813
static void rebuild_sched_domains_locked(void)
814 815
{
	struct sched_domain_attr *attr;
816
	cpumask_var_t *doms;
817 818
	int ndoms;

819
	lockdep_assert_held(&cpuset_mutex);
820
	get_online_cpus();
821

822 823 824 825 826
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
827
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
828 829
		goto out;

830 831 832 833 834
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
835
out:
836
	put_online_cpus();
837
}
838
#else /* !CONFIG_SMP */
839
static void rebuild_sched_domains_locked(void)
840 841 842
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
843

844 845
void rebuild_sched_domains(void)
{
846
	mutex_lock(&cpuset_mutex);
847
	rebuild_sched_domains_locked();
848
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
849 850
}

851 852 853 854
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
855 856 857
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
858
 */
859
static void update_tasks_cpumask(struct cpuset *cs)
860
{
861 862 863 864 865
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
866
		set_cpus_allowed_ptr(task, cs->effective_cpus);
867
	css_task_iter_end(&it);
868 869
}

870
/*
871 872 873 874 875 876
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
877
 *
878
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
879 880 881
 *
 * Called with cpuset_mutex held
 */
882
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
883 884
{
	struct cpuset *cp;
885
	struct cgroup_subsys_state *pos_css;
886
	bool need_rebuild_sched_domains = false;
887 888

	rcu_read_lock();
889 890 891 892 893
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

894 895 896 897
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
898 899
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    cpumask_empty(new_cpus))
900 901
			cpumask_copy(new_cpus, parent->effective_cpus);

902 903 904 905
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
906
		}
907

908
		if (!css_tryget_online(&cp->css))
909 910 911
			continue;
		rcu_read_unlock();

912
		spin_lock_irq(&callback_lock);
913
		cpumask_copy(cp->effective_cpus, new_cpus);
914
		spin_unlock_irq(&callback_lock);
915

916
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
917 918
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

919
		update_tasks_cpumask(cp);
920

921 922 923 924 925 926 927 928
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

929 930 931 932
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
933 934 935

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
936 937
}

C
Cliff Wickman 已提交
938 939 940
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
941
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
942 943
 * @buf: buffer of cpu numbers written to this cpuset
 */
944 945
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
946
{
C
Cliff Wickman 已提交
947
	int retval;
L
Linus Torvalds 已提交
948

949
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
950 951 952
	if (cs == &top_cpuset)
		return -EACCES;

953
	/*
954
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
955 956 957
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
958
	 */
959
	if (!*buf) {
960
		cpumask_clear(trialcs->cpus_allowed);
961
	} else {
962
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
963 964
		if (retval < 0)
			return retval;
965

966 967
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
968
			return -EINVAL;
969
	}
P
Paul Jackson 已提交
970

P
Paul Menage 已提交
971
	/* Nothing to do if the cpus didn't change */
972
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
973
		return 0;
C
Cliff Wickman 已提交
974

975 976 977 978
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

979
	spin_lock_irq(&callback_lock);
980
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
981
	spin_unlock_irq(&callback_lock);
P
Paul Jackson 已提交
982

983 984
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
985
	return 0;
L
Linus Torvalds 已提交
986 987
}

988
/*
989 990 991 992 993
 * Migrate memory region from one set of nodes to another.  This is
 * performed asynchronously as it can be called from process migration path
 * holding locks involved in process management.  All mm migrations are
 * performed in the queued order and can be waited for by flushing
 * cpuset_migrate_mm_wq.
994 995
 */

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
struct cpuset_migrate_mm_work {
	struct work_struct	work;
	struct mm_struct	*mm;
	nodemask_t		from;
	nodemask_t		to;
};

static void cpuset_migrate_mm_workfn(struct work_struct *work)
{
	struct cpuset_migrate_mm_work *mwork =
		container_of(work, struct cpuset_migrate_mm_work, work);

	/* on a wq worker, no need to worry about %current's mems_allowed */
	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
	mmput(mwork->mm);
	kfree(mwork);
}

1014 1015 1016
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
1017
	struct cpuset_migrate_mm_work *mwork;
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
	if (mwork) {
		mwork->mm = mm;
		mwork->from = *from;
		mwork->to = *to;
		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
		queue_work(cpuset_migrate_mm_wq, &mwork->work);
	} else {
		mmput(mm);
	}
}
1030

1031
static void cpuset_post_attach(void)
1032 1033
{
	flush_workqueue(cpuset_migrate_mm_wq);
1034 1035
}

1036
/*
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1048
	bool need_loop;
1049

1050
	task_lock(tsk);
1051 1052
	/*
	 * Determine if a loop is necessary if another thread is doing
1053
	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1054 1055 1056 1057 1058
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1059

1060 1061
	if (need_loop) {
		local_irq_disable();
1062
		write_seqcount_begin(&tsk->mems_allowed_seq);
1063
	}
1064

1065 1066
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1067 1068

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1069
	tsk->mems_allowed = *newmems;
1070

1071
	if (need_loop) {
1072
		write_seqcount_end(&tsk->mems_allowed_seq);
1073 1074
		local_irq_enable();
	}
1075

1076
	task_unlock(tsk);
1077 1078
}

1079 1080
static void *cpuset_being_rebound;

1081 1082 1083 1084
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1085 1086 1087
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1088
 */
1089
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1090
{
1091
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1092 1093
	struct css_task_iter it;
	struct task_struct *task;
1094

1095
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1096

1097
	guarantee_online_mems(cs, &newmems);
1098

1099
	/*
1100 1101 1102 1103
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1104
	 * the global cpuset_mutex, we know that no other rebind effort
1105
	 * will be contending for the global variable cpuset_being_rebound.
1106
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1107
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1108
	 */
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1125 1126
		else
			mmput(mm);
1127 1128
	}
	css_task_iter_end(&it);
1129

1130 1131 1132 1133 1134 1135
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1136
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1137
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1138 1139
}

1140
/*
1141 1142 1143
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1144
 *
1145 1146
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1147
 *
1148
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1149 1150 1151
 *
 * Called with cpuset_mutex held
 */
1152
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1153 1154
{
	struct cpuset *cp;
1155
	struct cgroup_subsys_state *pos_css;
1156 1157

	rcu_read_lock();
1158 1159 1160 1161 1162
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1163 1164 1165 1166
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
1167 1168
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    nodes_empty(*new_mems))
1169 1170
			*new_mems = parent->effective_mems;

1171 1172 1173 1174
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1175
		}
1176

1177
		if (!css_tryget_online(&cp->css))
1178 1179 1180
			continue;
		rcu_read_unlock();

1181
		spin_lock_irq(&callback_lock);
1182
		cp->effective_mems = *new_mems;
1183
		spin_unlock_irq(&callback_lock);
1184

1185
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1186
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1187

1188
		update_tasks_nodemask(cp);
1189 1190 1191 1192 1193 1194 1195

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1196 1197 1198
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1199 1200 1201 1202
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1203
 *
1204
 * Call with cpuset_mutex held. May take callback_lock during call.
1205 1206 1207 1208
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1209 1210
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1211 1212 1213 1214
{
	int retval;

	/*
1215
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1216 1217
	 * it's read-only
	 */
1218 1219 1220 1221
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1222 1223 1224 1225 1226 1227 1228 1229

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1230
		nodes_clear(trialcs->mems_allowed);
1231
	} else {
1232
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1233 1234 1235
		if (retval < 0)
			goto done;

1236
		if (!nodes_subset(trialcs->mems_allowed,
1237 1238
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1239 1240
			goto done;
		}
1241
	}
1242 1243

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1244 1245 1246
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1247
	retval = validate_change(cs, trialcs);
1248 1249 1250
	if (retval < 0)
		goto done;

1251
	spin_lock_irq(&callback_lock);
1252
	cs->mems_allowed = trialcs->mems_allowed;
1253
	spin_unlock_irq(&callback_lock);
1254

1255
	/* use trialcs->mems_allowed as a temp variable */
1256
	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1257 1258 1259 1260
done:
	return retval;
}

1261 1262
int current_cpuset_is_being_rebound(void)
{
1263 1264 1265 1266 1267 1268 1269
	int ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1270 1271
}

1272
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1273
{
1274
#ifdef CONFIG_SMP
1275
	if (val < -1 || val >= sched_domain_level_max)
1276
		return -EINVAL;
1277
#endif
1278 1279 1280

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1281 1282
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1283
			rebuild_sched_domains_locked();
1284 1285 1286 1287 1288
	}

	return 0;
}

1289
/**
1290 1291 1292
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1293 1294 1295
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1296
 */
1297
static void update_tasks_flags(struct cpuset *cs)
1298
{
1299 1300 1301 1302 1303 1304 1305
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1306 1307
}

L
Linus Torvalds 已提交
1308 1309
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1310 1311 1312
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1313
 *
1314
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1315 1316
 */

1317 1318
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1319
{
1320
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1321
	int balance_flag_changed;
1322 1323
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1324

1325 1326 1327 1328
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1329
	if (turning_on)
1330
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1331
	else
1332
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1333

1334
	err = validate_change(cs, trialcs);
1335
	if (err < 0)
1336
		goto out;
P
Paul Jackson 已提交
1337 1338

	balance_flag_changed = (is_sched_load_balance(cs) !=
1339
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1340

1341 1342 1343
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1344
	spin_lock_irq(&callback_lock);
1345
	cs->flags = trialcs->flags;
1346
	spin_unlock_irq(&callback_lock);
1347

1348
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1349
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1350

1351
	if (spread_flag_changed)
1352
		update_tasks_flags(cs);
1353 1354 1355
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1356 1357
}

1358
/*
A
Adrian Bunk 已提交
1359
 * Frequency meter - How fast is some event occurring?
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1404
#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
1420 1421 1422 1423 1424
	time64_t now;
	u32 ticks;

	now = ktime_get_seconds();
	ticks = now - fmp->time;
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1459 1460
static struct cpuset *cpuset_attach_old_cs;

1461
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1462
static int cpuset_can_attach(struct cgroup_taskset *tset)
1463
{
1464 1465
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1466 1467
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1468

1469
	/* used later by cpuset_attach() */
1470 1471
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
	cs = css_cs(css);
1472

1473 1474
	mutex_lock(&cpuset_mutex);

1475
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1476
	ret = -ENOSPC;
1477
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1478
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1479
		goto out_unlock;
1480

1481
	cgroup_taskset_for_each(task, css, tset) {
1482 1483
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
1484 1485 1486 1487
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1488
	}
1489

1490 1491 1492 1493 1494
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1495 1496 1497 1498
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1499
}
1500

1501
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1502
{
1503 1504 1505 1506 1507 1508
	struct cgroup_subsys_state *css;
	struct cpuset *cs;

	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1509
	mutex_lock(&cpuset_mutex);
1510
	css_cs(css)->attach_in_progress--;
1511
	mutex_unlock(&cpuset_mutex);
1512
}
L
Linus Torvalds 已提交
1513

1514
/*
1515
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1516 1517 1518 1519 1520
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1521
static void cpuset_attach(struct cgroup_taskset *tset)
1522
{
1523
	/* static buf protected by cpuset_mutex */
1524
	static nodemask_t cpuset_attach_nodemask_to;
1525
	struct task_struct *task;
1526
	struct task_struct *leader;
1527 1528
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1529
	struct cpuset *oldcs = cpuset_attach_old_cs;
1530

1531 1532 1533
	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1534 1535
	mutex_lock(&cpuset_mutex);

1536 1537 1538 1539
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1540
		guarantee_online_cpus(cs, cpus_attach);
1541

1542
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1543

1544
	cgroup_taskset_for_each(task, css, tset) {
1545 1546 1547 1548 1549 1550 1551 1552 1553
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1554

1555
	/*
1556 1557
	 * Change mm for all threadgroup leaders. This is expensive and may
	 * sleep and should be moved outside migration path proper.
1558
	 */
1559
	cpuset_attach_nodemask_to = cs->effective_mems;
1560
	cgroup_taskset_for_each_leader(leader, css, tset) {
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
		struct mm_struct *mm = get_task_mm(leader);

		if (mm) {
			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);

			/*
			 * old_mems_allowed is the same with mems_allowed
			 * here, except if this task is being moved
			 * automatically due to hotplug.  In that case
			 * @mems_allowed has been updated and is empty, so
			 * @old_mems_allowed is the right nodesets that we
			 * migrate mm from.
			 */
1574
			if (is_memory_migrate(cs))
1575 1576
				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
						  &cpuset_attach_nodemask_to);
1577 1578
			else
				mmput(mm);
1579
		}
1580
	}
1581

1582
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1583

1584
	cs->attach_in_progress--;
1585 1586
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1587 1588

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1589 1590 1591 1592 1593
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1594
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1595 1596
	FILE_CPULIST,
	FILE_MEMLIST,
1597 1598
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1599 1600
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1601
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1602
	FILE_SCHED_LOAD_BALANCE,
1603
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1604 1605
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1606 1607
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1608 1609
} cpuset_filetype_t;

1610 1611
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1612
{
1613
	struct cpuset *cs = css_cs(css);
1614
	cpuset_filetype_t type = cft->private;
1615
	int retval = 0;
1616

1617
	mutex_lock(&cpuset_mutex);
1618 1619
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1620
		goto out_unlock;
1621
	}
1622 1623

	switch (type) {
L
Linus Torvalds 已提交
1624
	case FILE_CPU_EXCLUSIVE:
1625
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1626 1627
		break;
	case FILE_MEM_EXCLUSIVE:
1628
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1629
		break;
1630 1631 1632
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1633
	case FILE_SCHED_LOAD_BALANCE:
1634
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1635
		break;
1636
	case FILE_MEMORY_MIGRATE:
1637
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1638
		break;
1639
	case FILE_MEMORY_PRESSURE_ENABLED:
1640
		cpuset_memory_pressure_enabled = !!val;
1641
		break;
1642
	case FILE_SPREAD_PAGE:
1643
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1644 1645
		break;
	case FILE_SPREAD_SLAB:
1646
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1647
		break;
L
Linus Torvalds 已提交
1648 1649
	default:
		retval = -EINVAL;
1650
		break;
L
Linus Torvalds 已提交
1651
	}
1652 1653
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1654 1655 1656
	return retval;
}

1657 1658
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1659
{
1660
	struct cpuset *cs = css_cs(css);
1661
	cpuset_filetype_t type = cft->private;
1662
	int retval = -ENODEV;
1663

1664 1665 1666
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1667

1668 1669 1670 1671 1672 1673 1674 1675
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1676 1677
out_unlock:
	mutex_unlock(&cpuset_mutex);
1678 1679 1680
	return retval;
}

1681 1682 1683
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1684 1685
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1686
{
1687
	struct cpuset *cs = css_cs(of_css(of));
1688
	struct cpuset *trialcs;
1689
	int retval = -ENODEV;
1690

1691 1692
	buf = strstrip(buf);

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1703 1704 1705 1706 1707 1708 1709 1710
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1711
	 */
1712 1713
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1714 1715
	flush_work(&cpuset_hotplug_work);

1716 1717 1718
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1719

1720
	trialcs = alloc_trial_cpuset(cs);
1721 1722
	if (!trialcs) {
		retval = -ENOMEM;
1723
		goto out_unlock;
1724
	}
1725

1726
	switch (of_cft(of)->private) {
1727
	case FILE_CPULIST:
1728
		retval = update_cpumask(cs, trialcs, buf);
1729 1730
		break;
	case FILE_MEMLIST:
1731
		retval = update_nodemask(cs, trialcs, buf);
1732 1733 1734 1735 1736
		break;
	default:
		retval = -EINVAL;
		break;
	}
1737 1738

	free_trial_cpuset(trialcs);
1739 1740
out_unlock:
	mutex_unlock(&cpuset_mutex);
1741 1742
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1743
	flush_workqueue(cpuset_migrate_mm_wq);
1744
	return retval ?: nbytes;
1745 1746
}

L
Linus Torvalds 已提交
1747 1748 1749 1750 1751 1752 1753 1754
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1755
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1756
{
1757 1758
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1759
	int ret = 0;
L
Linus Torvalds 已提交
1760

1761
	spin_lock_irq(&callback_lock);
L
Linus Torvalds 已提交
1762 1763 1764

	switch (type) {
	case FILE_CPULIST:
1765
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
L
Linus Torvalds 已提交
1766 1767
		break;
	case FILE_MEMLIST:
1768
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
L
Linus Torvalds 已提交
1769
		break;
1770
	case FILE_EFFECTIVE_CPULIST:
1771
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1772 1773
		break;
	case FILE_EFFECTIVE_MEMLIST:
1774
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1775
		break;
L
Linus Torvalds 已提交
1776
	default:
1777
		ret = -EINVAL;
L
Linus Torvalds 已提交
1778 1779
	}

1780
	spin_unlock_irq(&callback_lock);
1781
	return ret;
L
Linus Torvalds 已提交
1782 1783
}

1784
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1785
{
1786
	struct cpuset *cs = css_cs(css);
1787 1788 1789 1790 1791 1792
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1793 1794
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1810 1811 1812

	/* Unreachable but makes gcc happy */
	return 0;
1813
}
L
Linus Torvalds 已提交
1814

1815
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1816
{
1817
	struct cpuset *cs = css_cs(css);
1818 1819 1820 1821 1822 1823 1824
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1825 1826 1827

	/* Unrechable but makes gcc happy */
	return 0;
1828 1829
}

L
Linus Torvalds 已提交
1830 1831 1832 1833 1834

/*
 * for the common functions, 'private' gives the type of file
 */

1835 1836 1837
static struct cftype files[] = {
	{
		.name = "cpus",
1838
		.seq_show = cpuset_common_seq_show,
1839
		.write = cpuset_write_resmask,
1840
		.max_write_len = (100U + 6 * NR_CPUS),
1841 1842 1843 1844 1845
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1846
		.seq_show = cpuset_common_seq_show,
1847
		.write = cpuset_write_resmask,
1848
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1849 1850 1851
		.private = FILE_MEMLIST,
	},

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1878 1879 1880 1881 1882 1883 1884
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1885 1886 1887 1888 1889 1890 1891 1892 1893
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1894 1895
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1924

1925 1926 1927 1928 1929 1930 1931
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1932

1933 1934
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1935 1936

/*
1937
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1938
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1939 1940
 */

1941 1942
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1943
{
T
Tejun Heo 已提交
1944
	struct cpuset *cs;
L
Linus Torvalds 已提交
1945

1946
	if (!parent_css)
1947
		return &top_cpuset.css;
1948

T
Tejun Heo 已提交
1949
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1950
	if (!cs)
1951
		return ERR_PTR(-ENOMEM);
1952 1953 1954 1955
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1956

P
Paul Jackson 已提交
1957
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1958
	cpumask_clear(cs->cpus_allowed);
1959
	nodes_clear(cs->mems_allowed);
1960 1961
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1962
	fmeter_init(&cs->fmeter);
1963
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1964

T
Tejun Heo 已提交
1965
	return &cs->css;
1966 1967 1968 1969 1970 1971

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1972 1973
}

1974
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1975
{
1976
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1977
	struct cpuset *parent = parent_cs(cs);
1978
	struct cpuset *tmp_cs;
1979
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1980 1981 1982 1983

	if (!parent)
		return 0;

1984 1985
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1986
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1987 1988 1989 1990
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1991

1992
	cpuset_inc();
1993

1994
	spin_lock_irq(&callback_lock);
1995
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1996 1997 1998
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
1999
	spin_unlock_irq(&callback_lock);
2000

2001
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2002
		goto out_unlock;
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
2017
	rcu_read_lock();
2018
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2019 2020
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
2021
			goto out_unlock;
2022
		}
2023
	}
2024
	rcu_read_unlock();
2025

2026
	spin_lock_irq(&callback_lock);
2027
	cs->mems_allowed = parent->mems_allowed;
2028
	cs->effective_mems = parent->mems_allowed;
2029
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2030
	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
D
Dan Carpenter 已提交
2031
	spin_unlock_irq(&callback_lock);
2032 2033
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2034 2035 2036
	return 0;
}

2037 2038 2039 2040 2041 2042
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2043
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2044
{
2045
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2046

2047
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2048 2049 2050 2051

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2052
	cpuset_dec();
T
Tejun Heo 已提交
2053
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2054

2055
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2056 2057
}

2058
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2059
{
2060
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2061

2062
	free_cpumask_var(cs->effective_cpus);
2063
	free_cpumask_var(cs->cpus_allowed);
2064
	kfree(cs);
L
Linus Torvalds 已提交
2065 2066
}

2067 2068 2069
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
2070
	spin_lock_irq(&callback_lock);
2071

2072
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2073 2074 2075 2076 2077 2078 2079 2080
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

2081
	spin_unlock_irq(&callback_lock);
2082 2083 2084
	mutex_unlock(&cpuset_mutex);
}

2085 2086 2087 2088 2089
/*
 * Make sure the new task conform to the current state of its parent,
 * which could have been changed by cpuset just after it inherits the
 * state from the parent and before it sits on the cgroup's task list.
 */
2090
static void cpuset_fork(struct task_struct *task)
2091 2092 2093 2094 2095 2096 2097 2098
{
	if (task_css_is_root(task, cpuset_cgrp_id))
		return;

	set_cpus_allowed_ptr(task, &current->cpus_allowed);
	task->mems_allowed = current->mems_allowed;
}

2099
struct cgroup_subsys cpuset_cgrp_subsys = {
2100 2101 2102 2103 2104 2105 2106
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
2107
	.post_attach	= cpuset_post_attach,
2108
	.bind		= cpuset_bind,
2109
	.fork		= cpuset_fork,
2110
	.legacy_cftypes	= files,
2111
	.early_init	= true,
2112 2113
};

L
Linus Torvalds 已提交
2114 2115 2116 2117 2118 2119 2120 2121
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2122
	int err = 0;
L
Linus Torvalds 已提交
2123

N
Nicholas Mc Guire 已提交
2124 2125
	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2126

2127
	cpumask_setall(top_cpuset.cpus_allowed);
2128
	nodes_setall(top_cpuset.mems_allowed);
2129 2130
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2131

2132
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2133
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2134
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2135 2136 2137

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2138 2139
		return err;

N
Nicholas Mc Guire 已提交
2140
	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2141

2142
	return 0;
L
Linus Torvalds 已提交
2143 2144
}

2145
/*
2146
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2147 2148
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2149 2150
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2151
 */
2152 2153 2154 2155 2156 2157 2158 2159
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2160
	parent = parent_cs(cs);
2161
	while (cpumask_empty(parent->cpus_allowed) ||
2162
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2163
		parent = parent_cs(parent);
2164

2165
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2166
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2167 2168
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2169
	}
2170 2171
}

2172 2173 2174 2175
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2176 2177 2178
{
	bool is_empty;

2179
	spin_lock_irq(&callback_lock);
2180 2181 2182 2183
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2184
	spin_unlock_irq(&callback_lock);
2185 2186 2187 2188 2189

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2190
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2191
		update_tasks_cpumask(cs);
2192
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2211 2212 2213 2214
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2215
{
2216 2217 2218 2219 2220
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2221
	spin_lock_irq(&callback_lock);
2222 2223
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2224
	spin_unlock_irq(&callback_lock);
2225

2226
	if (cpus_updated)
2227
		update_tasks_cpumask(cs);
2228
	if (mems_updated)
2229 2230 2231
		update_tasks_nodemask(cs);
}

2232
/**
2233
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2234
 * @cs: cpuset in interest
2235
 *
2236 2237 2238
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2239
 */
2240
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2241
{
2242 2243 2244 2245
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2246 2247
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2248

2249
	mutex_lock(&cpuset_mutex);
2250

2251 2252 2253 2254 2255 2256 2257 2258 2259
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2260 2261
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2262

2263 2264
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2265

2266
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2267 2268
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2269
	else
2270 2271
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2272

2273
	mutex_unlock(&cpuset_mutex);
2274 2275
}

2276
/**
2277
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2278
 *
2279 2280 2281 2282 2283
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2284
 *
2285
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2286 2287
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2288
 *
2289 2290
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2291
 */
2292
static void cpuset_hotplug_workfn(struct work_struct *work)
2293
{
2294 2295
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2296
	bool cpus_updated, mems_updated;
2297
	bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2298

2299
	mutex_lock(&cpuset_mutex);
2300

2301 2302 2303
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2304

2305 2306
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2307

2308 2309
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
2310
		spin_lock_irq(&callback_lock);
2311 2312
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2313
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2314
		spin_unlock_irq(&callback_lock);
2315 2316
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2317

2318 2319
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
2320
		spin_lock_irq(&callback_lock);
2321 2322
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2323
		top_cpuset.effective_mems = new_mems;
2324
		spin_unlock_irq(&callback_lock);
2325
		update_tasks_nodemask(&top_cpuset);
2326
	}
2327

2328 2329
	mutex_unlock(&cpuset_mutex);

2330 2331
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2332
		struct cpuset *cs;
2333
		struct cgroup_subsys_state *pos_css;
2334

2335
		rcu_read_lock();
2336
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2337
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2338 2339
				continue;
			rcu_read_unlock();
2340

2341
			cpuset_hotplug_update_tasks(cs);
2342

2343 2344 2345 2346 2347
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2348

2349
	/* rebuild sched domains if cpus_allowed has changed */
2350 2351
	if (cpus_updated)
		rebuild_sched_domains();
2352 2353
}

2354
void cpuset_update_active_cpus(bool cpu_online)
2355
{
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2368 2369
}

2370
/*
2371 2372
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2373
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2374
 */
2375 2376
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2377
{
2378
	schedule_work(&cpuset_hotplug_work);
2379
	return NOTIFY_OK;
2380
}
2381 2382 2383 2384 2385

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2386

L
Linus Torvalds 已提交
2387 2388 2389 2390
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2391
 */
L
Linus Torvalds 已提交
2392 2393
void __init cpuset_init_smp(void)
{
2394
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2395
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2396
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2397

2398 2399 2400
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2401
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2402 2403 2404

	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
	BUG_ON(!cpuset_migrate_mm_wq);
L
Linus Torvalds 已提交
2405 2406 2407 2408 2409
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2410
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2411
 *
2412
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2413
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2414
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2415 2416 2417
 * tasks cpuset.
 **/

2418
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2419
{
2420 2421 2422
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
2423
	rcu_read_lock();
2424
	guarantee_online_cpus(task_cs(tsk), pmask);
2425
	rcu_read_unlock();
2426
	spin_unlock_irqrestore(&callback_lock, flags);
L
Linus Torvalds 已提交
2427 2428
}

2429
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2430 2431
{
	rcu_read_lock();
2432
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2448 2449 2450
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2451 2452 2453
	 */
}

2454
void __init cpuset_init_current_mems_allowed(void)
L
Linus Torvalds 已提交
2455
{
2456
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2457 2458
}

2459 2460 2461 2462 2463 2464
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2465
 * subset of node_states[N_MEMORY], even if this means going outside the
2466 2467 2468 2469 2470 2471
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
2472
	unsigned long flags;
2473

2474
	spin_lock_irqsave(&callback_lock, flags);
2475
	rcu_read_lock();
2476
	guarantee_online_mems(task_cs(tsk), &mask);
2477
	rcu_read_unlock();
2478
	spin_unlock_irqrestore(&callback_lock, flags);
2479 2480 2481 2482

	return mask;
}

2483
/**
2484 2485
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2486
 *
2487
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2488
 */
2489
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2490
{
2491
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2492 2493
}

2494
/*
2495 2496
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
2497
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2498
 * (an unusual configuration), then returns the root cpuset.
2499
 */
2500
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2501
{
T
Tejun Heo 已提交
2502 2503
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2504 2505 2506
	return cs;
}

2507
/**
2508
 * cpuset_node_allowed - Can we allocate on a memory node?
2509
 * @node: is this an allowed node?
2510
 * @gfp_mask: memory allocation flags
2511
 *
2512 2513 2514 2515
 * If we're in interrupt, yes, we can always allocate.  If @node is set in
 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
 * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2516 2517 2518
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2519 2520
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2521
 * GFP_KERNEL allocations are not so marked, so can escape to the
2522
 * nearest enclosing hardwalled ancestor cpuset.
2523
 *
2524
 * Scanning up parent cpusets requires callback_lock.  The
2525 2526 2527 2528
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2529
 * cpuset are short of memory, might require taking the callback_lock.
2530
 *
2531
 * The first call here from mm/page_alloc:get_page_from_freelist()
2532 2533 2534
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2535 2536 2537 2538 2539 2540
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2541 2542
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2543
 *	TIF_MEMDIE   - any node ok
2544
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2545
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2546
 */
2547
bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2548
{
2549
	struct cpuset *cs;		/* current cpuset ancestors */
2550
	int allowed;			/* is allocation in zone z allowed? */
2551
	unsigned long flags;
2552

2553
	if (in_interrupt())
2554
		return true;
2555
	if (node_isset(node, current->mems_allowed))
2556
		return true;
2557 2558 2559 2560 2561
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2562
		return true;
2563
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2564
		return false;
2565

2566
	if (current->flags & PF_EXITING) /* Let dying task have memory */
2567
		return true;
2568

2569
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2570
	spin_lock_irqsave(&callback_lock, flags);
2571

2572
	rcu_read_lock();
2573
	cs = nearest_hardwall_ancestor(task_cs(current));
2574
	allowed = node_isset(node, cs->mems_allowed);
2575
	rcu_read_unlock();
2576

2577
	spin_unlock_irqrestore(&callback_lock, flags);
2578
	return allowed;
L
Linus Torvalds 已提交
2579 2580
}

2581
/**
2582 2583
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2608
static int cpuset_spread_node(int *rotor)
2609
{
2610
	return *rotor = next_node_in(*rotor, current->mems_allowed);
2611
}
2612 2613 2614

int cpuset_mem_spread_node(void)
{
2615 2616 2617 2618
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2619 2620 2621 2622 2623
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2624 2625 2626 2627
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2628 2629 2630
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2631 2632
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2633
/**
2634 2635 2636 2637 2638 2639 2640 2641
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2642 2643
 **/

2644 2645
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2646
{
2647
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2648 2649
}

2650
/**
2651
 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2652
 *
2653
 * Description: Prints current's name, cpuset name, and cached copy of its
2654
 * mems_allowed to the kernel log.
2655
 */
2656
void cpuset_print_current_mems_allowed(void)
2657
{
2658
	struct cgroup *cgrp;
2659

2660
	rcu_read_lock();
2661

2662 2663
	cgrp = task_cs(current)->css.cgroup;
	pr_info("%s cpuset=", current->comm);
T
Tejun Heo 已提交
2664
	pr_cont_cgroup_name(cgrp);
2665 2666
	pr_cont(" mems_allowed=%*pbl\n",
		nodemask_pr_args(&current->mems_allowed));
2667

2668
	rcu_read_unlock();
2669 2670
}

2671 2672 2673 2674 2675 2676
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2677
int cpuset_memory_pressure_enabled __read_mostly;
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2699
	rcu_read_lock();
2700
	fmeter_markevent(&task_cs(current)->fmeter);
2701
	rcu_read_unlock();
2702 2703
}

2704
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2705 2706 2707 2708
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2709 2710
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2711
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2712
 *    anyway.
L
Linus Torvalds 已提交
2713
 */
Z
Zefan Li 已提交
2714 2715
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
2716
{
2717
	char *buf;
2718
	struct cgroup_subsys_state *css;
2719
	int retval;
L
Linus Torvalds 已提交
2720

2721
	retval = -ENOMEM;
T
Tejun Heo 已提交
2722
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2723
	if (!buf)
2724 2725
		goto out;

2726
	css = task_get_css(tsk, cpuset_cgrp_id);
2727 2728
	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
				current->nsproxy->cgroup_ns);
2729
	css_put(css);
2730
	if (retval >= PATH_MAX)
2731 2732
		retval = -ENAMETOOLONG;
	if (retval < 0)
Z
Zefan Li 已提交
2733
		goto out_free;
2734
	seq_puts(m, buf);
L
Linus Torvalds 已提交
2735
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2736
	retval = 0;
2737
out_free:
L
Linus Torvalds 已提交
2738
	kfree(buf);
2739
out:
L
Linus Torvalds 已提交
2740 2741
	return retval;
}
2742
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2743

2744
/* Display task mems_allowed in /proc/<pid>/status file. */
2745 2746
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2747 2748 2749 2750
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
L
Linus Torvalds 已提交
2751
}