cpuset.c 76.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46
#include <linux/sched.h>
47
#include <linux/sched/mm.h>
48
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
49
#include <linux/seq_file.h>
50
#include <linux/security.h>
L
Linus Torvalds 已提交
51 52 53 54 55
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
56
#include <linux/time64.h>
L
Linus Torvalds 已提交
57 58 59
#include <linux/backing-dev.h>
#include <linux/sort.h>

60
#include <linux/uaccess.h>
A
Arun Sharma 已提交
61
#include <linux/atomic.h>
62
#include <linux/mutex.h>
63
#include <linux/cgroup.h>
64
#include <linux/wait.h>
L
Linus Torvalds 已提交
65

66
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
67

68 69 70 71 72
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
73
	time64_t time;		/* clock (secs) when val computed */
74 75 76
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
77
struct cpuset {
78 79
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
80
	unsigned long flags;		/* "unsigned long" so bitops work */
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

102 103 104 105 106 107 108
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
109

110 111 112 113 114 115 116 117 118 119 120 121
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

122
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
123

124 125 126 127 128 129
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
130 131
	/* partition number for rebuild_sched_domains() */
	int pn;
132

133 134
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
135 136
};

137
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
138
{
139
	return css ? container_of(css, struct cpuset, css) : NULL;
140 141 142 143 144
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
145
	return css_cs(task_css(task, cpuset_cgrp_id));
146 147
}

148
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
149
{
T
Tejun Heo 已提交
150
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
166 167
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
168
	CS_ONLINE,
L
Linus Torvalds 已提交
169 170
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
171
	CS_MEM_HARDWALL,
172
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
173
	CS_SCHED_LOAD_BALANCE,
174 175
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
176 177 178
} cpuset_flagbits_t;

/* convenient tests for these bits */
179
static inline bool is_cpuset_online(struct cpuset *cs)
T
Tejun Heo 已提交
180
{
181
	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
T
Tejun Heo 已提交
182 183
}

L
Linus Torvalds 已提交
184 185
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
186
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
187 188 189 190
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
191
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
192 193
}

194 195 196 197 198
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
199 200 201 202 203
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

204 205
static inline int is_memory_migrate(const struct cpuset *cs)
{
206
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
207 208
}

209 210 211 212 213 214 215 216 217 218
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
219
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
220 221
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
222 223
};

224 225 226
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
227
 * @pos_css: used for iteration
228 229 230 231 232
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
233 234 235
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
236

237 238 239
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
240
 * @pos_css: used for iteration
241 242 243
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
244
 * with RCU read locked.  The caller may modify @pos_css by calling
245 246
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
247
 */
248 249 250
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
251

L
Linus Torvalds 已提交
252
/*
253 254 255 256
 * There are two global locks guarding cpuset structures - cpuset_mutex and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.
257
 *
258
 * A task must hold both locks to modify cpusets.  If a task holds
259
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
260
 * is the only task able to also acquire callback_lock and be able to
261 262 263
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
264 265
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
266
 * everyone else.
267 268
 *
 * Calls to the kernel memory allocator can not be made while holding
269
 * callback_lock, as that would risk double tripping on callback_lock
270 271 272
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
273
 * If a task is only holding callback_lock, then it has read-only
274 275
 * access to cpusets.
 *
276 277 278
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
279
 *
280
 * The cpuset_common_file_read() handlers only hold callback_lock across
281 282 283
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
284 285
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
286 287
 */

288
static DEFINE_MUTEX(cpuset_mutex);
289
static DEFINE_SPINLOCK(callback_lock);
290

291 292
static struct workqueue_struct *cpuset_migrate_mm_wq;

293 294 295 296 297 298
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

299 300
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

301 302
/*
 * This is ugly, but preserves the userspace API for existing cpuset
303
 * users. If someone tries to mount the "cpuset" filesystem, we
304 305
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
306 307
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
308
{
309
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
310
	struct dentry *ret = ERR_PTR(-ENODEV);
311 312 313 314
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
315 316
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
317 318 319
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
320 321 322 323
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
324
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
325 326 327
};

/*
328
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
329
 * are online.  If none are online, walk up the cpuset hierarchy
330
 * until we find one that does have some online cpus.
L
Linus Torvalds 已提交
331 332
 *
 * One way or another, we guarantee to return some non-empty subset
333
 * of cpu_online_mask.
L
Linus Torvalds 已提交
334
 *
335
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
336
 */
337
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
338
{
339
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
T
Tejun Heo 已提交
340
		cs = parent_cs(cs);
341 342 343 344 345 346 347 348 349 350 351 352
		if (unlikely(!cs)) {
			/*
			 * The top cpuset doesn't have any online cpu as a
			 * consequence of a race between cpuset_hotplug_work
			 * and cpu hotplug notifier.  But we know the top
			 * cpuset's effective_cpus is on its way to to be
			 * identical to cpu_online_mask.
			 */
			cpumask_copy(pmask, cpu_online_mask);
			return;
		}
	}
353
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
354 355 356 357
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
358 359
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
360
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
361 362
 *
 * One way or another, we guarantee to return some non-empty subset
363
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
364
 *
365
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
366
 */
367
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
368
{
369
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
370
		cs = parent_cs(cs);
371
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
372 373
}

374 375 376
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
377
 * Call with callback_lock or cpuset_mutex held.
378 379 380 381 382
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
383
		task_set_spread_page(tsk);
384
	else
385 386
		task_clear_spread_page(tsk);

387
	if (is_spread_slab(cs))
388
		task_set_spread_slab(tsk);
389
	else
390
		task_clear_spread_slab(tsk);
391 392
}

L
Linus Torvalds 已提交
393 394 395 396 397
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
398
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
399 400 401 402
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
403
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
404 405 406 407 408
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

409 410 411 412
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
413
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
414
{
415 416 417 418 419 420
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

421 422 423 424
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
425

426 427
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
428
	return trial;
429 430 431 432 433 434

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
435 436 437 438 439 440 441 442
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
443
	free_cpumask_var(trial->effective_cpus);
444
	free_cpumask_var(trial->cpus_allowed);
445 446 447
	kfree(trial);
}

L
Linus Torvalds 已提交
448 449 450 451 452 453 454
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
455
 * cpuset_mutex held.
L
Linus Torvalds 已提交
456 457 458 459 460 461 462 463 464 465 466 467
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

468
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
469
{
470
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
471
	struct cpuset *c, *par;
472 473 474
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
475 476

	/* Each of our child cpusets must be a subset of us */
477
	ret = -EBUSY;
478
	cpuset_for_each_child(c, css, cur)
479 480
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
481 482

	/* Remaining checks don't apply to root cpuset */
483
	ret = 0;
484
	if (cur == &top_cpuset)
485
		goto out;
L
Linus Torvalds 已提交
486

T
Tejun Heo 已提交
487
	par = parent_cs(cur);
488

489
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
490
	ret = -EACCES;
491 492
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
	    !is_cpuset_subset(trial, par))
493
		goto out;
L
Linus Torvalds 已提交
494

495 496 497 498
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
499
	ret = -EINVAL;
500
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
501 502
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
503
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
504
			goto out;
L
Linus Torvalds 已提交
505 506 507
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
508
			goto out;
L
Linus Torvalds 已提交
509 510
	}

511 512
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
513
	 * be changed to have empty cpus_allowed or mems_allowed.
514
	 */
515
	ret = -ENOSPC;
516
	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
517 518 519 520 521 522 523
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
524

525 526 527 528 529 530 531 532 533 534
	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

535 536 537 538
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
539 540
}

541
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
542
/*
543
 * Helper routine for generate_sched_domains().
544
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
545 546 547
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
548
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
549 550
}

551 552 553 554 555 556 557 558
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

559 560
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
561
{
562
	struct cpuset *cp;
563
	struct cgroup_subsys_state *pos_css;
564

565
	rcu_read_lock();
566
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
567 568
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
569
			pos_css = css_rightmost_descendant(pos_css);
570
			continue;
571
		}
572 573 574 575

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
576
	rcu_read_unlock();
577 578
}

P
Paul Jackson 已提交
579
/*
580 581 582 583 584
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
585
 * The output of this function needs to be passed to kernel/sched/core.c
586 587 588
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
589
 *
L
Li Zefan 已提交
590
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
591 592 593 594 595 596 597
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
598
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
599 600
 *
 * The three key local variables below are:
601
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
602 603 604 605 606 607 608 609 610 611 612 613
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
614
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
633
static int generate_sched_domains(cpumask_var_t **domains,
634
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
635 636 637 638 639
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
640
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
641
	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
642
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
643
	int ndoms = 0;		/* number of sched domains in result */
644
	int nslot;		/* next empty doms[] struct cpumask slot */
645
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
646 647

	doms = NULL;
648
	dattr = NULL;
649
	csa = NULL;
P
Paul Jackson 已提交
650

651 652 653 654
	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
		goto done;
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);

P
Paul Jackson 已提交
655 656
	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
657 658
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
659
		if (!doms)
660 661
			goto done;

662 663 664
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
665
			update_domain_attr_tree(dattr, &top_cpuset);
666
		}
667 668
		cpumask_and(doms[0], top_cpuset.effective_cpus,
				     non_isolated_cpus);
669 670

		goto done;
P
Paul Jackson 已提交
671 672
	}

673
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
674 675 676 677
	if (!csa)
		goto done;
	csn = 0;

678
	rcu_read_lock();
679
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
680 681
		if (cp == &top_cpuset)
			continue;
682
		/*
683 684 685 686 687 688
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
689
		 */
690
		if (!cpumask_empty(cp->cpus_allowed) &&
691 692
		    !(is_sched_load_balance(cp) &&
		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
693
			continue;
694

695 696 697 698
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
699
		pos_css = css_rightmost_descendant(pos_css);
700 701
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

730 731 732 733
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
734
	doms = alloc_sched_domains(ndoms);
735
	if (!doms)
736 737 738 739 740 741
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
742
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
743 744 745

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
746
		struct cpumask *dp;
P
Paul Jackson 已提交
747 748
		int apn = a->pn;

749 750 751 752 753
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

754
		dp = doms[nslot];
755 756 757 758

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
759 760
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
761
				warnings--;
P
Paul Jackson 已提交
762
			}
763 764
			continue;
		}
P
Paul Jackson 已提交
765

766
		cpumask_clear(dp);
767 768 769 770 771 772
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
773
				cpumask_or(dp, dp, b->effective_cpus);
774
				cpumask_and(dp, dp, non_isolated_cpus);
775 776 777 778 779
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
780 781
			}
		}
782
		nslot++;
P
Paul Jackson 已提交
783 784 785
	}
	BUG_ON(nslot != ndoms);

786
done:
787
	free_cpumask_var(non_isolated_cpus);
788 789
	kfree(csa);

790 791 792 793 794 795 796
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

797 798 799 800 801 802 803 804
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
805 806 807 808 809
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
810
 *
811
 * Call with cpuset_mutex held.  Takes get_online_cpus().
812
 */
813
static void rebuild_sched_domains_locked(void)
814 815
{
	struct sched_domain_attr *attr;
816
	cpumask_var_t *doms;
817 818
	int ndoms;

819
	lockdep_assert_held(&cpuset_mutex);
820
	get_online_cpus();
821

822 823 824 825 826
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
827
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
828 829
		goto out;

830 831 832 833 834
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
835
out:
836
	put_online_cpus();
837
}
838
#else /* !CONFIG_SMP */
839
static void rebuild_sched_domains_locked(void)
840 841 842
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
843

844 845
void rebuild_sched_domains(void)
{
846
	mutex_lock(&cpuset_mutex);
847
	rebuild_sched_domains_locked();
848
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
849 850
}

851 852 853 854
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
855 856 857
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
858
 */
859
static void update_tasks_cpumask(struct cpuset *cs)
860
{
861 862 863 864 865
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
866
		set_cpus_allowed_ptr(task, cs->effective_cpus);
867
	css_task_iter_end(&it);
868 869
}

870
/*
871 872 873 874 875 876
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
877
 *
878
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
879 880 881
 *
 * Called with cpuset_mutex held
 */
882
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
883 884
{
	struct cpuset *cp;
885
	struct cgroup_subsys_state *pos_css;
886
	bool need_rebuild_sched_domains = false;
887 888

	rcu_read_lock();
889 890 891 892 893
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

894 895 896 897
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
898 899
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    cpumask_empty(new_cpus))
900 901
			cpumask_copy(new_cpus, parent->effective_cpus);

902 903 904 905
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
906
		}
907

908
		if (!css_tryget_online(&cp->css))
909 910 911
			continue;
		rcu_read_unlock();

912
		spin_lock_irq(&callback_lock);
913
		cpumask_copy(cp->effective_cpus, new_cpus);
914
		spin_unlock_irq(&callback_lock);
915

916
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
917 918
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

919
		update_tasks_cpumask(cp);
920

921 922 923 924 925 926 927 928
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

929 930 931 932
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
933 934 935

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
936 937
}

C
Cliff Wickman 已提交
938 939 940
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
941
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
942 943
 * @buf: buffer of cpu numbers written to this cpuset
 */
944 945
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
946
{
C
Cliff Wickman 已提交
947
	int retval;
L
Linus Torvalds 已提交
948

949
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
950 951 952
	if (cs == &top_cpuset)
		return -EACCES;

953
	/*
954
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
955 956 957
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
958
	 */
959
	if (!*buf) {
960
		cpumask_clear(trialcs->cpus_allowed);
961
	} else {
962
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
963 964
		if (retval < 0)
			return retval;
965

966 967
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
968
			return -EINVAL;
969
	}
P
Paul Jackson 已提交
970

P
Paul Menage 已提交
971
	/* Nothing to do if the cpus didn't change */
972
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
973
		return 0;
C
Cliff Wickman 已提交
974

975 976 977 978
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

979
	spin_lock_irq(&callback_lock);
980
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
981
	spin_unlock_irq(&callback_lock);
P
Paul Jackson 已提交
982

983 984
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
985
	return 0;
L
Linus Torvalds 已提交
986 987
}

988
/*
989 990 991 992 993
 * Migrate memory region from one set of nodes to another.  This is
 * performed asynchronously as it can be called from process migration path
 * holding locks involved in process management.  All mm migrations are
 * performed in the queued order and can be waited for by flushing
 * cpuset_migrate_mm_wq.
994 995
 */

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
struct cpuset_migrate_mm_work {
	struct work_struct	work;
	struct mm_struct	*mm;
	nodemask_t		from;
	nodemask_t		to;
};

static void cpuset_migrate_mm_workfn(struct work_struct *work)
{
	struct cpuset_migrate_mm_work *mwork =
		container_of(work, struct cpuset_migrate_mm_work, work);

	/* on a wq worker, no need to worry about %current's mems_allowed */
	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
	mmput(mwork->mm);
	kfree(mwork);
}

1014 1015 1016
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
1017
	struct cpuset_migrate_mm_work *mwork;
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
	if (mwork) {
		mwork->mm = mm;
		mwork->from = *from;
		mwork->to = *to;
		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
		queue_work(cpuset_migrate_mm_wq, &mwork->work);
	} else {
		mmput(mm);
	}
}
1030

1031
static void cpuset_post_attach(void)
1032 1033
{
	flush_workqueue(cpuset_migrate_mm_wq);
1034 1035
}

1036
/*
1037 1038 1039 1040
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
1041 1042 1043 1044
 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
 * and rebind an eventual tasks' mempolicy. If the task is allocating in
 * parallel, it might temporarily see an empty intersection, which results in
 * a seqlock check and retry before OOM or allocation failure.
1045 1046 1047 1048
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1049 1050
	task_lock(tsk);

1051 1052
	local_irq_disable();
	write_seqcount_begin(&tsk->mems_allowed_seq);
1053

1054
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1055
	mpol_rebind_task(tsk, newmems);
1056
	tsk->mems_allowed = *newmems;
1057

1058 1059
	write_seqcount_end(&tsk->mems_allowed_seq);
	local_irq_enable();
1060

1061
	task_unlock(tsk);
1062 1063
}

1064 1065
static void *cpuset_being_rebound;

1066 1067 1068 1069
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1070 1071 1072
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1073
 */
1074
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1075
{
1076
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1077 1078
	struct css_task_iter it;
	struct task_struct *task;
1079

1080
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1081

1082
	guarantee_online_mems(cs, &newmems);
1083

1084
	/*
1085 1086 1087 1088
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1089
	 * the global cpuset_mutex, we know that no other rebind effort
1090
	 * will be contending for the global variable cpuset_being_rebound.
1091
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1092
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1093
	 */
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1110 1111
		else
			mmput(mm);
1112 1113
	}
	css_task_iter_end(&it);
1114

1115 1116 1117 1118 1119 1120
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1121
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1122
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1123 1124
}

1125
/*
1126 1127 1128
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1129
 *
1130 1131
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1132
 *
1133
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1134 1135 1136
 *
 * Called with cpuset_mutex held
 */
1137
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1138 1139
{
	struct cpuset *cp;
1140
	struct cgroup_subsys_state *pos_css;
1141 1142

	rcu_read_lock();
1143 1144 1145 1146 1147
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1148 1149 1150 1151
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
1152 1153
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    nodes_empty(*new_mems))
1154 1155
			*new_mems = parent->effective_mems;

1156 1157 1158 1159
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1160
		}
1161

1162
		if (!css_tryget_online(&cp->css))
1163 1164 1165
			continue;
		rcu_read_unlock();

1166
		spin_lock_irq(&callback_lock);
1167
		cp->effective_mems = *new_mems;
1168
		spin_unlock_irq(&callback_lock);
1169

1170
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1171
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1172

1173
		update_tasks_nodemask(cp);
1174 1175 1176 1177 1178 1179 1180

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1181 1182 1183
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1184 1185 1186 1187
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1188
 *
1189
 * Call with cpuset_mutex held. May take callback_lock during call.
1190 1191 1192 1193
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1194 1195
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1196 1197 1198 1199
{
	int retval;

	/*
1200
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1201 1202
	 * it's read-only
	 */
1203 1204 1205 1206
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1207 1208 1209 1210 1211 1212 1213 1214

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1215
		nodes_clear(trialcs->mems_allowed);
1216
	} else {
1217
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1218 1219 1220
		if (retval < 0)
			goto done;

1221
		if (!nodes_subset(trialcs->mems_allowed,
1222 1223
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1224 1225
			goto done;
		}
1226
	}
1227 1228

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1229 1230 1231
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1232
	retval = validate_change(cs, trialcs);
1233 1234 1235
	if (retval < 0)
		goto done;

1236
	spin_lock_irq(&callback_lock);
1237
	cs->mems_allowed = trialcs->mems_allowed;
1238
	spin_unlock_irq(&callback_lock);
1239

1240
	/* use trialcs->mems_allowed as a temp variable */
1241
	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1242 1243 1244 1245
done:
	return retval;
}

1246 1247
int current_cpuset_is_being_rebound(void)
{
1248 1249 1250 1251 1252 1253 1254
	int ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1255 1256
}

1257
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1258
{
1259
#ifdef CONFIG_SMP
1260
	if (val < -1 || val >= sched_domain_level_max)
1261
		return -EINVAL;
1262
#endif
1263 1264 1265

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1266 1267
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1268
			rebuild_sched_domains_locked();
1269 1270 1271 1272 1273
	}

	return 0;
}

1274
/**
1275 1276 1277
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1278 1279 1280
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1281
 */
1282
static void update_tasks_flags(struct cpuset *cs)
1283
{
1284 1285 1286 1287 1288 1289 1290
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1291 1292
}

L
Linus Torvalds 已提交
1293 1294
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1295 1296 1297
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1298
 *
1299
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1300 1301
 */

1302 1303
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1304
{
1305
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1306
	int balance_flag_changed;
1307 1308
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1309

1310 1311 1312 1313
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1314
	if (turning_on)
1315
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1316
	else
1317
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1318

1319
	err = validate_change(cs, trialcs);
1320
	if (err < 0)
1321
		goto out;
P
Paul Jackson 已提交
1322 1323

	balance_flag_changed = (is_sched_load_balance(cs) !=
1324
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1325

1326 1327 1328
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1329
	spin_lock_irq(&callback_lock);
1330
	cs->flags = trialcs->flags;
1331
	spin_unlock_irq(&callback_lock);
1332

1333
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1334
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1335

1336
	if (spread_flag_changed)
1337
		update_tasks_flags(cs);
1338 1339 1340
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1341 1342
}

1343
/*
A
Adrian Bunk 已提交
1344
 * Frequency meter - How fast is some event occurring?
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1389
#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
1405 1406 1407 1408 1409
	time64_t now;
	u32 ticks;

	now = ktime_get_seconds();
	ticks = now - fmp->time;
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1444 1445
static struct cpuset *cpuset_attach_old_cs;

1446
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1447
static int cpuset_can_attach(struct cgroup_taskset *tset)
1448
{
1449 1450
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1451 1452
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1453

1454
	/* used later by cpuset_attach() */
1455 1456
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
	cs = css_cs(css);
1457

1458 1459
	mutex_lock(&cpuset_mutex);

1460
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1461
	ret = -ENOSPC;
1462
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1463
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1464
		goto out_unlock;
1465

1466
	cgroup_taskset_for_each(task, css, tset) {
1467 1468
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
1469 1470 1471 1472
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1473
	}
1474

1475 1476 1477 1478 1479
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1480 1481 1482 1483
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1484
}
1485

1486
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1487
{
1488 1489 1490 1491 1492 1493
	struct cgroup_subsys_state *css;
	struct cpuset *cs;

	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1494
	mutex_lock(&cpuset_mutex);
1495
	css_cs(css)->attach_in_progress--;
1496
	mutex_unlock(&cpuset_mutex);
1497
}
L
Linus Torvalds 已提交
1498

1499
/*
1500
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1501 1502 1503 1504 1505
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1506
static void cpuset_attach(struct cgroup_taskset *tset)
1507
{
1508
	/* static buf protected by cpuset_mutex */
1509
	static nodemask_t cpuset_attach_nodemask_to;
1510
	struct task_struct *task;
1511
	struct task_struct *leader;
1512 1513
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1514
	struct cpuset *oldcs = cpuset_attach_old_cs;
1515

1516 1517 1518
	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1519 1520
	mutex_lock(&cpuset_mutex);

1521 1522 1523 1524
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1525
		guarantee_online_cpus(cs, cpus_attach);
1526

1527
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1528

1529
	cgroup_taskset_for_each(task, css, tset) {
1530 1531 1532 1533 1534 1535 1536 1537 1538
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1539

1540
	/*
1541 1542
	 * Change mm for all threadgroup leaders. This is expensive and may
	 * sleep and should be moved outside migration path proper.
1543
	 */
1544
	cpuset_attach_nodemask_to = cs->effective_mems;
1545
	cgroup_taskset_for_each_leader(leader, css, tset) {
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		struct mm_struct *mm = get_task_mm(leader);

		if (mm) {
			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);

			/*
			 * old_mems_allowed is the same with mems_allowed
			 * here, except if this task is being moved
			 * automatically due to hotplug.  In that case
			 * @mems_allowed has been updated and is empty, so
			 * @old_mems_allowed is the right nodesets that we
			 * migrate mm from.
			 */
1559
			if (is_memory_migrate(cs))
1560 1561
				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
						  &cpuset_attach_nodemask_to);
1562 1563
			else
				mmput(mm);
1564
		}
1565
	}
1566

1567
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1568

1569
	cs->attach_in_progress--;
1570 1571
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1572 1573

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1574 1575 1576 1577 1578
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1579
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1580 1581
	FILE_CPULIST,
	FILE_MEMLIST,
1582 1583
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1584 1585
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1586
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1587
	FILE_SCHED_LOAD_BALANCE,
1588
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1589 1590
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1591 1592
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1593 1594
} cpuset_filetype_t;

1595 1596
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1597
{
1598
	struct cpuset *cs = css_cs(css);
1599
	cpuset_filetype_t type = cft->private;
1600
	int retval = 0;
1601

1602
	mutex_lock(&cpuset_mutex);
1603 1604
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1605
		goto out_unlock;
1606
	}
1607 1608

	switch (type) {
L
Linus Torvalds 已提交
1609
	case FILE_CPU_EXCLUSIVE:
1610
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1611 1612
		break;
	case FILE_MEM_EXCLUSIVE:
1613
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1614
		break;
1615 1616 1617
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1618
	case FILE_SCHED_LOAD_BALANCE:
1619
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1620
		break;
1621
	case FILE_MEMORY_MIGRATE:
1622
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1623
		break;
1624
	case FILE_MEMORY_PRESSURE_ENABLED:
1625
		cpuset_memory_pressure_enabled = !!val;
1626
		break;
1627
	case FILE_SPREAD_PAGE:
1628
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1629 1630
		break;
	case FILE_SPREAD_SLAB:
1631
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1632
		break;
L
Linus Torvalds 已提交
1633 1634
	default:
		retval = -EINVAL;
1635
		break;
L
Linus Torvalds 已提交
1636
	}
1637 1638
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1639 1640 1641
	return retval;
}

1642 1643
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1644
{
1645
	struct cpuset *cs = css_cs(css);
1646
	cpuset_filetype_t type = cft->private;
1647
	int retval = -ENODEV;
1648

1649 1650 1651
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1652

1653 1654 1655 1656 1657 1658 1659 1660
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1661 1662
out_unlock:
	mutex_unlock(&cpuset_mutex);
1663 1664 1665
	return retval;
}

1666 1667 1668
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1669 1670
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1671
{
1672
	struct cpuset *cs = css_cs(of_css(of));
1673
	struct cpuset *trialcs;
1674
	int retval = -ENODEV;
1675

1676 1677
	buf = strstrip(buf);

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1688 1689 1690 1691 1692 1693 1694 1695
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1696
	 */
1697 1698
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1699 1700
	flush_work(&cpuset_hotplug_work);

1701 1702 1703
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1704

1705
	trialcs = alloc_trial_cpuset(cs);
1706 1707
	if (!trialcs) {
		retval = -ENOMEM;
1708
		goto out_unlock;
1709
	}
1710

1711
	switch (of_cft(of)->private) {
1712
	case FILE_CPULIST:
1713
		retval = update_cpumask(cs, trialcs, buf);
1714 1715
		break;
	case FILE_MEMLIST:
1716
		retval = update_nodemask(cs, trialcs, buf);
1717 1718 1719 1720 1721
		break;
	default:
		retval = -EINVAL;
		break;
	}
1722 1723

	free_trial_cpuset(trialcs);
1724 1725
out_unlock:
	mutex_unlock(&cpuset_mutex);
1726 1727
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1728
	flush_workqueue(cpuset_migrate_mm_wq);
1729
	return retval ?: nbytes;
1730 1731
}

L
Linus Torvalds 已提交
1732 1733 1734 1735 1736 1737 1738 1739
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1740
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1741
{
1742 1743
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1744
	int ret = 0;
L
Linus Torvalds 已提交
1745

1746
	spin_lock_irq(&callback_lock);
L
Linus Torvalds 已提交
1747 1748 1749

	switch (type) {
	case FILE_CPULIST:
1750
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
L
Linus Torvalds 已提交
1751 1752
		break;
	case FILE_MEMLIST:
1753
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
L
Linus Torvalds 已提交
1754
		break;
1755
	case FILE_EFFECTIVE_CPULIST:
1756
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1757 1758
		break;
	case FILE_EFFECTIVE_MEMLIST:
1759
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1760
		break;
L
Linus Torvalds 已提交
1761
	default:
1762
		ret = -EINVAL;
L
Linus Torvalds 已提交
1763 1764
	}

1765
	spin_unlock_irq(&callback_lock);
1766
	return ret;
L
Linus Torvalds 已提交
1767 1768
}

1769
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1770
{
1771
	struct cpuset *cs = css_cs(css);
1772 1773 1774 1775 1776 1777
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1778 1779
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1795 1796 1797

	/* Unreachable but makes gcc happy */
	return 0;
1798
}
L
Linus Torvalds 已提交
1799

1800
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1801
{
1802
	struct cpuset *cs = css_cs(css);
1803 1804 1805 1806 1807 1808 1809
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1810 1811 1812

	/* Unrechable but makes gcc happy */
	return 0;
1813 1814
}

L
Linus Torvalds 已提交
1815 1816 1817 1818 1819

/*
 * for the common functions, 'private' gives the type of file
 */

1820 1821 1822
static struct cftype files[] = {
	{
		.name = "cpus",
1823
		.seq_show = cpuset_common_seq_show,
1824
		.write = cpuset_write_resmask,
1825
		.max_write_len = (100U + 6 * NR_CPUS),
1826 1827 1828 1829 1830
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1831
		.seq_show = cpuset_common_seq_show,
1832
		.write = cpuset_write_resmask,
1833
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1834 1835 1836
		.private = FILE_MEMLIST,
	},

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1863 1864 1865 1866 1867 1868 1869
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1870 1871 1872 1873 1874 1875 1876 1877 1878
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1879 1880
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1909

1910 1911 1912 1913 1914 1915 1916
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1917

1918 1919
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1920 1921

/*
1922
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1923
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1924 1925
 */

1926 1927
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1928
{
T
Tejun Heo 已提交
1929
	struct cpuset *cs;
L
Linus Torvalds 已提交
1930

1931
	if (!parent_css)
1932
		return &top_cpuset.css;
1933

T
Tejun Heo 已提交
1934
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1935
	if (!cs)
1936
		return ERR_PTR(-ENOMEM);
1937 1938 1939 1940
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1941

P
Paul Jackson 已提交
1942
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1943
	cpumask_clear(cs->cpus_allowed);
1944
	nodes_clear(cs->mems_allowed);
1945 1946
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1947
	fmeter_init(&cs->fmeter);
1948
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1949

T
Tejun Heo 已提交
1950
	return &cs->css;
1951 1952 1953 1954 1955 1956

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1957 1958
}

1959
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1960
{
1961
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1962
	struct cpuset *parent = parent_cs(cs);
1963
	struct cpuset *tmp_cs;
1964
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1965 1966 1967 1968

	if (!parent)
		return 0;

1969 1970
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1971
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1972 1973 1974 1975
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1976

1977
	cpuset_inc();
1978

1979
	spin_lock_irq(&callback_lock);
1980
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1981 1982 1983
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
1984
	spin_unlock_irq(&callback_lock);
1985

1986
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1987
		goto out_unlock;
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
2002
	rcu_read_lock();
2003
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2004 2005
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
2006
			goto out_unlock;
2007
		}
2008
	}
2009
	rcu_read_unlock();
2010

2011
	spin_lock_irq(&callback_lock);
2012
	cs->mems_allowed = parent->mems_allowed;
2013
	cs->effective_mems = parent->mems_allowed;
2014
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2015
	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
D
Dan Carpenter 已提交
2016
	spin_unlock_irq(&callback_lock);
2017 2018
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2019 2020 2021
	return 0;
}

2022 2023 2024 2025 2026 2027
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2028
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2029
{
2030
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2031

2032
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2033 2034 2035 2036

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2037
	cpuset_dec();
T
Tejun Heo 已提交
2038
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2039

2040
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2041 2042
}

2043
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2044
{
2045
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2046

2047
	free_cpumask_var(cs->effective_cpus);
2048
	free_cpumask_var(cs->cpus_allowed);
2049
	kfree(cs);
L
Linus Torvalds 已提交
2050 2051
}

2052 2053 2054
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
2055
	spin_lock_irq(&callback_lock);
2056

2057
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2058 2059 2060 2061 2062 2063 2064 2065
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

2066
	spin_unlock_irq(&callback_lock);
2067 2068 2069
	mutex_unlock(&cpuset_mutex);
}

2070 2071 2072 2073 2074
/*
 * Make sure the new task conform to the current state of its parent,
 * which could have been changed by cpuset just after it inherits the
 * state from the parent and before it sits on the cgroup's task list.
 */
2075
static void cpuset_fork(struct task_struct *task)
2076 2077 2078 2079 2080 2081 2082 2083
{
	if (task_css_is_root(task, cpuset_cgrp_id))
		return;

	set_cpus_allowed_ptr(task, &current->cpus_allowed);
	task->mems_allowed = current->mems_allowed;
}

2084
struct cgroup_subsys cpuset_cgrp_subsys = {
2085 2086 2087 2088 2089 2090 2091
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
2092
	.post_attach	= cpuset_post_attach,
2093
	.bind		= cpuset_bind,
2094
	.fork		= cpuset_fork,
2095
	.legacy_cftypes	= files,
2096
	.early_init	= true,
2097 2098
};

L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104 2105 2106
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2107
	int err = 0;
L
Linus Torvalds 已提交
2108

N
Nicholas Mc Guire 已提交
2109 2110
	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2111

2112
	cpumask_setall(top_cpuset.cpus_allowed);
2113
	nodes_setall(top_cpuset.mems_allowed);
2114 2115
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2116

2117
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2118
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2119
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2120 2121 2122

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2123 2124
		return err;

N
Nicholas Mc Guire 已提交
2125
	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2126

2127
	return 0;
L
Linus Torvalds 已提交
2128 2129
}

2130
/*
2131
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2132 2133
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2134 2135
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2136
 */
2137 2138 2139 2140 2141 2142 2143 2144
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2145
	parent = parent_cs(cs);
2146
	while (cpumask_empty(parent->cpus_allowed) ||
2147
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2148
		parent = parent_cs(parent);
2149

2150
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2151
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2152 2153
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2154
	}
2155 2156
}

2157 2158 2159 2160
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2161 2162 2163
{
	bool is_empty;

2164
	spin_lock_irq(&callback_lock);
2165 2166 2167 2168
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2169
	spin_unlock_irq(&callback_lock);
2170 2171 2172 2173 2174

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2175
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2176
		update_tasks_cpumask(cs);
2177
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2196 2197 2198 2199
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2200
{
2201 2202 2203 2204 2205
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2206
	spin_lock_irq(&callback_lock);
2207 2208
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2209
	spin_unlock_irq(&callback_lock);
2210

2211
	if (cpus_updated)
2212
		update_tasks_cpumask(cs);
2213
	if (mems_updated)
2214 2215 2216
		update_tasks_nodemask(cs);
}

2217
/**
2218
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2219
 * @cs: cpuset in interest
2220
 *
2221 2222 2223
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2224
 */
2225
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2226
{
2227 2228 2229 2230
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2231 2232
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2233

2234
	mutex_lock(&cpuset_mutex);
2235

2236 2237 2238 2239 2240 2241 2242 2243 2244
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2245 2246
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2247

2248 2249
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2250

2251
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2252 2253
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2254
	else
2255 2256
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2257

2258
	mutex_unlock(&cpuset_mutex);
2259 2260
}

2261
/**
2262
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2263
 *
2264 2265 2266 2267 2268
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2269
 *
2270
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2271 2272
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2273
 *
2274 2275
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2276
 */
2277
static void cpuset_hotplug_workfn(struct work_struct *work)
2278
{
2279 2280
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2281
	bool cpus_updated, mems_updated;
2282
	bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2283

2284
	mutex_lock(&cpuset_mutex);
2285

2286 2287 2288
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2289

2290 2291
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2292

2293 2294
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
2295
		spin_lock_irq(&callback_lock);
2296 2297
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2298
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2299
		spin_unlock_irq(&callback_lock);
2300 2301
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2302

2303 2304
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
2305
		spin_lock_irq(&callback_lock);
2306 2307
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2308
		top_cpuset.effective_mems = new_mems;
2309
		spin_unlock_irq(&callback_lock);
2310
		update_tasks_nodemask(&top_cpuset);
2311
	}
2312

2313 2314
	mutex_unlock(&cpuset_mutex);

2315 2316
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2317
		struct cpuset *cs;
2318
		struct cgroup_subsys_state *pos_css;
2319

2320
		rcu_read_lock();
2321
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2322
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2323 2324
				continue;
			rcu_read_unlock();
2325

2326
			cpuset_hotplug_update_tasks(cs);
2327

2328 2329 2330 2331 2332
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2333

2334
	/* rebuild sched domains if cpus_allowed has changed */
2335 2336
	if (cpus_updated)
		rebuild_sched_domains();
2337 2338
}

2339
void cpuset_update_active_cpus(void)
2340
{
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2353 2354
}

2355
/*
2356 2357
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2358
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2359
 */
2360 2361
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2362
{
2363
	schedule_work(&cpuset_hotplug_work);
2364
	return NOTIFY_OK;
2365
}
2366 2367 2368 2369 2370

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2371

L
Linus Torvalds 已提交
2372 2373 2374 2375
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2376
 */
L
Linus Torvalds 已提交
2377 2378
void __init cpuset_init_smp(void)
{
2379
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2380
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2381
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2382

2383 2384 2385
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2386
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2387 2388 2389

	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
	BUG_ON(!cpuset_migrate_mm_wq);
L
Linus Torvalds 已提交
2390 2391 2392 2393 2394
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2395
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2396
 *
2397
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2398
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2399
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2400 2401 2402
 * tasks cpuset.
 **/

2403
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2404
{
2405 2406 2407
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
2408
	rcu_read_lock();
2409
	guarantee_online_cpus(task_cs(tsk), pmask);
2410
	rcu_read_unlock();
2411
	spin_unlock_irqrestore(&callback_lock, flags);
L
Linus Torvalds 已提交
2412 2413
}

2414
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2415 2416
{
	rcu_read_lock();
2417
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2433 2434 2435
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2436 2437 2438
	 */
}

2439
void __init cpuset_init_current_mems_allowed(void)
L
Linus Torvalds 已提交
2440
{
2441
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2442 2443
}

2444 2445 2446 2447 2448 2449
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2450
 * subset of node_states[N_MEMORY], even if this means going outside the
2451 2452 2453 2454 2455 2456
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
2457
	unsigned long flags;
2458

2459
	spin_lock_irqsave(&callback_lock, flags);
2460
	rcu_read_lock();
2461
	guarantee_online_mems(task_cs(tsk), &mask);
2462
	rcu_read_unlock();
2463
	spin_unlock_irqrestore(&callback_lock, flags);
2464 2465 2466 2467

	return mask;
}

2468
/**
2469 2470
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2471
 *
2472
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2473
 */
2474
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2475
{
2476
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2477 2478
}

2479
/*
2480 2481
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
2482
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2483
 * (an unusual configuration), then returns the root cpuset.
2484
 */
2485
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2486
{
T
Tejun Heo 已提交
2487 2488
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2489 2490 2491
	return cs;
}

2492
/**
2493
 * cpuset_node_allowed - Can we allocate on a memory node?
2494
 * @node: is this an allowed node?
2495
 * @gfp_mask: memory allocation flags
2496
 *
2497 2498 2499 2500
 * If we're in interrupt, yes, we can always allocate.  If @node is set in
 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
 * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2501 2502 2503
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2504 2505
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2506
 * GFP_KERNEL allocations are not so marked, so can escape to the
2507
 * nearest enclosing hardwalled ancestor cpuset.
2508
 *
2509
 * Scanning up parent cpusets requires callback_lock.  The
2510 2511 2512 2513
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2514
 * cpuset are short of memory, might require taking the callback_lock.
2515
 *
2516
 * The first call here from mm/page_alloc:get_page_from_freelist()
2517 2518 2519
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2520 2521 2522 2523 2524 2525
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2526 2527
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2528
 *	TIF_MEMDIE   - any node ok
2529
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2530
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2531
 */
2532
bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2533
{
2534
	struct cpuset *cs;		/* current cpuset ancestors */
2535
	int allowed;			/* is allocation in zone z allowed? */
2536
	unsigned long flags;
2537

2538
	if (in_interrupt())
2539
		return true;
2540
	if (node_isset(node, current->mems_allowed))
2541
		return true;
2542 2543 2544 2545 2546
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2547
		return true;
2548
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2549
		return false;
2550

2551
	if (current->flags & PF_EXITING) /* Let dying task have memory */
2552
		return true;
2553

2554
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2555
	spin_lock_irqsave(&callback_lock, flags);
2556

2557
	rcu_read_lock();
2558
	cs = nearest_hardwall_ancestor(task_cs(current));
2559
	allowed = node_isset(node, cs->mems_allowed);
2560
	rcu_read_unlock();
2561

2562
	spin_unlock_irqrestore(&callback_lock, flags);
2563
	return allowed;
L
Linus Torvalds 已提交
2564 2565
}

2566
/**
2567 2568
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2593
static int cpuset_spread_node(int *rotor)
2594
{
2595
	return *rotor = next_node_in(*rotor, current->mems_allowed);
2596
}
2597 2598 2599

int cpuset_mem_spread_node(void)
{
2600 2601 2602 2603
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2604 2605 2606 2607 2608
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2609 2610 2611 2612
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2613 2614 2615
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2616 2617
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2618
/**
2619 2620 2621 2622 2623 2624 2625 2626
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2627 2628
 **/

2629 2630
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2631
{
2632
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2633 2634
}

2635
/**
2636
 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2637
 *
2638
 * Description: Prints current's name, cpuset name, and cached copy of its
2639
 * mems_allowed to the kernel log.
2640
 */
2641
void cpuset_print_current_mems_allowed(void)
2642
{
2643
	struct cgroup *cgrp;
2644

2645
	rcu_read_lock();
2646

2647 2648
	cgrp = task_cs(current)->css.cgroup;
	pr_info("%s cpuset=", current->comm);
T
Tejun Heo 已提交
2649
	pr_cont_cgroup_name(cgrp);
2650 2651
	pr_cont(" mems_allowed=%*pbl\n",
		nodemask_pr_args(&current->mems_allowed));
2652

2653
	rcu_read_unlock();
2654 2655
}

2656 2657 2658 2659 2660 2661
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2662
int cpuset_memory_pressure_enabled __read_mostly;
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2684
	rcu_read_lock();
2685
	fmeter_markevent(&task_cs(current)->fmeter);
2686
	rcu_read_unlock();
2687 2688
}

2689
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2690 2691 2692 2693
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2694 2695
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2696
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2697
 *    anyway.
L
Linus Torvalds 已提交
2698
 */
Z
Zefan Li 已提交
2699 2700
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
2701
{
2702
	char *buf;
2703
	struct cgroup_subsys_state *css;
2704
	int retval;
L
Linus Torvalds 已提交
2705

2706
	retval = -ENOMEM;
T
Tejun Heo 已提交
2707
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2708
	if (!buf)
2709 2710
		goto out;

2711
	css = task_get_css(tsk, cpuset_cgrp_id);
2712 2713
	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
				current->nsproxy->cgroup_ns);
2714
	css_put(css);
2715
	if (retval >= PATH_MAX)
2716 2717
		retval = -ENAMETOOLONG;
	if (retval < 0)
Z
Zefan Li 已提交
2718
		goto out_free;
2719
	seq_puts(m, buf);
L
Linus Torvalds 已提交
2720
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2721
	retval = 0;
2722
out_free:
L
Linus Torvalds 已提交
2723
	kfree(buf);
2724
out:
L
Linus Torvalds 已提交
2725 2726
	return retval;
}
2727
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2728

2729
/* Display task mems_allowed in /proc/<pid>/status file. */
2730 2731
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2732 2733 2734 2735
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
L
Linus Torvalds 已提交
2736
}